Conformally Flat Semi-Riemannian Manifolds with Commuting Curvature and Ricci Operators

Kyoko HONDA
Ochanomizu University
(Communicated by R. Miyaoka)

Abstract

We classify the conformally flat, semi-Riemannian manifolds satisfying $R(X, Y) \cdot Q=0$, where R and Q are the curvature tensor and the Ricci operator, respectively. As the cases which do not occur in the Riemannian manifolds, the Ricci operator Q has pure imaginary eigenvalues or it satisfies $Q^{2}=0$.

1. Introduction

Let (M, g) be the conformally flat Riemannian manifold satisfying the condition $R(X, Y) \cdot Q=0$ where R is the curvature tensor and Q is the Ricci operator of M. Such manifolds were studied and classified by Sekigawa and Takagi [12] under the assumption of completeness and Bishop and Goldberg [1] without such assumption. If (M, g) is the semiRiemannian manifold, the Ricci operator Q_{p} of M is a symmetric linear endomorphism of an indefinite scalar product space $\left(T_{p} M, g_{p}\right)$. According to Petrov [11], Q_{p} is not always diagonalizable in this case. Let (M, g) be the conformally flat Lorentzian manifold satisfying the condition $R(X, Y) \cdot Q=0$. The case when the Ricci operator Q is diagonalizable was classified by Erdogan and Ikawa [4]. In this paper, we study and classify the conformally flat semi-Riemannian manifold satisfying the condition $R(X, Y) \cdot Q=0$. The main result is the following.

MAIN Theorem. Let M_{q}^{n} be an n-dimensional ($n \geq 4$), simply connected, complete, conformally flat semi-Riemannian manifold of index q satisfying $R(X, Y) \cdot Q=0$. Then M is one of the following:
(1) M is a semi-Riemannian manifold of constant curvature.
(2) M is the product manifold of a k-dimensional semi-Riemannian manifold of constant curvature $K(\neq 0)$ and an $n-k$-dimensional semi-Riemannnian manifold of constant curvature $-K$; that is, $M_{q_{1}}^{k}(K) \times M_{q-q_{1}}^{n-k}(-K)$, where $1<k<n-1$.
(3) M is the product manifold of an n-1-dimensional semi-Riemannian manifold of index $q-1$ of constant curvature $K(\neq 0)$ and a 1-dimensional Lorentzian manifold, or the

[^0]product manifold of an n-1-dimensional semi-Riemannnian manifold of index q of constant curvature $K(\neq 0)$ and a 1-dimensional Riemannian manifold; that is, $M_{q-1}^{n-1}(K) \times M_{1}^{1}$ or $M_{q}^{n-1}(K) \times M^{1}$.
(4) $\quad M$ is an m-dimensional complex sphere in C^{m+1} defined by
$$
z_{1}^{2}+\cdots+z_{m+1}^{2}=\sqrt{-1} b \quad(b \neq 0, b \in R)
$$
where $2 m=n$.
(5) The Ricci operator satisfies $Q^{2}=0$ everywhere. Moreover on an open set where the Ricci operator has maximal rank, the kernel of Q is an integrable distribution and gives a totally geodesic foliation whose leaves are flat and complete with respect to the induced connection.

REMARK. The detailed definition of a complex sphere will be given in section 4.
The cases of (4) and (5) in the theorem above never occur if M is a Riamnnian manifold. The Ricci operator of the semi-Riemannian manifold in (4) has two pure imaginary eigenvalues which are mutually conjugate.

After preliminaries in section 2, in section 3 the possible Ricci operator Q under the assumption of Main Theorem are classified algebraically (Theorem 3.1). Moreover we consider the case when Q is diagonalizable and obtain the similar result to Sekigawa and Takagi (Proposition 3.3). In section 4, we study the case when Q has two pure imaginary eigenvalues which are mutually conjugate and show the classification result (Theorem 4.1). We study the case when the Ricci operator is nilpotent in section 5 and show such examples in section 6.

The author wishes to express her sincere thanks to Professors T. Ikawa and S. Udagawa for their valuable suggestions and guidances and also thanks to Professor K. Tsukada for his guidance and encouragement.

2. Preliminaries

Let $\left(M_{q}^{n}, g\right)$ be an n-dimensional semi-Riemannian manifold of index q, i.e., the signature of $g=(\overbrace{-, \cdots,-}^{q},+, \cdots,+)$. If $q=0, M$ is a Riemannian manifold, and if $q=1$, M is a Lorentzian manifold. We denote by ∇ the Levi-Civita connection of M_{q}^{n} and by R the curvature tensor of M. The Ricci operator Q is a field of symmetric endomorphism which corresponds to the Ricci tensor ric, that is, $\operatorname{ric}(X, Y)=g(Q X, Y) . r$ denotes the scalar curvature defined by $r=\operatorname{tr} Q$. The Weyl conformal curvature tensor field C on M_{q}^{n} is a tensor field of type $(1,3)$ defined by

$$
\begin{align*}
C(X, Y) Z= & R(X, Y) Z-\frac{1}{n-2}(Q X \wedge Y+X \wedge Q Y) Z \\
& +\frac{r}{(n-1)(n-2)}(X \wedge Y) Z \tag{2.1}
\end{align*}
$$

where $X \wedge Y$ denotes the endomorphism defined by $(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y$.
It is known that M is conformally flat if and only if C vanishes for $n>3$. The Weyl conformal curvature tensor field C vanishes identically for $n=3$. We put the tensor field c of type $(1,2)$ as follows:

$$
\begin{equation*}
c(X, Y)=\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X-\frac{1}{2(n-1)}\left\{\left(\nabla_{X} r\right) Y-\left(\nabla_{Y} r\right) X\right\} \tag{2.2}
\end{equation*}
$$

It is well known that $C=0$ implies $c=0$ for $n>3$. So if M_{q}^{n} is conformally flat with $n>3$, from (2.1) and (2.2), we have the following equations:

$$
\begin{gather*}
R(X, Y) Z=\frac{1}{n-2}(Q X \wedge Y+X \wedge Q Y) Z-\frac{r}{(n-1)(n-2)}(X \wedge Y) Z \tag{2.3}\\
\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X-\frac{1}{2(n-1)}\left\{\left(\nabla_{X} r\right) Y-\left(\nabla_{Y} r\right) X\right\}=0
\end{gather*}
$$

In this paper, we consider conformally flat semi-Riemannian manifolds whose Ricci operator Q satisfies the following condition:

$$
\begin{equation*}
R(X, Y) \cdot Q=0 \tag{2.5}
\end{equation*}
$$

The condition (2.5) is equivalent to

$$
\begin{equation*}
R(Q X, X)=0 \tag{2.6}
\end{equation*}
$$

From (2.3) and (2.6), we have the following lemma
Lemma 2.1. Let M_{q}^{n} be an $n(n>3)$-dimensional conformally flat semi-Riemannian manifold satisfying (2.5). Then

$$
\begin{equation*}
Q^{2}-\frac{r}{n-1} Q=\rho I \tag{2.7}
\end{equation*}
$$

where ρ is a smooth function on M_{q}^{n} and I is the identity field.
We recall the form of a symmetric linear operator in an indefinite scalar product due to Petrov [11].

Proposition 2.2. A linear operator Q in an indefinite scalar product space is symmetric if and only if Q can be put into the following form:

$$
Q=\left(\begin{array}{cccccc}
B_{1} & & & & & \\
& \ddots & & & & \\
& & B_{k} & & & \\
& & & C_{1} & & \\
& & & & \ddots & \\
& & & & & C_{m}
\end{array}\right)
$$

where B_{i} is $s_{i} \times s_{i}$ matrix

$$
B_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & & & & \\
1 & \lambda_{i} & & & \\
& & \ddots & & \\
& & & \lambda_{i} & \\
& & & 1 & \lambda_{i}
\end{array}\right)
$$

relative to a basis $v_{1}, \cdots, v_{s_{i}}\left(s_{i} \geq 1\right)$ with all scalar products zero except $\left\langle v_{k}, v_{l}\right\rangle=\varepsilon= \pm 1$ if $k+l=s_{i}+1$, and C_{j} is $2 t_{j} \times 2 t_{j}$ matrix

$$
C_{j}=\left(\begin{array}{cccccccc}
a_{j} & b_{j} & & & & & & \\
-b_{j} & a_{j} & & & & & & \\
1 & 0 & a_{j} & b_{j} & & & & \\
0 & 1 & -b_{j} & a_{j} & & & & \\
& & 1 & 0 & a_{j} & b_{j} & & \\
& & 0 & 1 & -b_{j} & a_{j} & & \\
& & & & & & \ddots & \\
& & & & & 1 & 0 & a_{j} \\
& & & & & 0 & 1 & -b_{j} \\
& & & & & a_{j}
\end{array}\right) \quad\left(b_{j} \neq 0\right)
$$

relative to a basis $u_{1}, v_{1}, \cdots, u_{t_{j}}, v_{t_{j}}$ with all scalar products zero except $\left\langle u_{k}, u_{l}\right\rangle=$ $-\left\langle v_{k}, v_{l}\right\rangle=1$ if $k+l=t_{j}+1$.

3. Ricci operator

At first, we classify possible Ricci operators algebraically. From Proposition 2.2 and (2.7), we obtain the following theorem:

THEOREM 3.1. Let M_{q}^{n} be an $n(n \geq 4)$-dimensional conformally flat semi-Riemannian manifold satysfying (2.5). Then the Ricci operator Q_{x} at each point $x \in M$ is either diagonalizable relative to an orthonormal basis or has one of the following two forms:

$$
Q_{x}=\left(\begin{array}{llllll}
\overbrace{\begin{array}{llllll}
0 & 0 & & & & \\
1 & 0 & & & & \\
\\
& & \ddots & & & \\
\\
& & & 0 & 0 \\
1 & 0
\end{array}} & & & & \tag{3.1}\\
& & & & & 0 \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & \\
\end{array}\right)(r \leq q)
$$

relative to a basis v_{1}, \cdots, v_{n} of $T_{x} M$ with all scalar products zero except

$$
\begin{gathered}
g\left(v_{2 i-1}, v_{2 i}\right)=\varepsilon \quad \varepsilon= \pm 1 \quad(i=1, \cdots, r), \quad g\left(v_{i}, v_{i}\right)=\varepsilon_{i}, \\
\varepsilon_{i}=\left\{\begin{array}{c}
-1(i=2 r+1, \cdots, q+r) \\
1(i=q+r+1, \cdots, n)
\end{array}\right.
\end{gathered}
$$

or

$$
Q_{x}=\left(\begin{array}{ccccc}
0 & b & & & \tag{3.2}\\
-b & 0 & & & \\
& & \ddots & & \\
& & & 0 & b \\
& & & -b & 0
\end{array}\right)
$$

relative to a basis $u_{1}, v_{1}, \cdots, u_{m}, v_{m}(n=2 m)$ with all scalar products zero except

$$
g\left(u_{i}, u_{i}\right)=1=-g\left(v_{i}, v_{i}\right) .
$$

In the last case n is even, its index q is $n / 2$ and Q_{x} has the pure imaginary eigenvalues $\pm \sqrt{-1} b$.

Proof. The Ricci operator Q_{x} has the form in Proposition 2.2. One computes that

$$
B_{i}^{2}=\left(\begin{array}{ccccc}
\lambda_{i}^{2} & & & & \\
2 \lambda_{i} & \lambda_{i}^{2} & & & \\
1 & 2 \lambda_{i} & \lambda_{i}^{2} & & \\
& 1 & 2 \lambda_{i} & & \\
& & & \ddots & \\
& & & 2 \lambda_{i} & \lambda_{i}^{2}
\end{array}\right),
$$

$$
C_{j}^{2}=\left(\begin{array}{cccccc}
a_{j}^{2}-b_{j}^{2} & 2 a_{j} b_{j} & & & & \\
-2 a_{j} b_{j} & a_{j}^{2}-b_{j}^{2} & & & \\
2 a_{j} & 2 b_{j} & a_{j}^{2}-b_{j}^{2} & 2 a_{j} b_{j} & & \\
-2 b_{j} & 2 a_{j} & -2 a_{j} b_{j} & a_{j}^{2}-b_{j}^{2} & & \\
1 & 0 & 2 a_{j} & 2 b_{j} & & \\
0 & 1 & -2 b_{j} & 2 a_{j} & & \\
& & & & \ddots & \\
& & & & & a_{j}^{2}-b_{j}^{2}
\end{array}\right) .
$$

Q_{x} satisfies the equation (2.7). Therefore it is clear from the form of B_{i}^{2} and C_{j}^{2} that $s_{i} \leq 2$ and $t_{j} \leq 1$. So Q_{x} has blocks of the form

$$
\left(\mu_{i}\right) \quad \text { or } \quad\left(\begin{array}{cc}
\lambda_{j} & 0 \\
1 & \lambda_{j}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
a_{k} & b_{k} \\
-b_{k} & a_{k}
\end{array}\right)
$$

with squares

$$
\left(\mu_{i}^{2}\right) \quad \text { or } \quad\left(\begin{array}{cc}
\lambda_{j}^{2} & 0 \\
2 \lambda_{j} & \lambda_{j}^{2}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
a_{k}^{2}-b_{k}^{2} & 2 a_{k} b_{k} \\
-2 a_{k} b_{k} & a_{k}^{2}-b_{k}^{2}
\end{array}\right)
$$

The equation (2.7) yields

$$
\begin{gathered}
\mu_{i}^{2}-\frac{r}{n-1} \mu_{i}=\rho, \quad \lambda_{j}^{2}-\frac{r}{n-1} \lambda_{j}=\rho, \quad a_{k}^{2}-b_{k}^{2}-\frac{r}{n-1} a_{k}=\rho \\
2 \lambda_{j}-\frac{r}{n-1}=0, \quad 2 a_{k} b_{k}-\frac{r}{n-1} b_{k}=0
\end{gathered}
$$

If Q_{x} is diagonalizable,

$$
\mu_{i}=\frac{r \pm \sqrt{r^{2}+4(n-1)^{2} \rho}}{2(n-1)}
$$

Then Q_{x} has at most two real eigenvalues.
Next we consider the case Q_{x} is not diagonalizable. If there are any blocks with a 's and b 's, we have $\lambda_{j}=a_{k}=r / 2(n-1)$ for each j and k since $b_{k} \neq 0$. Thus all λ_{j} 's and a_{k} 's are equal. It is clear that all b_{k} 's are equal. The equations became

$$
\mu_{i}^{2}-\frac{r}{n-1} \mu_{i}=\rho, \quad \lambda^{2}=-\rho, \quad a^{2}+b^{2}=-\rho, \quad \lambda=a=\frac{r}{2(n-1)} .
$$

Since $\lambda=a$ and $b \neq 0$, there can be blocks with a 's or blocks with λ 's but not both. In either case we have

$$
\mu_{i}=\frac{r}{2(n-1)} \pm \sqrt{\left(\frac{r}{2(n-1)}\right)^{2}+\rho}
$$

If $\lambda^{2}=-\rho$, then $\mu_{i}=\lambda$. If $a^{2}+b^{2}=-\rho$, then $(r / 2(n-1))^{2}+\rho<0$ and there are no μ_{i} 's. If there is a block with a λ, then $\lambda=\mu_{i}=r / 2(n-1)$ for each i. If p is the number of
μ 's which appear in Q_{x} and $2 p^{\prime}$ the number of λ 's,

$$
r=p \mu+2 p^{\prime} \lambda=p\left(\frac{r}{2(n-1)}\right)+2 p^{\prime}\left(\frac{r}{2(n-1)}\right) .
$$

Thus $r\left(1-p / 2(n-1)-p^{\prime} / 2(n-1)\right)=0$. But $p+2 p^{\prime}=n$ and $n \geq 4$, so $r=0$. Then $\lambda=\mu=0$ and Q_{x} is of the form

$$
Q_{x}=\left(\begin{array}{cccccccc}
0 & 0 & & & & & & \\
1 & 0 & & & & & & \\
& & \ddots & & & & & \\
& & & 0 & 0 & & & \\
& & & 1 & 0 & & & \\
& & & & & 0 & & \\
& & & & & & \ddots & \\
& & & & & & & 0
\end{array}\right)
$$

From Proposition 2.2, for a basis v_{1}, \cdots, v_{n} of $T_{x} M$, we have

$$
g\left(v_{2 i-1}, v_{2 i}\right)=\varepsilon, \quad \varepsilon= \pm 1, \quad g\left(v_{2 i-1}, v_{2 i-1}\right)=g\left(v_{2 i}, v_{2 i}\right)=0 \quad(i=1, \cdots, r) .
$$

Then the vectors $v_{2 i-1}$ and $v_{2 i}$ are lightlike, and a plane Π_{i} spanned by $v_{2 i-1}$ and $v_{2 i}$ is non-degenerate. The index of g on Π_{i} is 1 . Then $r \leq q$ and

$$
g\left(v_{i}, v_{i}\right)=-1 \quad(i=2 r+1, \cdots, q+r), \quad g\left(v_{i}, v_{i}\right)=1 \quad(i=q+r+1, \cdots, n) .
$$

If there is a block with a b, there are no other types of blocks. Since $a=r / 2(n-1)=$ $n a / 2(n-1)$ and $n \geq 4$, we see that $a=0$. Then Q_{x} is of the form

$$
Q_{x}=\left(\begin{array}{ccccc}
0 & b & & & \\
-b & 0 & & & \\
& & \ddots & & \\
& & & 0 & b \\
& & & -b & 0
\end{array}\right)
$$

In this case, for a basis $u_{1}, v_{1}, \cdots, u_{m}, v_{m}(n=2 m)$ of $T_{x} M$,

$$
g\left(u_{i}, u_{i}\right)=1, \quad g\left(v_{i}, v_{i}\right)=-1 \quad(1 \leq i \leq m) .
$$

Then n is even and the index $q=m=n / 2 . Q_{x}$ has the pure imaginary eigenvalues $\pm \sqrt{-1} b$.
Suppose that Q_{x} is diagonalizable relative to an orthonormal basis. Then Q_{x} has at most two eigenvalues. Suppose that Q_{x} has distinct eigenvalues λ and μ with multiplicities k and $n-k$, respectively. Then (2.7) implies

$$
(\lambda-\mu)\{(n-k-1) \lambda+(k-1) \mu\}=0 .
$$

Since $\lambda \neq \mu$, we have $(n-k-1) \lambda+(k-1) \mu=0$. If $k=1$, then $\lambda=0$. If $k=n-1$, then $\mu=0$. Otherwise we have

$$
\begin{equation*}
\lambda \mu<0 . \tag{3.3}
\end{equation*}
$$

Now we define 6 types of subsets $U_{i}(i=1,2, \cdots, 6)$ associated with the types of the Ricci operator Q_{x} :

```
\(U_{1}=\left\{x \in M \mid Q_{x}\right.\) has two non-zero real eigenvalues. \(\}\)
\(U_{2}=\left\{x \in M \mid Q_{x}\right.\) has only one non-zero real eigenvalue. \(\}\)
\(U_{3}=\left\{x \in M \mid Q_{x}\right.\) has two pure imaginary eigenvalues which are mutually conjugate. \(\}\)
\(U_{4}=\left\{x \in M \mid Q_{x}\right.\) has two real eigenvalues one of which is zero. \(\}\)
\(U_{5}=\left\{x \in M \mid Q_{x}{ }^{2}=0\right.\) and \(\left.Q_{x} \neq 0.\right\}\)
\(U_{6}=\left\{x \in M \mid Q_{x}=0.\right\}\)
```

Q_{x} is diagonalizable relative to an orthonormal basis at $x \in U_{i}(i=1,2,4,6)$. On U_{1}, two eigenvalues have the opposite signs by (3.3) and their multiplicities are not less than 2 . On U_{4}, the multiplicity of the eigenvalue 0 is equal to 1 .

Proposition 3.2. M is the disjoint union of $U_{i}(i=1, \cdots, 6)$. For each $i(i=$ $1, \cdots, 6)$, the rank of Q_{x} at $x \in U_{i}$ and the openness of U_{i} are the following:

	The rank of Q_{x}	Openness
U_{1}	n	open
U_{2}	n	open
U_{3}	n	open
U_{4}	$n-1$	open
U_{5}	$1 \leq$ The rank of $Q_{x} \leq \min \{q, n-q\}$	$?$
U_{6}	0	$?$

Here n and q denote the dimension of M and its index, respectively. The symbol? in the table means that we can not determine whether it is open or not.

Proof. The former part of this proposition and the rank of Q_{x} are easily seen by Theorem 3.1 and the argument before this proposition. We will prove the openness of $U_{i}(1=$ $1,2,3,4$).

For each $x \in U_{1}$, by the continuity of eigenvalues of the Ricci operator Q, there exists a neighbourhood U of x on which Q has at least two eigenvalues and hence has exactly two eigenvalues. Moreover on a neighbourhood $U^{\prime}(\subset U)$ of x, the real parts of two eigenvalues are not zeros. Any points of U^{\prime} do not belong to $U_{i}(i=2,3,4,5,6)$. Therefore $U^{\prime} \subset U_{1}$. This implies that U_{1} is open.

For each $x \in U_{2}$, by the continuity of eigenvalues of the Ricci operator Q, on some neighbourhood U of x, the real parts of eigenvalues of Q has the same sign (the plus sign or the minus sign). Therefore $U \subset U_{2}$ and hence U_{2} is open.

For each point $x \in U_{3}$, by the similar reason above there exists a neighbourhood U of x on which the imaginary parts of eigenvalues of the Ricci operator Q are not zeros. Hence U is contained in U_{3}.

For each $x \in U_{4}$, there exists a neighbourhood U of x on which Q has exactly two eigenvalues. Moreover on some neighbourhood $U^{\prime}(\subset U)$ of x, the real part of one eigenvalue is not zero and the multiplicity of the other eigenvalue is equal to 1 . Therefore $U^{\prime} \subset U_{4}$. This implies that U_{4} is open.

Let M_{q}^{n} be an $n(n \geq 4)$-dimensional, simply connected, complete, conformally flat semi-Riemannian manifold of index q satisfying (2.5). Now we consider the case when the Ricci operator is diagonalizable. We can prove the following similarly to Sekigawa and Takagi [12].

Proposition 3.3. (1) If U_{1} of Proposition 3.2 is not empty, then $U_{1}=M$ and the semi-Riemannian manifold of M is isometric to the product manifold of a k-dimensional semiRiemannian manifold of constant positive curvature K and an $(n-k)$-dimensional semiRiemannaian manifold of constant negative curvature $-K$, that is, $M_{q_{1}}^{k}(K) \times M_{q-q_{1}}^{n-k}(-K)$, where $1<k<n-1$.
(2) If U_{2} of Proposition 3.2 is not empty, then $U_{2}=M$ and M is a semi-Riemannain manifold of a non-zero constant curvature.
(3) If U_{4} of Proposition 3.2 is not empty, then $U_{4}=M$ and the semi-Riemannian manifold of M is isometric to the product manifold of an ($n-1$)-dimensional semi-Riemannian manifold of index $q-1$ of constant curvature K and a 1-dimensional Lorentzian manifold or the product manifold of an $(n-1)$-dimensional semi-Riemannian manifold of index q of constant curvature K and a 1-dimensional Riemannian manifold, that is, $M_{q-1}^{n-1}(K) \times M_{1}^{1}$ or $M_{q}^{n-1}(K) \times M^{1}$, where $K \neq 0$.

We study the remaining cases in sections 4 and 5 and show Theorem 4.1 and 5.3, which together with Proposition 3.3, yield our Main Theorem in the Introduction.

4. The case when the Ricci operator has pure imaginary eigenvalues

In this section, we discuss the case when the Ricci operator has pure imaginary eigenvalues.

At first, we show an example- a complex sphere $C S^{n}(\sqrt{-1} b)$ with a real b. We define a semi-Riemannian metric g on an $(n+1)$-dimensional complex vector space C^{n+1} by

$$
g=2 \text { the real part of } \sum_{i=1}^{n+1} d z_{i} \otimes d z_{i}
$$

$$
=2\left(\sum_{i=1}^{n+1} d x_{i} \otimes d x_{i}-\sum_{i=1}^{n+1} d y_{i} \otimes d y_{i}\right),
$$

where $z_{i}=x_{i}+\sqrt{-1} y_{i}$. It has signature $(n+1, n+1)$. The complexification of the semiRiemannian metric g coinsides with $\sum_{i=1}^{n+1} d z_{i} \otimes d z_{i}$, for which we use the same notaion g. We consider a complex hypersurface M in C^{n+1} defined as follows:

$$
M=\left\{\left(z_{1}, \cdots, z_{n+1}\right) \in C^{n+1} \mid z_{1}^{2}+\cdots+z_{n+1}^{2}=c\right\}
$$

for $c \in C, c \neq 0$. It is called a complex sphere. A complex sphere is diffeomorphic to the tangent bundle $T S^{n}$ of the sphere S^{n}. In fact, put $\sqrt{c}=h$ and define the linear transformation $F: C^{n+1} \Rightarrow C^{n+1}$ by $F\left(z_{1}, \cdots, z_{n+1}\right)=1 / h\left(z_{1}, \cdots, z_{n+1}\right)$. Then we have

$$
M^{\prime}=F(M)=\left\{\left(z_{1}, \cdots, z_{n+1}\right) \in C^{n+1} \mid z_{1}^{2}+\cdots+z_{n+1}^{2}=1\right\} .
$$

We identify $\left(x_{1}+\sqrt{-1} y_{1}, \cdots, x_{n+1}+\sqrt{-1} y_{n+1}\right) \in C^{n+1}$ with $\left(x_{1}, y_{1}, \cdots, x_{n+1}, y_{n+1}\right) \in$ $R^{2(n+1)}$. Then M^{\prime} is a submanifold of $R^{2(n+1)}$ with codimension 2 which is defined by $\sum_{j=1}^{n+1} x_{j} y_{j}=0$ and $\sum_{j=1}^{n+1}\left(x_{j}^{2}-y_{j}^{2}\right)=1$. It is easily seen that M^{\prime} is diffeomorphic to the tangent bundle $T S^{n}$ of the sphere S^{n}. In particular it is simply connected for $n>1$. We will calculate the curvature tensor of M applying the formulas in Chapter $4 \S 9$ in Nomizu and Sasaki [10]. By the defining equation of M, we have $\sum_{i=1}^{n+1} z_{i} d z_{i}=0$ on M. Let $\zeta=\sum_{i=1}^{n+1} z_{i} \partial / \partial z_{i}$ be a holomorphic vector field on C^{n+1}. Then $\left(\sum_{i=1}^{n+1} z_{i} d z_{i}\right)(\zeta)=\sum_{i=1}^{n+1} z_{i}^{2}=c \neq 0$ on M. Therefore ζ is a transversal vector field along M. Furthermore ζ is a normal vector field along M. Indeed,

$$
g(W, \zeta)=\sum_{i=1}^{n+1} d z_{i}(W) d z_{i}(\zeta)=\left(\sum_{i=1}^{n+1} z_{i} d z_{i}\right)(W)=0
$$

for any $W \in T_{z} M^{1,0}$. Moreover, $g(\zeta, \zeta)=\sum_{i=1}^{n+1} z_{i}^{2}=c \neq 0$ on M. Therefore the induced metric g on M is non-degenerate and it satisfies $g(J X, Y)=g(X, J Y)$ for $X, Y \in T_{z} M$, where J denotes complex structure on M, that is, g is a so-called complex Riemannian metric on M [8]. This induced semi-Riemannian metric has the signature (n, n). M can be viewed as a semi-Riemannian symmetric space $S O(n+1, C) / S O(n, C)$. In particular M is a complete semi-Riemannian manifold.

We calculate the curvature tensor and the Ricci operator of M, applying the equation of Gauss. We denote by D the usual flat affine connection on C^{n+1}. It is also a Levi-Civita connection with respect to g. Since $D_{W} \zeta=W$ and $D_{\bar{W}} \zeta=0$ for $W \in \Gamma\left(T M^{1,0}\right)$, the shape operator S of M is given by

$$
\begin{equation*}
S=-I \quad \text { on } T M^{1,0} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S=0 \quad \text { on } T M^{0,1} \tag{4.2}
\end{equation*}
$$

We have the Gauss formula:

$$
D_{X} Y=\nabla_{X} Y+h(X, Y) \zeta \quad \text { for } X, Y \in \Gamma\left(T M^{1,0}\right),
$$

where ∇ is the Levi-Civita connection with respect to the induced metric and h is the second fundamental form. Then h is given by

$$
\begin{equation*}
h(X, Y)=-\frac{1}{c} g(X, Y) \quad \text { for } X, Y \in T M^{1,0} \tag{4.3}
\end{equation*}
$$

Indeed, for $X, Y \in \Gamma\left(T M^{1,0}\right)$,

$$
\operatorname{ch}(X, Y)=g\left(D_{X} Y, \zeta\right)=-g\left(Y, D_{X} \zeta\right)=-g(X, Y)
$$

We denote by R the curvature tensor of the Levi-Civita connection on M. By the equation of Gauss, we have

$$
\begin{aligned}
& R(Z, W) U=h(W, U) S Z-h(Z, U) S W \\
& R(Z, W) \bar{U}=0 \\
& R(Z, \bar{W}) U=-h(Z, U) S \bar{W}
\end{aligned}
$$

for $Z, W, U \in T M^{1,0}$ (Nomizu and Sasaki [10], p. 191). By (4.1), (4.2) and (4.3), we have

$$
\begin{align*}
R(Z, W) U & =\frac{1}{c}\{g(W, U) Z-g(Z, U) W\} \\
R(Z, \bar{W}) U & =0 \\
R(\bar{Z}, W) \bar{U} & =\overline{R(Z, \bar{W}) U}=0 \tag{4.4}\\
R(\bar{Z}, \bar{W}) \bar{U} & =\overline{R(Z, W) U} \\
& =\frac{1}{\bar{c}}\{g(\bar{W}, \bar{U}) \bar{Z}-g(\bar{Z}, \bar{U}) \bar{W}\}
\end{align*}
$$

Next we calculate the Ricci tensor ric. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a basis of $T M^{1,0}$ satisfying $g\left(e_{i}, e_{j}\right)=\delta_{i j}$. Then we have

$$
\begin{align*}
\operatorname{ric}(W, U) & =\sum_{i=1}^{n} g\left(R\left(e_{i}, W\right) U, e_{i}\right)+\sum_{i=1}^{n} g\left(R\left(\bar{e}_{i}, W\right) U, \bar{e}_{i}\right) \\
& =\frac{n-1}{c} g(W, U) \tag{4.5}\\
\operatorname{ric}(W, \bar{U}) & =0 \\
\operatorname{ric}(\bar{W}, \bar{U}) & =\overline{\operatorname{ric}(W, U)}=\frac{n-1}{\bar{c}} g(\bar{W}, \bar{U}) .
\end{align*}
$$

For the Ricci operator Q, using (4.5) we have

$$
g(Q W, U)=\operatorname{ric}(W, U)=\frac{n-1}{c} g(W, U)
$$

$$
g(Q W, \bar{U})=\operatorname{ric}(W, \bar{U})=0 .
$$

Then

$$
\begin{equation*}
Q W=\frac{n-1}{c} W . \tag{4.6}
\end{equation*}
$$

While

$$
\begin{aligned}
& g(Q \bar{W}, U)=\operatorname{ric}(\bar{W}, U)=0 \\
& g(Q \bar{W}, \bar{U})=\operatorname{ric}(\bar{W}, \bar{U})=\frac{n-1}{\bar{c}} g(\bar{W}, \bar{U}),
\end{aligned}
$$

then we obtain

$$
\begin{equation*}
Q \bar{W}=\frac{n-1}{\bar{c}} \bar{W} . \tag{4.7}
\end{equation*}
$$

The scalar curvature $r=\operatorname{tr} Q$ becomes

$$
r=n(n-1)\left(\frac{1}{c}+\frac{1}{\bar{c}}\right) .
$$

Now we assume that c is pure imaginary, that is, $c=\sqrt{-1} b(b \in R, b \neq 0)$. Then by (4.6) and (4.7), the Ricci operator has the pure imaginary eigenvalues $\pm \sqrt{-1}(n-1) / b$ and its scalar curvature r vanishies. The Ricci operator Q is parallel with respect to ∇ and hence it satisfies $R(X, Y) \cdot Q=0$ for $X, Y \in T M$. Moreover we have

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2 n-2}(Q X \wedge Y+X \wedge Q Y) Z \tag{4.8}
\end{equation*}
$$

for $X, Y, Z \in T M^{C}$. Comparing with the equation (2.3), we see that a complex sphere with the pure imaginary c is conformally flat. From now on, we denote by $C S^{n}(c)$ the complex sphere defined by $z_{1}^{2}+\cdots+z_{n+1}^{2}=c$.

For the case when the Ricci operator has pure imaginary eigenvalues, we will show the following:

THEOREM 4.1. Let M be an n (≥ 4)-dimensional, simply connected, complete, conformally flat semi-Riemannian manifold satisfying the condition (2.5). If the Ricci operator Q_{x} has pure imaginary eigenvalues at some point $x \in M$, then M is isometric to a complex sphere $C S^{n / 2}(\sqrt{-1} b)$ with some real b.

Proof. We define a subset U in M by $U=\left\{x \in M \mid Q_{x}\right.$ has pure imaginary eigenvalues.\} Then by Proposition 3.2, U is open in M. Because of the assumption, U is not empty. We denote by W a connected component of U. On W there exists a pure imaginary valued function λ such that the Ricci operator Q_{x} has the eigenvalues $\lambda(x)$ and $\overline{\lambda(x)}=-\lambda(x)$ at $x \in W$. We define two complex subbundles T_{1} and T_{2} of $T M^{C}$ on W as follows at $x \in W$:

$$
T_{1}(x)=\left\{X \in T_{x} M^{C} \mid Q X=\lambda(x) X\right\},
$$

$$
T_{2}(x)=\left\{X \in T_{x} M^{C} \mid Q X=-\lambda(x) X\right\}
$$

Then we have an orthogonal direct sum decomposition:

$$
T M^{C}=T_{1}+T_{2}
$$

and the complex conjugation is a real linear isomorphism between T_{1} and T_{2}. For $X \in T M^{C}$, we denote by $(X)_{T_{1}}$ and $(X)_{T_{2}}$ the components of X which belong to T_{1} and T_{2}, respectively. The scalar curvature r vanishes on W. Therefore by (2.4), we obtain

$$
\begin{equation*}
\left(\nabla_{X} Q\right)(Y)-\left(\nabla_{Y} Q\right)(X)=0 \tag{4.9}
\end{equation*}
$$

for $X, Y \in \Gamma(T M)$. For $X, Y \in \Gamma\left(T_{1}\right)$, by (4.9)

$$
\begin{aligned}
0 & =\left(\nabla_{X} Q\right)(Y)-\left(\nabla_{Y} Q\right)(X) \\
& =(X \lambda) Y-(Y \lambda) X+2 \lambda\left\{\left(\nabla_{X} Y\right)_{T_{2}}-\left(\nabla_{Y} X\right)_{T_{2}}\right\}
\end{aligned}
$$

If X and Y are linearly independent, $X \lambda=0$. Similarly we have $X \lambda=0$ for $X \in \Gamma\left(T_{2}\right)$. Therefore λ is constant on W.

For $X \in \Gamma\left(T_{1}\right)$ and $Y \in \Gamma\left(T_{2}\right)$, by (4.9)

$$
\begin{aligned}
0 & =\left(\nabla_{X} Q\right)(Y)-\left(\nabla_{Y} Q\right)(X) \\
& =-2 \lambda\left(\nabla_{X} Y\right)_{T_{1}}-2 \lambda\left(\nabla_{Y} X\right)_{T_{2}} .
\end{aligned}
$$

Therefore we have $\left(\nabla_{X} Y\right)_{T_{1}}=0,\left(\nabla_{Y} X\right)_{T_{2}}=0$. This means that T_{1} and T_{2} are parallel subbundles of $T M^{C}$. In particular the Ricci operator Q is parallel. Since the curvature tensor R has the form

$$
R(X, Y)=\frac{1}{n-2}(Q X \wedge Y+X \wedge Q Y)
$$

we have $\nabla R=0$ on W.
We take a constant pure imaginary number λ which is an eigenvalue of the Ricci operator $Q_{x}, x \in W$ and define a subset V of M as follows: $V=\left\{x \in M \mid Q_{x}^{2}-\lambda^{2} I=0\right\}$. Then V is not empty and evidently it is closed. By the argument above, we see that V is open and hence $V=M$. Consequently M is a simply connected, complete, locally symmetric semi-Riemannian manifold. We put $c=(n-2) / 2 \lambda$ and a complex sphere $C S^{n / 2}(\sqrt{-1} b)$. By the form of curvature tensor, it follows that there exists a linear isometry $F: T_{x} M \rightarrow$ $T_{y} C S^{n / 2}(\sqrt{-1} b)$ which preserves the curvature tensor. Applying Theorem 7.8, in Kobayashi and Nomizu [7], Chapter VI, we see that M is isometric to a complex sphere $C S^{n / 2}(\sqrt{-1} b)$.

5. The case when the Ricci operator is nilpotent

In this section we assume that there exists a point $x \in M$ at which $Q_{x}^{2}=0$. Then by Proposition 3.3 and Theorem 4.1, $Q^{2} \equiv 0$ on whole M. Then scalar curvature $r=\operatorname{tr} Q$ vanishes and hence we have

$$
\begin{equation*}
\left(\nabla_{X} Q\right)(Y)=\left(\nabla_{Y} Q\right)(X) \tag{5.1}
\end{equation*}
$$

for $X, Y \in \Gamma(T M)$. We put

$$
k=\max \left\{\text { The rank of } Q_{x} \mid x \in M\right\}
$$

If $k=0$, that is, $Q \equiv 0$ on M, then M is flat. From now on, we assume that $k>0$. We put

$$
U=\left\{x \in M \mid \text { The rank of } Q_{x}=k\right\}
$$

Then U is open in M. We denote by W a connected component of U. From now on, we discuss on W.

For each point $x \in W$, we define

$$
T_{0}(x)=\operatorname{ker} Q_{x}, \quad L(x)=\operatorname{Im} Q_{x}
$$

$L(x)$ is included in $T_{0}(x)$. By Lemma 3.1, the semi-Riemannian metric g restricted to $T_{0}(x)$ is degenerate and its nullity subspace

$$
\left\{X \in T_{0}(x) \mid g(X, Y)=0 \quad \text { for any } Y \in T_{0}(x)\right\}
$$

coinsides with $L(x) . T_{0}$ and L are subbundles of $T M$ on W of dimensions $n-k$ and k, respectively.

Proposition 5.1. The subbundle L is parallel along T_{0}-direction.
Proof. For $X \in \Gamma\left(T_{0}\right)$ and $Z \in \Gamma(T M)$, it follows from (5.1) that

$$
\nabla_{X}(Q Z)=Q([X, Z]) .
$$

Proposition 5.2. T_{0} is a totally geodesic foliation of W and the leaves are flat with respect to the induced connection.

Proof. For $X, Y \in \Gamma\left(T_{0}\right)$ and $Z \in \Gamma(T M)$, by (5.1) we have

$$
\begin{aligned}
g\left(Q\left(\nabla_{X} Y\right), Z\right) & =-g\left(\left(\nabla_{X} Q\right) Y, Z\right) \\
& =-g\left(\left(\nabla_{X} Q\right) Z, Y\right) \\
& =-g\left(\left(\nabla_{Z} Q\right) X, Y\right) \\
& =-g\left(\nabla_{Z}(Q(X))-Q\left(\nabla_{Z} X\right), Y\right) \\
& =g\left(\nabla_{Z} X, Q Y\right)=0
\end{aligned}
$$

Therefore $Q\left(\nabla_{X} Y\right)=0$, that is, $\nabla_{X} Y \in \Gamma\left(T_{0}\right)$. Hence $[X, Y]=\nabla_{X} Y-\nabla_{Y} X \in \Gamma\left(T_{0}\right)$. This implies T_{0} is completely integrable. Moreover for $X, Y \in \Gamma\left(T_{0}\right)$, it follows by (2.3) that $R(X, Y)=0$.

THEOREM 5.3. The leaf $M_{0}\left(x_{0}\right)$ of the distribution T_{0} through $x_{0} \in W$ is complete with respect to the induced connection.

Proof. By the similar argument to Graves [6], we prove this theorem. For an arbitrary point $x \in M_{0}\left(x_{0}\right)$, let $\gamma: R \rightarrow M$ be a geodesic of M such that $\gamma(0)=x, \gamma^{\prime}(0) \in T_{0}(x)$.

Since $M_{0}\left(x_{0}\right)$ is a totally geodesic submanifold of M, there exists a positive number $\varepsilon>0$ such that $\gamma(t) \in M_{0}\left(x_{0}\right)$ for $-\varepsilon<t<\varepsilon$. We will show that $\gamma(t) \in M_{0}\left(x_{0}\right)$ for all $t \in R$. In fact we have the following:

LEmMA 5.4. Let γ be a geodesic as above. If $\gamma(t) \in M_{0}\left(x_{0}\right)$ for $0 \leq t<b$, then $\gamma(b) \in W$.

Proof of Lemma. For a basis $\left\{Z_{1}, \cdots, Z_{k}\right\}$ of $L(x)$, we take k tangent vectors ξ_{1}, \cdots, ξ_{k} of $T_{x} M$ which satisfy $g\left(\xi_{i}, Z_{j}\right)=-\delta_{i j}$. Let $\xi_{i}(t)$ and $Z_{i}(t)$ be parallel vector fields along γ with $\xi_{i}(0)=\xi_{i}, Z_{i}(0)=Z_{i}(i=1, \cdots, k)$. By Proposition 5.1, it follows that $\left\{Z_{1}(t), \cdots, Z_{k}(t)\right\}$ is a basis of $L(\gamma(t))$ and the subspace spanned by $\xi_{1}(t), \cdots, \xi_{k}(t)$ is a complementary subspace of $T_{0}(\gamma(t))$ in $T_{\gamma(t)} M$ for $0 \leq t<b$. We define a $k \times k$ matrix $\Phi(t)=\left(\Phi_{i j}(t)\right)$ by

$$
\Phi_{i j}(t)=-g\left(Q \xi_{j}(t), \xi_{i}(t)\right)
$$

for $t \in R$. Then $\Phi(t)$ is a non-singular matrix for $0 \leq t<b$. If $\Phi(b)$ is non-singular, $Q_{\gamma(b)}$ has rank k and hence $\gamma(b) \in W$. So we will prove that $\Phi(b)$ is non-singular.

For $v \in T_{0}(\gamma(t)), 0 \leq t<b$, we extend v to a T_{0}-vector field V in a neighbourhood of $\gamma(t)$. Then $g\left(\left(\nabla_{\xi_{j}(t)} V\right)_{\gamma(t)}, Z_{i}(t)\right)$ does not depend on an extension V of v. In particular we extend $\gamma^{\prime}(t)$ to a T_{0}-vector field X and put

$$
C_{i j}(t)=g\left(\left(\nabla_{\xi_{j}(t)} X\right)_{\gamma(t)}, Z_{i}(t)\right)
$$

and define a $k \times k$ matrix $C(t)$ by $C(t)=\left(C_{i j}(t)\right)$ for $0 \leq t<b . \Phi(t)$ and $C(t)$ satisfy the following differential equations:

$$
\begin{align*}
& \Phi^{\prime}(t)=\Phi(t) C(t), \tag{5.2}\\
& C^{\prime}(t)=C(t)^{2} \tag{5.3}
\end{align*}
$$

for $0 \leq t<b$. We will show the equations above. For a fixed $t(0 \leq t<b)$, we extend $\gamma^{\prime}(t)$ to a T_{0}-vector field X and $\xi_{j}(t)$ to a vector field Ξ_{j} in a neighbourhood of $\gamma(t)$. By (5.1), we have

$$
\nabla_{X}\left(Q \Xi_{j}\right)=Q\left(\left[X, \Xi_{j}\right]\right)
$$

At $\gamma(t)$,

$$
\begin{aligned}
g\left(\nabla_{X}\left(Q \Xi_{j}\right), \Xi_{i}\right) & =X g\left(Q \Xi_{j}, \Xi_{i}\right)-g\left(Q \Xi_{j}, \nabla_{X} \Xi_{i}\right) \\
& =-\Phi_{i j}^{\prime}(t)
\end{aligned}
$$

On the other hand, at $\gamma(t)$,

$$
\begin{aligned}
{\left[X, \Xi_{j}\right] } & =\nabla_{X} \Xi_{j}-\nabla_{\xi_{j}(t)} X \\
& =-\left(\nabla_{\xi_{j}(t)} X\right)_{T_{0}}+\sum_{a=1}^{k} g\left(\left(\nabla_{\xi_{j}(t)} X\right)_{\gamma(t)}, Z_{a}(t)\right) \xi_{a}(t) \\
& =-\left(\nabla_{\xi_{j}(t)} X\right)_{T_{0}}+\sum_{a=1}^{k} C_{a j}(t) \xi_{a}(t)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
g\left(Q\left(\left[X, \Xi_{j}\right]\right), \xi_{i}(t)\right) & =\sum_{a=1}^{k} C_{a j}(t) g\left(Q \xi_{a}(t), \xi_{i}(t)\right) \\
& =-\sum_{a=1}^{k} \Phi_{i a}(t) C_{a j}(t)
\end{aligned}
$$

Thus we obtain (5.2). Next we will obtain the equation (5.3).

$$
\begin{aligned}
C_{i j}^{\prime}(t) & =X g\left(\nabla_{\Xi_{j}} X, Z_{i}(t)\right) \\
& =g\left(\nabla_{X}\left(\nabla_{\Xi_{j}} X\right), Z_{i}(t)\right)+g\left(\nabla_{\Xi_{j}} X, \nabla_{X} Z_{i}(t)\right) \\
& =g\left(R\left(X, \Xi_{j}\right) X, Z_{i}(t)\right)+g\left(\nabla_{\Xi_{j}}\left(\nabla_{X} X\right), Z_{i}(t)\right)+g\left(\nabla_{\left[X, \Xi_{j}\right]} X, Z_{i}(t)\right) .
\end{aligned}
$$

At $\gamma(t)$, by Proposition 5.2,

$$
g\left(R\left(X, \Xi_{j}\right) X, Z_{i}(t)\right)=g\left(R\left(\gamma^{\prime}(t), Z_{i}(t)\right) \gamma^{\prime}(t), \xi_{j}(t)\right)=0
$$

$\nabla_{X} X$ is a T_{0}-vector field and $\left(\nabla_{X} X\right)_{\gamma(t)}=0$. Since $g\left(\nabla_{\Xi_{j}}\left(\nabla_{X} X\right), Z_{i}(t)\right)$ does not depend on an extension of $\left(\nabla_{X} X\right)_{\gamma(t)}, g\left(\nabla_{\Xi_{j}}\left(\nabla_{X} X\right), Z_{i}(t)\right)=0$ at $\gamma(t)$.

For the last term, we have

$$
\begin{aligned}
g\left(\nabla_{\left[X, \Xi_{j}\right]} X, Z_{i}(t)\right) & =-g\left(\nabla_{\left(\nabla_{\xi_{j}(t)} X\right)_{T_{0}}} X, Z_{i}(t)\right)+\sum_{a=1}^{k} C_{a j}(t) g\left(\nabla_{\xi_{a}(t)} X, Z_{i}(t)\right) \\
& =\sum_{a=1}^{k} C_{i a}(t) C_{a j}(t)
\end{aligned}
$$

Then (5.3) yields.
We put $d(t)=\operatorname{det} \Phi(t)$ for $t \in R$. Because of the assumption, $d(t) \neq 0$ for $0 \leq t<b$ and we have

$$
d^{\prime}(t)=d(t) \operatorname{tr}\left(\Phi^{-1}(t) \Phi^{\prime}(t)\right)=d(t) \operatorname{tr} C(t)
$$

By (5.3), we obtain

$$
d(t)=d(0) \prod_{i=1}^{k} \frac{1}{1-\mu_{i} t} \quad \text { for } 0 \leq t<b
$$

where μ_{1}, \cdots, μ_{k} are the eigenvalues of $C(0)$. Since $d(t)$ is bounded on $0 \leq t \leq b, 1-\mu_{i} b \neq$ $0(i=1, \cdots, k)$. Then

$$
d(b)=\lim _{t \rightarrow b} d(t)=\lim _{t \rightarrow b} d(0) \prod_{i=1}^{k} \frac{1}{1-\mu_{i} t} \neq 0
$$

Consequently, $\Phi(b)$ is non-singular.

We continue our proof of Theorem 5.3. As in the proof of Theorem 5.14 in Graves [6], the fact $\gamma(b) \in W$ in Lemma 5.4 implies that

$$
\sup \left\{s \in R \mid \gamma(t) \in M_{0}\left(x_{0}\right) \text { for } 0 \leq t<s\right\}
$$

is infinite and gives our theorem.
Suppose that the maximal rank of the Ricci operator is 1 . In this case the distributions T_{0} and L on W are of dimension $n-1$ and 1 , respectively. We can obtain more detailed description of T_{0} and L.

Corollary 5.5. Suppose that tha maximal rank of the Ricci operator Q is 1 . Let U be the set of $x \in M$ at which the rank of Q_{x} is 1 . Then the kernel distribution T_{0} and the image distribution L of the Ricci operator are parallel subbundles of $T M$ on U.

Proof. In the proof of Lemma 5.4, $\Phi(t)$ and $C(t)$ are real valued functions globally defined on R and we have $\Phi(t)=\Phi(0) /(1-C(0) t)$. This implies $C(0)=0$. Then we see that T_{0} is parallel. L is also parallel. In fact, for $X \in \Gamma\left(T_{0}\right)$ and $Y, Z \in \Gamma(T M)$, we have

$$
\begin{aligned}
g\left(\nabla_{Y}(Q Z), X\right) & =Y g(Q Z, X)-g\left(Q Z, \nabla_{Y} X\right) \\
& =Y g(Z, Q X)-g\left(Z, Q\left(\nabla_{Y} X\right)\right) \\
& =0
\end{aligned}
$$

Therefore $\nabla_{Y}(Q Z) \in \Gamma(L)$.
REMARK. When M is a Lorentzian manifold, the maximal rank of the Ricci operator is 1 unless Q vanishes identically.

6. Examples with nilpotent Ricci operators

In this section, we will give examples of Main Theorem (5), which are symmetric domains of projective quadrics constructed and classified by Cahen and Kerbrat [2]. Here we give a slightly different description and compute their Ricci operators.

Let $\left(R_{p+1}^{n+2},\langle\rangle,\right)$ be the semi-Euclidean space with an inner product \langle,$\rangle of signature$ $(p+1, n-p+1)$ and Γ be the lightcone which is a hypersurface of $R_{p+1}^{n+2}-\{0\}$ defined by

$$
\Gamma=\left\{x \in R_{p+1}^{n+2}-\{0\} \mid\langle x, x\rangle=0\right\} .
$$

If a linear endomorphism A of R_{p+1}^{n+2} satisfies the following conditions, it is said to be of type N (Cahen and Parker [3] Definition 1.7.3, 45p.):
(1) A is self-adjoint with respect to \langle, \rangle, i.e., $\langle A x, y\rangle=\langle x, A y\rangle$.
(2) $A^{2}=0$.
(3) There exists a point $x \in \Gamma$ such that $\langle x, A x\rangle>0$.

We consider the following subset M of R_{p+1}^{n+2} :

$$
\begin{aligned}
M & =\left\{x \in R_{p+1}^{n+2} \mid\langle x, x\rangle=0,\langle x, A x\rangle=1\right\} \\
& =\Gamma \cap\left\{x \in R_{p+1}^{n+2} \mid\langle x, A x\rangle=1\right\}
\end{aligned}
$$

If M is not connected, we take a connected component and use the same notation M. Then M is a submanifold of R_{p+1}^{n+2} with codimension 2 .

At each point $x \in M, x$ and $A x$ are linearly independent. We denote by $V(x)$ a 2dimensional subspace of R_{p+1}^{n+2} spanned by x and $A x$. Then $\left.\langle\rangle\right|_{V,(x)}$ is non-degenerate. Indeed, we have the following:

$$
\langle x, x\rangle=\langle A x, A x\rangle=0, \quad\langle x, A x\rangle=\langle A x, x\rangle=1
$$

Next we will show that $T_{x} M=V(x)^{\perp}$. Let f and g be the functions on R_{p+1}^{n+2} given by $f(x)=\langle x, x\rangle$ and $g(x)=\langle x, A x\rangle$, respectively. For $X \in T_{x} M$, we have $d f(X)=0$ and $d g(X)=0$, and on the other hand we have

$$
\begin{aligned}
d f(X) & =2\langle X x, x\rangle=2\langle X, x\rangle \\
d g(X) & =\langle X x, A x\rangle+\langle x, X A x\rangle \\
& =\langle X, A x\rangle+\langle x, A X x\rangle \\
& =2\langle X, A x\rangle .
\end{aligned}
$$

Since $V(x)$ is non-degenerate, $T_{x} M$ is non-degenerate with respect to \langle,$\rangle . In particular M$ endowed with an induced metric is an n-dimensional semi-Riemannian manifold of index p.

At each point $x \in M$, we define a linear endomorphism ϕ_{x} of R_{p+1}^{n+2} by

$$
\phi_{x}=\left.I\right|_{V(x)} \oplus-\left.I\right|_{V(x)^{\perp}}
$$

Then ϕ_{x} becomes a linear isometry of $\left(R_{p+1}^{n+2},\langle\rangle,\right)$ and satisfies $\phi_{x} A=A \phi_{x}$. Indeed, for any $\xi, \eta \in R_{p+1}^{n+2}$, we set

$$
\xi=\xi^{\prime}+\xi^{\prime \prime}, \quad \eta=\eta^{\prime}+\eta^{\prime \prime}
$$

where $\xi^{\prime}, \eta^{\prime} \in V(x)$ and $\xi^{\prime \prime}, \eta^{\prime \prime} \in V(x)^{\perp}$. Then we have

$$
\begin{aligned}
\left\langle\phi_{x} \xi, \phi_{x} \eta\right\rangle & =\left\langle\xi^{\prime}-\xi^{\prime \prime}, \eta^{\prime}-\eta^{\prime \prime}\right\rangle \\
& =\left\langle\xi^{\prime}, \eta^{\prime}\right\rangle+\left\langle\xi^{\prime \prime}, \eta^{\prime \prime}\right\rangle \\
& =\left\langle\xi^{\prime}+\xi^{\prime \prime}, \eta^{\prime}+\eta^{\prime \prime}\right\rangle \\
& =\langle\xi, \eta\rangle
\end{aligned}
$$

So ϕ_{x} is a linear isometry with respect to \langle,$\rangle . Since V(x)$ is an A-invariant subspace and A is self-adjoint with respect to $\langle\rangle,, V(x)^{\perp}$ is also A-invariant. Then we obtain $\phi_{x} A=A \phi_{x}$.

We will show that M is an extrinsic symmetric submanifold of R_{p+1}^{n+2}, and then M is a semi-Riemannian symmetric space. See Ferus [5] or Naitoh [9] for the basic facts of extrinsic symmetric submanifolds.

At each point $x \in M$ we take a linear isometry ϕ_{x} defined as above. By the difinition of ϕ_{x}, clearly we have
(1) $\phi_{x}(x)=x$.

Also we have
(2) $\phi_{x}(M)=M$.

In fact, since ϕ_{x} is a linear isometry,

$$
\left\langle\phi_{x}(y), \phi_{x}(y)\right\rangle=\langle y, y\rangle=0
$$

for $y \in M$. Since ϕ_{x} commutes with A, we have

$$
\begin{aligned}
\left\langle\phi_{x}(y), A \phi_{x}(y)\right\rangle & =\left\langle\phi_{x}(y), \phi_{x}(A y)\right\rangle \\
& =\langle y, A y\rangle=1 .
\end{aligned}
$$

Since $T_{x} M=V(x)^{\perp}$ and $T_{x}^{\perp} M=\left(V(x)^{\perp}\right)^{\perp}=V(x)$, we have
(3) $\quad \phi_{x}=\left\{\begin{aligned}-I d & \text { on } T_{x} M \\ I d & \text { on } T_{x}^{\perp} M .\end{aligned}\right.$

Let σ and S be the second fundamental form and the shape operator of the submanifold M, respectively. Then at each point $x \in M$, we have

$$
\begin{aligned}
S_{x} X & =-X, \quad S_{A x} X=-A X \\
\sigma(X, Y) & =-\langle A X, Y\rangle x-\langle X, Y\rangle A x
\end{aligned}
$$

By the equation of Gauss, the curvature tensor R of M is given by

$$
\begin{aligned}
R(X, Y) Z & =\{A X \wedge Y+X \wedge A Y\}(Z) \\
& =\langle Y, Z\rangle A X-\langle A X, Z\rangle Y+\langle A Y, Z\rangle X-\langle X, Z\rangle A Y
\end{aligned}
$$

Since A is nilpotent, we have $\left.\operatorname{tr} A\right|_{T_{x} M}=0$. Then the Ricci tensor ric is given by

$$
\operatorname{ric}(X, Y)=(n-2)\langle A X, Y\rangle
$$

So the Ricci operator Q becomes $Q=\left.(n-2) A\right|_{T_{x} M}$ and consequently $Q^{2}=0$. Hence the scalar curvature vanishes.

From these, the curvature tensor R of M satisfies

$$
R(X, Y) Z=\frac{1}{n-2}\{Q X \wedge Y+X \wedge Q X\}
$$

and we see that M is conformally flat. Thus we obtain examples of Main Theorem (5).

References

[1] R. L. Bishop and S. I. Goldberg, On conformally flat spaces with commuting curvature and Ricci transformations, Canad. J. Math. 24 (1972), 799-804.
[2] M. Cahen and Y. Kerbrat, Domaines symmétriques des quadriques projectives, C. R. Acad. Sci. 285 (1977), 261-264.
[3] M. CAhen and M. Parker, Pseudo-riemannian symmetric spaces, Amer. Math. Soc. vol. 24, 229 (1980).
[4] M. ERDOGAN and T. IKAWA, On conformally flat Lorentzian spaces satisfying a certain condition on the Ricci tensor, Indiana J. pure appl. 26 (1995), 417-424.
[5] D. Ferus, Symmetric submanifolds of euclidean space, Math. Ann. 247 (1980), 81-93.
[6] L.K. Graves, Codimension one isometric immersions between Lorentz spaces, Trans. Amer. Math. Soc. 252 (1979), 367-392.
[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, Interscience (1963).
[8] C. LeBrun, Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc. 278 (1983), 209-231.
[9] H. Naitoh, Symmetric submanifolds of compact symmetric spaces, Tsukuba J. Math. 10 (1986), 215-242.
[10] K. Nomizu and T. SaSAKI, Affine Differential Geometry, Cambridge University Press (1994).
[11] A. Z. Petrov, Einstein Spaces, Pergamon Press (1969).
[12] K. SEKIGAWA and H. TAKAGI, On conformally flat spaces satisfying a certain condition on the Ricci tensor, Tohoku Math. J. 23 (1971), 1-11.

Present Address:

Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, TOKyo, 112-8610 Japan.
e-mail: g0070510@edu.cc.ocha.ac.jp

[^0]: Received August 23, 2002; revised November 29, 2002
 2000 Mathematics Subject Classification. 53C50, 53A30
 keywords. semi-Riemannian manifolds, conformally flat, Ricci operator, complex spheres.

