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1 Introduction and overview

The study of scattering amplitudes in recent decades has led to tremendous advances in

both our understanding of quantum field theory and also our technical progress in com-

puting the predictions made for experiment. Much of this progress can be attributed to

the remarkable (and still surprising) simplicity of massless quantum field theories in four

dimensions. Any such theory turns out to possess a connection to Grassmannian geom-

etry [1–4] which has led to novel applications and greater understanding of perturbative

amplitudes for an expanding class of quantum theories. This is true despite the subtlety

involved in even defining the S-matrix for massless field theories! (But see [5, 6] for recent

progress on this problem.)

Many of the difficulties of working with massless quantum field theories can be post-

poned by focusing on loop integrands (‘the sum of Feynman diagrams’). At the integrand

level, there are several new and extremely powerful frameworks for expressing perturba-

tive scattering amplitudes of an increasingly general class of theories. These tools include

all-loop recursion relations [7, 8], bootstrap methods [9–11], Q-cuts [12], and the broad

reach of generalized [13–22] and prescriptive [23–29] unitarity. It remains to be seen, how-

ever, how much of the simplicity of integrands can survive loop integration. Considering

the extent to which the simplicity at the integrand-level arises specifically for theories of

massless particles in exactly four dimensions, and that it is precisely these features that

are responsible for infrared divergences whose regularization necessarily spoils them, it
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would not be surprising if much of this extra structure was lost to the infrared. Indeed,

it would be reasonable to be skeptical that anything remarkable would be found for the

actual infrared-safe quantities in which we are ultimately interested.

To test whether or not any of the niceness of amplitudes at the integrand-level survives

the wrath and fury (the infrared regularization) of loop integration, it would be reasonable

to simply ‘shut up and calculate’ — by any means necessary — and see what emerges in

the ‘[theoretical] data’, so to speak. Of course, this will always be easier to accomplish for

especially simple quantum field theories such as maximally supersymmetric (N =4) Yang-

Mills (‘sYM’) in the planar limit, for which the greatest computational leverage exists

(largely due to this theory’s special properties [30–35]).

There is a now-quite-famous example which illustrates what can be discovered through

such a ‘compute first, understand later’ strategy. It involves one of the simplest non-

constant and non-trivial infrared-safe quantities in planar sYM: the (BDS) remainder func-

tion for six particles at two-loop order. This quantity was determined through truly heroic

efforts, first numerically [20] and then analytically [36] — in both cases, starting from an

integrand-level expression obtained using unitarity-based methods; then regulating; then

integrating. Within months of the publication of the analytic result, however, breathtaking

simplicity was indeed found: the 18-page sum of hyperlogarithms in [36] could be written

in a single line [37]!

The ideas that led to the discovery of this simplicity would lead to a watershed of new

and powerful techniques developed hand-in-hand with even greater evidence of simplicity

surviving regularization and loop integration. Today, this particular quantity — the six-

particle remainder function in planar sYM — is known to seven(!) loops; and the seven-

particle remainder is known (at least at ‘symbol-level’) to four loops [38–49]. Interestingly,

after the two-loop result was found ‘the old fashioned way’ in [36] — namely, by integrating

Feynman integrands — all subsequent results were obtained using methods that made no

reference to loop integrands or loop integration whatsoever ! While these ideas have more

recently been applied to non-planar amplitudes in supersymmetric theories [50, 51] and

more broadly [51–60], they suffer from several fundamental limitations in applicability

— in multiplicity, in the understanding (and simplicity) of the kinds of transcendental

functions that arise in perturbation theory (including those described in e.g. [61]) — that

prevent these ideas from rewriting the methods taught in textbooks, say.

One of the key motivations for our present work is the question of how much simplicity

of loop integrands can be preserved through loop integration and regularization. Specifi-

cally, how can this bridge be crossed by direct and general methods — without reference

to any ansatz about the kinds of functions that may arise in particular cases. A key source

of hope that a more direct (and therefore general) connection between the remarkable inte-

grands for amplitudes in planar sYM [24–26] and the simple expressions that we now expect

to find for infrared-safe quantities is the is the existence of the regulator introduced in [24],

which allows infrared divergences to be regulated without breaking (dual-)conformal invari-

ance. Another critical source of optimism is the recent renaissance in direct-integration

technology for Feynman-parametric integrands [62–64] (see also [65, 66]).
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In this work, we test the robustness of this emerging bridge from integrands to inte-

grals in the highly non-trivial case of the seven-point remainder function at two loops. This

quantity was first determined at symbol-level in [67] (see also [68, 69]), and later upgraded

to a function-level result in [70]. Here, we start from the chiral integrand representa-

tion for the logarithm of the amplitude given in [23], use the conformal regulator of [24],

Feynman-parameterize these terms according to [71], and integrate each piece using the

technology of [62–64]. The result is a novel (if not superior) representation of the two-loop

remainder function, and a proof of concept that such a strategy can work. As a bonus,

by combining this result with that of [71] for six particles, we are able to determine all of

the scheme-dependent parts of the two-loop MHV-amplitude logarithm in the conformal

regularization scheme.

This work is organized as follows. We start in section 2 with a review of the local

integrands necessary for MHV amplitudes and their logarithms in planar sYM at two-loops

and how these integrands can be regulated while preserving dual-conformal invariance. In

section 3 we discuss how we can directly integrate each of the integrands needed for the

seven-particle logarithm, resulting in a representation in terms of explicit hyperlogarithmic

functions. Our main results regarding the heptagon remainder function are described

in section 4, where we determine the scheme-dependent parts of the logarithm of MHV

amplitudes in the conformal regularization scheme and compare these with what is found

for the Higgs regulator.

Available as supplementary material attached to this paper, we have prepared the

supplementary file heptagon logarithm seed data.m. This file contains: Feynman-

parametric integrands for the five (cyclic) seeds which generate the seven-point logarithm

at two loops; analytic expressions for each seed integral — given in terms of Goncharov

hyperlogarithms — obtained via direct integration; details regarding the novel alphabets

that arise for these integrals; and reference details regarding how our coordinates related

to those used by [70] in their representation of the two-loop heptagon remainder function.

2 Local integrands for (logarithms of) MHV amplitudes

In this section, we give a rapid review of the representation (in terms of local Feynman

integrals) of MHV amplitudes and their logarithms at two loops in the planar limit of

sYM. In [7] (see also the earlier work [20, 72, 73]), it was guessed (and checked) that the

n-particle MHV amplitude integrand could be represented as1

A(L=2)
n :=

1

2

∑

1≤a≤n
a<b<c<
d<n+a

, (2.1)

1Notice that we have dropped the typical notation indicating N(k=0)MHV degree in ‘A
(L)
n ’, as no other

helicity sectors will be considered in this work.
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where the double-pentagons, herein ‘Ω
[
(a,b),(c,d)

]
’, have precise loop-dependent numer-

ators (indicated by the wavy-lines in the figure) expressed in terms of momentum

twistors [74]:

=: Ω
[
(a,b),(c,d)

]
(2.2)

:=
〈(ℓ1)(a−1aa+1)

⋂
(b−1bb+1)〉〈badc〉〈(ℓ2)(c−1cc+1)

⋂
(d−1dd+1)〉

(ℓ1|a)(ℓ1|a+1)(ℓ1|b)(ℓ1|b+1)(ℓ1|ℓ2)(ℓ2|c)(ℓ2|c+1)(ℓ2|d)(ℓ2|d+1)
.

As usual, we are using the notations (a|b):= (xa − xb)
2 where xa are the dual coordinates

related to the momenta through pa =:xa+1 − xa, and 〈abcd〉 := det(za, zb, zc, zd) for the

ordinary four-brackets of momentum twistors.

We should clarify that the factor of ‘1/2’ appearing in (2.1) is really a symmetry

factor : it accounts for the fact that the summand includes each contribution exactly twice

— provided we view the integrand in (2.2) as being (implicitly) symmetrized with respect

to ℓ1 ↔ ℓ2; in particular, this factor of 1/2 could be dispensed by an instruction to ‘delete

duplicates’ from the r.h.s. (something often left implicit in the relevant literature). As

Ω
[
(a,b),(c,d)

]
and Ω

[
(c,d),(a,b)

]
are identical upon integration, we consider them equivalent

(a.k.a. ‘duplicates’) — a potential source of confusion below, for which we apologize.

Notice that the definition of Ω
[
(a,b),(c,d)

]
depends on up to twelve momentum twistors

{za−1, za, za+1}∪{zb−1, zb, zb+1}∪{zc−1, zc, zc+1}∪{zd−1, zd, zd+1} , (2.3)

with cyclic labeling understood. Especially for low multiplicity, these indices can overlap

considerably. When it is necessary to disambiguate the multiplicity n, implicit in the

definition (2.2) above, we will signify this by writing ‘Ω(n)
[
(a,b),(c,d)

]
’.

Shortly after the formula (2.1) appeared in [7], a similar expression was derived in [23]

for the four-dimensional integrand of the two-loop logarithm of the MHV amplitude,

log
(
An

)(L=2)
= A(L=2)

n − 1

2

(
A(L=1)

n

)2
= −1

4

∑

1≤a<n
a<c<b<
d<n+a

Ω
[
(a,b),(c,d)

]
. (2.4)

(As before, the factor of ‘1/4’ above is merely a symmetry factor: the appropriate prefactor

would be 1 times each term in the summand without duplication.) Notice that the summand

in (2.4) now excludes the possibility that a+1= b and — more importantly — the summand

requires that c∈{a+ 1,. . . ,b− 1}.
It is instructive to see a few instances of equation (2.4). Without symmetry factors,

but being explicit about the fact that cyclic seeds should be summed only without duplica-

tion, and being very careful about which cyclic seeds necessitate clarification about when

multiplicity matters, the two-loop logarithms of MHV amplitudes for 4-8 particles are as
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follows:

log
(
A4

)(2)
= −

[
Ω(4)

[
(2,4),(3,1)

]
+ cyclic4

(no dupl.)

]
= −Ω(4)

[
(2,4),(3,1)

]
, (2.5)

log
(
A5

)(2)
= −

[
Ω(5)

[
(2,4),(3,5)

]
+ cyclic5

(no dupl.)

]
= −

[
Ω(5)

[
(2,4),(3,5)

]
+ cyclic5

]
, (2.6)

log
(
A6

)(2)
= −

[
Ω
[
(2,4),(3,5)

]
+Ω(6)

[
(2,4),(3,6)

]
+Ω(6)

[
(2,5),(3,6)

]
+ cyclic6

(no dupl.)

]
, (2.7)

log
(
A7

)(2)
= −

[
Ω
[
(2,4),(3,5)

]
+Ω

[
(2,4),(3,6)

]
+Ω

[
(2,5),(3,6)

]

+Ω(7)
[
(2,4),(3,7)

]
+Ω(7)

[
(2,5),(3,7)

]
+ cyclic7

(no dupl.)

]
,

(2.8)

log
(
A8

)(2)
= −

[
Ω
[
(2,4),(3,5)

]
+Ω

[
(2,4),(3,6)

]
+Ω

[
(2,5),(3,6)

]

+Ω
[
(2,4),(3,7)

]
+Ω

[
(2,5),(3,7)

]
+Ω

[
(2,6),(3,7)

]
+Ω(8)

[
(2,4),(3,8)

]

+Ω(8)
[
(2,5),(3,8)

]
+Ω(8)

[
(2,5),(4,8)

]
+Ω(8)

[
(2,6),(4,8)

]
+ cyclic8

(no dupl.)

]
.

(2.9)

There are a couple of things to notice about these representations. First, observe that

for more than six particles the majority of cyclic seeds can be chosen to be independent

of n; therefore, these contributions remain unchanged beyond some threshold multiplicity.

The second thing to notice is that it is fairly easy to organize contributions according to

their degrees of infrared divergence:2

log2 -divergent: Ω
[
(2,4),(3,5)

]
only,

log1 -divergent: Ω
[
(2,4),(3,b)

]
for b > 5,

(2.10)

with all other integrals finite. In particular, notice that the only cyclic seed with a log2-

divergence is Ω
[
(2,4),(3,5)

]
and that this integral is n-independent once it is evaluated for

any n ≥ 6. We will return to the consequences of this fact momentarily.

To regulate these divergences, we employ the so-called ‘dual-conformal’ regulariza-

tion scheme introduced in [24], wherein each (massless) external particle is taken off the

lightcone by an amount proportional to the conformally-invariant parameter denoted ‘δ’

according to

p2a 7→ p2a + δ
(pa−1 + pa)

2(pa + pa+1)
2

(pa−1 + pa + pa+1)2
= (a|a+ 1) + δ

(a− 1|a+ 1)(a|a+ 2)

(a− 1|a+ 2)
. (2.11)

(There is an alternative definition of this regulator expressed in terms of dual-momentum

coordinates — where each dual coordinate xa is shifted by a small amount in the direction

of its cyclic neighbor, xa+1; these two definitions are not identical for finite δ, but they

result in regulated integrals equivalent to O(δ).)

2In dimensional regularization, ‘logk-divergent’ should be understood as ‘1/ǫk-divergent’.
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2.1 Specific contributions to the seven-point logarithm

As seven particles is the primary example of interest to us here, it is worthwhile to give

the five cyclic generators in (2.8) individual names. Let us therefore define

I1 := Ω
[
(2,4),(3,5)

]
, I2 := Ω

[
(2,4),(3,6)

]
, I3 := Ω

[
(2,5),(3,6)

]
,

I4 := Ω(7)
[
(2,4),(3,7)

]
, I5 := Ω(7)

[
(2,5),(3,7)

]
.

(2.12)

Notice that from our discussion above, only I1 will be log2-divergent in the infrared upon

integration, while {I2, I4} will be log1-divergent; the two seeds {I3, I5} are infrared finite,

and therefore do not require any regularization.

We will discuss how each of the contributions (2.12) can be evaluated in the following

section. But already now we can observe an important consequence of the fact that I1
depends exclusively on momentum twistors {z1, . . . , z6}: its evaluation will be the same for

seven particles as it was for six. More specifically, I1 is essentially identical to what was

computed (as part of what was called ‘I15’) in [71]

I1 :=

∫
d4ℓ1d

4ℓ2 I1 (2.13)

=
1

4

[
2ζ2 log

2(δ)+6ζ3

[
log(δ)+1

]
− ζ22−2ζ2G0,1(1−w)+G0,0,0,1(1−w)−G0,1,0,1(1−w)

]
,

where

w :=
(3|5)(6|2)
(3|6)(5|2) =

〈23 45〉〈56 12〉
〈23 56〉〈45 12〉 . (2.14)

Notice that we are reserving calligraphic symbols to denote integrands and italic symbols

to indicate integrals.

As I1 is the only cyclic seed with a log2-divergence for arbitrary n, it is wholly re-

sponsible for the leading divergence of the logarithm of MHV amplitudes at two loops.

The coefficient of this divergence is related to the (scheme independent) cusp anomalous

dimension, and the attentive reader can already see that (2.13) captures the right behavior.

We will see this in detail in section 4 below; but before we do, it is worthwhile to describe

how the other seven-point seeds have been evaluated analytically.

3 Feynman parameterization and direct integration

Following the strategy described in [71], it is straightforward to Feynman-parameterize and

regulate each of the contributions (2.12). For each of the double-pentagon integrals, this

will result in a rational, five-dimensional parametric integral representation of the form3

Ii :=

∞∫

0

[
d3~α

]
d2~β Ii

(
~α, ~β; {z1, . . . , z7}, δ

)
(3.1)

3We hope the reader will forgive our abuse of notation in using ‘Ii’ to denote both the loop-momentum-

space and Feynman-parametric integrands.
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In the integral above,
[
d3~α

]
:=d4~α δ

(
αj−1

)
(for any j) represents a projective, 3-dimensional

volume-form; while the β integrations are not taken to be projective. This distinction is

largely irrelevant due to the Cheng-Wu theorem [75]; but it reflects the way in which

the parametric representations were derived via [71], and we find it useful to keep this

information. In the supplementary material, we provide a parametric representation of

each of the seven-point integrals in (2.12).

3.1 (Cluster) coordinate charts for heptagon integrals

In (2.2) we have given the formula for Ω
[
(a,b),(c,d)

]
in terms of momentum twistors za ∈ P

3

for a = 1, . . . , n that parameterize the kinematic space of n massless particles. As described

in detail in [65] a momentum-twistor parameterization is preferred over one expressed in

terms of dual-momentum x-coordinates, as twistor space immediately provides us with an

integrand that is rational in terms of an independent set of conformal variables.

It turns out that the default cluster coordinates on G+(4, n) of the Mathematica

package positroids [76] provide a very convenient chart for our present purposes. For a

more detailed discussion of these coordinates we again refer the reader to [65]. For seven

points, we can think of these coordinates as parameterizing seven momentum twistors

Z =:(z1 · · · z7) according to

Z({eia}):=



1 1 + e36 + e37 e36 + (1 + e26)e

3
7 e26e

3
7 0 0 0

0 1 1 + e26 + e27 e26 + (1 + e16)e
2
7 e16e

2
7 0 0

0 0 1 1 + e16 + e17 e16 + e17 e17 0
0 0 0 1 1 1 1


 ; (3.2)

or, if viewed as coordinates (maps from G+(4, 7) 7→ R
6), the parameters {eia} correspond

to the conformal cross-ratios

e16 :=
〈1234〉〈1256〉
〈1236〉〈1245〉 , e26 :=

〈1235〉〈1456〉
〈1256〉〈1345〉 , e36 :=

〈1245〉〈3456〉
〈1456〉〈2345〉 ,

e17 :=
〈1234〉〈1235〉〈1267〉
〈1236〉〈1237〉〈1245〉 , e27 :=

〈1236〉〈1245〉〈1567〉
〈1256〉〈1267〉〈1345〉 , e37 :=

〈1256〉〈1345〉〈4567〉
〈1456〉〈1567〉〈2345〉 .

(3.3)

3.2 Divide and conquer: parametric integration via various pathways

The seed integrands expressed in this way can be integrated in terms of hyperloga-

rithms [77–79] (e.g. using HyperInt [63, 64]) if there exists an order of the integration

variables in which the integrand is linearly reducible. Näıvely, however, this turns out not

to be the case for any of the integrals at hand: all require some minor ‘tricks’ of integration

analogous to those discussed in, for example, [65, 66, 71, 78, 80].

Among the integration techniques required are those that allow us to extract the

leading terms in the limit of δ→0+ (for the integrals which require regularization). We were

able to effectively use the methods discussed in [71]; we refer the reader to appendix B.1 and

the ancillary files of that work for a more thorough explanation and illustrative examples.

Of the two infrared finite integral seeds, only I5 required mild cleverness to integrate

directly. For this integral, a strategy which started along similar lines to that described

in [66] worked quite well. Specifically, starting from the Feynman-parametric integrand

– 7 –
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representation of the form (3.1) (provided in the supplementary material), we found that

the integrals over α2, β1, and β2 could each be performed rationally — i.e. without intro-

ducing any algebraic dependence on the remaining integration variables in the arguments

of the hyperlogarithms or their prefactors.

The (projective) two-fold parametric representation of I5 obtained in this way suffers

from a mild problem all-too familiar in these examples: integration in any one of the re-

maining variables would result in some terms with a square root depending (quadratically)

on the final integration variable. Such an obstruction is easy to overcome by changing vari-

ables (Euler substitution) as described in e.g. [78, 80]. But a better pathway to integration

turns out to exist: the individual terms of the two-fold parametric representation of I5 can

be divided into groups which separately avoid this issue with respect to integration in α4

or α1. This results in a final expression with fewer ‘spurious’ algebraic symbol letters —

to be discussed in the next section.

3.3 Refining the results of integration (removing spurious letters)

Following the strategies discussed above, it was fairly easy to obtain hyperlogarithmic

(regulated, if necessary) expressions for integrals {I1, . . . , I4}; but integration of I5 required
some cleverness, resulting in a representation of I5 that is considerably more complicated

in two key aspects: first, the representation we obtained for I5 was not manifestly pure in

the sense of [23, 81] — namely, it was expressed as a sum of hyperlogarithms with non-

constant (algebraic) coefficients; and second, it was expressed in terms of hyperlogarithms

with many (suspected to be ‘spurious’) algebraic branch points. Let us discuss each of

these complications in turn.

The first complication, regarding the non-manifest ‘purity’ of I5 turns out to be

straightforward to deal with. First, we should clarify why we expected I5 to be pure de-

spite its representation. Although the conformal regulator is known to spoil an integrand’s

purity (see the discussion in [71]), we strongly expect the logarithm of the amplitude (the

cyclic sum of all seeds) to be pure; as {I1, . . . , I4} were individually pure, it would require

considerable magic for impurities of I5 to cancel amongst themselves in the cyclic sum.

Setting aside our expectations about I5’s purity, it turns out to be fairly easy to test

whether or not any non-manifestly pure sum of hyperlogarithms is in fact pure. Suppose

that some non-manifestly pure sum of hyperlogarithms I({eia}) depending on parameters

{eia} is in fact pure; then we should be able to re-express it in terms of some basis of

hyperlogarithms {Gβ}:

I({eia}):=
∑

α

Rα({eia})Gα({eia}) ⇒
∑

β

cβGβ

(
{eia}

)
, (3.4)

where Rα are rational(/algebraic)-function prefactors, cβ are constants, and Gα, Gβ mul-

tiple polylogarithms. In order for (3.4) to be true, there would need to be some relations

among the functions Gα. Crucially, any such relations would necessarily be linear and have

constant coefficients — as all relations between multiple polylogarithms are expected to

preserve transcendental weight and not involve any rational functions of their arguments.

– 8 –
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Now suppose we were to Taylor-expand each coefficient Rα in (3.4) around some point

êia where all the Rα’s are non-singular. Then we would have

∑

α




∞∑

j=0

R(j)
α

(
eia − êia

)j


Gα({eia}) =

∑

β

cβGβ

(
{eia}

)
. (3.5)

Since all purported relations among the {Gα} are linear, this requires that the identity (3.5)

holds for each term in the Taylor series separately. In particular, it must hold at leading

order. Moreover, as each R
(0)
α is just some constant, this term in the left-hand side of (3.5)

is itself pure.

The above discussion shows that when an integral is in fact pure, any representation

like that on the l.h.s. of (3.4) can be replaced by series-expanding each coefficient to leading

order around any non-singular point, resulting in a manifestly pure representation. To test

whether or not an integral is in fact pure, we can simply evaluate both ends of this algorithm

numerically and check that they agree. For I5 we have checked in this way that it is in

fact pure, and have provided a manifestly pure representation (obtained in this way) in the

supplementary material.

The second complication about the representation of I5 obtained in the manner de-

scribed above (namely, divide and conquer) is that this method has a tendency to introduce

‘spurious’ branch points among terms (which cancel between the divided pieces). When

these spurious branch points are not rational in the variables {eia}, we know of no general

strategy to canonically eliminate them (as we would by choosing a fibration basis, for ex-

ample, had they been rational). Removing a dependence on spurious square roots from

polylogarithmic expressions is in general a difficult problem, and one we will not attempt

to solve here.

Although we have not found a representation for I5 free of spurious square-root branch

points, we are able to confirm that all non-rational branch points are indeed spurious. To

do this, we first compute the symbol [37, 82] of I5, resulting in an alphabet of 85 letters, 22

of which involve square roots. These algebraic letters appear in pairs of the form ρ±√
σ,

which can be multiplied to generate root-free letters, leaving us with only 11 algebraic

letters to analyze.

These 11 spurious letters are not all independent. Unlike for symbols involving only

rational letters, merely factoring square-root letters is not enough to trivialize all identities

due to the absence of a unique factorization domain (for further discussion, see [66]).

Here we do not need to make use of the more mathematically sophisticated methods [66].

Instead, we simply observe that products of pairs of our remaining eleven letters can yield

letters that appear elsewhere in the symbol. By taking into account all such pairings, we

find six relations between the 11 letters, and imposing these results in a manifestly rational

symbol. This rationalized symbol for I5 can now be viewed as canonical, and consists of

47 letters (functions of momentum twistor cross-ratios).

From the symbol of I5, it would be possible to reconstruct a rational, hyperlogarithmic

representation — using essentially the same techniques by which the two-loop heptagon

remainder function was first obtained in [70] from its symbol, which in turn was first

– 9 –
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computed in [67] (see also [68, 69]). We choose not to pursue this for I5 because functional

reconstruction is not our goal here. Rather, we are interested in how far we may push

direct integration of local integrals. One can easily check that the representation we give

for I5 — despite its spurious letters — perfectly matches Monte Carlo integration.

4 The two-loop heptagon remainder function

We are now ready to describe the results of our analysis — to discover the form of the

(all-orders) relationship between the logarithm of the MHV amplitude and the so-called

‘BDS’ remainder function [20] in the conformal regularization scheme. Both for the sake of

comparison and in order to introduce some useful notation, let us first pause to review the

form of this relationship in the so-called ‘Higgs’ regularization scheme described in [83, 84].

4.1 Exempli gratia: Higgs-regulated (logarithms of) MHV amplitudes

At leading order in the coupling a := g2Nc/(8π
2), the MHV amplitude (divided by the tree)

and its logarithm are identical (in any regularization scheme ‘reg.’):

log
(
An,reg.

)
=:

∞∑

ℓ=1

aℓ log
(
An,reg.

)(ℓ)
= aA(1)

n,reg.+a2
[
A(2)

n,reg.−
1

2

(
A(1)

n,reg.

)2
]
+O(a3) . (4.1)

(Recall our convention that calligraphic symbols such as A denote integrands while italic

symbols such as A denote integrals.) As such, it is useful to first review the form of the

one-loop amplitude in the relevant regularization scheme.

For the Higgs regulator described in [83, 84], one loop MHV amplitudes take the form

A
(1)
n,Higgs =: −

1

4

[
n∑

a=1

log2
(

m2
a

(a|a+ 2)

)]
+ F

(1)
n,Higgs +O(m2

a) , (4.2)

where F
(1)
n,Higgs is the so-called4 ‘finite part’ of the one-loop amplitude in this scheme, and

where we have added an index ‘a’∈ [n] to distinguish between the various internal masses

m2
a (which are typically taken to be the same). Notice that we are using dual-momentum

notation where (a|b):= (xa − xb)
2 := (pa + . . . + pb−1)

2. It is worthwhile to consider the

direction along the Higgs branch where these masses scale according to

m2
a 7→ δ

(a− 1|a+ 1)(a|a+ 2)

(a− 1|a+ 2)
(4.3)

under which

A
(1)
n,Higgs 7−→

(4.3)
−1

4

[
n log2(δ)+log(δ) log(w1 · · ·wn)+

n∑

a=1

log2
(
(a|a+2)

(a|a+3)

)]
+F

(1)
n,Higgs+O(δ) ,

(4.4)

where the cross-ratio wa is given by

wa :=
(a|a+ 2)(a+ 3|a+ 5)

(a|a+ 3)(a+ 2|a+ 5)
. (4.5)

4It is so-called despite the fact that the leading term of (4.2) includes parts finite as m2
a→0.

– 10 –
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This is extremely similar to the form of the one loop amplitude in the conformal regular-

ization scheme. Before we get to that, however, let us first recall a few more facts about

the Higgs regulator and the form that the logarithm (4.1) takes in this scheme.

In [84], the all-order form of the logarithm (4.1) was represented according to the BDS

ansatz [85] as

log(An,Higgs) =: −
γc(a)

16
A

(1)
n,Higgs+

G̃0(a)

2

n∑

a=1

log

(
m2

a

(a|a+2)

)
+nf̃(a)+C̃(a)+Rn(a)

7−→
(4.3)

− γc(a)

16
A

(1)
n,Higgs+

G̃0(a)

2

[
n log(δ)+

1

2
log(w1 · · ·wn)

]

+nf̃(a)+C̃(a)+Rn(a)

(4.6)

where γc(a) is the (scheme-independent) cusp anomalous dimension [86, 87]

γc(a) =:
∞∑

ℓ=1

aℓγ(ℓ)c =4a−4ζ2a
2+22ζ4a

3−
(
24ζ32+4ζ23+2ζ2 ζ4+ ζ6

)
a4+O(a5) , (4.7)

G̃0(a), f̃(a), C̃(a) are scheme-dependent functions of the coupling and Rn(a) is the remain-

der function [20]. In the Higgs regularization scheme these functions were determined

by [83, 84] to be

G̃0(a) = −ζ3a
2 +O(a3), f̃(a) =

1

2
ζ4a

2 +O(a3), C̃(a) = −5

4
ζ4a

2 +O(a3) , (4.8)

at two-loop order. (See e.g. [88, 89] for more recent, higher-order results.)

With this comparison in mind, let us now return to the main purpose of this work and

describe the form the logarithm takes for the conformal regularization scheme.

4.2 Conformally-regulated (logarithms of) MHV amplitudes

Using the conformal regulator described in [24] the divergences of one-loop amplitudes take

a form strikingly similar to that of (4.4). In this scheme, the n-point MHV amplitude is

given by5

A
(1)
n,DCI := − 1

2

[
n log2(δ) + log(δ) log(w1 · · ·wn) + nζ2 + F

(1)
n,DCI

]
+O(δ) , (4.9)

where the cross-ratios wa are the same as those defined in (4.5) and

F
(1)
n,DCI =

[
⌊n/2⌋+1∑

b=4

Li2(1− u1,b) +
1

2
log(u1,b) log(v1,b)

]
+ cyclicn

(delete duplicates)

(4.10)

where the cross-ratios ua,b and va,b are given by

ua,b :=
(a+ 1|b)(b+ 1|a)
(a+ 1|b+ 1)(b|a) , va,b :=

(a− 1|a+ 1)(a|a+ 2)(b− 1|b+ 1)(b|b+ 2)

(a− 1|a+ 2)(a|b)(b− 1|b+ 2)(b+ 1|a+ 1)
. (4.11)

5We have added a factor of 1/2 relative to [24] to match conventions for the coupling a.
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In terms of the regulated amplitude at one loop (4.9), it was suggested in [71] that the

conformally regulated logarithm (4.1) would take the form

log(An,DCI) =: −
γc(a)

8
A

(1)
n,DCI+

Bδ(a)

2

[
n log(δ) + n+

1

2
log(w1 · · ·wn)

]

+ nf̂(a) + Ĉ(a) +Rn(a)

(4.12)

where Bδ(a):= 3ζ3a
2+O(a3) is the so-called virtual anomalous dimension [90, 91], and the

functions f̂(a) and Ĉ(a) are analogous to f̃(a) and C̃(a) — which could not be disentangled

from each other knowing the logarithm for six particles alone.

In [71], the six-point logarithm was shown to take the form6

log(A6,DCI)
(2)=−ζ2A

(1)
6,DCI+

3

2
ζ3

[
6log(δ)+6+

1

2
log(w1 · · ·w6)

]
− 49π4

720
+R

(2)
6 ; (4.13)

and for five particles, starting from representation given in (2.6), it is not hard to show

that7

log(A5,DCI)
(2) = −ζ2A

(1)
5,DCI +

3

2
ζ3

[
5 log(δ) + 5 + log(w1 · · ·w5)

]
− 17π4

288
+R

(2)
5 . (4.14)

Combining this with our new result for seven particles,

log(A7,DCI)
(2) = −ζ2A

(1)
7,DCI+

3

2
ζ3

[
7 log(δ) + 7 +

1

2
log(w1 · · ·w7)

]
− 37π4

480
+R

(2)
7 , (4.15)

allows us to conclude that, in the conformal regularization scheme,

f̂(a) = −1

2

(
ζ4 +

1

4
ζ22

)
a2 +O(a3) , Ĉ(a) = −1

2
ζ22a

2 +O(a3) . (4.16)

Although already mentioned in the introduction, it is worth pausing to note that, in

the representation of the logarithm (4.15), the remainder function R
(2)
7 numerically matches

the analytic expression derived in [70] from the symbol (from [67]).

4.3 Symbology and the alphabets of individual integral contributions

Interestingly, almost all of the seed integrals we compute contain symbol letters that are

not present in the full remainder function. The integral I1 is the only exception: it in fact

requires only the ordinary hexagon-function symbol alphabet. However, each of the other

integrals involve spurious (but rational) symbol letters. Specifically, each of {I2, I3, I4}
involve two ‘new’ letters relative to the remainder function, and I5 involves nine additional

letters (after all the simplifications described in subsection 3.3). In cyclic sum, however, all

these additional letters cancel — and quite nontrivially. For example, among these contri-

butions only the entire cyclic sum of
(
I2 + I3 + I4 + I5

)
is free of ‘spurious’ letters relative

to the 42 letter alphabet expected for heptagon functions [70] (see also [47–49, 92–96]). For

the sake of those readers interested in more details, we have provided the additional symbol

letters that arise for the cyclic seed integrals in the supplementary material attached to

this work.
6Nota bene: for six particles, (w1 · · ·w6) = (w1w2w3)

2, with wi more familiarly denoted {u, v, w}.
7Nota bene: for five particles, wa = 1 for all a and R

(ℓ)
5 = 0 for all ℓ.
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5 Discussion

In this paper, we have computed the logarithm of the two-loop MHV amplitude at seven

points in planar, maximally supersymmetric (N =4) super Yang-Mills theory directly from

a local integrand representation. In doing so, we have shown that carefully preserving the

symmetries of the theory makes computations dramatically easier, even when using other-

wise traditional methods. However, these methods are still not optimal: as we have seen, is-

sues of linear reducibility make some of the integrals we find unsuitable for expansion into a

fibration basis (by known methods), resulting in a sometimes unnecessarily-spurious symbol

alphabet. It would be interesting to see whether other common methods (for example, dif-

ferential equations, or integration-by-parts reduction) can simplify this calculation further.

In using the dual conformal regularization of [71], we have checked the conjectures for

the scheme dependence of the logarithm of the amplitude put forward in that paper. It

would be interesting to check these conjectures at higher loop orders, and more generally,

to understand in detail the relationship between the conformal regulator and the Higgs

regulator.
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