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Abstract: The four-dimensional S-matrix is reconsidered as a correlator on the celestial

sphere at null infinity. Asymptotic particle states can be characterized by the point at

which they enter or exit the celestial sphere as well as their SL(2,C) Lorentz quantum

numbers: namely their conformal scaling dimension and spin h ± h̄ instead of the energy

and momentum. This characterization precludes the notion of a soft particle whose en-

ergy is taken to zero. We propose it should be replaced by the notion of a conformally

soft particle with h = 0 or h̄ = 0. For photons we explicitly construct conformally soft

SL(2,C) currents with dimensions (1, 0) and identify them with the generator of a U(1)

Kac-Moody symmetry on the celestial sphere. For gravity the generator of celestial confor-

mal symmetry is constructed from a (2, 0) SL(2,C) primary wavefunction. Interestingly,

BMS supertranslations are generated by a spin-one weight ( 3
2 ,

1
2) operator, which neverthe-

less shares holomorphic characteristics of a conformally soft operator. This is because the

right hand side of its OPE with a weight (h, h̄) operator Oh,h̄ involves the shifted operator

Oh+ 1
2
,h̄+ 1

2
. This OPE relation looks quite unusual from the celestial CFT2 perspective

but is equivalent to the leading soft graviton theorem and may usefully constrain celestial

correlators in quantum gravity.
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1 Introduction

In the conventional formulation of quantum field theory (QFT) an important role is played

by soft particles whose energy ω → 0. Scatttering amplitudes containing such particles

obey special relations which are central to the consistency of QFT [1, 2]. Recently, a

reformulation of 4D QFT has been explored in which asymptotic particle states are de-

scribed by SL(2,C)-Lorentz primary wavefunctions instead of the usual energy-momentum

eigenstates [3–14]. Such wavefunctions are labelled by their SL(2,C) conformal dimensions

(h, h̄) (related to the twist) and their asymptotic positions on the celestial sphere, while
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the S-matrix takes the form of a correlation function in a celestial 2D CFT. In general one

expects that some features of scattering will be easier to understand in the new formulation

while others will become harder.

One thing which is lost in the new formulation is the notion of a soft particle. SL(2,C)

primary wavefunctions are not energy eigenstates so the energy cannot be taken to zero.

Instead, we have the notion of a conformally soft particle for which the conformal dimension

either h or h̄ is taken to zero. The symmetries of the celestial sphere imply that the

scattering of such particles also obey special relations.

In this paper we will construct several interesting examples of conformally soft par-

ticles. In an elegant recent paper Pasterski and Shao [9] showed for photons that the

conformal primary wavefunctions in unitary principal series with dimensions (1 + iλ
2 ,

iλ
2 )

form a complete basis (for one helicity), and that the λ→ 0 wavefunction is the Goldstone

mode for spontaneously broken large gauge symmetries. This is an example of a confor-

mally soft particle which simply decouples from all scattering amplitudes. However the

canonical partner of the Goldstone mode was not considered in the discussion of [9]. Here

we show that an additional logarithmic branch of the solution space appears for λ → 0,

and construct from it the missing canonical partner of the Goldstone mode. This con-

formally soft mode does not decouple from scattering amplitudes. Rather it generates a

Kac-Moody symmetry on the celestial sphere [4, 5] which can be identified with the large

gauge symmetry of QED.

The situation is even more interesting for gravitons. For this case it was shown [9]

that the conformal primary wavefunctions in the unitary principal series with dimensions

(3
2 + iλ

2 ,−
1
2 + iλ

2 ) form a complete basis (for one helicity). Taking λ → 0, we again get

a Goldstone mode for spontaneously broken BMS supertranslation symmetry which de-

couples from scattering. Again a logarithmic branch appears with a canonically conjugate

wavefunctions which has dimension ( 3
2 ,−

1
2) and enters into the soft part of the supertrans-

lation charge. This is not conformally soft in the sense stated above since both left and right

dimensions are nonzero. However we see that a suitable divergence of this wavefunction

is related to the dimension ( 3
2 ,

1
2) current Pz [15, 16] which generates supertranslations on

the celestial sphere. More specifically, OPEs with Pz take one operator to a second canon-

ically related one with dimensions increased by ( 1
2 ,

1
2). Hence OPEs involving Pz have the

1
z−w factor characteristic of a holomorphic current. Finally we consider wavefunctions with

λ = −i and hence dimensions (2, 0). A suitable convolution of these wavefunctions with the

field operator at null infinity gives precisely the known formula [17] for the 2D stress tensor

on the celestial sphere, previously obtained by reverse engineering from the subleading soft

graviton theorem [18].

The paper is organized as follows. We start in section 2 by introducing a map between

Minkowski space and the celestial sphere at null infinity. In section 3, we construct the

conformally soft photon, which has conformal dimensions (1, 0), and show that it is the

canonical partner of the Goldstone mode associated to large gauge transformations at null

infinity. In section 4, we turn to the gravity case and construct a ( 3
2 ,−

1
2) wavefunction

and show that it is the canonical partner of the spin-two Goldstone mode, and is related

to the current which generates supertranslations. We finally construct a conformally soft
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graviton mode of conformal dimensions (2, 0) and discuss its relation to the 2D stress tensor

for 4D gravity. In the appendix, we collect details about the inner product of conformal

primaries, the shadow transform, and provide explicit expressions for the conformally soft

and Goldstone modes at null infinity.

2 Minkowski → celestial sphere

Let Xµ, with µ=0, 1, 2, 3, be the Cartesian coordinates1 on the four-dimensional Minkowski

spacetime R1,3. Massless particles exit flat spacetime at future null infinity where they

intersect the asymptotic sphere at infinity. This sphere is referred to as the celestial sphere

and denoted CS2. A natural map between Minkowski spacetime and the celestial sphere is

obtained by going to Bondi coordinates (u, r, z, z̄):

X0 = u+ r , X i = rX̂i(z, z̄) , X̂i(z, z̄) =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1− zz̄) . (2.1)

In these coordinates the Minkowski line element is

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ , (2.2)

where u is the retarded time, r is the radial coordinate and z is a complex coordinate on

the unit sphere with metric

γzz̄ =
2

(1 + zz̄)2
. (2.3)

A massless particle crosses the celestial sphere at a point (w, w̄) with momentum

pµ = ω
1+ww̄q

µ(w, w̄), with qµ(w, w̄) a null vector and ω ≥ 0 the energy. The null vector qµ

as a function of w, w̄ is

qµ(w, w̄) = (1 + ww̄,w + w̄,−i(w − w̄), 1− ww̄) . (2.4)

Under an SL(2,C) transformation

w → aw + b

cw + d
, w̄ → āw̄ + b̄

c̄w̄ + d̄
, (2.5)

where ad− bc = 1, qµ transforms as a vector up to a conformal weight,

qµ → qµ
′

= (cw + d)−1(c̄w̄ + d̄)−1Λµνq
ν , (2.6)

and Λ ν
µ is the associated SL(2,C) group element in the four-dimensional representation.2

Note that null vectors (2.4) satisfy

qµ(w, w̄)qµ(w′, w̄′) = −2|w − w′|2 , (2.7)

and the derivative of (2.4) with respect to w (w̄) is the photon polarization vector εµw (εµw̄)

of positive (negative) helicity:

∂wq
µ =
√

2εµw(q) = (w̄, 1,−i,−w̄) , ∂w̄q
µ =
√

2εµw̄(q) = (w, 1, i,−w) , (2.8)

1Our signature convention is ηµν = diag(−,+,+,+).
2For an explicit expression for Λ ν

µ in terms of a, b, c, d see for instance [19].
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satisfying

εw · q = 0 , εw · εw = 0 , εw · εw̄ = 1 , (2.9)

and similarly for w ↔ w̄. The completeness relationship is

εµwε
ν
w̄ + εµwε

ν
w̄ = ηµν +

1

2
(qµnν + nµqν) , (2.10)

with nµ = ∂w∂w̄q
µ = (1, 0, 0,−1). The graviton polarization tensor of positive (negative)

helicity is εµνww = εµwενw (εµνw̄w̄ = εµw̄ε
ν
w̄).

3 Conformally soft photons

3.1 Massless spin-one conformal primary

The outgoing (+) and incoming (−) massless spin-one conformal primary wavefunctions

(Xµ ∈ R1,3 and a = w, w̄ is the index on the celestial sphere) are3 [7, 9]

A∆,±
µ;a (Xµ;w, w̄) =

∂aqµ
(−q ·X ∓ iε)∆

+
(∂aq ·X) qµ

(−q ·X ∓ iε)∆+1
, (3.1)

where qµ is a function of (w, w̄) as given in (2.4). They transform as two-dimensional

conformal primaries with conformal dimensions (h, h̄) = 1
2(∆+J,∆−J) under an SL(2,C)

Lorentz transformation:

A∆,±
µ;a

(
ΛρνX

ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)2h(c̄w̄ + d̄)2h̄Λ σ

µ A
∆,±
σ;a (Xρ;w, w̄) . (3.2)

With the index a = w, the spin is J = +1 (positive helicity) while for a = w̄, J = −1

(negative helicity). The spin-one conformal primary wavefunctions satisfy both the radial

and the Lorenz gauge conditions

XµA∆,±
µ;a = 0 , ∂µA∆,±

µ;a = 0 , (3.3)

and are solutions to the four-dimensional Maxwell equations

∂ρ∂
ρA∆,±

µ;a = 0 . (3.4)

It is convenient to decompose, following [9, 10], (3.1) as

A∆,±
µ;a =

∆− 1

∆(∓i)∆Γ(∆)
V ∆,±
µ;a + ∂µα

∆,±
a , (3.5)

where

V ∆,±
µ;a (Xµ;w, w̄) = (∓i)∆Γ(∆)

∂aqµ
(−q ·X ∓ iε)∆

, α∆,±
a (Xµ;w, w̄) =

∂aq ·X
∆(−q ·X ∓ iε)∆

.

(3.6)

The residual gauge transformation α∆,±
a preserves the Lorenz gauge condition ∂2α∆,±

a = 0.

V ∆,±
µ;a satisfies the Lorenz gauge condition but not the radial gauge condition. It is gauge

3The iε-prescription is added to circumvent the singularity at q ·X = 0.
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equivalent to the conformal primary wavefunction (3.5) when ∆ 6= 1 and, with the given

normalization, is the Mellin transform of the canonically normalized plane wave4

V ∆,±
µ;a (Xµ;w, w̄) = ∂aqµ

∫ ∞
0

dω ω∆−1e±iωq·X−εω . (3.7)

Notice that V ∆ does not transform covariantly under SL(2,C) but the non-covariant terms

are pure residual gauge, hence, following [9], we will still call them conformal primaries.

3.1.1 Shadow transform

The shadow transform, which involves a convolution in w, maps a primary wavefunction

with conformal dimension ∆ to a primary wavefunction with conformal dimension 2 −∆.

The shadow transform of the spin-one conformal primary wavefunction A∆
µ;a (3.1) was

computed in [9] in terms of its uplift A∆
µ;ν to the embedding space R1,3; we review the

definition of the shadow transform and this computation in appendix B. The result for the

shadow wavefunction is [9].5

Ã2−∆,±
µ;a = (−X2)1−∆A2−∆,±

µ;a . (3.8)

One can verify that the shadow transform (3.8) of a spin one conformal primary is itself a

spin-one conformal primary.

3.1.2 Conformal basis

A conserved inner product between complex spin-one wavefunctions is

(A,A′) = −i
∫
d3Xi[AjF ′∗0j −A′j∗F0j ] , (3.9)

where i = 1, 2, 3 is the spatial index in R1,3 and ∗ denotes the complex conjugation. It

was shown by Pasterski and Shao in [9] that, with respect to the inner product (3.9), the

conformal primary wavefunctions V ∆ form a δ-function-normalizable basis on the principal

continuous series ∆ = 1 + iλ with λ ∈ R:

(V ∆,±
µ;a (Xµ;w, w̄), V ∆′,±

µ;a′ (Xµ;w′, w̄′)) = ±(2π)4 δ(λ− λ′)δaa′ δ(2)(w − w′) , (3.10)

up to zero-mode issues which we will discuss below. Alternatively, an equally good basis of

spin-one conformal primary wavefunctions is spanned by the shadow transformed conformal

primaries Ṽ ∆. The right-hand side of (3.10) is obtained by taking Mellin transforms of

the inner product of plane waves; we review the computation in appendix A. With a

4The Mellin transform of a function f(ω) is defined by f̄(∆) =
∫∞

0
dωω∆−1f(ω) and its inverse trans-

formation is f(ω) =
∫∞
−∞

d∆
2πi

ω−∆f̄(∆) with ω > 0. The iε prescription in (3.7) is necessary to regulate the

integral. Unless it is important for the discussion we will omit the regulator.
5In order to define the transform along the light-cone −X2 = 0 and q·X = 0 we need to prescribe a proper

regulator. This can be achieved by an imaginary timelike shift of Xµ → Xµ± iεV µ with V µ = (−1, 0, 0, 0).

We are grateful to S. Pasterski for discussions on this point.
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similar computation one finds that the inner product for the spin-one conformal primary

wavefunctions A∆ has an additional normalization factor:(
A∆,±
µ;a (Xµ;w,w̄),A∆′,±

µ;a′ (Xµ;w′, w̄′)
)

=
λsinh(πλ)e∓πλ

π(1+λ2)

(
V ∆,±
µ;a (Xµ;w,w̄),V ∆′,±

µ;a′ (Xµ;w′, w̄′)
)
.

(3.11)

We now turn to the important subtleties arising at λ = 0. The canonically normalized

V ∆ inner product (3.10) pairs ∆ = 1+ iλ modes with their ∆ = 1− iλ partners (recall that

the definition (3.9) involves a complex conjugation). However, for ∆ = 1, the primaries V ∆

are ill-defined and so is the inner product (3.10). To obtain a complete basis of conformal

primary wavefunctions on the principal continuous series ∆ = 1 + iλ with λ ∈ R, we need

to include a canonically paired set of zero modes. One of them is readily obtained by

the ∆ → 1 limit of the conformal primary wavefunction A∆. In this limit, the mode A∆

becomes a pure gauge transformation which can be recognized as the antipodally matched

large gauge transformation of [20]. This identifies A∆=1 as the Goldstone mode associated

to the spontaneously broken large gauge symmetries. However its canonical partner appears

to be missing.

In a momentum space decomposition, the canonical partner of the Goldstone mode is

known to be the ω → 0 soft photon [20]. We will show in the next section that the missing

partner of the Goldstone mode can be identified from a subtle logarithmic branch of the

solution space arising at ∆ = 1.

3.2 ∆ = 1 conformal modes

3.2.1 Goldstone mode

In the limit ∆ → 1, the conformal primary wavefunction A∆
µ;a (3.1) and its shadow

Ã2−∆
µ;a (3.8) coincide and reduce to a total derivative. We identify this pure gauge spin-one

conformal primary with the Goldstone mode:

AG
µ;a ≡ lim

∆→1
A∆,±
µ;a = ∂µα

1
a , (3.12)

where

α1
a = −∂aq ·X

q ·X
, (3.13)

is the ∆ → 1 limit of the pure gauge parameter (3.6), and does not depend on the ±iε
prescription.

3.2.2 Conformally soft mode

The Goldstone mode at ∆ = 1 is so far missing a canonical partner. Fortuitously, solutions

to Maxwell’s equations that are not pure gauge can be constructed from the following

combination of A∆ and its shadow:6

Alog,±
µ;a ≡ lim

∆→1
∂∆

(
A∆,±
µ;a + Ã2−∆,±

µ;a

)
. (3.14)

6The ± superscript refers to iε regulators at −X2 = 0 and q ·X = 0 given explicitly in the fully regulated

logarithmic mode.
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The conformal transformation of the mode (3.14) is that of a ∆ = 1 primary wavefunction

Alog,±
µ;a → (cw + d)1+J(c̄w̄ + d̄)1−JΛ ν

µ A
log,±
ν;a . (3.15)

The fully regulated logarithmic mode is

Alog,±
µ;a = −log

[
−X2 ∓ 2iεX0 − ε2

]
∂µ

(
∂a(q ·X ± iεq0)

−q ·X ∓ iεq0

)
. (3.16)

The presence of the logarithm is natural: when two linearly independent solutions to a dif-

ferential equation degenerate a logarithmic solution typically appears (see for instance [21]).

Its field strength F log,±
µν;a = ∂µA

log,±
ν;a − ∂νAlog,±

µ;a is

F log,±
µν;a = −

2(Xµ ± iεδ0
µ)

X2 ± 2iεX0 + ε2
∂ν

(
∂a(q ·X ± iεq0)

−q ·X ∓ iεq0

)
− (µ↔ ν) . (3.17)

We are interested in the dimension (1, 0) difference of these two log modes which we call

the conformally soft (CS) photon,

FCS
µν;a ≡

1

2πi

(
F log,+
µν;a − F log,−

µν;a

)
. (3.18)

This will be shown below to form a canonical pair with the Goldstone mode (3.12). (The

sum of the two log modes decouples from the Goldstone mode and is ill-behaved at infinity.

Henceforth it is ignored.) For regions in spacetime in which either X2 = 0 or q · X = 0,

but not both at the same time, we use the representation of the delta function and its

derivative for ε→ 0

δ(x) = − 1

2πi

(
1

x+ iε
− 1

x− iε

)
,

δ′(x) =
1

2πi

(
1

(x+ iε)2
− 1

(x− iε)2

)
= −δ(x)

x
,

(3.19)

and obtain a distributional expression when ε→ 0 for the conformally soft photon:

FCS
µν;a = 2XµA

G
ν;a

(
δ
(
X2
)

+
(q ·X)

X2
δ(q ·X)

)
− (µ↔ ν). (3.20)

One can directly verify that ∂µFCS
µν;a = 0. The conformally soft gauge field, such that

FCS
µν;a = ∂µA

CS
ν;a − (µ↔ ν), is given by

ACS
µ;a = (q ·X) log[X2]AG

µ;aδ(q ·X) +AG
µ;aΘ

(
X2
)
, (3.21)

and transforms as a ∆ = 1 conformal primary wavefunction.

The solution (3.20) represents a radiative shock wave which comes in along the past

light cone of the origin and emerges along the future light cone. In the intervening regions

Coulomb fields appear at the locus of q ·X = 0, which lies outside (or on) the light cone of

the origin. Inside the past or future light cone all fields vanish. It is illuminating to look

at the behavior near null infinity, denoted by I, and hence use the retarded coordinates

– 7 –
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(u, r, z, z̄) in which the line element for Minkowski spacetime is given by (2.2). Near I,

fields can be expanded in powers of 1/r; one finds (details are given in appendix C) that

the expansion of the z component of the Goldstone mode AG
z;w = ∂zα

1
w, at both future null

infinity I+ and past null infinity I−, is given by

AG
z;w = − 1

(z − w)2
, (3.22)

while the z̄ component of the Goldstone mode AG
z̄;w = ∂z̄α

1
w develops a δ-function:

AG
z̄;w = 2πδ(2)(z − w) . (3.23)

The field strength of the Goldstone mode of course vanishes. The uz and uz̄ components

of the conformally soft mode field strength at leading order at I+ are

FCS
uz;w =

δ(u)

(z − w)2
, FCS

uz̄;w = −2πδ(u)δ(2)(z − w) , (3.24)

while at I− (with the usual antipodal identification of the celestial coordinates)

FCS
vz;w =

δ(v)

(z − w)2
, FCS

vz̄;w = −2πδ(v)δ(2)(z − w) . (3.25)

This last expression is the incoming initial data for a radiative shock wave which impinges

on the origin and then, according to (3.24) reemerges at u = 0. These field strengths do

not on their own satisfy the constraint equation and Bianchi identity

r2∂uFur − γzz̄(∂z̄Fuz + ∂zFuz̄) = 0,

∂uFzz̄ + ∂z̄Fuz − ∂zFuz̄ = 0 ,
(3.26)

which require the following expressions for Coulombic fields on I+

r2FCS
ur;w = 4πγzz̄∂zδ

(2)(z − w)Θ(−u) , FCS
zz̄;w = 0 . (3.27)

Similarly, to satisfy

r2∂vFvr + γzz̄(∂z̄Fvz + ∂zFvz̄) = 0,

∂vFzz̄ + ∂z̄Fvz − ∂zFvz̄ = 0 ,
(3.28)

on I− requires the Coulombic fields

r2FCS
vr;w = 4πγzz̄∂zδ

(2)(z − w)Θ(v) , FCS
zz̄;w = 0 . (3.29)

These Coulombic fields are produced by and confined to the future of the incoming radiative

shock wave along v = 0, and annihilated by and confined to the past of the outgoing shock

wave along u = 0. In summary this describes the wavefunction of the conformally soft

photon; see figure 1. Similar expressions to (3.24)–(3.27) can be obtained for a = w̄.

Notice that the shadow transform of the conformally soft wavefunctions does not lead to

– 8 –
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Figure 1. Wavefunction of the conformally soft photon. A radiative shock wave with initial data

at v = 0 emerges from past null infinity I−, impinges on the origin, and reemerges at u = 0 at

future null infinity I+. Coulombic fields are produced by and confined to the future of the incoming

shockwave, and annihilated by and confined to the past of the outgoing shock wave.

new independent solutions (the shadow operator relates the a = w to the a = w̄ expressions

for the conformally soft fields).

It is interesting to project the solution (3.20) onto its self dual part

F SD
µν ≡

1

2

(
FCS
µν − i(∗FCS)µν

)
, (3.30)

leading to the following values at I+:

F SD
uz;w =

δ(u)

(z − w)2
, F SD

uz̄;w = 0,

r2F SD
ur;w = −γzz̄F SD

zz̄;w = 2πγzz̄∂zδ
(2)(z − w)Θ(−u) ,

(3.31)

and similarly one can obtain the projection onto its anti-self dual part.

3.2.3 Canonical pairing

We now show that the new conformally soft mode is the canonical partner of the Goldstone

mode with respect to the inner product (3.9). The inner product is independent of the

choice of the surface we integrate over, and taking the integral in (3.9) to be over I+, we

find that the inner product between the Goldstone and the conformally soft mode is:

i(ACS
w (w), AG

w′(w
′))I+ = 8π2δ(2)(w − w′) . (3.32)

Moreover, from (3.11) it follows that the inner product of the conformally soft mode with

any other conformal primary V ∆ vanishes. Hence, the Goldstone mode and the conformally

soft mode, (3.12) and (3.21), are the pair of zero-modes that enhance the conformal primary

wavefunctions V ∆ to a δ-function-normalizable basis on the principal continuous series

∆ = 1 + iλ with λ ∈ R, including the point λ = 0.
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3.2.4 Quantum currents

The inner product enables us to associate a mode of the quantum field operator Â to every

classical solution of the wave equation. The mode expansion of Â on the complete basis of

spin-one conformal primary wavefunctions on the principal continuous series ∆ = 1 + iλ

with λ ∈ R is

Âµ(X) =

∫
d2w dλ

√
2

(2π)4

(
aλwV

∗1−iλ,+
µ;w̄ (X) + a†λw̄V

1+iλ,−
µ;w (X) + (w ↔ w̄)

)
+

∫
d2w

8π2

(
SwA

G
µ;w(X) + JwA

CS
µ;w(X) + (w ↔ w̄)

)
,

(3.33)

where aλw and a†λw̄ are respectively the annihilation and creation operators of photons

obeying the commutation relation[
aλw(w), a†λ′w′(w

′)
]

=
1

2
(2π)4δ(λ− λ′)δ(2)(w − w′) , (3.34)

and similarly, Jw, Sw obey

[Jw(w), Sw′(w
′)] = 8π2δ(2)(w − w′) . (3.35)

They can be expressed in terms of the inner products of the field operator Â with respec-

tively AG and ACS. Let us first consider the operator associated to the Goldstone mode

Jw = i(Â, AG
w). (3.36)

One may immediately see that quantum commutators with Jw generate large gauge trans-

formations on I+:

[Jw, Âz] = AG
z;w = − 1

(z − w)2
. (3.37)

The soft part of the large gauge charge can be expressed as weighted integrals of Jw over the

sphere. Combining Jw with its I− counterpart gives the soft photon current [8, 20]. It is a

dimension (1, 0) current whose insertions generate a U(1) current algebra on the celestial

sphere. We may also consider the operator associated to the conformally soft mode

Sw = i(Â, ACS
w ). (3.38)

This is related to (the I+ part of) the Goldstone current of [22].

4 Conformally soft graviton

4.1 Massless spin-two conformal primary

The outgoing (+) and incoming (−) massless spin-two conformal primary wavefunctions

in R1,3 are [9]

h∆,±
µν;a(X

µ;w, w̄) =
1

2

[(−q ·X)∂aqµ + (∂aq ·X)qµ][(−q ·X)∂aqν + (∂aq ·X)qν ]

(−q ·X ∓ iε)∆+2
. (4.1)
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Primary wavefunctions (4.1) solve the vacuum linearized Einstein equation and are sym-

metric in the four-dimensional vector indices and symmetric and traceless in the two-

dimensional vector indices. They transform as both a four-dimensional rank-two tensor

and as two-dimensional spin-two conformal primaries with conformal dimension (h, h̄) =
1
2(∆ + J,∆− J) under an SL(2,C) Lorentz transformation:

h∆,±
µν;a

(
ΛµνX

ν ;
aw+b

cw+d
,
āw̄+b̄

c̄w̄+d̄

)
= (cw+d)∆+J(c̄w̄+d̄)∆−JΛ ρ

µΛ σ
ν h

∆,±
ρσ;a(X

µ;w,w̄) . (4.2)

The two-dimensional index a = ww corresponds to spin J = +2 (positive helicity) while

a = w̄w̄ corresponds to J = −2 (negative helicity).

The conformal primary wavefunction (4.1) is traceless and satisfies Lorenz and radial

gauge conditions:

ηµνh∆,±
µν;a = 0 , ∂µh∆,±

µν;a = 0 , Xµh∆,±
µν;a = 0 , (4.3)

and hence the vacuum linearized Einstein equations become

∂ρ∂ρh
∆,±
µν;a(X

µ;w, w̄) = 0 . (4.4)

A representative wavefunction that differs from (4.1) only by a pure diffeomorphism is [9]7

V ∆,±
µν;a (Xµ;w, w̄) = (∓i)∆Γ(∆)

1
2∂aqµ∂aqν

(−q ·X ∓ iε)∆
. (4.5)

It is traceless and satisfies the Lorenz gauge condition but not the radial gauge condition.

This representative conformal primary has the advantage of being related to plane waves

by a Mellin transform

V ∆,±
µν;a (Xµ;w, w̄) =

1

2
∂aqµ∂aqν

∫ ∞
0

dωω∆−1e±iωq·X−εω . (4.6)

Notice that V ∆
µν does not transform covariantly under SL(2,C) but the non-covariant terms

are pure residual gauge, hence, following [9], we will still call (4.5) conformal primaries.

4.1.1 Shadow transform

As in the spin-one case, we can perform a shadow transformation on the spin-two conformal

primary wavefunction h∆
µν;a (4.1) which takes its conformal dimension ∆ to 2 − ∆. The

expression for the shadow wavefunction was found in [9]:8

h̃2−∆,±
µν;a = (−X2)1−∆h2−∆,±

µν;a . (4.7)

One can verify that the shadow wavefunction (4.7) satisfies the defining properties of spin-

two conformal primary wavefunctions.

7Here and hereafter in similar contexts it is understood that the a index on the r.h.s. is ww or w̄w̄, while

the pair of as on the r.h.s. are each a single w or w̄.
8For (4.7) to be well-defined at −X2 = 0 and q ·X = 0 one needs to prescribe a regulator analogous to

the one in section 3.
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4.1.2 Conformal basis

A natural conserved inner product between complex spin-two wavefunctions is [23–27]

(hµν , h
′
µν) = −i

∫
d3Xi

[
hµν∂0h

′∗
µν−2hµν∂µh

′∗
0ν+h∂µh′∗0µ−h∂0h

′∗+h0µ∂
µh′∗−(h↔ h′∗)

]
,

(4.8)

where h = hρρ. It was shown in [9] that, with respect to the inner product (4.8), the

gauge representative spin-two conformal primary wavefunctions V ∆,±
µν;a form a complete δ-

function-normalizable basis on the principal continuous series ∆ = 1 + iλ with λ ∈ R:(
V ∆,±
µν;a (Xµ;w, w̄), V ∆′,±

µν;a′ (X
µ;w′, w̄′)

)
= ±(2π)4 δ(λ− λ′)δaa′ δ(2)(w − w′) , (4.9)

up to zero-mode issues. Alternatively, an equally good basis of spin-two conformal primary

wavefunctions is spanned by the shadow transformed conformal primaries Ṽ ∆. As in the

spin-one case, the primaries V ∆ are ill-defined at λ = 0 and so is the inner product (4.9).

To obtain a complete basis of conformal primary wavefunctions on the principal continu-

ous series ∆ = 1 + iλ with λ ∈ R we need to include a canonically paired set of spin-two

zero modes. One of them is the ∆ → 1 limit of the conformal primary wavefunction h∆

which becomes a pure diffeomorphism that can be recognized as the antipodally matched

supertranslation of [15, 28]. Hence h∆=1 is the Goldstone mode associated to the spon-

taneously broken supertranslation symmetries. In the next section we will construct its

canonical partner which in a momentum space decomposition is known to be the ω → 0

soft graviton [15, 28].

4.2 ∆ = 1 conformal modes

In the limit ∆ → 1, the conformal primary wavefunction h∆
µν;a (4.1) and its shadow

h̃2−∆
µν;a (4.7) coincide and both reduce to a total derivative.9 We identify this pure dif-

feomorphism spin-two conformal primary with the Goldstone mode

hG
µν;a ≡ lim

∆→1
h∆,±
µν;a = ∂µξν;a + ∂νξµ;a , (4.10)

where

ξµ;a ≡ −
1

8
∂2
a[qµ log(−q ·X)] . (4.11)

The diffeomorphism generator (4.11) preserves the Lorenz gauge fixing of the conformal

primary wavefunction and hence satisfies the harmonic gauge ∂ρ∂ρξµ;a = 0. Below it will

be identified with a specific supertranslation.

We seek a canonical partner for (4.10). A new solution to Einstein’s equations that is

non-zero and not a total derivative is given by:

hlog,±
µν;a ≡ lim

∆→1
∂∆

(
h∆,±
µν;a + h̃2−∆,±

µν;a

)
. (4.12)

The next steps follow the ones developed in section 3.2; we will not repeat the details here

but directly gives the expression:

hST
µν;a = (q ·X) log[X2]hG

µν;aδ(q ·X) + hG
µν;aΘ

(
X2
)
, (4.13)

9Notice that there is another case where the primary wavefunction is pure gauge, namely for ∆ = 0 [9].
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which we will refer to as the supertranslation (ST) mode. It transforms as a ∆ = 1

conformal primary wavefunction of weight ( 3
2 ,−

1
2) for positive helicity. We will see below

that it generates the inhomogeneous term in the supertranslations on I+.

4.2.1 News tensor on I+

We now want to express the ∆ = 1 pure diffeomorphism (4.10) and the supertranslation

mode (4.13) in retarded coordinates (u, r, z, z̄) and expand them near I+. The gravitational

free data Czz(u, z, z̄) is given by the leading angular component of the metric

hzz(u, r, z, z̄) = rCzz(u, z, z̄) + . . . , (4.14)

where the dots denote subleading terms in powers of r. The Bondi news tensor Nzz, which

characterizes the outgoing gravitational radiation, is

Nzz = ∂uCzz . (4.15)

The Bondi news is the gravitational analogue of the photon field strength Fuz = ∂uAz at I+.

For the zz component of the pure diffeomorphism mode hG
µν;a with a = ww one finds

the data10

CG
zz;ww =

(z̄ − w̄)

(z − w)3(1 + zz̄)(1 + ww̄)
, CG

z̄z̄;ww =
πδ(2)(z − w)

(1 + zz̄)(1 + ww̄)
,

CG
zz;ww = −2D2

zf , CG
z̄z̄;ww = −2D2

z̄f.

(4.16)

Here the function on the celestial sphere

f = − (z̄ − w̄)

4(z − w)(1 + zz̄)(1 + ww̄)
, (4.17)

is the supertranslation parameter. Near I+, the vector field (4.11) becomes the super-

translation f∂u and transforms as a vector of weight ( 1
2 ,−

1
2). The Bondi news at I+ for

the supertranslation mode (4.13) is

NST
zz;ww = − (z̄ − w̄) δ(u)

(z − w)3(1 + zz̄)(1 + ww̄)
, NST

z̄z̄;ww = − πδ
(2)(z − w)δ(u)

(1 + zz̄)(1 + ww̄)
, (4.18)

and similar expressions can be obtained for a = w̄w̄. The full spacetime associated with

this asymptotic data is, at linear order, a gravitational analog of the electromagnetic shock

wave geometry in figure 1.

4.2.2 Canonical pairing

We now show that the new ∆ = 1 supertranslation mode is the canonical partner of the

Goldstone mode with respect to the inner product (4.8). Taking the integral in (4.8)

10Notice that here the parametrization qµ = 1
1+ww̄

(1 +ww̄,w+ w̄,−i(w− w̄), 1−ww̄) for the null vector

was taken.
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to be over I+, we find that the inner product between the Goldstone and the ∆ = 1

supertranslation mode is:(
hST
ww(w), hG

w′w′(w
′)
)
I+ =

iπ2

2
γww̄δ

(2)(w − w′) , (4.19)

which implies that this mode generates the action of supertranslations on the Goldstone

boson. To obtain the result above, we used that∫
d2z

(w − z)(w̄′ − z̄)

(w̄ − z̄)3(w′ − z)3
= π2δ(2)(w − w′). (4.20)

The latter expression is found by noticing that the integral (4.20) takes the form of a

conformal integral [29]

In =
1

2π

∫
d2z

n∏
i=1

1

(z − zi)hi
1

(z̄ − z̄i)h̄i
, (4.21)

where
∑n

i=1 hi =
∑n

i=1 h̄i = 2, hi− h̄i ∈ Z. Convergence of the integral requires hi+ h̄i < 2

for all i although In may be extended by analytic continuation. The integral (4.21) was

evaluated for n = 2 in [29]

I2 =
Γ(1− h1)Γ(1− h2)

Γ(h̄1)Γ(h̄2)
(−1)h1−h̄12πδ(2)(z1 − z2). (4.22)

From (4.8) it follows that the inner product of the ∆ = 1 supertranslation mode and

any other conformal primary V ∆ vanishes. Hence, the Goldstone mode and the conformal

supertranslation mode, (4.10) and (4.12), are the pair of zero-modes that enhance the

conformal primary wavefunctions V ∆ to a δ-function-normalizable basis on the principal

continuous series ∆ = 1 + iλ with λ ∈ R including the point λ = 0.

4.3 Supertranslation current

The inner product allows us to associate to every classical solution of the linearized Einstein

equations a mode of the quantum field operator ĥ. The quantum commutator of the

operator conjugate to the Goldstone mode

jww = i(ĥ, hG
ww), (4.23)

is dimension ( 3
2 ,−

1
2) and generates the inhomogneous term for large diffeomorphisms on I+:

[jww, ĥzz] = hG
zz;ww = 2∂zξz;ww . (4.24)

Using that Ĉzz = −2D2
zĈ and the expressions (4.16) for the Goldstone mode, we find

jww = −2πD2
w∆Ĉ , (4.25)

where ∆Ĉ ≡ ĈI+
+
− ĈI+

−
. We thus find that its derivative is related to (the I+ part of)

the supertranslation current of [15, 16]:

Pz = 4πDzĈzz|
I+

+

I+
−
, (4.26)
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via

4Dwjww = Pw . (4.27)

Pw is a spin-one operator of dimension ( 3
2 ,

1
2) which nevertheless shares holomorphic prop-

erties of a conformally soft operator as follows. In an energy eigenbasis Pw was shown to

have the OPE with operators on the celestial sphere of energy ω

PzOω(w) ∼ ω

z − w
Oω(w). (4.28)

After Mellin transform to a conformal basis, this becomes

PzO(h,h̄)(w) ∼ 1

z − w
O(h+ 1

2
,h̄+ 1

2
)(w). (4.29)

Hence, because OPEs with Pz shift the conformal dimension of the operator by ( 1
2 ,

1
2),

Pz has Ward identities which are holomorphic in z and are equivalent to the leading soft

graviton theorem.

We expect the relation (4.29) may be a strong constraint on S-matrix elements in a

conformal basis.

4.4 ∆ = 2 Goldstone mode

The shadow conformal primary wavefunction (4.7) with conformal dimension 2 reduces

to a total derivative. This pure diffeomorphism was first constructed in ref. [7] and later

elaborated in ref. [9]; we identify it with the ∆ = 2 (λ = −i) Goldstone mode:

h̃∆=2
µν;a ≡ −X2 h2

µν;a = ∂µζν;a + ∂νζµ;a , (4.30)

where h2
µν;a is the conformal primary (4.1) with ∆ = 2 and

ζµ;a ≡ −
1

24
∂3
a[Xρ(qρ∂āqµ − qµ∂āqρ)log(−q ·X)] . (4.31)

The diffeomorphism generator (4.31) preserves the Lorenz gauge fixing of the conformal

primary wavefunction and hence satisfies the harmonic (de Donder) gauge ∂ρ∂ρζµ;a = 0.

We express the ∆ = 2 pure diffeomorphism (4.30) in Bondi coordinates near I+ and

find that its associated Bondi news tensor is given by

Ñ∆=2
zz;ww =

1

(z − w)4
, (4.32)

and a similar expression can be obtained for Ñ∆=2
z̄z̄;w̄w̄. The news (4.32) is conformally soft

as it transforms as a primary with conformal weights (h, h̄) = (2, 0) under an SL(2,C)

transformation (4.2). Note that Ñ∆=2
zz;ww = D3

zY
z
ww with

Y z
ww = − 1

6(z − w)
. (4.33)

In [17], a two-dimensional stress tensor for four-dimensional gravity was found whose

I+ part is given by

Tww = 2i

∫
dud2z

γzz̄

z − w
uD3

zN̂z̄z̄ . (4.34)
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Insertions of the operator (4.34) into the tree-level S-matrix reproduce the Ward identity

for a two-dimensional conformal field theory. The construction of this operator was recently

generalized to d > 2 in [30]. After integration by parts, we find that the two-dimensional

stress tensor (4.34) is the convolution of the operator N̂ and the ∆ = 2 primary (4.32):

Tww = 12i

∫
dud2z

γzz̄

(z − w)4
uN̂z̄z̄ = 12i

∫
dud2zγzz̄ Ñ∆=2

zz;ww uN̂z̄z̄ . (4.35)
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A Inner product

We review here the result obtained in [9] that the spin-one conformal primary wavefunctions

on the principal continuous series ∆ = 1 + iλ with λ ∈ R are δ-function-normalizable with

respect to the inner product (3.9). Starting with the Klein-Gordon inner product between

plane waves

(e±iωq·X , e±iω
′q′·X) = ±2(2π)3ωq0 δ(3)(ωqi − ω′q′i) , (A.1)

the inner product for the representative (3.7) is obtained by taking two Mellin transforms:(
V ∆,±
µ;a (Xµ;w, w̄), V ∆′,±

µ,a′ (Xµ;w′, w̄′)
)

= ±2(2π)3∂aq · (∂a′q′)∗
∫ ∞

0
dω ωiλ

∫ ∞
0

dω′ ω′−iλ
′
ω q0δ(3)(ωqi − ω′q′i)

= ±(2π)4δ(λ− λ′)δaa′δ(2)(w − w′) ,

(A.2)

where we used q0δ
(3)(ωqi − ω′q′i) = 1

4ω2 δ(ω − ω′)δ(2)(w − w′), ∂aq · (∂a′q)∗ = 2δaa′ and∫ ∞
0

dω ωiλ−1 = 2πδ(λ). (A.3)

To compute the inner product for the spin-one conformal primary wavefunction A∆,±
µ;a (3.5)

note that the pure gauge mode can be expressed as the following Mellin transform

∆∂µα
∆,±
a = (∂aqµ + qµ∂a)

1

(−q ·X ∓ iε)∆

=
1

(∓i)∆Γ(∆)
V ∆,±
µ;a + qµ∂a

∫ ∞
0

dω ω∆−1e∓iω(−q·X∓iε) .

(A.4)
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This yields(
A∆,±
µ;a (Xµ;w, w̄), A∆′,±

µ;a′ (Xµ;w′, w̄′)
)

= ±(2π)4λ sinh(πλ)e∓πλ

π(1 + λ2)
δ(λ− λ′)δaa′ δ(2)(w − w′) .

(A.5)

Notice that this inner product coincides with (A.2) up to a normalization factor.

B Shadow transform in the embedding space

To compute the shadow wavefunction Ã2−∆
µ;a of the spin-one conformal primary wavefunc-

tion (3.1) it is convenient to use real coordinates ~w ∈ R2 and use the embedding space

formalism [29, 31]. The shadow Õa1...a|J|(~w) of the two-dimensional conformal primary

Oa1...a|J|(~w) in the symmetric traceless rank-|J | representation of SO(2) with dimension ∆

is [29, 32–35]

Õa1...a|J|(~w) =
k∆,J

π

∫
d2 ~w′

1

|~w − ~w′|2(2−∆)
Ia1...a|J|,b1,...b|J|(~w − ~w′)Ob1...b|J|(~w′) , (B.1)

where we take the normalization factor k∆,J = ∆+J −1 and Ia1...a|J|,b1,...b|J|(~w− ~w
′) is the

inversion tensor for symmetric traceless tensors, formed from the symmetrised product of

|J | inversion tensors

Iab(~w − ~w′) = δab − 2
(wa − w′a)(wb − w′b)

|~w − ~w′|2
. (B.2)

The integral in (B.1) is divergent unless ∆ < 1 but can be extended to more general ∆

by analytic continuation so that under conformal transformations (B.1) defines a con-

formal primary operator in the symmetric traceless rank−|J | representation of SO(2)

of weight 2−∆ [29]. The shadow operator Õa1...a|J| is most conveniently computed in

terms of its uplift Õµ1...µ|J| to the embedding space R1,3 (recall that qµ(~w) ∈ R1,3 and

−1
2q · q

′ = |~w − ~w′|2):

Õµ1...µ|J|(~w) =
k∆,J

π

∫
d2 ~w′

∏|J |
n=1[δνnµn(−1

2q · q
′) + 1

2q
′
µnq

νn ]

(−1
2q · q′)2−∆+|J | Oν1...ν|J|(~w

′) . (B.3)

The two-dimensional primary Oa1...a|J|(~w) is then recovered via the projection:

Oa1...a|J|(~w) =
∂qµ1

∂wa1
· · · ∂q

µ|J|

∂wa|J|
Oµ1...µ|J|(~w) , (B.4)

and similarly for the shadow Õa1...a|J|(~w).

The shadow transformed spin-one conformal primary Ã2−∆
µ;a is the projection of the up-

lifted shadow wavefunction Ã2−∆
µ;ν computed from (B.3) by inserting the bulk-to-boundary

propagator [36]

A∆
µ;ν(Xµ; ~w) =

(−q ·X)ηµν + qµXν

(−q ·X)∆+1
, (B.5)
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and using the identity∫
d2 ~w′

1

|~w − ~w′|2(2−∆)

1

(−q(~w′) ·X)∆
=
πΓ(∆− 1)

Γ(∆)

(−X2)1−∆

(−q(~w) ·X)2−∆
. (B.6)

This yields (3.8) [9]. A similar computation yields the shadow transformed spin-two con-

formal primary (4.7).

C Conformally soft modes in Bondi coordinates

In this appendix, we express the conformally soft modes in the retarded frame (u, r, z, z̄)

of Minkoswki spacetime R1,3. Cartesian coordinates Xµ with µ = 0, 1, 2, 3 are related to

Bondi coordinates (u, r, z, z̄) by the transformation

X0 = u+ r , X1 = r
z + z̄

1 + zz̄
, X2 = −ir z − z̄

1 + zz̄
, X3 = r

1− zz̄
1 + zz̄

, (C.1)

which maps the Minkowski line element to

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ with γzz̄ =
2

(1 + zz̄)2
. (C.2)

Lorentz transformations act on the Bondi coordinates as [19, 37]

u′ = uK−1(z, z̄) +O(1/r) , r′ = rK(z, z̄) +O(1) , z′ =
az + b

cz + d
+O(1/r) , (C.3)

where

K(z, z̄) =
|az + b|2 + |cz + d|2

1 + zz̄
. (C.4)

The transformation of the z coordinate expresses the fact that Lorentz transformations

coincide with conformal transformations of the celestial sphere CS2.

To give the explicit expressions of the conformal primaries we need the following ex-

pressions in the retarded frame:

−X2 = u(2r + u) , −q ·X =
2r|z − w|2

(1 + zz̄)
+ u(1 + ww̄) . (C.5)

The spin-one Goldstone mode for a = w (positive helicity)

AG
µ;w =

∂wqµ
−q ·X

+
(∂wq ·X)qµ

(q ·X)2
(C.6)

in the retarded frame is given by

AG
u;w(u, r, z, z̄) =

−2r(1 + zw̄)(z̄ − w̄)(1 + zz̄)

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
,

AG
r;w(u, r, z, z̄) =

2u(1 + zw̄)(z̄ − w̄)(1 + zz̄)

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
,

AG
z;w(u, r, z, z̄) =

−2r(2r + u)(z̄ − w̄)2

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
,

AG
z̄;w(u, r, z, z̄) =

2ru(1 + zw̄)2

[2r|z − w|2 + u(1 + zz̄)(1 + ww̄)]2
;

(C.7)
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similar expressions can be obtained for a = w̄ (negative helicity). Its asymptotic behavior

near null infinity I+ gives components that fall off as O(1/r) or faster, except for the z

and z̄ components which have an O(1) piece at I+. To make the r-expansion, we make

use of the following formula (e.g. in [38]):(
y

y2 + |z − w|2

)2
y→0
≈ 2πδ(2)(z − w) + 2π y2∂z∂z̄δ

(2)(z − w) +
y2

|z − w|4
+O(y4), (C.8)

with y2 = u
2r (1 + ww̄)(1 + zz̄), and we see that the denominator in (C.7) expands in large

r as

1

(2r|z−w|2+u(1+zz̄)(1+ww̄))2
=
πδ(2)(z−w)

ru(1+zz̄)2
+

1

4r2|z−w|4
+
π∂z∂z̄δ

(2)(z−w)

2r2
+· · · (C.9)

This leads to

AG
z;w = − 1

(z − w)2
+O(1/r) ,

AG
z̄;w = 2πδ(2)(z − w) +O(1/r).

(C.10)

The components of field strength (3.20) in retarded coordinates are found to be

FCS
uz;w =

4r(r+u)(2r+u)(z̄−w̄)2δ(X2)

[2r|z−w|2+u(1+ww̄)(1+zz̄)]2
+

4r(r+u)(z̄−w̄)2δ(q ·X)

u(1+zz̄)[2r|z−w|2+u(1+ww̄)(1+zz̄)]
,

FCS
uz̄;w =

−4ru(r+u)(1+zw̄)2δ(X2)

[2r|z−w|2+u(1+ww̄)(1+zz̄)]2
− 4r(r+u)(1+zw̄)2δ(q ·X)

(2r+u)(1+zz̄)[2r|z−w|2+u(1+ww̄)(1+zz̄)]
,

FCS
ur;w =

−4u(2r+u)(1+zw̄)(1+zz̄)(z̄−w̄)δ(X2)

[2r|z−w|2+u(1+ww̄)(1+zz̄)]2
− 4(z̄−w̄)(1+zw̄)δ(q ·X)

[2r|z−w|2+u(1+ww̄)(1+zz̄)]
,

FCS
zz̄;w = 0,

FCS
rz;w =

4ru(2r+u)(z̄−w̄)2δ(X2)

[2r|z−w|2+u(1+ww̄)(1+zz̄)]2
+

4r(z̄−w̄)2δ(q ·X)

(1+zz̄)[2r|z−w|2+u(1+ww̄)(1+zz̄)]
,

FCS
rz̄;w =

−4ru2(1+zw̄)2δ(X2)

[2r|z−w|2+u(1+ww̄)(1+zz̄)]2
− 4ru(1+zw̄)2δ(q ·X)

(2r+u)(1+zz̄)[2r|z−w|2+u(1+ww̄)(1+zz̄)]
.

(C.11)

Expanding the expressions above for large r (u fixed) and using that at I,

δ(X2) =
1

2r
δ(u) , δ(q ·X) =

(1 + zz̄)

2r
2πδ(2)(z − w)Θ(−u), (C.12)

with Θ(u > 0) = 1 and Θ(u < 0) = 0, we obtain the following values on I:

FCS
uz;w =

δ(u)

(z − w)2
,

FCS
uz̄;w = −2πδ(u)δ(2)(z − w),

r2FCS
ur;w = 4πγzz̄Θ(−u)∂zδ

(2)(z − w),

FCS
zz̄;w = 0,

(C.13)

where the O(1) piece of the uz̄ component comes from the leading piece in the expan-

sion (C.9) and where we used the identity δ(2)(z)=−z∂zδ(2)(z) to obtain the third equation.
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