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Abstract. É. Cartan proved that conformally flat hypersurfaces in Sn+1 for n > 3
have at most two distinct principal curvatures and locally envelop a one-parameter family of
(n− 1)-spheres. We prove that the Gauss-Codazzi equation for conformally flat hypersurfaces
in S4 is a soliton equation, and use a dressing action from soliton theory to construct geometric
Ribaucour transforms of these hypersurfaces. We describe the moduli of these hypersurfaces
in S4 and their loop group symmetries. We also generalise these results to conformally flat
n-immersions in (2n − 2)-spheres with flat and non-degenerate normal bundle.

1. Introduction. An immersion f : Mn → (N, g) is conformally flat if there exists
a flat metric in the conformal class of the induced metric f ∗

g: that is there exists a smooth
function u : M → R such that e2uf ∗

g is flat. In this paper, we assume M is a simply
connected open subset of R

n.
The history of conformally flat immersions is long, the search for conformally flat sub-

manifolds being a natural task in conformal geometry. The study of conformally flat hyper-

surfaces in Sn+1 dates back to Cartan [4] who demonstrated that the only such hypersurfaces
for n > 3 are the channel hypersurfaces; envelopes of a 1-parameter family of (n−1)-spheres.
In particular these have, at most, two distinct principal curvatures. For n = 2 the problem is
uninteresting as every surface is conformally flat. For n = 3, however, there are more varied
conformally flat hypersurfaces; not only are there the channel examples, there also exist hy-
persurfaces with 3 distinct curvatures. These were first discussed by Hertrich-Jeromin [7, 8],
who moreover described the link between conformally flat hypersurfaces in S4, curved flats in
the space of circles in S4, triply orthogonal systems, and Guichard nets. Finite gap solutions
for conformally flat hypersurfaces in S4 were also discussed in [6]. The classification of these
hypersurfaces, however, remained unknown.

Given a conformally flat immersion f : Mn → S2n−2 with flat normal bundle, we
embed S2n−2 naturally in the light-cone L2n−1,1 of isotropic vectors in a Lorentzian R

2n−1,1,
and construct a flat lift F : Mn → L2n−1,1: this F is immersed, has flat induced metric, and
flat normal bundle. Since both are flat, the tangent and normal bundle decomposition of the
trivial R

2n−1,1-bundle is a curved flat [5] in the pseudo-Riemannian symmetric space

U/K = O(2n − 1, 1)/(O(n) × O(n − 1, 1)) ,
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the Grassmannian of space-like n-planes in R
2n−1,1. We are thus immediately in the realm of

integrable systems.
Curved flats in U/K with a good co-ordinate system give rise to Terng’s U/K-system

[11], which is constructed as follows: suppose that τ is the involution of the Lie group U

defined by τ (g) = In,ngI−1
n,n, where In,n =

( In 0
0 −In

)

and In is the n × n identity matrix. Then
K is the fixed point set of τ in U . Let u = k+p denote the ±-eigenspace decomposition of dτe.
K then acts on p by conjugation. Let a be a maximal abelian subalgebra in p, and {a1, . . . , an}

a basis of a. The U/K-system defined by a is the following system for Ξ : R
n → a⊥ ∩ p:

(1.1) [ai,Ξxj ] − [aj ,Ξxi ] − [[ai,Ξ ], [aj ,Ξ ]] = 0 , i �= j ,

where a⊥ is the orthogonal complement of a with respect to the Killing form.
Unlike in the Riemannian symmetric case, not all maximal abelian subalgebras in p

are conjugate under K; there are both semi-simple and non-semisimple such subalgebras.
We note that two maximal abelian subalgebras in p conjugate under K give rise to equiv-
alent U/K-systems, while two non-conjugate maximal abelian subalgebras in p give non-
equivalent U/K-systems.

The normal bundle of an immersion is termed non-degenerate if the dimension of the
space of shape operators at each point is equal to the co-dimension. An immersion has uniform

multiplicity one if it has flat normal bundle and distinct curvature normals (equivalently all
curvature distributions have rank one). It follows from the definition that an n-dimensional
submanifold in R

2n−1,1 with flat and non-degenerate normal bundle has uniform multiplicity
one. We prove that a conformally flat n-immersion into S2n−2 with uniform multiplicity one
gives rise to a flat n-immersion in the light-cone L2n−1,1 with flat non-degenerate normal
bundle, and that the converse is also true. To study conformally flat n-immersions in S2n−2

with uniform multiplicity one is thus the same as to study flat n-immersions in L2n−1,1 with
flat non-degenerate normal bundle. The Gauss-Codazzi equations for these flat immersions
amount to the U/K-system with U/K = O(2n − 1, 1)/O(n) × O(n − 1, 1) defined by a
semi-simple maximal abelian subalgebra a. The converse holds similarly: given a solution to
the U/K-system defined by a, we obtain (up to constant scaling) an (n− 2)-parameter family
of flat lifts, each of which gives rise to a conformally flat immersion in S2n−2 with uniform
multiplicity one.

Because of this correspondence, all the machinery of soliton theory applies: loop-group
dressing of solutions to obtain new conformally flat immersions or simply dressing vacuum
solutions to obtain more complex explicit conformally flat immersions; existence results such
as Cartan-Kähler and inverse scattering, etc. In particular we have the following.

(1) We may dress solutions by special, simple elements, whose action may be calcu-
lated explicitly by residues. The action of such elements is seen to be by Ribaucour trans-

forms on conformally flat immersions: corresponding immersions envelop (have first-order
contact with) a congruence of n-spheres in such a way that principal curvature directions on
the envelopes correspond under the congruence.
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(2) Local analytic conformally flat n-immersions in S2n−2 are determined by n2 − n

functions of one variable.
(3) The Cauchy problem for the U/K-system with rapidly decaying initial data on a

regular line can be solved globally (recall that a ∈ a is regular if ad(a) : a⊥ ∩ p → k is a
injective). Although the resulting n dimensional submanifolds may have cusp singularities,
the frame is globally defined and smooth.

(4) The moduli space of such immersions has a loop group symmetry.
If the normal bundle is degenerate and the curvature distributions Ei (common eigen-

spaces of the shape operators) have constant ranks, then we show that all but one of the
Ei ’s have rank one. If, in addition, these immersions are assumed to have line of curva-
ture co-ordinates, then the Gauss-Codazzi equations are the U/K-system defined by a non-
semisimple maximal abelian subalgebra a in p. Conversely, given a solution of the U/K-
system defined by a, we obtain an (n − 2)-parameter family of flat lifts, each of which gives
rise to a conformally flat immersion in S2n−2 with flat normal bundle, but not with uniform
multiplicity one. When n = 3, these give channel immersions. Loop group dressing still
works, and we can construct channel immersions from any germ of an o(2n− 1, 1,C)-valued
holomorphic map at λ = ∞ that satisfies the reality condition associated to U/K .

We summarize our results for conformally flat hypersurfaces in S4 below.
(a) Suppose that f (x) is a conformally flat hypersurface in S4 with three distinct prin-

cipal curvatures, x being the line of curvature co-ordinates, and that e2uIf =
∑3

i=1 h2
i dx2

i

is flat, where If is the induced metric for f . Let gl∗(3) denote the space of 3 × 3 matrices
whose diagonal entries are zero, and ξ(x) ∈ gl∗(3) be defined by ξij = (hi)xj /hj for i �= j .

Then Ξ =
(

0 ξT

−J ξ 0

)

is a solution of the O(5, 1)/O(3)×O(2, 1)-system defined by the Cartan
subalgebra a spanned by

{

ai =

(

0 eii

−J eii 0

)

; 1 ≤ i ≤ n, J = I2,1

}

.

(b) Given a solution Ξ of the O(5, 1)/O(3) × O(2, 1)-system defined by a and a con-
stant non-zero null vector c in R

2,1, first solve the following compatible linear ODEs with
parameter λ:

(Ψλ)xi = Ψ (ai + λ[ai,Ξ ]) , 1 ≤ i ≤ n, Ψλ(0) = Id .

Then Ψ0 =
(

g1 0
0 g2

)

, and Fc = Ψ1
( 0
g

−1
2 c

)

is a flat immersion in L5,1 that projects down to

a conformally flat hypersurface fc in S4. Moreover, if Ξ is the solution associated to the
hypersurface f as in (1), then, up to conformal transformations, f is equal to fc for some null
vector c.

(c) Given a conformally flat hypersurface in S4 and a O(5, 1)-valued holomorphic germ
g at λ = ∞ in S2 satisfying

g(λ̄) = g(λ) , I3,3g(−λ)I3,3 = g(λ) ,
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we can construct a new conformally flat hypersurface in S4. Moreover, if g is rational with
two poles, the new hypersurface is a Ribaucour transform of f .

(d) Fix a regular element b =
∑n

i=1 bieii ∈ a. Given any real analytic ξ0 : (−ε, ε) →

gl∗(3) (or ξ0 : R → gl∗(3) such that ξ0 is rapidly decaying with L1 norm less than 1), it is

proved in [11] there exists a unique solution Ξ =
( 0 ξT

−J ξ 0

)

of the O(5, 1)/O(3) × O(2, 1)-

system defined on a ball of radius r < ε in R
3 (resp. on R

3) such that ξ(tb1, . . . , tbn) = ξ0(t)

for all t ∈ (−r, r) (resp. t ∈ R).
(e) Statements (a) through (c) hold for conformally flat channel hypersurfaces in S4 by

replacing Cartan subalgebra a by a non-semisimple maximal abelian subalgebra in p.
Most of the results for conformally flat n-immersions in S2n−2 with uniform multiplicity

one hold for conformally flat n-immersions in S2n−2+k with flat normal bundle, n curvature
normals such that the orthogonal complement of the subbundle spanned by n curvature nor-
mals is flat. There exist line of curvature co-ordinates and a correspondence between such
immersions and solutions of the O(2n + k − 1, 1)/O(n) × O(n + k − 1, 1)-system.

The paper is organised as follows. In Section 2, we generalise Hertrich-Jeromin’s work
on conformally flat immersions of hypersurfaces in S4 to n-submanifolds in S2n−2; we out-
line the light-cone model and how conformally flat immersions in the sphere correspond to
genuine flat immersions in the light-cone, then consider the curvature distributions of corre-
sponding maps and how their fundamental forms compare. The link between conformally flat
immersions and the U/K-system is detailed in Section 3, and we explain its generalisation to
conformally flat n-immersions in S2n−2+k in Section 4. We give a discussion of the dressing
transformations of a ‘negative loop’ on the space of solutions to the U/K-system and their
associated conformally flat immersions; certain dressing transforms are shown to give rise to
geometric Ribaucour transforms in Section 5. In the final section, we show that solutions of
the U/K-system defined by a non-semisimple maximal abelian subalgebra give rise to the
channel immersions.

2. Flat lifts, curvature spaces and co-ordinates. In this section we give defini-
tions and explain, via the light-cone model, the correspondence between conformally flat
n-dimensional immersions in S2n−2 and flat n-dimensional immersions in L2n−1,1. We also
show the existence of line of curvature co-ordinates for conformally flat n-immersions in
S2n−2 with uniform multiplicity one.

The light-cone model. The light-cone model of the conformal m-sphere is now well-
understood, its prime advantage being that it linearises conformal geometry in Sm: the fun-
damental objects of the theory, subspheres Sk ⊂ Sm and their intersections, become the ge-
ometry of the Grassmannians G+

m−k(R
m+1,1) of definite signature planes. Hertrich-Jeromin’s

book [9] contains an excellent introduction to this, as does Burstall’s discussion of isothermic
surfaces [2].

Let Im+1,1 denote the diagonal (m+2)×(m+2) matrix diag(1, . . . , 1,−1) and (x, y) =

xT Im+1,1y the Lorentzian bilinear form on R
m+1,1.

Lm+1,1 = {x ∈ R
m+1,1 ; (x, x) = 0}
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is the light-cone of isotropic vectors in R
m+1,1. Fix a choice of unit time-like vector t0. The

restriction of ( , ) to t⊥0 is positive definite, and hence t⊥0 is isometric to the Euclidean R
m+1.

Let Sm denote the set of unit vectors in t⊥0 , then the map

t⊥0 ⊃ Sm → L
m+1,1; x �→ x + t0

is clearly an isometry which, since each isotropic line ℓ ≤ Lm+1,1 intersects the plane t⊥0 + t0

exactly once, diffeomorphically puts a metric on the projective light-cone P (Lm+1,1). How-
ever, any other choice of unit time-like t ′0 gives a different diffeomorphism and induces a
different metric. Indeed the following compound map is seen to be a conformal diffeomor-
phism from one m-sphere to another (throughout we use 〈 〉 for the span of a collection of
vectors, usually dropping the brackets when referring to the perpendicular space to the span
of a single vector):

t⊥0 ⊃ Sm ∼= P (Lm+1,1) ∼= Sm ⊂ t ′0
⊥

x
�

�� 〈x + t0〉
�

�� −(x + t0)/(x + t0, t
′
0) − t ′0

dx2 �

�� dx2/(x + t0, t
′
0)

2 .

For this reason the projective light-cone is known as the conformal m-sphere.

FIGURE 1. The projective light-cone as a conformal sphere.

All geometric properties of Sm that are genuinely conformal are detectable directly in
the light-cone and do not depend on the choice of t0, as can be seen by the following theorem.

THEOREM 2.1 (Liouville). The action of O(m + 1, 1) on the light-cone, and thus on

any choice of m-sphere Sm ⊂ t⊥0 , is said to be by Möbius transformations. For n ≥ 3 all
(even local!) conformal diffeomorphisms of Sm are Möbius.

Liouville’s theorem allows us to treat submanifolds of the conformal sphere similarly
to those in metric geometry: the existence of submanifolds up to isometry is replaced by
up to Möbius transforms; in the light-cone picture these really are isometries. In particular,
starting from submanifolds in Lm+1,1, we need not worry about specific choices of t0, since
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examining the submanifold via any other choice merely amounts to a Möbius transform. We
will, however, tend to assume that a fixed choice has been made, if only so that we may anchor
discussions in a genuine Sm.

DEFINITION 2.2. Given a map f : M → Sm ⊂ t⊥0 , a lift of f is any map F : M →

Lm+1,1 such that f + t0 ∈ 〈F 〉. A flat lift is a lift such that the induced metric |dF |2 on M is
flat.

REMARKS 2.3. To facilitate computations, we set up notations for moving frames of
flat lifts F : Mn → R

2n−1,1. Suppose that g = (e1, . . . , e2n) is an O(2n − 1, 1) frame on M

such that e1, . . . , en are tangent to F(M). Let ω1, . . . , ωn be the 1-forms dual to e1, . . . , en.
Then dF =

∑n
i=1 ωiei . Write

deA =

2n
∑

B=1

ωBAeB .

Then g
−1dg = (ωAB) and

ωBAεB + εAωAB = 0 , where I2n−1,1 = diag(ε1, . . . , ε2n) ,

dωAB = −

2n
∑

C=1

ωAC ∧ ωCB .

The shape operator is Aeα = −π〈dF 〉(deα), the tangential component. The two fundamental
forms and the normal connection are:

IF =

n
∑

i=1

ω2
i , IF =

n
∑

i=1

2n
∑

α=n+1

ωiωα,ieα ,

∇⊥eα =

2n
∑

β=n+1

ωβαeβ , n + 1 ≤ α ≤ 2n .

We may now state the main correspondence of the paper (due to Hertrich-Jeromin [8]
when n = 3).

THEOREM 2.4. A conformally flat immersion f : Mn → S2n−2 with flat normal

bundle has a flat lift F : Mn → L2n−1,1 with flat normal bundle. Conversely, any immersed

F : Mn → L2n−1,1 with a flat, definite signature, metric |dF |2 and flat normal bundle is a

flat lift of a conformally flat immersion f : Mn → S2n−2 with flat normal bundle.

REMARK 2.5. For reference we collect some important relations. If e2uIf is flat, we
will define, in the proof, a flat lift F as below; similarly, given a flat lift F and a choice of t0,
we recover a conformally flat f . Everything is related by the following notation:

F = −eu(f + t0) , f = −
F

(F, t0)
− t0 , eu = (F, t0) .

Since ±F project to the same f , we can always assume that (F, t0) is positive.
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The locations of the normal bundles viewed as subbundles of the trivial bundle are as
follows, where both decompositions are orthogonal:

Mn × R
2n−1,1 = 〈df 〉 ⊕ 〈f 〉 ⊕ 〈t0〉 ⊕ Nf = 〈dF 〉 ⊕ NF .

It is important to note that Nf ⊂ NF ∩ F⊥. The metric |dF |2 will almost always be definite:
the only time this doesn’t happen is if some tangent direction is parallel to F itself (any-
thing else forces a contradiction by requiring either a 2-dimensional isotropic or time-like
subspace of L2n−1,1). It follows that, for us, the metric on the normal bundle NF is always
non-degenerate and of signature (n − 1, 1).

PROOF. (1) Suppose that e2uIf is flat and define F := −eu(f + t0). Then dF =

duF − eudf , and thus F is an immersion. Moreover IF = |dF |2 = e2uIf is flat, hence F is
a flat lift, with positive definite tangent bundle. As is well-known, the bundle 〈dF 〉 is then flat
(the induced connection is F -related to the Levi-Civita of IF on M).

Now let ei |
n
i=1 be parallel orthonormal sections of 〈dF 〉 and nj |

n−2
j=1 parallel orthonormal

sections of the normal bundle Nf . Moreover let F̂ be the unique isotropic section of NF such
that (F̂ , nj ) = 0 and (F̂ , F ) = 1. By the flatness of IF and Nf , there exist 1-forms such that
the moving frame equations are

d
(

ei , nj , F , F̂
)

=
(

ek , nl , F , F̂
)

⎛

⎜

⎜

⎝

0 ωkj ωk ω̂k

ωli 0 0 −ηl

−ω̂i ηj 0 0
−ωi 0 0 0

⎞

⎟

⎟

⎠

.

Here IF =
∑

i ω2
i . The Maurer-Cartan equations quickly yield dωi = 0 and dωij = ωi ∧ ηj ,

from which we conclude that

ωi ∧ dηj = −dωi ∧ ηj = 0 for all i, j .

Since the ωi form a base of T ∗M it follows that the ηj are closed and thus the normal bundle
NF is flat.

(2) Suppose that an immersed F has flat tangent and normal bundles. Then f :=

−F/(F, t0) − t0 is easily seen to be immersed. Now let Ni |
n−2
i=1 be any space-like parallel

orthonormal sections of 〈F, dF 〉⊥. Defining

ni := Ni −
(Ni , t0)

(F, t0)
F ,

it is easy to see that the ni are a parallel orthonormal frame of Nf and hence f has flat normal
bundle. ✷

We have now reduced the study of conformally flat n-immersions in S2n−2 with flat
normal bundle to the study of flat n-immersions in L2n−1,1 with flat normal bundle.
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Curvature distributions and flat non-degenerate normal bundle. Suppose that F

has flat normal bundle and that the curvature distributions of F have constant rank: that is the
tangent bundle of M decomposes orthogonally and smoothly as

T M =

p
⊕

i=1

Ei ,

where each Ei(x) is an eigenspace of all the shape operators Av(x) and the ranks of the
Ei are constants. We say that F has multiplicity (m1, . . . ,mp) if rank Ei = mi for each i

(F thus has uniform multiplicity one if p = n and mi = 1 for all i). To each curvature
distribution there corresponds a curvature normal vi ∈ Γ NF such that Av|Ei

= (v, vi )Id
(see e.g., [10]). Suppose that (e1, . . . , en) is an O(n) tangent frame consisting of principal
curvature directions and (en+1, . . . , e2n) a parallel O(n − 1, 1) normal frame. Moreover let
ωiα = λiαωi for 1 ≤ i ≤ n and n + 1 ≤ α ≤ 2n. Then

vi =

2n
∑

α=n+1

εαλiαeα .

LEMMA 2.6. If F is an immersed flat lift whose principal curvatures along any paral-

lel normal fields have constant multiplicities, then its curvature normals are mutually orthog-

onal. If the curvature distribution Ei has rank at least two, then the corresponding curvature

normal vi is isotropic.

PROOF. Since F is flat, the Gauss equation implies that

2n
∑

α=n+1

ωiα ∧ ωαj = (vi , vj )ωi ∧ ωj = 0 ,

which yields (vi , vj ) = 0. Distinct curvature normals are therefore orthogonal, and repeated
curvature normals are necessarily isotropic. ✷

It is now an (almost) obvious corollary that there can only be one distribution of rank
at least two. A full discussion will wait until Section 6. Note that a flat immersion F with
flat normal bundle is non-degenerate if and only if all curvature distributions have rank 1
(uniform multiplicity one) and all curvature normals are non-zero: Theorem 2.8 will show
that this second condition is vacuous.

Non-degeneracy and line of curvature co-ordinates. The following theorem de
scribes how immersions with non-degenerate normal bundle come equipped with line of cur-
vature co-ordinates.

THEOREM 2.7. Let F : Mn → L2n−1,1 be flat with flat non-degenerate normal bundle

and curvature normals v1, . . . , vn. Then there exist curvature line co-ordinates x1, . . . , xn on

M . Moreover F and IF can be written entirely in terms of the curvature normals as
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F = −

n
∑

j=1

vj

(vj , vj )
,

IF =

n
∑

i=1

dx2
i

|(vi , vi)|
.

(2.1)

PROOF. First recall from Lemma 2.6 that the curvature normals are non-isotropic. Since

πNF dei = ωivi ,(2.2)

it follows that

π〈dF 〉dvj = −ωj (vj , vj )ej .(2.3)

Since {vj } is a frame of NF , there exist functions µj such that F =
∑

µjvj . However
dF =

∑

ωj ej . Putting this together quickly gives µj = −(vj , vj )
−1.

Assume εi = sgn(vi , vi). Let ni > 0 be defined by

n2
i = εi(vi, vi) = |(vi , vi)| .(2.4)

Now niωi = (εin
−1
i vi , dei). By (2.2), (2.3) and the fact that ei and n−1

i vi are unit length, it is
immediate that

d(niωi) = εi

(

d(n−1
i vi)

∧, dei

)

= 0 ,

where (p ∧, q)(X, Y ) := (p(X), q(Y ))− (p(Y ), q(X)). The ωi are independent, thus we have
co-ordinates xi . Since the ωi diagonalise the fundamental forms of F , it follows that the dxi

do similarly and are thus curvature line co-ordinates. The expression for IF is then immediate.
✷

Comparing curvatures. Since dNf ⊥ 〈f 〉 and df ⊥ Nf , it follows that if ni are
parallel sections of Nf then {f, ni} are a parallel frame for the Euclidean normal bundle
〈f 〉 ⊕ Nf ⊂ M × t⊥0 . f therefore has flat normal bundle when viewed as an immersion into
R

2n−1 = t⊥0 . It also therefore has an orthogonal curvature distribution; moreover S2n−2 will
inherit a curvature distribution from R

2n−1. A priori we now have three curvature distributions
on M: the next theorem tidies things up. We also have curvature normals for F and f which
we would like to relate.

THEOREM 2.8. Let f : Mn → S2n−2 be a conformally flat immersion with flat normal

bundle and F = −e−u(f + t0) flat lift. Then we have the following.

(1) The curvature directions (on Mn) induced by F and f are identical.

(2) If vi, v
S
i , vR

i are corresponding curvature normals of F and f (the latter as a map

into S2n−2 and R
2n−1 = t⊥0 , respectively), and ei , ẽi the corresponding curvature directions,

then we have the relations

(2.5)
ẽi = −ei + e−u(ei, t0)F

vS
i = −euπNf vi = vR

i + f .

(3) All curvature normals of F are non-zero.

(4) F has non-degenerate normal bundle if and only if f has uniform multiplicity one.
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PROOF. Let ei be orthonormal curvature directions for F and define ẽi as in the theo-
rem. The ẽi are orthonormal, and we calculate that

eudf = duF − dF =
∑

i

ωi ẽi − e−u(ei, t0)ωiF + duF =
∑

i

ωi ẽi ,

hence the ẽi frame 〈df 〉. Moreover

πNf dẽi = −πNf dei = −ωiπNf vi ,

πf dẽi = (dẽi, f )f = −(ẽi, df )f = −e−uωif ,

hence the ẽi are curvature directions for f . It follows that the curvature normals for f as a
map into S2n−2 are vS

i = −e−uπNf vi . We thus have (1) and (2).
For (3) and (4) we calculate explicitly:

πNf vi = vi −

n
∑

j=1

(vi, ẽj )ẽj − (vi , f )f + (vi , t0)t0

= vi −

n
∑

j=1

(vi, e
−u(ej , t0)F )(−ej + e−u(ej , t0)F )

− (vi , e
−uF + t0)(e

−uF + t0) + (vi, t0)t0

= vi − e−u
n

∑

j=1

(ej , t0)ej + e−ut0

+ e−2u

( n
∑

j=1

(ej , t0)
2 + 1 − eu(vi , t0)

)

F .

(2.6)

Supposing that vi = 0, we readily obtain

t0 =

n
∑

j=1

(ej , t0)ej − e−u

( n
∑

j=1

(ej , t0)
2 + 1

)

F.

However taking the norm squared of both sides results in the contradiction

−1 =

n
∑

j=1

(ej , t0)
2.

It follows that vi cannot be zero, yielding (3).
By (2.6) we have that

vS
i − vS

j = vi − vj − e−u(vi − vj , t0)F .(2.7)

If the vS
i are distinct, then the vi are distinct and, by Lemma 2.6, orthogonal. Rearranging

and taking the norm squared of (2.7) yields |vi − vj | > 0, hence no pair of vi are parallel
isotropic. The vi are thus all non-isotropic and NF is non-degenerate. Conversely, if vS

i = vS
j ,

then vi − vj ∈ 〈F 〉, so that either vi = vj is a repeated curvature of F , or F ∈ 〈vi − vj 〉.
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The latter case yields a contradiction, for it would require that dF ∈ 〈ωi , ωj 〉 only. This
establishes (4). ✷

REMARKS 2.9. Observe that if f has distinct curvature normals, then Nf is automat-
ically non-degenerate: 〈vS

1 , . . . , vS
n 〉 = πNf 〈v1, . . . , vn〉. Indeed the proof shows that vS

i − vS
j

if and only if vi = vj . All curvature normals of F are non-zero, hence the only way NF

can be degenerate is if F has a repeated non-zero curvature, necessarily isotropic. Thus F is
non-degenerate if and only if it has uniform multiplicity one. By contrast, f may have a zero
curvature normal (the curvature line being a geodesic) whether F is degenerate or not. The
multiplicities of f are however identical to those of any flat lift.

When F is non-degenerate we may obtain further relations from (2.1) and (2.5):

If = e−2uIF = e−2u
∑

i

dx2
i

|(vi , vi)|
,

I
S
f = e−2u

∑

i

dx2
i

|(vi , vi)|
vS
i = I

R

f + If · f

= −e−uπNf IF = −e−u
∑

i

dx2
i

|(vi, vi)|
πNf vi .

We will say more on the curvature distributions of conformally flat immersions with
repeated curvature normals in Section 6.

3. The U/K-system. We prove that the Gauss-Codazzi equation for flat n-immer-
sions in L2n−1,1 with flat normal bundle and ‘good’ co-ordinates is the O(2n − 1, 1)/O(n) ×

O(n − 1, 1)-system.
The U/K-system [11] is a general construction common to any symmetric space. We

give its construction for the case U = O(2n − 1, 1) and K = O(n) × O(n − 1, 1): these
will be viewed as matrices where g ∈ U if and only if g

T I2n−1,1g = I2n−1,1. K is then
represented by the block n × n diagonal matrices. The Lie algebras of U and K will be
written u and k, while the Killing perp of k will be denoted by p. As is well-known, U/K

is a pseudo-Riemannian symmetric space defined by the involution τ (ξ) = In,nξ I−1
n,n with

±-eigenspaces

k = o(n) × o(n − 1, 1) , p =

{(

0 ξT J

−ξ 0

)

; ξ ∈ gl(n)

}

, J = In−1,1 .

Moreover,

[k, k], [p, p] ⊂ k , [k, p] ⊂ p .

The conjugation of K on p is

(

g1 0
0 g2

)

∗

(

0 ξT J

−ξ 0

)

=

(

0 g1ξ
T J g

−1
2

−g2ξg
−1
1 0

)

.
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Let a be a maximal abelian subalgebra in p, and a1, . . . , an a basis of a. The U/K-
system defined by a is the PDE (1.1) for Ξ : R

n → a⊥ ∩ p. It is known and can be easily
checked that the following statements are equivalent:

(1) Ξ is a solution of the U/K-system.
(2) The following one-parameter family of o(2n − 1, 1,C) connection 1-forms is flat

for all λ ∈ C:

(3.1) θλ =

n
∑

i=1

(λai + [ai,Ξ ])dxi .

(3) θλ =
∑n

i=1(λai + [ai,Ξ ])dxi is flat for some λ ∈ R \ {0}.
We call θλ the Lax pair of the U/K-system, and a solution Φλ : R

n × C → O(2n− 1, 1,C))

to Φ−1
λ dΦλ = θλ satisfying the U/K-reality condition,

(3.2) Φλ = Φλ , τΦλ = Φ−λ ,

an extended flat frame for the solution Ξ of the U/K-system. The following are clear.
(a) We may normalise the extended flat frame at a base point, e.g., Φλ(0) = Id, which

will be called the normalised extended flat frame. Choosing a different extended flat frame
merely affects submanifold geometry by rigid motions (equivalently Möbius transforms of
S2n−2).

(b) If Φλ is an extended flat frame, then Φr ∈ O(2n − 1, 1) for all r ∈ R and Φ0 ∈

O(n) × O(n − 1, 1).
There are both semisimple and non-semisimple maximal abelian subalgebras in p. These

comprise n conjugacy classes, each of which give rise to non-equivalent U/K-systems. We
will show in this section that the U/K-system defined by a semisimple abelian subalgebra
in p is the Gauss-Codazzi equation for flat lifts of conformally flat immersions with uniform
multiplicity one. In Section 6 we will see that solutions of a U/K-system defined by a non-
semisimple maximal abelian subalgebra give rise to conformally flat immersions with one
multiplicity greater than one.

THEOREM 3.1. Suppose that F : Mn → L2n−1,1 is a flat immersion with flat non-

degenerate normal bundle, induced metric IF =
∑n

i=1 h2
i dx2

i , and that (x1, . . . , xn) is a line

of curvature co-ordinate system. Let Ψ = (e1, . . . , en, u1, . . . , un) be an O(2n − 1, 1)-frame

such that the ei are principal curvature directions and the ui are parallel to the curvature nor-

mals of F . Let U/K = O(2n−1, 1)/O(n)×O(n−1, 1), u = k+p its Cartan decomposition,

and

a =

{(

0 DJ

−D 0

)

; D diagonal

}

a Cartan subalgebra in p, where J = In−1,1. Set ξ = (ξij ), where

ξij =

{

(hi)xj /hj , i �= j ,

0 i = j .
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Then Ξ :=
( 0 ξT

−J ξ 0

)

is a solution of the U/K-system defined by a,

(3.3) [ai,Ξxj ] − [aj ,Ξxi ] + [[ai,Ξ ], [aj ,Ξ ]] = 0 , i �= j ,

and

Ψ −1dΨ =

n
∑

i=1

(ai + [ai,Ξ ]) dxi,

where ai =
( 0 eiiJ

−eii 0

)

for 1 ≤ i ≤ n. Moreover, let g =
(

g1 0
0 g2

)

in K be a solution of

g
−1dg =

∑n
i=1[ai,Ξ ]dxi , then there exists a constant null vector c ∈ R

n−1,1 such that

F = Ψ
( 0
g

−1
2 c

)

.

Conversely, any solution Ξ to the U/K-system locally determines, up to Möbius trans-

forms, an (n − 2)-parameter family of flat immersions in L2n−1,1 with flat non-degenerate

normal bundle in the following way. Let Ξ be a solution to the U/K-system (3.3) and Φλ

an extended flat frame for the Lax pair θλ =
∑n

i=1(λai + [ai,Ξ ])dxi . Then Φ0 is of the

form
(

g1 0
0 g2

)

and, if c ∈ R
n−1,1 is a constant non-zero null vector, then F := Φ1

(

0
g

−1
2 c

)

is

(locally) a flat lift of a conformally flat immersion into S2n−2. Moreover F, its fundamental

forms and curvature normals vi are given explicitly by

F =

n
∑

i=1

qiui , IF =

n
∑

i=1

q2
i dx2

i ,

IF = −

n
∑

i=1

εiqidx2
i ui , vi = −εiq

−1
i ui ,

where Φ1 = (e1, . . . , en, u1, . . . , un) and g
−1
2 c = (q1, . . . , qn)

T .

PROOF. Let v1, . . . , vn be the curvature normals for the flat lift F : Mn → L2n−1,1.
We may assume that (vn, vn) < 0. Define (as in (2.4))

εi = sgn(vi, vi ) , ni = |(vi , vi)|
1/2 , ui = n−1

i vi .

Then (u1, . . . , un) is an O(n− 1, 1) normal frame. Let (e1, . . . , en) be an O(n) tangent frame
consisting of corresponding principal curvature directions. It is clear that

θ := Ψ −1dΨ =

(

A −δJ

δ B

)

where J = In−1,1, δ = diag(dx1, . . . , dxn) and the Lie algebra valued 1-forms A,B are the
connection forms for the induced flat connections on 〈dF 〉 and NF . The flatness dθ+θ∧θ = 0
reads

(3.4) dA + A ∧ A = 0 = dB + B ∧ B = δ ∧ A + B ∧ δ .

By considering where the dxi ∧ dxj terms appear in the third equation, it is not hard to see
that Aij , Bij ∈ 〈dxi, dxj 〉 and that there therefore exists a unique map

ξ : Mn → {off-diagonal n × n matrices} ,
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such that

A = δξ − ξT δ , B = δξT − J ξδJ .

The first two equations of (3.4) constitute a system of PDEs in the entries of ξ . Indeed writing
Ξ =

( 0 ξT

−J ξ 0

)

and
∑

i aidxi =
(

0 −δJ
δ 0

)

, we see that [aidxi,Ξ ] = diag(A,B). It is straight-

forward to see that Ξ is a map Ξ : Mn → p ∩ a⊥ = [k, a], and is thus a solution of the
U/K-system (3.3).

Since NF is flat, and the normal connection 1-form defined by the normal frame (u1 . . . ,

un) is B, there exists g2 : M → O(n − 1, 1) such that g
−1
2 dg2 = B and

(en+1, . . . , e2n) = (u1, . . . , un)g
−1
2

is a parallel normal frame. Since F is a null parallel normal section, there exists a constant
null vector c such that

F = (en+1, . . . , e2n)c = (u1, . . . , un)g
−1
2 c = Φ

(

0
g

−1
2 c

)

.

Conversely, let Ξ be a solution to the U/K-system and Φλ and extended flat frame for
the Lax pair θλ =

∑n
i=1(aiλ+[ai,Ξ ])dxi . Given an isotropic non-zero vector c in R

n−1,1, the

map F = Φ1

(

0
g

−1
2 c

)

is immersed precisely in the generic situation when all n entries of g
−1
2 c

are non-zero. Such an F is clearly a flat lift. Since the resulting conformally flat immersions
f is independent of the scaling of F , we therefore have a distinct conformally flat immersions
in any choice of S2n−2, and for every point in the projective light-cone P (Ln−1,1) ∼= Sn−2. ✷

We recall below some known approaches to constructing solutions to the U/K-system.
Dressing [12]: Given a solution we may apply dressing actions to find new solutions to

(3.3). We shall pursue this in Section 5.
Cartan-Kähler [13]: The U/K-system is unchanged with respect to the substitution

(ai, xi) �→ (bj , yj ) where bj =
∑

i pij ai, yj =
∑

i pjixi for any constant invertible
(pij ), where (pij )

−1 = (pij ). Almost any choice of (pij ) will result in b1 being regu-

lar (ad b1 : p ∩ a⊥ → k injective). The corresponding exterior differential system is in-
volutive, hence we may apply the Cartan-Kähler theorem: given local analytic initial data
Ξ0 : (−ε, ε) → p ∩ a⊥, there is a unique local analytic solution Ξ to (3.3) which satisfies
Ξ(y1, 0, 0) = Ξ0(y1). Note that dim(a⊥ ∩ p) = n2 − n.

Finite gap solutions [5]: Local analytic solutions of the U/K-system can be constructed
from the finite gap integration scheme by solving a sequence of commuting integrable ODE
systems. These solutions can be expressed by theta functions.

Inverse scattering [11]: If b1 ∈ a is regular then, given rapidly decreasing initial data
Ξ0 : R → p ∩ a⊥ with small L1 norm, there exists a unique global smooth solution Ξ to the
U/K-system (3.3) such that Ξ(y1, 0, . . . , 0) = Ξ0(y1).

We will compute the dressing action of the simplest type rational loops in Section 5.
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REMARK 3.2. The discussion on constructions of solutions of the U/K-system given
above and in Theorem 3.1 imply that local flat n-immersions in L2n−1,1 with flat, non-
degenerate normal bundle and uniform multiplicity one are determined by n2 −n functions of
one variable (the restriction of ξ to a regular line). We state this more precisely. Fix a regular
element b =

∑n
i=1 biai in a. Given a real analytic map ξ0 = ((ξ0)ij ) : (−ε, ε) → gl(n)

such that (ξ0)ii = 0 for all 1 ≤ i ≤ n, there is a unique solution Ξ of the U/K-system (3.3)

defined on an open subset of the origin of R
n such that Ξ(tb1, . . . , tbn) =

( 0 ξ0(t)
T

−J ξ0(t) 0

)

.

The same statement holds if we replace ξ0 by a rapidly decaying smooth map on R whose L1

norm is less than 1. For each solution of the U/K-system, Theorem 3.1 gives a family of flat
n-immersions in L2n−1,1 parameterised by the light-cone of R

n−1,1.
Note that although inverse scattering yields global solutions Ξ to the U/K-system, the

induced flat lifts will (generally) have singularities and thus not be global immersions R
n →

L2n−1,1. Inverse scattering does not, therefore, give us global conformally flat immersions.

4. Conformally flat n-immersions in S2n+k−2. An immersion f : Mn → S2n+k−2

with flat normal bundle is said to have uniform multiplicity one if it has constant multiplicities
and each curvature distribution has rank one. It is easy to see that the proofs of the existence
of flat lifts and line of curvature co-ordinates still work for these immersions. Let v1, . . . , vn

be the curvature normals for a flat lift F , Nv = 〈vi〉
n
i=1 the curvature normal bundle, and

N⊥
v the orthogonal complement of Nv in NF . Note that Theorem 3.1 holds if we replace the

U/K-system with the O(2n + k − 1, 1)/O(n) × O(n + k − 1, 1)-system and assume that N⊥
v

is flat. We state the analogous results below.

THEOREM 4.1. Let f : Mn → S2n+k−2 be a conformally flat immersion with flat

normal bundle and uniform multiplicity one. We then have the following.

(1) There is a flat lift F : Mn → L2n+k−1,1 for f with flat normal bundle and uniform

multiplicity one.

(2) There exist line of curvature co-ordinates for F .

The symmetric space O(2n+k−1, 1)/O(n)×O(n+k−1, 1) is defined by the involution
τ (ξ) = In,n+kξ I−1

n,n+k , and the ±1 eigenspaces of τ are k = o(n) × o(n + k − 1, 1), and

p =

{(

0 ξ

−J ξ t 0

)

; ξ ∈ gl(n, n + k)

}

, where J = In+k−1,1 .

Set

a+ = 〈ai〉
n
i=1, where ai = ei,n+i − en+i,i ,

a− = 〈bi〉
n
i=1, where bi = ei,n+k+i − εien+k+i,i ,

where εi = 1 for i < n and εn = −1. Then both a+, a− are maximal abelian subalgebras in
p, and

a⊥
+ ∩ p =

{(

0 ξ

−J ξ t 0

)

; ξ = (ξij ) ∈ gl(n, n + k), ξii = 0, 1 ≤ i ≤ n

}

,



292 N. DONALDSON AND C.-L. TERNG

a⊥
− ∩ p =

{(

0 ξ

−J ξ t 0

)

; ξ = (ξij ) ∈ gl(n, n + k), ξi,k+i = 0

}

.

THEOREM 4.2. Let F : Mn → L2n+k−1,1 be a flat lift of f with flat normal bun-

dle and uniform multiplicity one, v1, . . . , vn the curvature normals for F , and a± as above.

Suppose that the induced connection on the subbundle N⊥
v of NF is flat, where Nv = 〈vi〉

n
i=1.

(i) If (vi , vi) > 0 for all 1 ≤ i ≤ n, then there exists a solution Ξ : Mn → a⊥
+ ∩ p of the

O(2n+k−1, 1)/O(n)×O(n+k−1, 1)-system defined by a+ and an O(2n+k−1, 1) frame

Φ = (e1, . . . , en, u1, . . . , un+k) such that

(1) ei are principal curvature directions, ui = vi/(vi, vi)
1/2 for 1 ≤ i ≤ n, and

(dui, uj ) = 0 if n < i, j ≤ n + k,
(2) Φ−1dΦ =

∑n
i=1(ai + [ai,Ξ ])dxi .

(ii) If (vn, vn) < 0, then there exists a solution Ξ : Mn → a⊥
− ∩ p of the O(2n + k −

1, 1)/O(n) × O(n + k − 1, 1)-system defined by a− and an O(2n + k − 1, 1) frame Φ =

(e1, . . . , en, u1, . . . , un+k) such that

(1) ei are principal curvature directions, ui = vi/|(vi, vi )|
1/2 for 1 ≤ i ≤ n, and

(dui, uj ) = 0 if n < i, j ≤ n + k,
(2) Φ−1dΦ =

∑n
i=1(bi + [bi,Ξ ])dxi .

Moreover, there is a constant null vector c ∈ R
n+k−1,1 such that F = Φ

(

0
g

−1
2 c

)

, where
∑n

i=1[ai,Ξ ]dxi = g
−1dg and g =

(

g1 0
0 g2

)

.

Conversely, let Ξ be a solution of the O(2n + k − 1, 1)/O(n) × O(n + k − 1, 1)-system

defined by a+(resp. a−), Φλ an extended flat frame for the Lax pair of Ξ and c ∈ R
n+k−1,1 a

null vector. Then Φ0 =
(

g1 0
0 g2

)

, and F = Φ1

(

0
g

−1
2 c

)

is flat with flat normal bundle, uniform

multiplicity one, and the subbundle N⊥
v is flat.

5. Dressing action and Ribaucour transformations. We first give a brief review
of the dressing action (cf. [12]) for the U/K-system. Then we construct simple elements
in the rational loop group with two poles that lies in the negative loop group, give explicit
formulae for the dressing action of simple elements on solutions of the U/K-system and the
corresponding action on the flat lifts of conformally flat n-immersions in S2n−2. We prove
in the end of the section that the dressing action of simple elements on flat lifts are Rib-
aucour transformations enveloping n-sphere or n-hyperboloid congruences (see Remark 5.4)
and moreover project down to Ribaucour transforms via n-sphere congruences of conformally
flat n-immersions in S2n−2.

Throughout UC = O(2n − 1, 1,C) where complex conjugation is across the real form
U ⊂ UC . τ will refer both to the symmetric involution of UC which defines the symmetric
space U/K and its derivative at the identity, whose eigenspaces are k, p.

Fix ε > 0. Let Oε = {λ ∈ P
1 ; ε−1 < λ ≤ ∞}, and L(U) the group of holomorphic

maps from Oε \ {∞} to UC that satisfy the U/K reality condition (3.2). Let L+(U) denote
the subgroup of g+ ∈ L(U) that is the restriction of a holomorphic map on C, and L−(U)

the subgroup of g− ∈ L(U) that is the restriction of a holomorphic map defined on Oε such
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that g−(∞) = Id. The Birkhoff Factorisation Theorem implies that the multiplication maps
L+(U)×L−(U) → L(U) and L−(U)×L+(U) → L(U) defined by (g+, g−) �→ g+g− and
(g−, g+) �→ g−g+ are injective and the images are open dense. Hence the big cell

O(U) := (L+(U)L−(U)) ∩ (L−(U) ∩ L+(U))

is open and dense. The local dressing action of L−(U) on L+(U) is defined as follows. Since
the big cell O(U) is open and dense, given g± ∈ L±(U), there generically exist ĝ± ∈ L±(U)

such that g−g+ = ĝ+ĝ−. Then g−♯g+ := ĝ+ defines a local action of L−(U) on L+(U): this
is the dressing action.

It is proved in [12] that the dressing action of L−(U) induces an action of L−(U) on the
space of solutions of the U/K-system:

THEOREM 5.1. [12] Let Φλ be the normalised flat frame of the Lax pair of a solution

Ξ of the U/K-system, and g ∈ L−(U). Then

(1) there exists an open subset B of the origin in R
n such that the dressing action

of g at Φ(x), Φ̃(x) := g♯Φ(x), is defined for all x ∈ B, in other words, we can factor

gΦ(x) = Φ̃(x)g̃(x) with Φ̃(x) ∈ L+(U) and g̃(x) ∈ L−(U) for all x ∈ B,

(2) Φ̃λ is the normalised frame for a solution of the U/K-system, which will be denoted

by g♯Ξ .

In general it is difficult to calculate explicitly the dressing action of a given g− ∈ L−(U)

on L+(U). It is, however, now standard theory that if g ∈ L−(U) is rational [12, 1, 2],
then the dressing action of g on L+(U) can be computed explicitly via residue calculus.
Moreover, the action of a rational g ∈ L−(U) with minimal number of poles (a so-called
simple element) often corresponds to known classical transforms (e.g., Bäcklund transforms
of pseudospherical surfaces, Darboux transforms of isothermic surfaces, etc.).

Let τ be conjugation by ρ = In,n, choose a scalar α ∈ R
× ∪ iR×, and an isotropic line

ℓ such that either

(5.1) ℓ ≤ R
2n−1,1 and α ∈ R

× , or ℓ ≤ R
n ⊕ iRn−1,1 and α ∈ iR× .

Let L = ℓC and suppose in addition that ρL �= L (equivalently ρL �⊥ L). Let πL denote
projection onto L away from ρL⊥. In fact, if ℓ = 〈v〉 with |v| = 0 and (v, ρv) = 1, then

πL = vvT ρ , πρL = ρvvT .

Define the simple element pα,L by

(5.2) pα,L(λ) =
λ − α

λ + α
πL + π(L⊕ρL)⊥ +

λ + α

λ − α
πρL .

Then

pα,L = gα,ρLg−α,L , where gα,L(λ) = I +
2α

λ − α
πL .

It is easily checked that pα,L is an element of L−(U).
Let Ξ : R

n → a⊥ ∩ p be a solution to the U/K-system (3.3). An extended frame Φλ of
the Lax pair θλ (3.1) of Ξ is called the normalised extended frame if Φλ(0) = Id. Since the
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solution of an ODE depending on a holomorphic parameter is holomorphic in that parameter,
the map λ �→ Φλ(x) lies in L+(U).

Using the dressing action of gα,L computed in [12], or alternatively from [1, 2], we get
the following:

THEOREM 5.2. Let Φλ(x) be the normalised extended frame for a solution of the

U/K = O(2n − 1, 1)/O(n) × O(n − 1, 1)-system, and pα,L the simple element defined by

(5.2). Then there is an open subset B of the origin in R
n such that Φ̃(x) := pα,L#Φ(x), the

dressing action of pα,L on Φ(x), is defined for all x ∈ B. Moreover,
(1) L̃(x) = Φ−1

α (x)L and α satisfy (5.1),
(2)

Φ̃(x) = pα,L#Φ(x) = pα,LΦ(x)p−1
α,Φ−1

α (x)L

is the normalised extended frame of a new solution of the U/K-system,
(3) pα,L♯Φ(x) is well-defined if Φ−1

α (x)L �= ρ(Φ−1
α (x)L).

PROOF. If α ∈ R, then Φα is real and in O(2n − 1, 1). So α, L̃(x) satisfy (5.1). If
α = is for some real s, then

Φis = ρΦ−isρ = ρΦisρ .

So if we write Φis =
( η1 η2

η3 η4

)

, then η1, η4 are real and η2, η3 are pure imaginary matrices. A

computation shows that α, L̃(x) satisfy (5.1). In other words, pα,L̃(x) satisfies the U/K-reality
condition.

To prove that Φ̃(x) lies in L+(U), we expand pα,Lg+p−1
α,g−1

+ (α)L
in a power series about

λ = α and check that it is in fact holomorphic and invertible there. The twisting condition
ensures that the same is true at λ = −α, hence pα,Lg+p−1

α,g−1
+ (α)L

is a map into L+(U).

Unique factorisation finishes things off.
Let p̃ = pα,L̃(x). Then

(5.3) Φ̃−1dΦ̃ = p̃θλp̃
−1 − dp̃p̃−1 .

Expand the above equality at λ = ∞, noting that θλ is a degree one polynomial in λ, to obtain
that limλ→∞ λ−1Φ̃−1dΦ̃ =

(

0 −δJ
δ 0

)

is bounded. Hence Φ̃−1dΦ̃ is degree one in λ and is
thus the Lax pair of a new solution of the U/K-system. ✷

We now write down explicit formulae for the action of pα,L on F and the frame of F .
Recalling Section 3, we note that a flat lift F can be written

F = Φ1

(

0
g

−1
2 c

)

,

where Φλ is an extended frame and Φ0 =
(

g1 0
0 g2

)

. Set

m := g
−1
2 c = (m1, . . . ,mn)

T , Φ1 = (e1, . . . , en, u1, . . . , un) .
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Then

F =

n
∑

j=1

mj uj ,

and e1, . . . , en are principal curvature directions, uj is parallel to the curvature normal vj of
F , and uj = −εjmjvj .

Assume that α �= ±1. We cancel the factor of pα,L(1) from the definition of the dressed
frame Φ̃(x) and write

(5.4)
pα,L♯F := F̃ = Φ1p

−1
α,Φ−1

α L
(1)p

α,Φ−1
α L

(0)

(

0
g

−1
2 c

)

= Φ1p
−1
α,Φ−1

α L
(1)p

α,Φ−1
α L

(0)Φ−1
1 F .

(Note that the factor pα,L(1) ∈ O(2n − 1, 1) is an isometry of R
2n−1,1, hence F̃ is equal to

Φ̃1

(

0
g̃

−1
2 c

)

up to an isometry.)

Introduce the notation Φ−1
α L = 〈

(

W
Z

)

〉, where choices are normalised such that |W |2 =

−|Z|2 = 2: it is easy to check that W = W and Z = sgn(α2)Z. We have

p−1
α,Φ−1

α L
(λ) =

⎛

⎜

⎜

⎜

⎝

I +
α2

λ2 − α2
WWT −

αλ

λ2 − α2
WZT J

αλ

λ2 − α2
ZWT I −

α2

λ2 − α2
ZZT J

⎞

⎟

⎟

⎟

⎠

, J = In−1,1 ,

from which we write

Φ̃λ = Φλ

⎛

⎜

⎜

⎜

⎝

I +
α2

λ2 − α2
WWT −

αλ

λ2 − α2
WZT J

αλ

λ2 − α2
ZWT I −

α2

λ2 − α2
ZZT J

⎞

⎟

⎟

⎟

⎠

.

Write

Φ̃1 = (ẽ1, . . . , ẽn, ũ1, . . . , ũn) , Φ̃0 =

(

g̃1 0
0 g̃2

)

,

and set

F̃ = Φ̃1

(

0
g̃

−1
2 c

)

, m̃ := g̃
−1
2 c = (m̃1, . . . , m̃n) .

Then

ẽi = Φ1p
−1
α,Φ−1

α L
(1)Φ−1

1 ei = ei +
αWi

1 − α2
Φ1

(

αW

Z

)

,(5.5)

ũi = Φ1p
−1
α,Φ−1

α L
(1)Φ−1

1 ui = ui −
αεiZi

1 − α2
Φ1

(

W

αZ

)

,(5.6)

m̃j = mj + (Z, m)Zj ,(5.7)
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F̃ = F +
(Z, m)

1 − α2

(

n
∑

i=1

αWiei + Ziui

)

,(5.8)

where W,Z are written with respect to the standard bases of R
n,Rn−1,1.

The above formulae imply that

F̃ − F // ẽi − ei ⊥ ũj − uj // ũi − ui .

More is true, for F and F̃ envelop of a congruence of n-spheres or n-hyperbolae and are, in
fact, Ribaucour transforms of each other (defined next).

DEFINITION 5.3. A congruence of n-spheres (resp. n-hyperbolae) is a map into the
space of n-spheres in a spaceform. An enveloping submanifold of a congruence is a subman-
ifold which has first-order contact with the congruence, i.e., each sphere (resp. hyperbola) is
tangent to the submanifold it touches.

REMARK 5.4. An n-sphere in R
2n−1,1 can be written as c + {x ∈ V ; (x, x) = r2}

for some space-like (n + 1)-dimensional linear subspace V , c ∈ V ⊥, and a constant r . This
n-sphere lies in the light-cone L2n−1,1 if and only if (c, c) = −r2. An n-hyperbola can
be written as c + {x ∈ V ; (x, x) = −r2} for some Lorentzian (n + 1)-dimensional linear
subspace V , c ∈ V ⊥, and a constant r . This n-hyperbola lies in L2n−1,1 if and only if (c, c) =

r2. Note that the projections of both n-spheres and n-hyperbolae in L2n−1,1 to S2n−2 are
n-spheres (we will explain this more clearly in Remarks 5.7).

REMARK 5.5. It can be easily seen that a generic n-dimensional congruence of n-
spheres (or n-hyperbolae) has exactly two enveloping submanifolds M,M∗ and a map φ :

M → M∗, so that for each p ∈ M there is a n-sphere (or n-hyperbola) C(p) in the congru-
ence such that M and M∗ are tangent to C(p) at p and φ(p), respectively. We will also call
the map φ a congruence. The congruence φ is said to be Ribaucour if the lines of curvature
on M map to lines of curvature on M∗. Otherwise said, the lines of curvature correspond
and the tangent line through p in the direction ei(p) meets the tangent line through φ(p) in
the direction dφ(ei(p)) at equal distance. This is the definition given of Ribaucour transform
in [1] for isothermic surfaces.

THEOREM 5.6. Let α ∈ C and L an isotropic line in C
2n−1,1 satisfying (5.1), and

pα,L be the simple element in L−(U) defined by (5.2). Then the dressing action F �→ F̃ =

pα,L♯F defined by (5.4) is a Ribaucour n-hyperbola congruence in L2n−1,1 if α is real, and a

Ribaucour n-sphere congruence in L2n−1,1 if α is pure imaginary. Moreover,
(1) F̃ − F ∈

( In 0
0 α−1In

)

L2n−1,1 and ẽi − ei is parallel to F̃ − F for all 1 ≤ i ≤ n,

where the ei and ẽi are principal curvature directions for F and F̃ respectively,
(2) if F is a flat lift of a conformally flat immersion f in S2n−2, then F̃ is a flat lift of

another conformally flat immersion f̃ in S2n−2, and the transform f → f̃ is a Ribaucour

transform in S2n−2.
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PROOF. Note that F and F̃ envelop an n-sphere (or a n-hyperbola) congruence if there
exist vector fields ξ normal to F and ξ̃ normal to F̃ satisfying the following conditions:

(1) F + ξ = F̃ + ξ̃ and (ξ, ξ) = (ξ̃ , ξ̃ ),
(2) 〈e1(x), . . . , en(x), ξ(x)〉 = 〈ẽ1(x), . . . , ẽn(x), ξ̃ (x)〉, which will be denoted by

V (x),
(3) F̃ (x) − F(x) ∈ V (x).
The above conditions imply that both F and F̃ are tangent to the quadrics in the affine

space F(x) + V (x),
(y − c(x), y − c(x)) = (ξ(x), ξ(x)) ,

at F(x) and F̃ (x), where the centre c(x) = F(x)+ξ(x). If V (x) is space-like then this quadric
is an n-sphere, and if V (x) is Lorentzian then this quadric is an n-hyperbola. Since F(x) is
null, there exists a time-like t0(x) such that the quadric lies in the affine space t0(x) + V (x).

We have seen that

F̃ − F =
(Z, m)

1 − α2

(

α
∑

j

Wj ej +
∑

j

Zj uj

)

,

ẽi − ei =
αWi

1 − α2

(

α
∑

j

Wj ej +
∑

j

Zj uj

)

,

ũi − ui = −
αεiZi

1 − α2

(

∑

j

Wj ej + α
∑

j

Zjuj

)

,

where 〈
(

W
Z

)

〉 = Φ−1
α L and is normalised so that |W |2 = −|Z|2 = 2 and m = g

−1
2 c. It

follows from the formulae for F̃ − F and ẽi − ei that

F̃ − F =
(Z, m)

αWi

(ẽi − ei) ,

for each i. Equate the coefficients of the ei and ui in F̃ − F = ξ − ξ̃ to get

(5.9)
n

∑

i=1

εi ξ̃iZi = (m, Z) , ξi = ξ̃i + (Z, m)Zi ,

where ξ =
∑n

i=1 ξiui and ξ̃ =
∑n

i=1 ξ̃i ũi .
Case 1: α ∈ R. Then Z is real (5.1). Use the condition that ei(x) lies in V (x) to see that

ξ has to be parallel to
∑

j Zj uj , hence ξ = f
∑

j Zj uj for some real function f . It follows

from (ξ̃ , ξ̃ ) = (ξ, ξ) and (5.9) that f = (Z, m)/2. So

ξj =
1

2
(Z, m)Zj = −ξ̃j .

Since ξ is time-like, it follows that V (x) is Lorentzian. This shows that F and F̃ envelop a
congruence of n-hyperbolae and

ξ =
1

2
(Z, m)

n
∑

j=1

Zjuj , ξ̃ = −
1

2
(Z, m)

n
∑

j=1

Zj ũj .
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Case 2: α ∈ iR. Then Z = iγ for some γ ∈ R
n−1,1. We can use the above argument to

obtain

ξj = −ξ̃j = −
1

2
(γ, m)γj .

Since γ is space like, so is V (x). In other words, F and F̃ envelop a congruence of n-spheres.
It is easy to check that both the n-spheres and the n-hyperbolae lie in L2n−1,1. As a

consequence of Theorem 5.2, F̃ is a flat lift of a new conformally flat f̃ in S2n−2 with identical
line of curvature co-ordinates for F̃ . ✷

REMARKS 5.7. The discussion of congruences in S2n−2 is particularly beautiful in
the light-cone picture (e.g., [2]). A congruence of n-spheres may be viewed as a map S :

Mn → G+
n−2(R

2n−1,1) into the Grassmannian of positive definite (n − 2)-planes; P (S⊥ ∩

L2n−1,1) ∼= P (Ln+1,1) ∼= Sn. The condition that 〈F 〉 envelops S then becomes very simple:
S ⊥ 〈F, dF 〉. Burstall-Calderbank [3] generalise the notion of Ribaucour in this setting by
demanding simply that a general codimension congruence with two enveloping submanifolds
〈F 〉, 〈F̃ 〉 is Ribaucour if and only if the bundle 〈F, F̃ 〉 is flat.

We may restate the above theorem in a more invariant manner, that views the hyper-
bola and sphere congruences as sub-quadrics of the quadric P (R2n−1,1) ∼= S2n−2. Each
S⊥(x) := V (x) ⊕ F(x) = V (x) ⊕ F̃ (x) is a signature (n + 1, 1)-plane, hence S : Mn →

G+
n−2(R

2n−1,1) is an n-sphere congruence in the conformal S2n−2, enveloped by 〈F 〉, 〈F̃ 〉 :

Mn → P (L2n−1,1) ∼= S2n−2. We may moreover calculate the flatness of the bundle 〈F, F̂ 〉

to see that the enveloped congruence is indeed Ribaucour in the sense of Burstall-Calderbank
[3].

Since the notion of enveloped sphere congruence is conformally invariant, the theorem is
true in any Riemannian S2n−2 ⊂ t⊥0 we choose. Specifically: let f →֒ S2n−2 be conformally
flat with uniform multiplicity one, F a flat lift and f̃ the projection of the transform pα,L#F

by a simple element; then f, f̃ envelop a congruence of n-spheres and have corresponding
curvature directions. To summarise, we have the following theorem:

THEOREM 5.8. Simple elements act by Ribaucour transforms on conformally flat im-

mersions with uniform multiplicity one.

Returning to flat lifts, we may also rephrase the construction of Ribaucour transforms in
terms of a system of first order PDE: in particular, given a flat lift F , α ∈ R

× ∪ iR×, and

ℓ0 = 〈Y0〉 =
〈(

W0
Z0

)〉

, such that α, ℓ0 satisfy (5.1), the Ribaucour transform of F by p
α,Φ−1

α (ℓ0)

may be constructed.

THEOREM 5.9. Let F,Ψ, x,Ξ be as in Theorem 3.1, i.e., Ψ1 = (e1, . . . , en, u1, . . . ,

un), Ψ0 =
(

g1 0
0 g2

)

, F = Φ1
( 0

m

)

, and m = g
−1
2 c, and θλ =

∑n
i=1(λai + [ai,Ξ ])dxi the Lax

pair of the solution Ξ of the U/K-system. Given α ∈ R
× ∪ iR× and ℓ = 〈Y0〉 satisfying

(5.1). Then we have the following.

(1) The following system for C
2n-valued maps Y has a unique solution:

dY = −θαY , Y (0) = Y0 .(5.10)
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(2) α and 〈Y (x)〉 satisfy (5.1), where Y is the solution to (5.10).
(3) Choose W,Z so that 〈Y 〉 = 〈

(

W
Z

)

〉 with |W |2 = −|Z|2 = 2. Then

F �→ F̃ := F +
(Z, m)

1 − α2

(

∑

j

aWj ej + Ziui

)

is the Ribaucour transform given in Theorem 5.6 by p
α,Φ−1

α (ℓ0)
.

PROOF. System (5.10) is solvable because θα is flat. The rest follows. ✷

If we apply the dressing action of simple elements to the vacuum solution Ξ = 0 repeat-
edly, then we can construct infinitely many families of explicit conformally flat n-immersions
in S2n−2 with uniform multiplicity one.

Permutability. We may easily obtain a permutability theorem for Ribaucour trans-
forms, or at least those that arise via simple element dressing. By Theorem 5.2, combined
with linear fractional transforms x �→ (x − α, β)/(x + α, β) we see that

pα,pβ,M (α)Lpβ,Mp−1
α,L and pβ,pα,L(β)Mpα,Lp−1

β,M ,

are pole-free and invertible at ±α,±β respectively. Putting these together and applying Liou-
ville’s theorem (holomorphic functions on P

1 are constant) we see that in fact

(5.11) pα,pβ,M (α)Lpβ,M = pβ,pα,L(β)Mpα,L .

Applied to our discussion, we see that given two Ribaucour transforms via simple elements,
there exists a common fourth immersion which is simultaneously a Ribaucour transform of
the first two (and is not the original immersion).

6. Channel immersions. In this section, we consider conformally flat n-dimensional
immersions into S2n−2 with some multiplicity greater than one. The curvature distributions
of such immersions have constant ranks and are smooth. Their flat lifts into L2n−1,1 also
have constant multiplicity. We show that in fact all but one curvature distribution has rank
one. Such submanifolds envelop a p-dimensional family of (n − p)-dimensional spheres;
they are the analogues of the channel hypersurfaces in S4, and hence will be called channel

immersions. Unlike the uniform multiplicity one case, we do not know whether line of cur-
vature co-ordinates exist for such immersions. If line of curvature co-ordinates do exist, then
the Gauss-Codazzi equations for such an immersion is the U/K-system defined by a non-
semisimple maximal abelian algebra in p. Conversely, solutions to these U/K-systems give
rise to conformally flat immersions with one multiplicity at least two.

Recall first Theorem 2.8, which says that a conformally flat immersion f and any flat lift
F have identical curvature distributions.

THEOREM 6.1. Suppose that f is conformally flat with flat normal bundle and con-

stant multiplicities, with at least one multiplicity k ≥ 2. Then the curvature distributions are

smooth and there is precisely one curvature distribution of rank at least two so that f has
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multiplicity (1, . . . , 1, k). We may therefore write

T M =

p
⊕

i=1

Ei ⊕ E ,

where rank Ei = 1, rank E = k = n − p.

Let F be any flat lift of f and let v1, . . . , vp, v be the curvature normals of F . The vi are

space-like and orthogonal, v is isotropic and orthogonal to the vi , and all are non-zero. Any

flat lift F has degenerate normal bundle and the formulae of Theorem 2.8 relating curvature

normals of f and F still hold. Moreover the distribution E is integrable, and the leaf of E

through any point is contained in a copy of Sn−p ⊂ S2n−2. Indeed the repeated curvature

normal vR of f is a parallel section of Nf ⊕ 〈f 〉 over E and the (n − p)-sphere in question

has (Euclidean) radius 1/|vR| < 1.

PROOF. First recall, from Theorem 2.8, that f and any flat lift F share the same cur-
vature distributions, and that any distribution of rank at least two has an isotropic, non-zero
curvature normal for F . If there are two such then they must be scalar multiples, since two
orthogonal non-zero isotropic vectors contradict the fact that maximal isotropic subspaces of
R

2n−1,1 are lines. The part of flat differentiation d that maps 〈dF 〉 ↔ NF between tangent
and normal bundle is well-known to be a o(2n−1, 1)-valued 1-formN such that IF = NdF .
Since F is parallel in NF , it follows that dF = NF . Applying this to the supposition that
there are two isotropic curvature normals which are non-trivial multiples of each other gives
a contradiction.

For the remainder, we appeal to a theorem of Terng [10] which states that the curvature
distributions of f are integrable and that the leaf of E through any point is an open subset of
a (n − p)-plane or an (n − p)-sphere. Since, for us, the leaf must lie in S2n−2, we necessarily
have (part of an) (n − p)-sphere. Indeed one may see that f + (vR/|vR |2) is constant on
any leaf of E, hence the (n − p)-sphere has radius 1/|vR|: since vR is parallel, this radius is
independent of E. ✷

The following theorem can be proved in the same way as for Theorem 3.1.

THEOREM 6.2. Let f,E1, . . . , Ep, E be as in Theorem 6.1, F be a flat lift of f , and

v1, . . . , vp , v the corresponding curvature normals of F . Suppose that F is parameterised by

line of curvature co-ordinates (x1, . . . , xn). We then have the following.

(1) There exists an O(2n − 1, 1) frame Φ = (e1, . . . , en, u1, . . . , un) with e1, . . . , en

principal curvature directions, and ui = vi/||vi || for 1 ≤ i ≤ p, and v = un−1 + un+1.

(2) Φ−1dΦ =
(

A δ
−J δT B

)

, where δ =
∑p

i=1 eiidxi +
∑n

j=p+1(ej,n−1 − ejn)dxj .

(3) Set

ai =

(

0 eii

−J eii 0

)

f or i ≤ p , and ,

aj =

(

0 ej,n−1 − ejn

−(en−1,j + enj ) 0

)

for p + 1 ≤ j ≤ n .
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Then ap = 〈ai〉
n
i=1 is a non-semisimple maximal abelian subalgebra in p and D =

∑n
i=1 ai

dxi .

(4) There exists a map Ξ : M → a⊥
p ∩ p such that

(

A 0
0 B

)

=
∑n

i=1[ai,Ξ ]dxi . In other

words, Ξ is a solution of the U/K-system defined by ap.

(5) There exists a constant null vector c ∈ R
n−1,1 such that F = Φ

( 0
g

−1
2 c

)

. Set y :=

g
−1
2 c = (y1, . . . , yn)

T . Then IF =
∑n

j=1 y2
j dx2

j .

Conversely, given a solution Ξ of the U/K-system defined by ap and a constant null

vector c ∈ R
2n−1,1, let Φλ be an extended flat frame for the Lax pair of Ξ . We then have the

following.

(i) Φ0 =
(

g1 0
0 g2

)

.

(ii) Write y := g
−1
2 c = (y1, . . . , yn)

T and Φ1 = (e1, . . . , en, u1, . . . , un). Then F =

Φ1
(

0
y

)

is a flat immersion with degenerate flat normal bundle and constant multiplicities, F

is parameterised by line of curvature co-ordinates,

IF =

n
∑

i=1

yidx2
i , IF =

p
∑

i=1

yidx2
i ui +

n
∑

j=p+1

yjdx2
j v ,

and the curvature normals are vi = y−1
i ui for 1 ≤ i ≤ p and v = un−1 + un.

The discussion of dressing and Ribaucour transforms goes through exactly as in Section
5 for channel immersions that have line of curvature co-ordinates. Since, by (5.3), logarith-
mic derivatives of dressed frames have the same p-part, and thus similar second fundamental
forms, it is clear that dressing a channel hypersurface yields another. Similarly, by the corre-
spondence of Theorem 6.2, we also get dressing and Ribaucour transforms of solutions to the
U/K-system defined by non-Cartan maximal subalgebra ap.

We may also repeatedly apply the dressing action of pα,L to the vacuum solution Ξ = 0
to construct infinitely many families of conformally flat channel immersions. These immer-
sions are given by explicit formulae because the extended frame for the vacuum solution is
exp

(
∑n

i=1 aiλxi

)

.
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