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CONFORMALLY INVARIANT POWERS OF THE LAPLACIAN
— A COMPLETE NONEXISTENCE THEOREM

A. ROD GOVER AND KENGO HIRACHI

1. Introduction

Conformally invariant operators and the equations they determine play a central
role in the study of manifolds with pseudo-Riemannian, Riemannian, conformal and
related structures. This observation dates back to at least the very early part of the
last century when it was shown that the equations of massless particles on curved
space-time exhibit conformal invariance. In this setting a key operator is the con-
formally invariant wave operator which has leading term a pseudo-Laplacian. The
Riemannian signature variant of this operator is a fundamental tool in the Yam-
abe problem on compact manifolds. Here one seeks to find a metric, from a given
conformal class, that has constant scalar curvature. Recently it has become clear
that higher order analogues of these operators, viz., conformally invariant operators
on weighted functions (i.e., conformal densities) with leading term a power of the
Laplacian, have a central role in generating and solving other curvature prescription
problems as well as other problems in geometric spectral theory and mathematical
physics [2, 5, 15].

In the flat setting, the existence of such operators dates back to [16], where it
is shown that, on 4-dimensional Minkowski space, for k ∈ N = {1, 2, . . .}, the kth

power of the flat wave operator ∆k, acting on densities of the appropriate weight, is
invariant under the action of the conformal group. More generally, if E [w] denotes
the space of conformal densities of weight w ∈ R, then on a flat conformal manifold
of dimension n ≥ 3 (and any signature) there exists, for each k ∈ N, a unique
conformally invariant operator

�2k : E [k − n/2]→ E [−k − n/2]

and the leading part of �2k is ∆k. Furthermore, this set of operators is complete
in the sense that it contains all natural conformally invariant differential operators
(see Section 2) between densities. These facts are easily recovered from the general
results in [6] and references therein.

Many of these operators can be generalised to curved conformal manifolds; Gra-
ham, Jenne, Mason and Sparling [14] constructed natural conformally invariant
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390 A. R. GOVER AND K. HIRACHI

operators

P2k : E [k − n/2]→ E [−k − n/2]

with leading term ∆k for all k ∈ N and n ≥ 3 except for the cases of n even and k >
n/2. (See the references in [14] for earlier constructions of some low order examples.)
They also conjectured that their result is sharp, based partially on the fact, proved
by Graham [13], that �6 in dimension 4 does not admit curved analogue. Recently
[19] added weight to this conjecture by establishing the nonexistence of a curved
analogue for �8 in dimension 6. In this paper we prove the conjecture. We state
this as a theorem.

Theorem. If n ≥ 4 is even and k > n/2, there is no conformally invariant natural
differential operator between densities with the same principal part as ∆k.

In [13] Graham explains that “the basic reason for the nonexistence of an in-
variant curved modification of ∆3 in dimension 4 is the conformal invariance of the
classical Bach tensor.” An analogue of this reasoning still holds true for the proof
of our theorem, although the proof is completely different from that of Graham. In
higher even dimensions we replace the Bach tensor by its analogue, the Fefferman-
Graham obstruction tensor Bab, which arises in the ambient metric construction
of [7]; see (2.9) in the next section. Our strategy for the proof is to construct a
curvature expression that is shown to be nonzero for a class of conformal metrics
for which Bab = 0, while it is also shown to vanish for the same class of metrics
under the assumption of the existence of the curved analogue of �2k. This is a
contradiction. The former is done by a direct computation using the tractor calcu-
lus, which will be review in Section 2; the latter is a consequence of some classical
invariant theory.

This explanation is somewhat of a simplification. Nevertheless the proof of the
theorem in Section 3 can be viewed as a careful elaboration of this idea. The proof is
greatly simplified by the use of a special class of metrics and Section 4 is concerned
with showing that this class is nontrivial.

Finally we should point out that there are many other settings where similar
nonexistence issues remain to be resolved. In [6] Eastwood and Slovák use and de-
velop some semiholonomic Verma module theory to prove that in odd dimensions
every conformally invariant operator between irreducible bundles on (locally) con-
formally flat manifolds (including spin manifolds) has a curved analogue. In even
dimensions they show that the same is true, save for an exceptional class of opera-
tors. The class consists of the operators corresponding dually to those nonstandard
nonsingular homomorphisms which go between the generalised Verma modules at
either extreme of generalised Bernstein-Gelfand-Gelfand resolutions. This includes
the �2k for k ≥ n/2, as discussed above, but also many other operators. Some
operators in the exceptional class do have curved analogues, in particular the �2k

for k = n/2. However we suspect that otherwise the result of Eastwood and Slovák
is sharp. Similar questions can be asked for many other similar geometries such
as CR structures. In [11] there is a construction of CR invariant powers of the
sub-Laplacian that generates curved analogues for most but not all the invariant
operators from the CR flat setting. Once again there is the question of whether
this result is sharp. For more general CR operators the existence theory is much
less developed than in the conformal case.
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NONEXISTENCE OF CONFORMAL LAPLACIANS 391

2. Conformal geometry and tractor calculus

We collect here the minimal background materials from conformal geometry and
tractor calculus as required for the proof of the theorem. The initial development
of tractor calculus in conformal geometry dates back to the work of T. Y. Thomas
[18] and was reformulated and further developed in a modern setting in [1]. It is
intimately related to the Cartan conformal connection; for a comprehensive treat-
ment exposing this connection and relating the conformal case to the wider setting
of parabolic structures; see [4, 3]. The calculational techniques, conventions and
notation used here follow [12] and [10].

Let (M, [g]) be a conformal manifold of dimension n ≥ 3 and of signature (p, q).
A conformal structure is equivalent to a ray subbundle Q of S2T ∗M ; points of Q
are pairs (gx, x) where x ∈ M and gx is a metric at x, each section of Q gives a
metric g on M and the metrics from different sections agree up to multiplication
by a positive function. The bundle Q is a principal bundle with group R+, and
we denote by E [w] the vector bundle induced from the representation of R+ on R
given by t 7→ t−w/2. Sections of E [w] are called conformal densities of weight w
and may be identified with functions on Q that are homogeneous of degree w, i.e.,
f(s2gx, x) = swf(gx, x) for any s ∈ R+. We will often use the same notation E [w]
for the space of sections of the bundle. Note that for each choice of a metric g
(i.e., section of Q, which we term a choice of conformal scale), we may identify a
section f ∈ E [w] with a function fg on M by fg(x) = f(gx, x). In particular, E [0]
is canonically identified with C∞(M). Finally we emphasise that for w 6= 0 the
bundle E [w], by its definition, depends on the conformal structure.

The operators of our main interest are defined as maps between densities P : E [w]
→ E [w′]. For each choice of a scale g ∈ [g], P induces a map Pg : C∞(M)→ C∞(M)
via the identifications E [w] ∼= C∞(M). We say that P is a natural differential
operator if Pg can be written as a universal polynomial in covariant derivatives with
coefficients depending polynomially on the metric, its inverse, the curvature tensor
and its covariant derivatives. The coefficients of natural operators are called natural
tensors. In the case that they are scalar they are often also called Riemannian
invariants. We say P is a conformally invariant differential operator if it is a
natural operator in this way and is well defined on conformal structures (i.e., is
independent of a choice of conformal scale).

We embrace Penrose’s abstract index notation [17] throughout this paper and
indices should be assumed abstract unless otherwise indicated. We write Ea to
denote the tangent bundle on M , and Ea the cotangent bundle. We use the notation
Ea[w] = Ea ⊗ E [w], Eab[w] = Ea ⊗ Eb ⊗ E [w] and so on. An index which appears
twice, once raised and once lowered, indicates a contraction. Each symmetric tensor
product of the cotangent bundle is written as E(ab···c) and E(ab···c)0 indicates the
completely trace-free subbundle. Similarly, E[ab···c] means the skew tensor product,
that is, the bundle of differential forms. We also use this notation to indicate the
projection onto these bundles, e.g., 2T[ab] = Tab − Tba. These conventions will be
extended in an obvious way to the tractor bundles described below.

Note that there is a tautological function g on Q taking values in E(ab). It is
the function which assigns to the point (gx, x) ∈ Q the metric gx at x. This is
homogeneous of degree 2 since g(s2gx, x) = s2gx. If ξ is any positive function on
Q homogeneous of degree −2, then ξg is independent of the action of R+ on the
fibres of Q, and so ξg descends to give a metric from the conformal class. Thus g
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392 A. R. GOVER AND K. HIRACHI

determines and is equivalent to a canonical section of Eab[2] (called the conformal
metric) that we also denote g (or gab). This in turn determines a canonical section
gab (or g−1) of Eab[−2] with the property that gabg

bc = δca (where δa
c is the

kronecker delta, i.e., the section of Eca corresponding to the identity endomorphism
of the tangent bundle). The conformal metric (and its inverse gab) will be used
to raise and lower indices. Given a choice of metric g ∈ [g], we write ∇a for
the corresponding Levi-Civita connection. For each choice of metric there is also a
canonical connection on E [w] determined by the identification of E [w] with C∞(M),
as described above, and the exterior derivative on functions. We will also call this
the Levi-Civita connection and thus for tensors with weight, e.g., va ∈ Ea[w], there
is a connection given by the Leibniz rule. With these conventions the Laplacian ∆
is given by ∆ = gab∇a∇b = ∇b∇b .

The Riemannian curvature Rabcd, determined by

(∇a∇b −∇b∇a)vc = Rab
c
dv
d, where vc ∈ Ec,

can be decomposed into the totally trace-free Weyl curvature Cabcd and the sym-
metric Schouten tensor Pab according to

(2.1) Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c.

This defines Pab as a trace modification of the Ricci tensor Rab = Rca
c
b:

Rab = (n− 2)Pab + Pc
cgab.

Note that the Weyl tensor has the symmetries

(2.2) Cabcd = C[ab][cd] = Ccdab, C[abc]d = 0.

Moreover, it follows from the Bianchi identity that

(2.3) ∇cCabcd = 2(n− 3)∇[aPb]d

and

(2.4) (n− 3)∇[aCbc]de = gd[a∇sCbc]se − ge[a∇sCbc]sd.

Under a conformal transformation, we replace our choice of metric g by the
metric ĝ = e2Υg, where Υ is a smooth function. The Levi-Civita connection then
transforms as follows:

(2.5) ∇̂aub = ∇aub −Υaub −Υbua + gabΥ
cuc, ∇̂aσ = ∇aσ + wΥaσ.

Here ub ∈ Eb, σ ∈ E [w], and Υa = ∇aΥ. The Weyl curvature is conformally
invariant, that is, Ĉ = C, and the Schouten tensor transforms by

(2.6) P̂ab = Pab −∇aΥb +O(Υ2),

where O(Υ2) denotes nonlinear terms in Υ.
We define P (`) ∈ E(a1···a`) for ` ≥ 2 by

P (`) = Pa`···a1 := ∇(a` · · ·∇a3Pa2a1).

From (2.1) and (2.3) it follows easily that if n > 3, then the jets of R at p can be
expressed in terms of P (`) and the jets of C at p. Note that we can always choose,
for each point p ∈M , a representative g from a conformal class such that

(2.7) P (`)(p) = 0, ` ≥ 2;
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following [10] we call g a normal scale. This is an easy consequence of the conformal
variational formula:

(2.8) P̂a`···a1 = Pa`···a1 −∇(a` · · · ∇a1)Υ +O(Υ2),

since the terms in O(Υ2) involve at most ` − 1 derivatives of Υ. In a normal
scale, the jets of R at p can be expressed in terms of the Weyl curvature C and its
covariant derivatives at p.

In dimension 4, it is well known that

Bab = ∇d∇cCcadb + P dcCcadb

is a conformally invariant tensor, called the Bach tensor. The existence of a natural
conformally invariant tensor, taking values in E(ab)0 [2−n] and which generalises the
Bach tensor to even dimensions, is deduced in [7] where it arises as the obstruction to
the existence of a formal power series solution to their ambient metric construction.
We will also denote this Fefferman-Graham obstruction tensor by Bab. While no
general explicit expression for Bab has been given, it is easily shown from its origins
as an obstruction that it contains linear terms when we consider perturbations from
the flat metric. Using this, its naturality and conformal invariance as well as the
symmetries and identities satisfied by the Weyl curvature, it is straightforward to
deduce that its linear in curvature term is given (up to nonzero constant multiple)
by

(2.9) ∆n/2−2∇c∇dCcadb.
We next define the standard tractor bundle over (M, [g]). It is a vector bundle

of rank n+ 2 defined for each g ∈ [g] by [EA]g = E [1]⊕ Ea[1]⊕ E [−1]. If ĝ = e2Υg,
we identify (σ, µa, τ) ∈ [EA]g with (σ̂, µ̂a, τ̂ ) ∈ [EA]ĝ by the transformation

(2.10)

 σ̂
µ̂a
τ̂

 =

 1 0 0
Υa δa

b 0
− 1

2ΥcΥc −Υb 1

 σ
µb
τ

 .

It is straightforward to verify that these identifications are consistent upon chang-
ing to a third metric from the conformal class, and so taking the quotient by this
equivalence relation defines the standard tractor bundle EA over the conformal man-
ifold. (Alternatively the standard tractor bundle may be constructed as a canonical
quotient of a certain 2-jet bundle or as an associated bundle to the normal con-
formal Cartan bundle [3].) The bundle EA admits an invariant metric hAB of
signature (p+ 1, q + 1) and an invariant connection, which we shall also denote by
∇a, preserving hAB. In a conformal scale g, these are given by

hAB =

0 0 1
0 gab 0
1 0 0

 and ∇a

 σ
µb
τ

 =

 ∇aσ − µa
∇aµb + gabτ + Pabσ
∇aτ − Pabµb

 .

It is readily verified that both of these are conformally well defined, i.e., independent
of the choice of a metric g ∈ [g]. Note that hAB defines a section of EAB = EA⊗EB,
where EA is the dual bundle of EA. Hence we may use hAB and its inverse hAB to
raise or lower indices of EA, EA and their tensor products.

In computations, it is often useful to introduce the “projectors” from EA to the
components E [1], Ea[1] and E [−1] which are determined by a choice of scale. They
are respectively denoted by XA ∈ EA[1], ZAa ∈ EAa[1] and YA ∈ EA[−1], where
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Y A ZAc XA

YA 0 0 1
ZAb 0 δb

c 0
XA 1 0 0

Figure 1. Tractor inner product

EAa[w] = EA ⊗ Ea ⊗ E [w], etc. Using the metrics hAB and gab to raise indices, we
define XA, ZAa, Y A. Then we immediately see that

YAX
A = 1, ZAbZ

A
c = gbc

and that all other quadratic combinations that contract the tractor index vanish.
This is summarised in Figure 1.

It is clear from (2.10) that the first component σ is independent of the choice
of a representative g and hence XA is conformally invariant. For ZAa and Y A, we
have the transformation laws:

(2.11) ẐAa = ZAa + ΥaXA, Ŷ A = Y A −ΥaZ
Aa +O(Υ2).

Given a choice of conformal scale, we have the corresponding Levi-Civita con-
nection on tensor and density bundles. In this setting we can use the coupled
Levi-Civita tractor connection to act on sections of the tensor product of a tensor
bundle with a tractor bundle. This is defined by the Leibniz rule in the usual
way. For example if ubV Cσ ∈ Eb ⊗ EC ⊗ E [w] =: EbC [w], then ∇aubV Cσ =
(∇aub)V Cσ + ub(∇aV C)σ + ubV C∇aσ. Here ∇ means the Levi-Civita connec-
tion on ub ∈ Eb and σ ∈ E [w], while it denotes the tractor connection on V C ∈ EC .
In particular with this convention we have

(2.12) ∇aXA = ZAa, ∇aZAb = −PabXA − YAgab, ∇aYA = PabZA
b.

Note that if V is a section of EA1···A` [w], then the coupled Levi-Civita tractor
connection on V is not conformally invariant but transforms just as the Levi-Civita
connection transforms on densities of the same weight: ∇̂aV = ∇aV + wΥaV .

Given a choice of conformal scale, the tractor-D operator

DA : EA1···A` [w]→ EAA1···A` [w − 1]

is defined by

(2.13) DAV := (n+ 2w − 2)wYAV + (n+ 2w − 2)ZAa∇aV −XA�V,
where �V := ∆V +wPb

bV . This also turns out to be conformally invariant as can
be checked directly using the formulae above (or alternatively there are conformally
invariant constructions of D; see, e.g., [9]).

The curvature Ω of the tractor connection is defined by

(2.14) [∇a,∇b]V C = ΩabCEV E

for V C ∈ EC . Using (2.12) and the usual formulae for the curvature of the Levi-
Civita connection, we calculate (cf. [1])

(2.15) ΩabCE = ZC
cZE

eCabce −
2

n− 3
X[CZE]

e∇dCabde.
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Here, and in the remainder of this section, to simplify the formulae we have assumed
n ≥ 4. Since our later discussions are all set in even dimensions, there is no need
here for the results in dimension 3. We also set

ΩABCE = ZA
aZB

bΩabCE , ΩBsCE = ZB
bΩbsCE .

It is easily verified that [DB, DC ] vanishes on densities. For tractors V ∈
EA1A2···Ak [w], it is straightforward to use (2.14) and (2.12) to show

(2.16) [DB, DC ]VA1A2···Ak = EBCA1
QVQA2···F + · · ·+ EBCAk

QVA1···Ak−1Q,

where

(2.17)
EABCE = (n+ 2w − 2)

(
(n+ 2w − 4)ΩABCE

−2X[AZB
b
]∇pΩpbCE + 4X[AΩB]

s
CE∇s

)
.

For our forthcoming calculations, we need to express Y AY CEABCE in terms of C.
The first term of E is killed by contraction with Y A and the last term gives

4Y AY CX[AΩB]pCE∇p =
−2
n− 3

ZB
bZE

e(∇aCaebc)∇c.

For the middle term, using (2.12), we have

−2Y AY CX[AZB
b
]∇pΩpbCE =

1
n− 3

ZB
bZE

e∇a∇cCabce +O(R2),

where the O(R2) indicates nonlinear terms in the curvature. Thus using (2.2), we
get

(2.18)
Y AY CEABCE =

n+ 2w − 2
n− 3

× ZBbZEe
(
∇c∇dCcedb + 2(∇cCcedb)∇d

)
+O(R2).

3. Proof of the theorem

For the remainder of the paper we restrict to manifolds of even dimension n.
Our key tool for the proof is the natural differential operator

Lg : E [k − n/2]→ E [−k − n/2]

defined by
Lgf := Y Ak · · ·Y A1DAk · · ·DA1f.

This is a composition of the conformally invariant operator

DAk · · ·DA2DA1 : E [k − n/2]→ EAk···A2A1 [−n/2]

and the projector, determined by g,

Y Ak · · ·Y A1 : EAk···A1 [−n/2]→ E [−k − n/2].

It follows easily from (2.13) and the relations in Figure 1 that Lg has leading part
(−∆)k. In view of (2.11) we do not expect Lg to exhibit invariance under conformal
rescaling. However if g is conformally flat, it turns out that Lg is the unique
conformally invariant operator between densities whose leading part is (−∆)k; see
e.g., Proposition 2.1 of [12] or [9].

Our strategy for proving the theorem is as follows. We study the dependence of
Lgf on deformations from the flat metric g0. For a smooth family of Riemannian
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(or pseudo-Riemannian) metrics {gt}t∈R such that g0 is the flat metric and Υ ∈
C∞(M × R), let

L[s, t] := Lg[s,t]f(p), where g[s, t](x) := e2sΥ(x,t)gt(x),

for each s ∈ R. Here we fix f ∈ E [k−n/2] on (M, [g0]) and then regard it as a density
in E [k−n/2] for each conformal structure [gt] by the identification fgt = fg0 . With a
view to a contradiction we suppose that there exists a natural conformally invariant
operator P2k between density bundles with leading term ∆k, where k > n/2. Such
an operator in particular gives an operator on conformally flat spaces and so must
appear in the classification of such operators described in the introduction. Thus
we have

(3.1) P2k : E [k − n/2]→ E [−k − n/2].

(In particular, if g is conformally flat, then we have (−1)kP2k = Lg.) Then we
choose p ∈M and set

P [t] := (−1)kP2kf(p)
in the metric g[s, t]. Note that, since P2k is conformally invariant, the right-hand
side is independent of s. We compute ∂t∂sL[0, 0] by two methods, which give
different answers. With some assumptions on the family g[s, t] and on f , we show,
by one set of calculations, that

∂t∂sL[0, 0] 6= 0.

On the other hand, with the other approach, we obtain

L[s, t] = P [t] +O(s2) +O(t2),

where O(·) is used in the sense of ideals in the ring of formal powers series; the
notation +O(·) means modulo the addition of elements from the ideal generated
by the indicated argument. Hence this implies ∂t∂sL[0, 0] = 0. Since this is a
contradiction, we conclude that the operator in (3.1) cannot exist.

In what follows, we use the notation

DA1···Ak := DA1 · · ·DAk , ∇a1···ak := ∇a1 · · · ∇ak .
Let us write ∇(`)C as shorthand for the tensor ∇a1···a`Cbcde, and set ∇(0)C = C.
Similarly we will write ∇(j)∆`f as shorthand for ∇a1···aj∆`f . Unless otherwise
stated, ∇, C, P are assumed to be defined with respect to gt. Finally we set

w = k − n/2,
which is a positive integer.

We will work with a one parameter family of metrics gt such that

P (`)(p) = O(t2), ` ≥ 2,(3.2)

∇(`)C(p) = O(t2), 0 ≤ ` ≤ w + n− 5,(3.3)

∇(`)∆n/2−2∇bcCabdc(p) = O(t2), ` ≥ 0,(3.4)

and, for n ≥ 6,

(3.5) ∆n/2−3∇b c (aw+2···a3Ca2
b
a1)

c(p) = O(t2).

We next take a scaling function Υ such that

(3.6) ∇(a`···a1)Υ(p, t) = 0, ` ≥ 2.
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Finally, for the density f , we impose

(3.7) ∇(`)f(p) = 0, 0 ≤ ` ≤ w.
From the conformal invariance of the Weyl curvature C and (2.5) it follows that

condition (3.3) is conformally invariant — in the sense that if a family of metrics
gt satisfies a set of conditions, then so does e2Υgt for any scaling function Υ(x, t).
For gt satisfying (3.3), it is also clear from (2.5) that (3.5), which is a condition on
∇(w+n−4)C, is conformally invariant. Condition (3.4) can be rewritten in terms of
the conformally invariant Fefferman-Graham obstruction tensor Bab,

∇(`)B(p) = O(t2), ` ≥ 0,

because of (2.9). Hence it is also conformally invariant. Condition (3.7) is exactly
equivalent to requiring that f is a density such that its w-jet vanishes at p. Thus
this condition is independent of the choice of gt and, in particular, is conformally
invariant. Finally from (2.8) it is clear that (3.2) is not a conformally invariant
condition. Whereas the point of conditions (3.3), (3.4) and (3.5) is to specialise
the class of conformal structures we allow, the role of (3.2) is rather as a scale
normalisation condition which restricts metrics allowed from within a given con-
formal class [gt]. Nevertheless it is crucial to our arguments that with (3.2) some
conformal scaling freedom remains. In particular if we assume (3.6), then we have
(3.11) below.

Under these assumptions, we will show the following two results.

Lemma 3.1. Assume that (3.2)–(3.7) hold. Then

L[s, t] = P [t] +O(s2) +O(t2).

Lemma 3.2. Assume that (3.2)–(3.7) hold and further assume

(3.8) ∇(`)∆f(p) = O(t), ` ≥ 0.

Then

∂sL[0, t] = cΥb

(
∆n/2−2∇c aw+1··· a3Ca2

b
a1
c
)
∇aw+1··· a1f(p) +O(t2),

where c is a nonzero constant.

With these lemmas established, the theorem is a consequence of the existence of
a density satisfying (3.8) and the following proposition which will be proved in the
next section.

Proposition 3.3. There is a deformation {gt}t∈R of the flat metric g0 that satisfies
(3.2)–(3.5) yet with

(3.9) F b(aw+1···a1)0(p) 6= 0,

where
F baw+1···a1 = ∂t

∣∣
t=0

∆n/2−2∇c aw+1···a3Ca2
b
a1
c.

Proof of Theorem. Let gt be a family of metrics satisfying conditions (3.2)–(3.5)
and (3.9). The existence of such a family is guaranteed by Proposition 3.3 above.
Then by (3.9) we may find µb ∈ Eb|p and ξa1a2···aw+1 ∈ E(a1···aw+1)0 [w]|p such that

(3.10) µbξ
a1a2···aw+1F ba1···aw+1 6= 0.

Denoting by xi some fixed choice of normal coordinates for g0 centered at p, we set

f(x) = ξi1i2···iw+1x
i1 · · ·xiw+1 .
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Then f clearly satisfies the assumptions (3.7). In the metric g0 we also have
∇(`)∆f(p) = 0 for all ` ≥ 0. Thus, since the contorsion tensor distinguishing
the metric connections of gt and g0 is O(t), it follows immediately that f satisfies
(3.8). Next we construct Υ(x, t) by setting

Υ(x, 0) = µix
i

and then we obtain a function on M × R satisfying (3.6) by solving the equation
∇(a1···a`)Υ(0, t) = 0, ` ≥ 2, for each t. From standard theory this can be achieved
within C∞(M ×R). Then Lemma 3.1 implies L[s, t] = P [t] +O(s2) +O(t2) so that
∂s∂tL[0, 0] = 0, while Lemma 3.2 shows

∂s∂tL[0, 0] = c µbξ
a1a2···aw+1F b(a1···aw+1)0 6= 0,

which is a contradiction. �

We now prove the lemmas used in the proof above. Throughout the proofs we
will work at p ∈M . In all final expressions the tensors involved are evaluated at p
and we write simply ∇aCbcde to mean ∇aCbcde(p) and so forth.

Proof of Lemma 3.1. We first prove

S[t] := L[0, t]− P [t] = O(t2).

Since Lg and (−1)kP2k are natural operators which agree for conformally flat met-
rics, it follows that there is an expression for S[t] as a sum of terms where each
term is homogeneous of degree at least one in the jets of the curvature R at p. Next
via (2.1) and (2.3) we may express the jets of R in terms of P (`) and the jets of C
and obtain a new expression for S[t] which is polynomial in these tensors. By (3.2)
and since C = O(t), the terms containing P (`) and those which are nonlinear in C
are O(t2) and so can be neglected. Thus using standard classical invariant theory
and elementary weight considerations, we can express the Riemannian invariant
S[t] mod O(t2) as a linear combination of complete contractions of (∇(`)C)∇(m)f
with ` + m = 2k − 2. In view of conditions (3.3) and (3.7), to obtain a nontrivial
term we must have ` ≥ w + n − 4 and m ≥ w + 1. Thus a possible nonvanishing
term should be a complete contraction of one of the following two tensors:(

∇(w+n−3)C
)
∇(w+1)f or

(
∇(w+n−4)C

)
∇(w+2)f.

Now consider the possible ways such a complete contraction could be made. First
note that since the tensor field C is completely trace-free, it is clear that in such
a complete contraction we can assume, without loss of generality, that the indices
of Cabcd are paired with indices on ∇’s. Next observe that the tensor field C
has the symmetry Cabcd = C[ab][cd] while ∇a`···a1f = ∇(a`···a1)f + O(t). Thus
(∇(`)Cabcd)∇(m)∇abcf = O(t2) for `, m ≥ 0. Also ∇(`)∇abcCabcd = 0 and for
both similar results hold for any permutation of the indices on C. Thus from the
symmetries of the Weyl tensor C, the possible nonzero complete contractions of the
displayed terms must be contractions of the tensors(

∇(w−1)∆n/2−2∇abCacbd
)
∇(w−1)∇cdf

and, (
∇(w)∆n/2−3∇abCacbd

)
∇(w)∇cdf, if n ≥ 6,

or (
∇(w−2)∇abCacbd

)
∇(w−2)∆∇cdf, if n = 4 and w ≥ 2.
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But these are O(t2) by (3.4) and (3.5). Thus S[t] = O(t2).
To prove the general case, we first consider the tensors P (`) in the metric g[s, t].

By the conformal transformation law (2.8) of P (`), we have[
Pa`···a1

]
g[s,t]

= Pa`···a1 − s∇(a`···a1)Υ +O(s2).

Thus (3.2) and (3.6) imply

(3.11)
[
Pa`···a1

]
g[s,t]

= O(s2) +O(t2).

The other conditions imposed on, and properties of, C, f and their covariant deriva-
tives, as used in the argument above at a metric gt, are all conformally invariant
and so hold for g[s, t]. Thus replacing gt with g[s, t], the argument above that led to
the conclusion S[t] = O(t2) can be repeated exactly with the single exception that
P (`) can now be neglected with error O(s2) + O(t2) (rather than O(t2) as above).
Thus with S[s, t] := L[s, t]− P [t], we obtain S[s, t] = O(s2) +O(t2). �

Proof of Lemma 3.2. Since DAk···A1 is conformally invariant, the conformal varia-
tion of Lgf is determined entirely by the variation (2.11) of Y A. Thus we have

∂sL[0, t] = −Υb

k∑
j=1

ZAjbY Ak···Âj···A1DAk···A1f,

where Âj indicates an absent index. Now (with s still set to 0) we work with the
metrics gt. From the definition of DAk···A1 we may re-express it as

DAk···A1f = 2DAk···[Aj+1Aj ]···A1f + 2D
Ak···[Aj+2Aj ]Aj+1Âj ···A1

f + · · ·
+ 2D

[AkAj ]Ak−1···Âj ···A1
f +D

AjAk···Âj ···A1
f.

Using this, we have at once that

∂sL[0, t] = −
k∑
j=1

jΥbF
b
(j),

where
F b(j) := 2ZBbY Ak···Âj ···A1DAk···[Aj+1B]Aj−1···A1f

for j ≤ k − 1, and
F b(k) := ZBbY Ak−1···A1DBAk−1···A1f.

We first show that F b(j) = O(t2) if j 6= 2. Note that F b(1) = 0 because D[A2B]

vanishes on densities. Next we recall that f is a density of weight k−n/2 and each
D lowers weight by 1. So from (2.13) we have

ZBbDBAk−1···A1f = −ZBbXB�DAk−1···A1f = 0,

which implies F b(k) = 0. To prove the other cases, we recall (2.16):

(3.12) D[CB]Aj−1···A1f = (k − j)
j−1∑
`=1

EBCA`
QDAj−1···A`+1QA`−1···A1f,

where EABCD is given by (2.17) and it is O(t). If we commute the indices for
DAj−1···A`+1QA`−1···A1f , we get another O(t) term. Thus we see that each summand
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of the right-hand side of (3.12) is independent of ` up to permutations of A1 · · ·Aj−1

and modulo O(t2). Hence F b(j) mod O(t2) for j > 2 is a multiple of

(3.13) ZBbY Ak−1···A1DAk−1···Aj+1(EAjBAj−1
QDQAj−2···A1f).

This is O(t2), which we see as follows. From

(3.14) [Y A,∇b] = O(t)

and formula (2.13) for DB, we conclude that there is a (weight dependent) operator
EB such that Y ADB = EBY

A + O(t) and so in (3.13) we may pass Y A1 to the
right where we finally observe that

Y A1DA1f = −∆f +O(t) = O(t),

from (3.8).
We now focus on the computation of

F b(2) = 2ZBbY Ak−1···A1DAk−1···A3(EA2BA1
QDQf).

Using (3.14) and Y ADA = −∆ +O(t), we simplify F b(2) to

(3.15) 2ZBb(−∆)k−3(Y A2A1EA2BA1
QDQf),

modulo O(t2). Substituting (2.18), we may reduce the above formula to a nonzero
multiple of

(3.16) ZBb∆k−3
(
ZB

aZQq
(
(∇cdCcqda) + 2(∇cCcqda)∇d

)
DQf

)
.

Next using the identities of (2.12) and Figure 1, we have

ZBb∆k−3ZB
a = gab∆k−3 +O(t).

Similarly, (2.12) and (2.13) imply

(∇dZQq)DQf = −gdqY QDQf = gdq∆f +O(t) = O(t)

and
ZQqDQf = (n+ 2w − 2)∇qf.

Thus (3.16) is reduced, up to a nonzero multiple and modulo O(t2), to

(3.17) ∆k−3
(
(∇cdCcqdb)∇qf

)
+ 2∆k−3

(
(∇cCcqdb)∇dqf

)
.

Finally we expand ∆k−3 by using the Leibniz rule. Observe that, in each term of
the result, the total number of ∇ is 2k − 3 = n + 2w − 3, while in order to get a
nonvanishing term, we need to apply at least (n + w − 4) ∇’s to C, by (3.3), and
at least (w + 1) ∇’s to f , by (3.7). Such a partition of n + 2w − 3 is unique and,
using (3.8), we see (3.17) is reduced to

2w
(
k − 3
w

)
Ib + 2w

(
k − 3
w − 1

)
Jb,

where
Ib =

(
∆n/2−3∇c d aw+1···a2C

c
a1
db
)
∇aw+1···a1f,

Jb =
(
∆n/2−2∇c aw+1···a3C

c
a2a1

b
)
∇aw+1···a1f.

If n = 4, the first term does not appear and we immediately see that ∂sL[0, t] mod
O(t2) is a nonzero multiple of JbΥb. If n ≥ 6, we have

(3.18) (w + 2)Ib = wJb +O(t2),
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and, since w > 0, we are led to the same conclusion. Therefore it remains only to
prove this equation for n ≥ 6.

Corresponding to the curvature terms of Ib and Jb, we set

Ĩ = ∆n/2−3∇cd(aw+1···a2C
c
a1)

d
b,

J̃ = ∆n/2−2∇c(aw+1···a3C
c
a2a1)b,

where we have suppressed the indices on Ĩ and J̃ to simplify the notation. Then
noting that ∇cdaw+1···a2C

c
a1
d
b = ∇cd(aw+1···a2)C

c
(a1

d
b) + O(t2), we may rewrite

(3.5) as

(3.19) 2Ĩ + wK = O(t2),

where
K = ∆n/2−3∇cdb(aw+1···a3C

c
a2
d
a1).

On the other hand, note that from (2.3),

∇[b∇dCca2]da1 = 2(n− 3)∇[b∇cPa2]a1

= O(t2),

and hence ∇cd[bCca2]da1 = O(t2) which further implies

∆n/2−3∇aw+1···a3∇cd[bCca2]da1 = O(t2).

Symmetrising the left-hand side of this last expression over aw+1, . . . , a1 gives

−Ĩ + J̃ +K = O(t2).

Comparing this equation with (3.19), we finally get

(w + 2)Ĩ = wJ̃ +O(t2),

which implies (3.18) because ∇aw+1···a1f = ∇(aw+1···a1)f +O(t). �

4. Construction of the metric

It is clear that the issue of existence/nonexistence of invariant operators is in-
dependent of signature (and could equally be treated in the complex setting). To
simplify the proof below, we shall be satisfied with constructing a Riemannian sig-
nature metric. With very slight modification the same argument yields a proof of
Proposition 3.3 in any other desired signature.

Proof of Proposition 3.3. We first linearise the problem. For a symmetric two form
ψ = ψab ∈ E(ab) and each t ∈ R, we write Rabcd[t], Cabcd[t] and Pab[t], respectively,
for the Riemannian curvature, the Weyl curvature and the Schouten tensor of gt =
g0 + tψ. Then set

Rabcd :=
d

dt

∣∣∣
t=0

Rabcd[t], Cabcd :=
d

dt

∣∣∣
t=0

Cabcd[t], Pab :=
d

dt

∣∣∣
t=0

Pab[t].

It follows from the definition of curvature that

(4.1) Rabcd =
1
2
(
∇c[aψb]d −∇d[aψb]c

)
.

Then Cabcd is the trace-free part of this, while Pab is a scaled trace adjustment of a
single trace of (4.1). Here ∇ is defined with respect to the flat metric g0. In terms
of these tensors, Proposition 3.3 is reduced to the following lemma.
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Lemma 4.1. For each w ∈ N there exists a symmetric two form ψab ∈ E(ab) on
Rn such that

∇(a`···a3Pa2a1)(0) = 0, ` ≥ 2,(4.2)

∇(`)C(0) = 0, 0 ≤ ` ≤ w + n− 5,(4.3)

∇(`)∆n/2−2∇bcCabdc(0) = 0, ` ≥ 0,(4.4)

and, for n ≥ 6

(4.5) ∆n/2−3∇bc(aw+2···a3Ca2
b
a1)

c(0) = 0

yet with

(4.6) ∆n/2−2∇c(aw+1···a3Ca2
b
a1)0

c(0) 6= 0.

Before we prove this, we need some background on the representation theory
used. The irreducible finite dimensional representations of SL(n) can be classified
by Young diagrams. We use the notation (`1, `2, . . . , `n−1) to indicate the repre-
sentation corresponding to a Young diagram with rows (beginning from the top)
of length `1 ≥ `2 ≥ · · · ≥ `n−1 ≥ 0. We identify SL(n) with its defining represen-
tation, and via this standard action of SL(n) on Rn there are tensorial realisations
of these representations. For example a tensorial realisation of (`1, `2, . . . , `n−1) is
given by Y (`1, `2, . . . , `n−1) which denotes the space of (covariant) Rn tensors, of
rank

∑
`i, with the manifest symmetries

Fa1···a`1b1···b`2 ···d1···d`n−1
= F(a1···a`1 )(b1···b`2 )···(d1···d`n−1)

and so-called “hidden” symmetries which can be described as follows: first a com-
plete symmetrisation over any `1 + 1 of the indices annihilates F ; if we exclude
the set a1 · · · a`1 , then a complete symmetrisation over any `2 + 1 of the remaining
indices annihilates F ; if we exclude the sets a1 · · ·a`1 and b1 · · · b`2 , then a complete
symmetrisation over any `3 +1 of the remaining indices annihilates F and so on. To
simplify the notation, we will omit terminal strings of zeros. Thus we write (`1, `2)
as shorthand for (`1, `2, 0, . . . , 0) and similarly Y (`1, `2) for the described tensorial
realisation of this.

On the space of tensors of rank
∑
`i, there are different projections onto a

space Y (`1, `2, . . . , `n−1) according to different orderings of the indices. (These
are easily described explicitly [8].) There are identities between these projections
but we do not need these details. Any such projection will (also) be denoted by
Y (`1, `2, . . . , `n−1) and is termed a Young symmetriser.

The finite dimensional SO(n)-representations (where as usual n is even) are also
classified by strings of integers, in this case just n/2 of these, [`1, . . . , `n/2], where
`1 ≥ · · · ≥ `n/2−1 ≥ |`n/2| and if n/2 is odd, then `n/2 ≥ 0. We omit terminal
strings of zeros in this case too. Via the defining representation, where we view
SO(n) as the subgroup of SL(n) preserving the standard metric δ, these also have
tensorial realisations: Y0[`1, . . . , `n/2−1] (i.e., Y0[`1, . . . , `n/2−1, 0]) is the subspace
of Y (`1, . . . , `n/2−1) consisting of completely trace-free tensors. Continuing this
notation, if `n/2 > 0, then the subspace of Y (`1, . . . , `n/2) consisting of completely
trace-free tensors will be denoted Y0[`1, . . . , `n/2]. This is an irreducible O(n)-
module but upon restriction to SO(n) is either irreducible or further decomposes
depending on the parity of n/2: if n/2 is odd, then Y0[`1, . . . , `n/2] is irreducible,
while if n/2 is even, Y0[`1, . . . , `n/2] decomposes into a direct sum of irreducible
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representations, each an eigenspace of an action of the volume form. The latter are
realisations of representations usually denoted [`1, . . . , `n/2] and [`1, . . . ,−`n/2]. (In
the corresponding complex theory of SO(n,C) one obtains such a decomposition
regardless of the parity of n/2.)

Proof of Lemma 4.1. Consider the irreducible SL(n) representation (n+w− 2, 2):
· · ·

Viewed as a representation of SO(n), by restriction, this decomposes into a direct
sum of SO(n) irreducible representations. Using elementary representation theory
[8], it is easily verified that, since n is even, the representation [w + 1, 1]:

· · ·
0

(and in dimension four [w + 1, 1]⊕ [w + 1,−1]) occurs exactly once as a summand
in this decomposition.

At the level of tensor realisations this means that Y0[w + 1, 1] is a summand in
the orthogonal decomposition of Y (n+ w − 2, 2) and so for K any nonzero tensor
from the space Y0[w+1, 1] there is a Young symmetriser Y (n+w−2, 2) which does
not annihilate

K ⊗ δ ⊗ · · · ⊗ δ︸ ︷︷ ︸
n/2−1

.

Applying this Young symmetriser to the displayed tensor, let us denote the image
by Ψ. Then Ψ ∈ Y (n + w − 2, 2), and so letting m := n + w − 2, we have, in
particular, that Ψ = Ψa1···amb1b2 = Ψ(a1···am)(b1b2).

We can view Ψ as a (constant) covariant tensor on Rn, as an affine space, and
in this setting we define ψj1j2 := Ψi1···imj1j2x

i1 · · ·xim , where xi are the standard
coordinates. Let p be the origin in Rn (with n ≥ 4 even as usual) and take g0 :=∑n

1 dx
i ·dxi so the component matrix of g0 is δ. Then we claim that ψ is a solution

to (4.2)–(4.6).
First note that, since ψ is homogeneous of degree m, (4.2)–(4.4) are satisfied

except possibly for ` = m in (4.2) and ` = w− 2 in (4.4). In both cases the tensors
on the left-hand sides are obtained by algebraic operations of symmetrisation and
tracing from the tensor Ψ. These operations are SO(n)-equivariant and, since also
the map from K to Ψ is SO(n)-equivariant, we see that the maps from K to these
tensors are SO(n)-equivariant. The same comment applies to the left-hand side of
(4.5) (for n ≥ 6). Consider first (4.2) with ` = m. Note that ∇(bm···b3Pb2b1)(0)
takes values in Y (m) and that, as an SO(n)-module, (m) decomposes into a direct
sum [m] ⊕ [m − 2] ⊕ · · · (terminating in [1] or [0] according to the parity of m).
Thus if ∇(bm···b3Pb2b1)(0) were nonzero for any K, then, by the composition of the
linear equivariant operation mentioned with the projection to SO(n)-irreducible
components, this would imply, when n ≥ 6, the existence of a nontrivial SO(n)-
module homomorphism [w + 1, 1]→ [q] for some q ∈ N,

· · ·
0 → · · ·

0 ,

or similarly in dimension 4 it would imply the existence of a nontrivial SO(n)-
module homomorphism ([w + 1, 1] ⊕ [w + 1,−1]) → [q] for some q ∈ N. These
equivariant mappings are impossible since for any w ∈ N, [w + 1, 1] and [q] (and
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[w + 1,−1] if n = 4) are distinct irreducible SO(n)-modules. An almost identical
argument shows that (4.5) holds. As an SO(n)-space, (w+ 2) decomposes orthogo-
nally to [w+2]⊕ [w]⊕· · · and so if ∆n/2−3∇bc(aw+2···a3Ca2

b
a1)

c(0) were nonzero for
any K, then we would once again arrive at a contradiction by deducing a nontrivial
linear SO(n)-mapping [w + 1, 1]→ [q] (or ([w + 1, 1]⊕ [w + 1,−1])→ [q] if n = 4)
for some q ∈ N. Finally we consider (4.4) with ` = w − 2 ≥ 0. Note first that
∇(w−2)∆n/2−2∇bcCabdc(0) has values in Y (w − 2) ⊗ Y (2). For the SL(n) tensor
product we have the decomposition (w − 2) ⊗ (2) = (w) ⊕ (w − 1, 1)⊕ (w − 2, 2).
The SO(n)-branch components of (w), (w − 1, 1) and (w − 2, 2) are all modules of
the form [a, b] where a + b ≤ w (where b may be 0). In particular [w + 1, 1] (and
[w + 1,−1] for the case n = 4) are not summands in the SO(n)-decomposition of
(w−2)⊗ (2) and so arguing as in the previous cases, we immediately conclude that
∇(w−2)∆n/2−2∇bcCabdc(0) must vanish.

It remains to establish (4.6). First we observe that there is a nontrivial (n/2−1)-
fold trace of Ψ which takes values in Y0[w + 1, 1]. Up to scale this inverts the map
which inserts Y0[w+1, 1] as an orthogonal summand in Y (m, 2). Next observe that
if we skew over the pairs a1b1 and a2b2 of Ψa1a2···amb1b2 and then on the result
symmetrise over the indices a1 · · · am and also over the indices b1b2, then the result
is a nonzero multiple of Ψ. In fact this composition of mappings can be taken as
(up to scale) the definition of the Young symmetriser projection onto the space
Y (m, 2) containing Ψ. Since, up to a nonzero scale, Ψa1···amb1b2 is ∇am···a1ψb1b2 , it
follows from (4.1) that Ψ is a symmetry adjustment of ∇(m−2)R(0). On the other
hand from (4.2) and the linearisations of (2.1) and (2.3), it follows that ∇(m−2)R(0)
is a trace adjustment of ∇(m−2)C(0) (cf. the discussion of normal scale in Section
2). Combining these observations, it follows that there is a symmetry and trace
operation on ∇(m−2)C(0) with a nontrivial outcome taking values in Y0[w + 1, 1].
Using the symmetries of C and the linearisation of the Bianchi identity (2.4), it is
easily established that, up to scale, (4.6) is the unique possibility. �
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Math. France, Paris 2000. Preprint ESI 865, available for viewing on the internet at
http://www.esi.ac.at. MR 2002b:53033
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