CONFORMALLY FLAT SPACES AND A PINCHING PROBLEM ON THE RICCI TENSOR

TH. HASANIS

ABSTRACT. Recent results of S. I. Goldberg on conformally flat manifolds and hypersurfaces of Euclidean space are extended.

1. Introduction. By applying S.-T. Yau's "maximum principle", S. Goldberg [3] proved that an *n*-dimensional, $n \ge 3$, conformally flat Riemannian manifold with constant scalar curvature R whose Ricci curvature is bounded below, and for which suptrace $Q^2 < R^2/(n-1)$, is a space form. A corresponding result for hypersurfaces in Euclidean space was obtained by analogy.

The author sincerely thanks Professor S. Goldberg for valuable suggestions.

2. Preliminaries. Let (M, g) be a Riemannian manifold with metric g. The curvature transformation R(X, Y), $X, Y \in T_p M$, where $T_p M$ is the tangent space at $p \in M$, and g are related by

$$R(X,Y) = \nabla_{[X,Y]} - [\nabla_X, \nabla_Y],$$

where ∇_X is the operation of covariant differentiation with respect to X. In terms of a basis X_1, \ldots, X_n of $T_n M$ we set

$$R_{ijkl} = g(R(X_i, X_j)X_k, X_l), \qquad R_{ij} = \operatorname{trace}(X_k \to R(X_i, X_k)X_j).$$

We denote the scalar curvature by R, that is, R = trace Q, where Q is the symmetric linear transformation field defined by the Ricci tensor, that is $Q = (R_j^i)$ and $R_j^i = g^{ik}R_{jk}$. The manifold (M, g) is conformally flat if g is conformally related to a locally flat metric. Let M be an n-dimensional $(n \ge 3)$ conformally flat Riemannian manifold with constant scalar curvature, then the following formula may be found in [3]:

$$\frac{1}{2}\Delta \operatorname{trace} Q^{2} = \frac{n}{n-2}\operatorname{trace} Q^{3} - \frac{2n-1}{(n-1)(n-2)}R\operatorname{trace} Q^{2} + \frac{R^{3}}{(n-1)(n-2)} + g(\nabla Q, \nabla Q).$$

Put $S = Q - R_I/n$, I = identity. Then trace $S^2 \ge 0$ with equality holding if and only if M is an Einstein space. Obviously trace $S^2 =$ trace $Q^2 - R^2/n$, and since R

1980 Mathematics Subject Classification. Primary 53C20; Secondary 53A07, 53C40.

Key words and phrases. Conformally flat, Ricci curvature, scalar curvature.

©1982 American Mathematical Society 0002-9939/82/0000-0399/\$02.00

Received by the editors February 22, 1982.

is constant we get Δ trace $S^2 = \Delta$ trace Q^2 , where Δ is the Laplace operator on M. Repeating the same calculations as in [3] we get, for $f^2 = \text{trace } S^2$,

(2.1)
$$\frac{1}{2}\Delta f^2 \ge \sqrt{\frac{n}{n-1}} f^2 \left(\frac{R}{\sqrt{n(n-1)}} - f\right).$$

The tool for the proof of the main result is a slight modification [5, Theorem 1] of the generalized maximum principle proved in [1 or 8], which we state as follows: Let M be a complete, connected Riemannian manifold with Ricci curvature bounded from below. Let f be a C^2 -function bounded from above on M and which has no maximum. Then for all $\varepsilon > 0$, there exists a point $P \in M$ such that at P,

- (1) $\sup f \varepsilon < f(P) < \sup f \varepsilon/2$,
- (2) $| \operatorname{grad} f | (P) < \varepsilon$,
- (3) $\Delta f(P) \leq \epsilon$.

3. Main results. The following lemma is fundamental and may be found in [6].

LEMMA. Let a_1, \ldots, a_n be real numbers satisfying the inequality

$$\sum_{i=1}^{n} a_i^2 < \frac{1}{n-1} \left(\sum_{i=1}^{n} a_i \right)^2.$$

Then for any pair of distinct i and j = 1, ..., n we have $a_i a_j > 0$.

THEOREM 1. Let M be an n-dimensional $(n \ge 3)$, complete, connected conformally flat Riemannian manifold. If its scalar curvature R is a positive constant and trace $Q^2 \le R^2/(n-1)$, then M is a space form or trace $Q^2 = R^2/(n-1)$ everywhere on M.

PROOF. Let f^2 be as in §2 above; we distinguish two cases.

Case I. f^2 attains its maximum; then by using E. Hopf's well-known theorem we conclude from (2.1) that $f^2 = \text{constant}$ and thus $f^2 = 0$ or $f^2 = R^2/n(n-1)$ everywhere on M. But then trace $Q^2 = R^2/n$, that is, M is an Einstein space and thus a space form or trace $Q^2 = R^2/(n-1)$ everywhere on M.

Case II. f^2 has no maximum. Suppose $\sup f^2 < R^2/n(n-1)$; then from (2.1) and by using the same method as in the proof of [4, Theorem A] we conclude that $f^2 = 0$, that is, M is a space form. Now let $\sup f^2 = R^2/n(n-1)$. Since f^2 attains no maximum we also have $f^2 < R^2/n(n-1)$. We prove that this is not true. Obviously, since $f^2 < R^2/n(n-1)$, we get trace $Q^2 < R^2/(n-1)$. Applying the lemma for the eigenvalues of the Ricci tensor we conclude that the Ricci curvature is bounded from below; in particular, it is positive. By generalized maximum principle we have that, for any natural number m, there exists a point $P_m \in M$ such that (since $\sup f^2 = R^2/(n(n-1))$)

(3.1)
$$\frac{R^2}{n(n-1)} - \frac{1}{m} < f^2(P_m) < \frac{R^2}{n(n-1)} - \frac{1}{2m},$$

(3.2)
$$\sqrt{\frac{n}{n-1}} f^2(P_m) \left(\frac{R}{\sqrt{n(n-1)}} - f(P_m) \right) \leq \frac{1}{2} \Delta f^2(P_m) < \frac{1}{2m}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

From (3.1) we get

$$\left(\frac{R}{\sqrt{n(n-1)}} - f(P_m)\right) \left(\frac{R}{\sqrt{n(n-1)}} + f(P_m)\right) > \frac{1}{2m}$$

or

$$\frac{R}{\sqrt{n(n-1)}} - f(P_m) > \frac{1}{2m\left(\frac{R}{\sqrt{n(n-1)}} + f(P_m)\right)}$$

and thus (3.2) becomes

$$\sqrt{\frac{n}{n-1}}f^2(P_m)\cdot\frac{1}{2m\left(R/\sqrt{n(n-1)}+f(P_m)\right)}<\frac{1}{2m}$$

or

$$\sqrt{\frac{n}{n-1}}f^2(P_m) < \frac{R}{\sqrt{n(n-1)}} + f(P_m)$$

or

(3.3)
$$f^{2}(P_{m}) - \sqrt{\frac{n-1}{n}} f(P_{m}) - \frac{R}{n} < 0.$$

From (3.3), since $f(P_m) > 0$, we get

$$f(P_m) < \frac{\sqrt{n-1+4R}+\sqrt{n-1}}{2\sqrt{n}}$$

and thus

$$\sup f \leq \frac{\sqrt{n-1+4R}+\sqrt{n-1}}{2\sqrt{n}}$$

Now, $\sup f = R / \sqrt{n(n-1)}$ and, comparing with the last inequality, we take

$$\frac{R}{\sqrt{n(n-1)}} \leq \frac{\sqrt{n-1+4R}+\sqrt{n-1}}{2\sqrt{n}}$$

or

$$2R - (n-1) \le \sqrt{(n-1)^2 + 4R(n-1)}$$

or

$$(3.4) R \leq 2(n-1).$$

Now let λ be a positive constant, then the Riemannian manifold $(M, \lambda g)$ has scalar curvature $\overline{R} = R/\lambda$ and satisfies the same assumptions as (M, g). Then we must have, as above,

$$\overline{R} = R/\lambda \leq 2(n-1)$$
 or $R \leq 2\lambda(n-1)$,

which is impossible for $\lambda < R/2(n-1)$. This completes the proof of the theorem.

314

COROLLARY 1. Let M be an n-dimensional ($n \ge 3$), complete, connected conformally flat Riemannian manifold. If its scalar curvature R is a positive constant and trace $Q^2 < R^2/(n-1)$, then M is a space form.

REMARK. If on a conformally flat Riemannian manifold with positive constant scalar curvature R, trace $Q^2 = R^2/(n-1)$ everywhere, then it follows easily [2, Theorem 3] that M is a Riemannian product of a space form M_1 , with a 1-dimensional Riemannian manifold N, i.e., $M = M_1 \times N$.

Thus we have

THEOREM 1'. The only n-dimensional ($n \ge 3$), complete, connected conformally flat Riemannian manifolds with positive constant scalar curvature such that trace $Q^2 \le R^2/(n-1)$, are the space forms and the Riemannian products $M_1 \times N$ where M_1 is a space form and N is 1-dimensional.

In a similar manner, we obtain the following extension of a theorem of Okumura [7].

THEOREM 2. Let M be an n-dimensional $(n \ge 3)$, complete, connected hypersurface of Euclidean space E^{n+1} . If the mean curvature H is constant and $S \le n^2 H^2/(n-1)$, where S is the square of the second fundamental form, then M is a hyperplane, a hypersphere or a circular cylinder $S^{n-1} \times E$.

COROLLARY 2. Let M be an n-dimensional $(n \ge 3)$, complete, connected hypersurface of E^{n+1} . If the mean curvature is constant and $S < n^2 H^2/(n-1)$, then M is a hypersphere.

References

1. S. Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354.

2. S. I. Goldberg, On conformally flat spaces with definite Ricci curvature, Kodai Math. Sem. Rep. 21 (1969), 226-232.

3. ____, An application of Yau's maximum principle to conformally flat spaces, Proc. Amer. Math. Soc. 79 (1980), 268-270.

4. Th. Hasanis, Characterization of totally umbilical hypersurfaces, Proc. Amer. Math. Soc. 81 (1981), 447-450.

5. K. Motomiya, On functions which satisfy some differential inequalities on Riemannian manifolds, Nagoya Math. J. 81 (1981), 57-72.

6. M. Okumura, Submanifolds and a pinching problem on the second fundamental tensors, Trans. Amer. Math. Soc. 178 (1973), 285-291.

7. ____, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 86 (1974), 207-213.

8. S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOANNINA, IOANNINA, GREECE