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Abstract. We classify the conformally flat, semi-Riemannian manifolds satisfying R(X,Y ) · Q = 0, where R

and Q are the curvature tensor and the Ricci operator, respectively. As the cases which do not occur in the Riemannian

manifolds, the Ricci operator Q has pure imaginary eigenvalues or it satisfies Q2 = 0.

1. Introduction

Let (M, g ) be the conformally flat Riemannian manifold satisfying the condition
R(X, Y ) · Q = 0 where R is the curvature tensor and Q is the Ricci operator of M . Such
manifolds were studied and classified by Sekigawa and Takagi [12] under the assumption of
completeness and Bishop and Goldberg [1] without such assumption. If (M, g ) is the semi-
Riemannian manifold, the Ricci operator Qp of M is a symmetric linear endomorphism of
an indefinite scalar product space (TpM, g p). According to Petrov [11], Qp is not always
diagonalizable in this case. Let (M, g ) be the conformally flat Lorentzian manifold satisfying
the condition R(X, Y ) · Q = 0. The case when the Ricci operator Q is diagonalizable was
classified by Erdogan and Ikawa [4]. In this paper, we study and classify the conformally flat
semi-Riemannian manifold satisfying the condition R(X, Y ) · Q = 0. The main result is the
following.

MAIN THEOREM. Let Mn
q be an n-dimensional (n ≥ 4), simply connected, complete,

conformally flat semi-Riemannian manifold of index q satisfying R(X, Y ) · Q = 0. Then M

is one of the following:
(1) M is a semi-Riemannian manifold of constant curvature.
(2) M is the product manifold of a k-dimensional semi-Riemannian manifold of con-

stant curvature K ( �= 0) and an n − k-dimensional semi-Riemannnian manifold of constant

curvature −K; that is, Mk
q1

(K) × Mn−k
q−q1

(−K), where 1 < k < n − 1.

(3) M is the product manifold of an n − 1-dimensional semi-Riemannian manifold of
index q − 1 of constant curvature K( �= 0) and a 1-dimensional Lorentzian manifold, or the
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product manifold of an n−1-dimensional semi-Riemannnian manifold of index q of constant

curvature K( �= 0) and a 1-dimensional Riemannian manifold; that is, Mn−1
q−1 (K) × M1

1 or

Mn−1
q (K) × M1.

(4) M is an m-dimensional complex sphere in Cm+1 defined by

z2
1 + · · · + z2

m+1 = √−1b (b �= 0, b ∈ R) ,

where 2m = n.
(5) The Ricci operator satisfies Q2 = 0 everywhere. Moreover on an open set where

the Ricci operator has maximal rank, the kernel of Q is an integrable distribution and gives
a totally geodesic foliation whose leaves are flat and complete with respect to the induced
connection.

REMARK. The detailed definition of a complex sphere will be given in section 4.
The cases of (4) and (5) in the theorem above never occur if M is a Riamnnian man-

ifold. The Ricci operator of the semi-Riemannian manifold in (4) has two pure imaginary
eigenvalues which are mutually conjugate.

After preliminaries in section 2, in section 3 the possible Ricci operator Q under the
assumption of Main Theorem are classified algebraically (Theorem 3.1). Moreover we con-
sider the case when Q is diagonalizable and obtain the similar result to Sekigawa and Takagi
(Proposition 3.3). In section 4, we study the case when Q has two pure imaginary eigenvalues
which are mutually conjugate and show the classification result (Theorem 4.1). We study the
case when the Ricci operator is nilpotent in section 5 and show such examples in section 6.

The author wishes to express her sincere thanks to Professors T. Ikawa and S. Udagawa
for their valuable suggestions and guidances and also thanks to Professor K. Tsukada for his
guidance and encouragement.

2. Preliminaries

Let (Mn
q , g ) be an n-dimensional semi-Riemannian manifold of index q , i.e., the signa-

ture of g = (

q︷ ︸︸ ︷−, · · · ,−,+, · · · ,+). If q = 0, M is a Riemannian manifold, and if q = 1,
M is a Lorentzian manifold. We denote by ∇ the Levi-Civita connection of Mn

q and by R the

curvature tensor of M . The Ricci operator Q is a field of symmetric endomorphism which
corresponds to the Ricci tensor ric, that is, ric(X, Y ) = g (QX, Y ). r denotes the scalar
curvature defined by r = trQ. The Weyl conformal curvature tensor field C on Mn

q is a tensor

field of type (1,3) defined by

C(X, Y )Z = R(X, Y )Z − 1

n − 2
(QX ∧ Y + X ∧ QY)Z

+ r

(n − 1)(n − 2)
(X ∧ Y )Z

(2.1)
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where X ∧ Y denotes the endomorphism defined by (X ∧ Y )Z = g (Y,Z)X − g (X,Z)Y .
It is known that M is conformally flat if and only if C vanishes for n > 3. The Weyl

conformal curvature tensor field C vanishes identically for n = 3. We put the tensor field c of
type (1,2) as follows:

c(X, Y ) = (∇XQ)Y − (∇Y Q)X − 1

2(n − 1)
{(∇Xr)Y − (∇Y r)X} .(2.2)

It is well known that C = 0 implies c = 0 for n > 3. So if Mn
q is conformally flat with n > 3,

from (2.1) and (2.2), we have the following equations:

R(X, Y )Z = 1

n − 2
(QX ∧ Y + X ∧ QY)Z − r

(n − 1)(n − 2)
(X ∧ Y )Z ,(2.3)

(∇XQ)Y − (∇Y Q)X − 1

2(n − 1)
{(∇Xr)Y − (∇Y r)X} = 0 .(2.4)

In this paper, we consider conformally flat semi-Riemannian manifolds whose Ricci op-
erator Q satisfies the following condition:

R(X, Y ) · Q = 0(2.5)

The condition (2.5) is equivalent to

R(QX,X) = 0 .(2.6)

From (2.3) and (2.6), we have the following lemma

LEMMA 2.1. Let Mn
q be an n (n > 3)-dimensional conformally flat semi-Riemannian

manifold satisfying (2.5). Then

Q2 − r

n − 1
Q = ρI ,(2.7)

where ρ is a smooth function on Mn
q and I is the identity field.

We recall the form of a symmetric linear operator in an indefinite scalar product due to
Petrov [11].

PROPOSITION 2.2. A linear operator Q in an indefinite scalar product space is sym-
metric if and only if Q can be put into the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1
. . .

Bk

C1
. . .

Cm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where Bi is si × si matrix

Bi =

⎛
⎜⎜⎜⎜⎜⎝

λi

1 λi

. . .

λi

1 λi

⎞
⎟⎟⎟⎟⎟⎠

relative to a basis v1, · · · , vsi (si ≥ 1) with all scalar products zero except 〈vk, vl〉 = ε = ±1
if k + l = si + 1, and Cj is 2tj × 2tj matrix

Cj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aj bj

−bj aj

1 0 aj bj

0 1 −bj aj

1 0 aj bj

0 1 −bj aj

. . .

1 0 aj bj

0 1 −bj aj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(bj �= 0)

relative to a basis u1, v1, · · · , utj , vtj with all scalar products zero except 〈uk, ul〉 =
− 〈vk, vl〉 = 1 if k + l = tj + 1.

3. Ricci operator

At first, we classify possible Ricci operators algebraically. From Proposition 2.2 and
(2.7), we obtain the following theorem:

THEOREM 3.1. Let Mn
q be an n(n ≥ 4)-dimensional conformally flat semi-Riemannian

manifold satysfying (2.5). Then the Ricci operator Qx at each point x ∈ M is either diago-
nalizable relative to an orthonormal basis or has one of the following two forms:
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Qx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2r︷ ︸︸ ︷
0 0
1 0

. . .

0 0
1 0

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(r ≤ q)(3.1)

relative to a basis v1, · · · , vn of TxM with all scalar products zero except

g (v2i−1, v2i ) = ε ε = ±1 (i = 1, · · · , r) , g (vi, vi ) = εi ,

εi =
{−1 (i = 2r + 1, · · · , q + r)

1 (i = q + r + 1, · · · , n)
,

or

Qx =

⎛
⎜⎜⎜⎜⎜⎝

0 b

−b 0
. . .

0 b

−b 0

⎞
⎟⎟⎟⎟⎟⎠(3.2)

relative to a basis u1, v1, · · · , um, vm(n = 2m) with all scalar products zero except

g (ui, ui) = 1 = −g (vi , vi) .

In the last case n is even, its index q is n/2 and Qx has the pure imaginary eigenvalues

±√−1b.

PROOF. The Ricci operator Qx has the form in Proposition 2.2. One computes that

B2
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2
i

2λi λ2
i

1 2λi λ2
i

1 2λi

. . .

2λi λ2
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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C2
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2
j − b2

j 2ajbj

−2ajbj a2
j − b2

j

2aj 2bj a2
j − b2

j 2ajbj

−2bj 2aj −2ajbj a2
j − b2

j

1 0 2aj 2bj

0 1 −2bj 2aj

. . .

a2
j − b2

j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Qx satisfies the equation (2.7). Therefore it is clear from the form of B2
i and C2

j that

si ≤ 2 and tj ≤ 1. So Qx has blocks of the form

(µi) or

(
λj 0
1 λj

)
or

(
ak bk

−bk ak

)
with squares

(µ2
i ) or

(
λ2

j 0

2λj λ2
j

)
or

(
a2
k − b2

k 2akbk

−2akbk a2
k − b2

k

)
.

The equation (2.7) yields

µ2
i − r

n − 1
µi = ρ , λ2

j − r

n − 1
λj = ρ , a2

k − b2
k − r

n − 1
ak = ρ ,

2λj − r

n − 1
= 0 , 2akbk − r

n − 1
bk = 0 .

If Qx is diagonalizable,

µi = r ± √
r2 + 4(n − 1)2ρ

2(n − 1)
.

Then Qx has at most two real eigenvalues.
Next we consider the case Qx is not diagonalizable. If there are any blocks with a’s and

b’s, we have λj = ak = r/2(n − 1) for each j and k since bk �= 0. Thus all λj ’s and ak’s are
equal. It is clear that all bk’s are equal. The equations became

µ2
i − r

n − 1
µi = ρ , λ2 = −ρ , a2 + b2 = −ρ , λ = a = r

2(n − 1)
.

Since λ = a and b �= 0, there can be blocks with a’s or blocks with λ’s but not both. In either
case we have

µi = r

2(n − 1)
±

√(
r

2(n − 1)

)2

+ ρ .

If λ2 = −ρ, then µi = λ. If a2 + b2 = −ρ, then (r/2(n − 1))2 + ρ < 0 and there are no
µi ’s. If there is a block with a λ, then λ = µi = r/2(n − 1) for each i. If p is the number of
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µ’s which appear in Qx and 2p′ the number of λ’s,

r = pµ + 2p′λ = p

(
r

2(n − 1)

)
+ 2p′

(
r

2(n − 1)

)
.

Thus r
(
1 − p/2(n − 1) − p′/2(n − 1)

) = 0. But p + 2p′ = n and n ≥ 4, so r = 0. Then
λ = µ = 0 and Qx is of the form

Qx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0

. . .

0 0
1 0

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From Proposition 2.2, for a basis v1, · · · , vn of TxM , we have

g (v2i−1, v2i) = ε , ε = ±1 , g (v2i−1, v2i−1) = g (v2i , v2i ) = 0 (i = 1, · · · , r) .

Then the vectors v2i−1 and v2i are lightlike, and a plane Πi spanned by v2i−1 and v2i is
non-degenerate. The index of g on Πi is 1. Then r ≤ q and

g (vi , vi) = −1 (i = 2r + 1, · · · , q + r) , g (vi , vi) = 1 (i = q + r + 1, · · · , n) .

If there is a block with a b, there are no other types of blocks. Since a = r/2(n − 1) =
na/2(n − 1) and n ≥ 4, we see that a = 0. Then Qx is of the form

Qx =

⎛
⎜⎜⎜⎜⎜⎝

0 b

−b 0
. . .

0 b

−b 0

⎞
⎟⎟⎟⎟⎟⎠ .

In this case, for a basis u1, v1, · · · , um, vm (n = 2m) of TxM ,

g (ui, ui) = 1, g (vi , vi) = −1 (1 ≤ i ≤ m) .

Then n is even and the index q = m = n/2. Qx has the pure imaginary eigenvalues

±√−1b. �

Suppose that Qx is diagonalizable relative to an orthonormal basis. Then Qx has at most two
eigenvalues. Suppose that Qx has distinct eigenvalues λ and µ with multiplicities k and n−k,
respectively. Then (2.7) implies

(λ − µ){(n − k − 1)λ + (k − 1)µ} = 0 .
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Since λ �= µ, we have (n − k − 1)λ + (k − 1)µ = 0. If k = 1, then λ = 0. If k = n − 1, then
µ = 0. Otherwise we have

λµ < 0 .(3.3)

Now we define 6 types of subsets Ui (i = 1, 2, · · · , 6) associated with the types of the
Ricci operator Qx :

U1 = {x ∈ M | Qx has two non-zero real eigenvalues.}
U2 = {x ∈ M | Qx has only one non-zero real eigenvalue.}
U3 = {x ∈ M | Qx has two pure imaginary eigenvalues which are mutually conjugate.}
U4 = {x ∈ M | Qx has two real eigenvalues one of which is zero.}
U5 = {x ∈ M | Qx

2 = 0 and Qx �= 0.}
U6 = {x ∈ M | Qx = 0.}

Qx is diagonalizable relative to an orthonormal basis at x ∈ Ui (i = 1, 2, 4, 6). On U1, two
eigenvalues have the opposite signs by (3.3) and their multiplicities are not less than 2. On
U4, the multiplicity of the eigenvalue 0 is equal to 1.

PROPOSITION 3.2. M is the disjoint union of Ui (i = 1, · · · , 6). For each i (i =
1, · · · , 6), the rank of Qx at x ∈ Ui and the openness of Ui are the following:

The rank of Qx Openness
U1 n open
U2 n open
U3 n open
U4 n − 1 open
U5 1 ≤ The rank of Qx ≤ min{q, n − q} ?
U6 0 ?

Here n and q denote the dimension of M and its index, respectively. The symbol ? in the table
means that we can not determine whether it is open or not.

PROOF. The former part of this proposition and the rank of Qx are easily seen by The-
orem 3.1 and the argument before this proposition. We will prove the openness of Ui (1 =
1, 2, 3, 4).

For each x ∈ U1, by the continuity of eigenvalues of the Ricci operator Q, there exists
a neighbourhood U of x on which Q has at least two eigenvalues and hence has exactly two
eigenvalues. Moreover on a neighbourhood U ′ (⊂ U) of x, the real parts of two eigenvalues
are not zeros. Any points of U ′ do not belong to Ui (i = 2, 3, 4, 5, 6). Therefore U ′ ⊂ U1.
This implies that U1 is open.
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For each x ∈ U2, by the continuity of eigenvalues of the Ricci operator Q, on some
neighbourhood U of x, the real parts of eigenvalues of Q has the same sign (the plus sign or
the minus sign). Therefore U ⊂ U2 and hence U2 is open.

For each point x ∈ U3, by the similar reason above there exists a neighbourhood U of x

on which the imaginary parts of eigenvalues of the Ricci operator Q are not zeros. Hence U

is contained in U3.
For each x ∈ U4, there exists a neighbourhood U of x on which Q has exactly two

eigenvalues. Moreover on some neighbourhood U ′ (⊂ U) of x, the real part of one eigenvalue
is not zero and the multiplicity of the other eigenvalue is equal to 1. Therefore U ′ ⊂ U4. This
implies that U4 is open. �

Let Mn
q be an n (n ≥ 4)-dimensional, simply connected, complete, conformally flat

semi-Riemannian manifold of index q satisfying (2.5). Now we consider the case when the
Ricci operator is diagonalizable. We can prove the following similarly to Sekigawa and Takagi
[12].

PROPOSITION 3.3. (1) If U1 of Proposition 3.2 is not empty, then U1 = M and the
semi-Riemannian manifold of M is isometric to the product manifold of a k-dimensional semi-
Riemannian manifold of constant positive curvature K and an (n − k)-dimensional semi-

Riemannaian manifold of constant negative curvature −K, that is, Mk
q1

(K) × Mn−k
q−q1

(−K),

where 1 < k < n − 1.
(2) If U2 of Proposition 3.2 is not empty, then U2 = M and M is a semi-Riemannain

manifold of a non-zero constant curvature.
(3) If U4 of Proposition 3.2 is not empty, then U4 = M and the semi-Riemannian

manifold of M is isometric to the product manifold of an (n−1)-dimensional semi-Riemannian
manifold of index q − 1 of constant curvature K and a 1-dimensional Lorentzian manifold
or the product manifold of an (n − 1)-dimensional semi-Riemannian manifold of index q of

constant curvature K and a 1-dimensional Riemannian manifold, that is, Mn−1
q−1 (K) × M1

1 or

Mn−1
q (K) × M1, where K �= 0.

We study the remaining cases in sections 4 and 5 and show Theorem 4.1 and 5.3, which
together with Proposition 3.3, yield our Main Theorem in the Introduction.

4. The case when the Ricci operator has pure imaginary eigenvalues

In this section, we discuss the case when the Ricci operator has pure imaginary eigenval-
ues.

At first, we show an example— a complex sphere CSn(
√−1b) with a real b. We define

a semi-Riemannian metric g on an (n + 1)-dimensional complex vector space Cn+1 by

g = 2 the real part of
n+1∑
i=1

dzi ⊗ dzi
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= 2

(n+1∑
i=1

dxi ⊗ dxi −
n+1∑
i=1

dyi ⊗ dyi

)
,

where zi = xi + √−1yi . It has signature (n + 1, n + 1). The complexification of the semi-

Riemannian metric g coinsides with
∑n+1

i=1 dzi ⊗ dzi , for which we use the same notaion g .

We consider a complex hypersurface M in Cn+1 defined as follows:

M = {(z1, · · · , zn+1) ∈ Cn+1| z2
1 + · · · + z2

n+1 = c}
for c ∈ C, c �= 0. It is called a complex sphere. A complex sphere is diffeomorphic to the
tangent bundle T Sn of the sphere Sn. In fact, put

√
c = h and define the linear transformation

F : Cn+1 ⇒ Cn+1 by F(z1, · · · , zn+1) = 1/h(z1, · · · , zn+1). Then we have

M ′ = F(M) = {(z1, · · · , zn+1) ∈ Cn+1| z2
1 + · · · + z2

n+1 = 1} .

We identify (x1 + √−1y1, · · · , xn+1 + √−1yn+1) ∈ Cn+1 with (x1, y1, · · · , xn+1, yn+1) ∈
R2(n+1). Then M ′ is a submanifold of R2(n+1) with codimension 2 which is defined by∑n+1

j=1 xjyj = 0 and
∑n+1

j=1(x
2
j −y2

j ) = 1. It is easily seen that M ′ is diffeomorphic to the tan-

gent bundle T Sn of the sphere Sn. In particular it is simply connected for n > 1. We will cal-
culate the curvature tensor of M applying the formulas in Chapter 4 § 9 in Nomizu and Sasaki

[10]. By the defining equation of M , we have
∑n+1

i=1 zidzi = 0 on M . Let ζ = ∑n+1
i=1 zi∂/∂zi

be a holomorphic vector field on Cn+1. Then (
∑n+1

i=1 zidzi)(ζ ) = ∑n+1
i=1 z2

i = c �= 0 on M .
Therefore ζ is a transversal vector field along M . Furthermore ζ is a normal vector field along
M . Indeed,

g (W, ζ ) =
n+1∑
i=1

dzi(W)dzi(ζ ) =
(n+1∑

i=1

zidzi

)
(W) = 0

for any W ∈ TzM
1,0. Moreover, g (ζ, ζ ) = ∑n+1

i=1 z2
i = c �= 0 on M . Therefore the induced

metric g on M is non-degenerate and it satisfies g (JX, Y ) = g (X, JY ) for X,Y ∈ TzM ,
where J denotes complex structure on M , that is, g is a so-called complex Riemannian metric
on M [8]. This induced semi-Riemannian metric has the signature (n, n). M can be viewed as
a semi-Riemannian symmetric space SO(n + 1, C)/SO(n,C). In particular M is a complete
semi-Riemannian manifold.

We calculate the curvature tensor and the Ricci operator of M , applying the equation of

Gauss. We denote by D the usual flat affine connection on Cn+1. It is also a Levi-Civita

connection with respect to g . Since DWζ = W and DW̄ζ = 0 for W ∈ Γ (T M1,0), the shape
operator S of M is given by

S = −I on T M1,0(4.1)

and

S = 0 on T M0,1 .(4.2)
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We have the Gauss formula:

DXY = ∇XY + h(X, Y )ζ for X,Y ∈ Γ (T M1,0) ,

where ∇ is the Levi-Civita connection with respect to the induced metric and h is the second
fundamental form. Then h is given by

h(X, Y ) = −1

c
g (X, Y ) for X,Y ∈ T M1,0 .(4.3)

Indeed, for X,Y ∈ Γ (T M1,0),

ch(X, Y ) = g (DXY, ζ ) = −g (Y,DXζ ) = −g (X, Y ) .

We denote by R the curvature tensor of the Levi-Civita connection on M . By the equation of
Gauss, we have

R(Z,W)U = h(W,U)SZ − h(Z,U)SW

R(Z,W)U = 0

R(Z,W)U = −h(Z,U)SW

for Z,W,U ∈ T M1,0 (Nomizu and Sasaki [10], p. 191). By (4.1), (4.2) and (4.3), we have

R(Z,W)U = 1

c
{g (W,U)Z − g (Z,U)W }

R(Z,W)U = 0

R(Z,W)U =R(Z,W)U = 0(4.4)

R(Z,W)U =R(Z,W)U

= 1

c̄
{g (W,U)Z − g (Z,U)W }

Next we calculate the Ricci tensor ric. Let {e1, · · · , en} be a basis of T M1,0 satisfying
g (ei, ej ) = δij . Then we have

ric(W,U) =
n∑

i=1

g (R(ei ,W)U, ei) +
n∑

i=1

g (R(ēi,W)U, ēi )

= n − 1

c
g (W,U)(4.5)

ric(W,U) = 0

ric(W,U) = ric(W,U) = n − 1

c̄
g (W,U) .

For the Ricci operator Q, using (4.5) we have

g (QW,U) = ric(W,U) = n − 1

c
g (W,U)
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g (QW,U) = ric(W,U) = 0 .

Then

QW = n − 1

c
W .(4.6)

While

g (QW,U) = ric(W,U) = 0

g (QW,U) = ric(W,U) = n − 1

c̄
g (W,U) ,

then we obtain

QW = n − 1

c̄
W .(4.7)

The scalar curvature r = trQ becomes

r = n(n − 1)

(
1

c
+ 1

c̄

)
.

Now we assume that c is pure imaginary, that is, c = √−1b (b ∈ R, b �= 0). Then by

(4.6) and (4.7), the Ricci operator has the pure imaginary eigenvalues ±√−1(n − 1)/b and
its scalar curvature r vanishies. The Ricci operator Q is parallel with respect to ∇ and hence
it satisfies R(X, Y ) · Q = 0 for X,Y ∈ T M . Moreover we have

R(X, Y )Z = 1

2n − 2
(QX ∧ Y + X ∧ QY)Z(4.8)

for X,Y,Z ∈ T MC . Comparing with the equation (2.3), we see that a complex sphere with
the pure imaginary c is conformally flat. From now on, we denote by CSn(c) the complex

sphere defined by z2
1 + · · · + z2

n+1 = c.
For the case when the Ricci operator has pure imaginary eigenvalues, we will show the

following:

THEOREM 4.1. Let M be an n (≥ 4)-dimensional, simply connected, complete, con-
formally flat semi-Riemannian manifold satisfying the condition (2.5). If the Ricci operator
Qx has pure imaginary eigenvalues at some point x ∈ M, then M is isometric to a complex

sphere CSn/2(
√−1b) with some real b.

PROOF. We define a subset U in M by U = {x ∈ M| Qx has pure imaginary eigen-
values.} Then by Proposition 3.2, U is open in M . Because of the assumption, U is not empty.
We denote by W a connected component of U . On W there exists a pure imaginary valued

function λ such that the Ricci operator Qx has the eigenvalues λ(x) and λ(x) = −λ(x) at
x ∈ W . We define two complex subbundles T1 and T2 of T MC on W as follows at x ∈ W :

T1(x) = {X ∈ TxM
C | QX = λ(x)X} ,



CONFORMALLY FLAT SEMI-RIEMANNIAN MANIFOLDS 253

T2(x) = {X ∈ TxM
C | QX = −λ(x)X} .

Then we have an orthogonal direct sum decomposition:

T MC = T1 + T2

and the complex conjugation is a real linear isomorphism between T1 and T2. For X ∈ T MC ,
we denote by (X)T1 and (X)T2 the components of X which belong to T1 and T2, respectively.
The scalar curvature r vanishes on W . Therefore by (2.4), we obtain

(∇XQ)(Y ) − (∇Y Q)(X) = 0(4.9)

for X,Y ∈ Γ (T M). For X,Y ∈ Γ (T1), by (4.9)

0 = (∇XQ)(Y ) − (∇Y Q)(X)

= (Xλ)Y − (Yλ)X + 2λ{(∇XY )T2 − (∇Y X)T2} .

If X and Y are linearly independent, Xλ = 0. Similarly we have Xλ = 0 for X ∈ Γ (T2).
Therefore λ is constant on W .

For X ∈ Γ (T1) and Y ∈ Γ (T2), by (4.9)

0 = (∇XQ)(Y ) − (∇Y Q)(X)

= −2λ(∇XY )T1 − 2λ(∇Y X)T2 .

Therefore we have (∇XY )T1 = 0, (∇Y X)T2 = 0. This means that T1 and T2 are parallel

subbundles of T MC . In particular the Ricci operator Q is parallel. Since the curvature tensor
R has the form

R(X, Y ) = 1

n − 2
(QX ∧ Y + X ∧ QY) ,

we have ∇R = 0 on W .
We take a constant pure imaginary number λ which is an eigenvalue of the Ricci operator

Qx , x ∈ W and define a subset V of M as follows: V = {x ∈ M | Q2
x − λ2I = 0}. Then

V is not empty and evidently it is closed. By the argument above, we see that V is open
and hence V = M . Consequently M is a simply connected, complete, locally symmetric

semi-Riemannian manifold. We put c = (n − 2)/2λ and a complex sphere CSn/2(
√−1b).

By the form of curvature tensor, it follows that there exists a linear isometry F : TxM →
TyCSn/2(

√−1b) which preserves the curvature tensor. Applying Theorem 7.8, in Kobayashi

and Nomizu [7], Chapter VI, we see that M is isometric to a complex sphere CSn/2(
√−1b).

5. The case when the Ricci operator is nilpotent

In this section we assume that there exists a point x ∈ M at which Q2
x = 0. Then by

Proposition 3.3 and Theorem 4.1, Q2 ≡ 0 on whole M . Then scalar curvature r = trQ

vanishes and hence we have

(∇XQ)(Y ) = (∇Y Q)(X)(5.1)
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for X,Y ∈ Γ (T M). We put

k = max{The rank of Qx | x ∈ M} .

If k = 0, that is, Q ≡ 0 on M , then M is flat. From now on, we assume that k > 0. We put

U = {x ∈ M | The rank of Qx = k} .

Then U is open in M . We denote by W a connected component of U . From now on, we
discuss on W .

For each point x ∈ W , we define

T0(x) = kerQx , L(x) = ImQx .

L(x) is included in T0(x). By Lemma 3.1, the semi-Riemannian metric g restricted to T0(x)

is degenerate and its nullity subspace

{X ∈ T0(x)| g (X, Y ) = 0 for any Y ∈ T0(x)}
coinsides with L(x). T0 and L are subbundles of T M on W of dimensions n − k and k,
respectively.

PROPOSITION 5.1. The subbundle L is parallel along T0-direction.

PROOF. For X ∈ Γ (T0) and Z ∈ Γ (T M), it follows from (5.1) that

∇X(QZ) = Q([X,Z]) .
�

PROPOSITION 5.2. T0 is a totally geodesic foliation of W and the leaves are flat with
respect to the induced connection.

PROOF. For X,Y ∈ Γ (T0) and Z ∈ Γ (T M), by (5.1) we have

g (Q(∇XY ),Z) = −g ((∇XQ)Y,Z)

= −g ((∇XQ)Z, Y )

= −g ((∇ZQ)X, Y )

= −g (∇Z(Q(X)) − Q(∇ZX), Y )

= g (∇ZX,QY) = 0

Therefore Q(∇XY ) = 0, that is, ∇XY ∈ Γ (T0). Hence [X,Y ] = ∇XY − ∇Y X ∈ Γ (T0).

This implies T0 is completely integrable. Moreover for X,Y ∈ Γ (T0), it follows by (2.3) that
R(X, Y ) = 0. �

THEOREM 5.3. The leaf M0(x0) of the distribution T0 through x0 ∈ W is complete
with respect to the induced connection.

PROOF. By the similar argument to Graves [6], we prove this theorem. For an arbitrary
point x ∈ M0(x0), let γ : R → M be a geodesic of M such that γ (0) = x, γ ′(0) ∈ T0(x).
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Since M0(x0) is a totally geodesic submanifold of M , there exists a positive number ε > 0
such that γ (t) ∈ M0(x0) for −ε < t < ε. We will show that γ (t) ∈ M0(x0) for all t ∈ R. In
fact we have the following:

LEMMA 5.4. Let γ be a geodesic as above. If γ (t) ∈ M0(x0) for 0 ≤ t < b, then
γ (b) ∈ W .

PROOF OF LEMMA. For a basis {Z1, · · · , Zk} of L(x), we take k tangent vectors
ξ1, · · · , ξk of TxM which satisfy g (ξi , Zj ) = −δij . Let ξi(t) and Zi(t) be parallel vector
fields along γ with ξi(0) = ξi, Zi(0) = Zi (i = 1, · · · , k). By Proposition 5.1, it follows
that {Z1(t), · · · , Zk(t)} is a basis of L(γ (t)) and the subspace spanned by ξ1(t), · · · , ξk(t) is
a complementary subspace of T0(γ (t)) in Tγ (t)M for 0 ≤ t < b. We define a k × k matrix
Φ(t) = (Φij (t)) by

Φij (t) = −g (Qξj (t), ξi (t))

for t ∈ R. Then Φ(t) is a non-singular matrix for 0 ≤ t < b. If Φ(b) is non-singular, Qγ(b)

has rank k and hence γ (b) ∈ W . So we will prove that Φ(b) is non-singular.
For v ∈ T0(γ (t)), 0 ≤ t < b, we extend v to a T0-vector field V in a neighbourhood of

γ (t). Then g ((∇ξj (t)V )γ (t), Zi(t)) does not depend on an extension V of v. In particular we

extend γ ′(t) to a T0-vector field X and put

Cij (t) = g ((∇ξj (t)X)γ (t), Zi(t))

and define a k × k matrix C(t) by C(t) = (Cij (t)) for 0 ≤ t < b. Φ(t) and C(t) satisfy the
following differential equations:

Φ ′(t) = Φ(t)C(t) ,(5.2)

C′(t) = C(t)2(5.3)

for 0 ≤ t < b. We will show the equations above. For a fixed t (0 ≤ t < b), we extend γ ′(t)
to a T0-vector field X and ξj (t) to a vector field Ξj in a neighbourhood of γ (t). By (5.1), we
have

∇X(QΞj ) = Q([X,Ξj ]) .

At γ (t),

g (∇X(QΞj ),Ξi) = Xg (QΞj ,Ξi) − g (QΞj ,∇XΞi)

= −Φ ′
ij (t)

On the other hand, at γ (t),

[X,Ξj ] = ∇XΞj − ∇ξj (t)X

= −(∇ξj (t)X)T0 +
k∑

a=1

g ((∇ξj (t)X)γ (t), Za(t))ξa(t)

= −(∇ξj (t)X)T0 +
k∑

a=1

Caj(t)ξa(t) .
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Therefore

g (Q([X,Ξj ]), ξi(t)) =
k∑

a=1

Caj (t)g (Qξa(t), ξi (t))

= −
k∑

a=1

Φia(t)Caj (t) .

Thus we obtain (5.2). Next we will obtain the equation (5.3).

C′
ij (t) = Xg (∇Ξj X,Zi(t))

= g (∇X(∇Ξj X),Zi(t)) + g (∇Ξj X,∇XZi(t))

= g (R(X,Ξj )X,Zi(t)) + g (∇Ξj (∇XX),Zi(t)) + g (∇[X,Ξj ]X,Zi(t)) .

At γ (t), by Proposition 5.2,

g (R(X,Ξj )X,Zi(t)) = g (R(γ ′(t), Zi(t))γ
′(t), ξj (t)) = 0 .

∇XX is a T0-vector field and (∇XX)γ (t) = 0. Since g (∇Ξj (∇XX),Zi(t)) does not depend
on an extension of (∇XX)γ (t), g (∇Ξj (∇XX),Zi(t)) = 0 at γ (t).

For the last term, we have

g (∇[X,Ξj ]X,Zi(t)) = −g (∇(∇ξj (t)X)T0
X,Zi(t)) +

k∑
a=1

Caj (t)g (∇ξa(t)X,Zi(t))

=
k∑

a=1

Cia(t)Caj (t) .

Then (5.3) yields.
We put d(t) = detΦ(t) for t ∈ R. Because of the assumption, d(t) �= 0 for 0 ≤ t < b

and we have
d ′(t) = d(t)tr(Φ−1(t)Φ ′(t)) = d(t)trC(t) .

By (5.3), we obtain

d(t) = d(0)

k∏
i=1

1

1 − µit
for 0 ≤ t < b ,

where µ1, · · · , µk are the eigenvalues of C(0). Since d(t) is bounded on 0 ≤ t ≤ b, 1−µib �=
0 (i = 1, · · · , k). Then

d(b) = lim
t→b

d(t) = lim
t→b

d(0)

k∏
i=1

1

1 − µit
�= 0 .

Consequently, Φ(b) is non-singular. �



CONFORMALLY FLAT SEMI-RIEMANNIAN MANIFOLDS 257

We continue our proof of Theorem 5.3. As in the proof of Theorem 5.14 in Graves [6],
the fact γ (b) ∈ W in Lemma 5.4 implies that

sup{s ∈ R|γ (t) ∈ M0(x0) for 0 ≤ t < s}

is infinite and gives our theorem. �

Suppose that the maximal rank of the Ricci operator is 1. In this case the distributions
T0 and L on W are of dimension n − 1 and 1, respectively. We can obtain more detailed
description of T0 and L.

COROLLARY 5.5. Suppose that tha maximal rank of the Ricci operator Q is 1. Let U

be the set of x ∈ M at which the rank of Qx is 1. Then the kernel distribution T0 and the
image distribution L of the Ricci operator are parallel subbundles of T M on U .

PROOF. In the proof of Lemma 5.4, Φ(t) and C(t) are real valued functions globally
defined on R and we have Φ(t) = Φ(0)/(1 − C(0)t). This implies C(0) = 0. Then we see
that T0 is parallel. L is also parallel. In fact, for X ∈ Γ (T0) and Y,Z ∈ Γ (T M), we have

g (∇Y (QZ),X) = Y g (QZ,X) − g (QZ,∇Y X)

= Y g (Z,QX) − g (Z,Q(∇Y X))

= 0 .

Therefore ∇Y (QZ) ∈ Γ (L). �

REMARK. When M is a Lorentzian manifold, the maximal rank of the Ricci operator
is 1 unless Q vanishes identically.

6. Examples with nilpotent Ricci operators

In this section, we will give examples of Main Theorem (5), which are symmetric do-
mains of projective quadrics constructed and classified by Cahen and Kerbrat [2]. Here we
give a slightly different description and compute their Ricci operators.

Let (Rn+2
p+1, 〈 , 〉) be the semi-Euclidean space with an inner product 〈 , 〉 of signature

(p + 1, n − p + 1) and Γ be the lightcone which is a hypersurface of Rn+2
p+1 − {0} defined by

Γ = {x ∈ Rn+2
p+1 − {0}| 〈x, x〉 = 0} .

If a linear endomorphism A of Rn+2
p+1 satisfies the following conditions, it is said to be of type

N (Cahen and Parker [3] Definition 1.7.3, 45p.):
(1) A is self-adjoint with respect to 〈 , 〉, i.e., 〈Ax, y〉 = 〈x,Ay〉.
(2) A2 = 0.

(3) There exists a point x ∈ Γ such that 〈x,Ax〉 > 0.



258 KYOKO HONDA

We consider the following subset M of Rn+2
p+1:

M = {x ∈ Rn+2
p+1| 〈x, x〉 = 0, 〈x,Ax〉 = 1}

= Γ ∩ {x ∈ Rn+2
p+1| 〈x,Ax〉 = 1} .

If M is not connected, we take a connected component and use the same notation M .

Then M is a submanifold of Rn+2
p+1 with codimension 2.

At each point x ∈ M , x and Ax are linearly independent. We denote by V (x) a 2-

dimensional subspace of Rn+2
p+1 spanned by x and Ax. Then 〈 , 〉 |V (x) is non-degenerate.

Indeed, we have the following:

〈x, x〉 = 〈Ax,Ax〉 = 0 , 〈x,Ax〉 = 〈Ax, x〉 = 1 .

Next we will show that TxM = V (x)⊥. Let f and g be the functions on Rn+2
p+1 given by

f (x) = 〈x, x〉 and g (x) = 〈x,Ax〉, respectively. For X ∈ TxM , we have df (X) = 0 and
dg (X) = 0, and on the other hand we have

df (X) = 2 〈Xx, x〉 = 2 〈X, x〉
dg (X) = 〈Xx,Ax〉 + 〈x,XAx〉

= 〈X,Ax〉 + 〈x,AXx〉
= 2 〈X,Ax〉 .

Since V (x) is non-degenerate, TxM is non-degenerate with respect to 〈 , 〉. In particular M

endowed with an induced metric is an n-dimensional semi-Riemannian manifold of index p.

At each point x ∈ M , we define a linear endomorphism φx of Rn+2
p+1 by

φx = I |V (x) ⊕ −I |V (x)⊥ .

Then φx becomes a linear isometry of (Rn+2
p+1, 〈 , 〉) and satisfies φxA = Aφx . Indeed, for any

ξ, η ∈ Rn+2
p+1, we set

ξ = ξ ′ + ξ ′′, η = η′ + η′′ ,

where ξ ′, η′ ∈ V (x) and ξ ′′, η′′ ∈ V (x)⊥. Then we have

〈φxξ, φxη〉 = 〈
ξ ′ − ξ ′′, η′ − η′′〉

= 〈
ξ ′, η′〉 + 〈

ξ ′′, η′′〉
= 〈

ξ ′ + ξ ′′, η′ + η′′〉
= 〈ξ, η〉 .

So φx is a linear isometry with respect to 〈 , 〉. Since V (x) is an A-invariant subspace and A

is self-adjoint with respect to 〈 , 〉, V (x)⊥ is also A-invariant. Then we obtain φxA = Aφx .
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We will show that M is an extrinsic symmetric submanifold of Rn+2
p+1, and then M is a

semi-Riemannian symmetric space. See Ferus [5] or Naitoh [9] for the basic facts of extrinsic
symmetric submanifolds.

At each point x ∈ M we take a linear isometry φx defined as above. By the difinition of
φx , clearly we have

(1) φx(x) = x .

Also we have
(2) φx(M) = M .

In fact, since φx is a linear isometry,

〈φx(y), φx(y)〉 = 〈y, y〉 = 0

for y ∈ M . Since φx commutes with A, we have

〈φx(y),Aφx(y)〉 = 〈φx(y), φx(Ay)〉
= 〈y,Ay〉 = 1 .

Since TxM = V (x)⊥ and T ⊥
x M = (V (x)⊥)⊥ = V (x), we have

(3) φx =
{−Id on TxM

Id on T ⊥
x M .

Let σ and S be the second fundamental form and the shape operator of the submanifold
M , respectively. Then at each point x ∈ M , we have

SxX = −X , SAxX = −AX ,

σ(X, Y ) = − 〈AX,Y 〉 x − 〈X,Y 〉Ax .

By the equation of Gauss, the curvature tensor R of M is given by

R(X, Y )Z = {AX ∧ Y + X ∧ AY }(Z)

= 〈Y,Z〉 AX − 〈AX,Z〉Y + 〈AY,Z〉 X − 〈X,Z〉AY .

Since A is nilpotent, we have trA|TxM = 0. Then the Ricci tensor ric is given by

ric(X, Y ) = (n − 2) 〈AX,Y 〉 .

So the Ricci operator Q becomes Q = (n − 2)A|TxM and consequently Q2 = 0. Hence the
scalar curvature vanishes.

From these, the curvature tensor R of M satisfies

R(X, Y )Z = 1

n − 2
{QX ∧ Y + X ∧ QX}

and we see that M is conformally flat. Thus we obtain examples of Main Theorem (5).
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