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Abstract

Due to their asynchronous interactions, testing reactive systems is a laborious activity
present in any software development project. In this setting, the finite memory formalism
of Labeled Transition Systems has been used to generate test suites that can be applied
to check ioco conformance of implementations to a given specification. In this work we
turn to a more complex scenario where a stronger formalism is considered, the Visibly
Pushdown Labeled Transition System (VPTS), which allows access to a potentially in-
finite pushdown memory. We study an extension of the ioco conformance relation to
VPTS models and develop polynomial time algorithms to verify conformance for VPTS
models in a white-box testing scenario.
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1 Introduction

Reactive systems have become increasingly common among computer systems, whether used in simple tech-
nological solutions or in critical industrial applications. We see everywhere real-world systems being governed
by reactive behaviors where the systems interact with an external environment by receiving input stimuli
and producing outputs in response. Usually, the development of such systems requires precise and automatic
support, especially in the testing activity, because high costs in terms of resources and maintenance time
can be incurred when the test step is inappropriately performed.

Model-based testing is an important approach that has been employed to test reactive systems because it
offers guarantees to the correctness of important properties, such as completeness of test suites, which can be
formally proven [1I, 2]. These aspects have been studied using appropriate models that capture the behavior
of reactive systems, where the exchange of input and output stimuli can occur asynchronously. Prominent
among such formalisms are Input/Output Labeled Transition Systems (IOLTSs) [3].

The process of testing is usually designed to verify whether an implementation is in compliance to a
given specification [3]. This conformance checking process depends on the specification formalism, on the
kind of fault model used, and on a conformance relation that is to be verified [3, 4]. For IOLTS models,
Input/Output Conformance (ioco) is a well-studied relation [3, [5]. Recently, a more general approach [6],
based on regular languages, has been proposed to check ioco conformance for IOLTS models.

In this work we mainly focus on pushdown reactive systems, more specifically, on a conformance checking
framework for systems of this nature. We are not aware of any other approach that gives an efficient algorithm
for checking conformance when treating models equipped with a pushdown memory. We study aspects
of conformance testing and test suite generation for Input/Output Visibly Pushdown Labeled Transition
(IOVPTS) models, inspired by the Visibly Pushdown Automata [7] formalism. Using an auxiliary pushdown
stack, an IOVPTS can capture the behavior of much more complex reactive systems when compared to
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the simpler IOLTS models. Such is the case of an automatic vending machine that must keep track of the
amount inserted, subtract the value of the purchase, and return the appropriate change. A proper model
for such systems must use a formalism that allows for the manipulation of a potentially infinite memory.
An illustration is discussed in Subsection [5.2] with the typical example of a drink dispensing machine, whose
model requires a potentially infinite memory to formally describe its behavior as a reactive system. The
same situation may also arise with other typical computational systems that are implemented via recursive
programs. See Section [2] for comments on some related works that treat some aspects of recursive programs
in the context of conformance testing.

Therefore we propose an extension of the ioco relation to IOVPTS models, in the sense that it pre-
vents any observable implementation behavior that was not already present in the given specification. Our
approach is based on a white-box testing scenario, where the structure of the implementation under test
(IUT) is previously known by the tester. Specifications are assumed deterministic, but IUTSs can be even
non-deterministic, and no further restrictions are required to constrain either on the specification or in the
IUT models. The main novelty in this setting is to formally address the problem of developing algorithms
of an acceptable complexity while still formally dealing with a potentially infinite pushdown memory.

Our algorithms always reach conclusive verdicts, either for conformance or for non-conformance, in
polynomial time. When non-conformance is detected, a trace that witnesses the non-conformance is also
generated. By contrast, in black-box scenarios, some restrictions must be assumed over the models and also
limitations over the results. We prove the correctness of our algorithms and show that they run in worst
case polynomial time in the size of both the specification and implementation.

We organize this paper as follows. Section [2| comments on some related works. In Section [3| we establish
notations, define IOVPTSs and give preliminary results. Section [d] defines an ioco-like conformance relation
for IOVPTS models and shows how to construct complete test suites. Section [5| develops an algorithm to
test IUTSs, proves its correctness, establishes a polynomial time bound for it, and illustrates these ideas on
practical scenarios. Section [6] offers concluding remarks.

2 Related Works

Testing reactive systems has been largely studied in the literature, but several challenges still remain, mainly
due to system and environment intrinsic complexities. Many researches of model-based testing usually deal
with classical reactive systems, that is, they can be modeled by formalisms without memory, such as Labeled
Transition Systems (LTSs) and their extension the Input/Output Labeled Transition Systems (IOLTSs).

In this work we study implementation testing in a scenario involving VPTSs, and their IOVPTS exten-
sions, which are more complex and powerful models since they can access an unlimited pushdown memory.
We develop a polynomial checking method that can be used to certify conformance between a given IOVPTS
specification and a tentative IOVPTS implementation in a white-box testing scenario, where the structure
of the implementation is known. Specifications models are assumed to be deterministic, but in the imple-
mentation side we can have non-deterministic models.

We now comment on some works more closely related to our approach. Constant et al. [8] propose a
test case generation method for checking conformance of reactive systems in a black-box setting. Their
method is based on algorithms that transform a set of recursive interprocedural specifications, with the
semantics of the whole system being modeled as Push-Down Systems (PDSs). We note that the semantics
of their formalism captures the so called Dyck languages, where each corresponding pair of symbols — the
procedure calls and returns — appears properly balanced. These languages are a proper subset of the Visibly
Pushdown Languages (VPLs), whose full extension is considered in this work. Their approach is confined to
deterministic models and does not deal explicitly with arbitrary internal symbols as we do. Also quiescence
is not treated, an important issue in a black-box scenario. Since they make use of test purposes, modeled
by simple LTSs, their algorithms might lead to inconclusive verdicts when a state is reached from which it
is impossible to reach an accept state in the test purpose model. In our scenario, conclusive verdicts are
always emitted.

In more recent works, Dyck languages are also addressed in terms of the Dyck reachability problem which,
in turn, is reduced to a reachability analysis when searching for a witness on checking conformance. Li et
al. [9] propose a Dyck reachability analysis in time complexity O(n”) when considering two Dyck languages.
Kjelstrom and Pavlogiannis [10] have treated the interleaved Dyck reachability problem and their different
variants. They have found an efficient algorithm for the interleaved Dyck reachability problem for two Dyck
languages with a time complexity bounded by O(n?a(n)), where a(n) is the inverse Ackermann function [I1].
However, as we noticed the class of Dyck languages is a proper subset of the VPLs, so confining their results
in a more restrict group of applications when compared to our proposal.

Chédor et al. [12] propose a test case generation method where specifications are modeled as the so called
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Recursive Tile Systems (RTS), whose semantics is captured by the traces of an IOLTS with infinite states.
They proceed by applying successive transformations to the original RTS that models the specification,
and the testing scenario treats implementations as black-boxes. At each step, properties of the resulting
RTSs can then be established by examining the traces of the corresponding infinite IOLTSs. As the authors
acknowledge, their approach can lead to test cases with an exponential state-space complexity, even if the
original specification models are deterministic. In our method we generate, in polynomial time, test cases
which provides complete fault coverage in a white-box scenario, and when specifications are deterministic.
Since they also make use of test purposes as an aid to the certification process, their testing algorithms can
lead to inconclusive verdicts when the testing process reaches where test purpose state marked Accept can
no longer be reached.

Other approaches were designed using reachability analyses and model checking algorithms as proposed
by Esparza et al. [I3] and Finkel et al. [I4]. In part, our approach is also inspired by some of these ideas, such
as when checking for balanced runs, in Section |5} Some other researches also focus on the synchronization
problem of Input-driven Pushdown Automata [15] [I6] [I7], where witness configurations must be found over
an infinite state transition system. All these approaches lead to polynomial time algorithms as mentioned in
the previous related works. However, we are not aware of any other approach that deal with the conformance
checking problem as we do, and with a more efficient time complexity algorithm than we have proposed in
our work.

In [I8] the authors take a somewhat different direction. They show how to synthesize reactive systems,
given traces of input/output symbols that represent the reactive behavior of the system specification.

3 Reactive Models with Infinite Memory

In this section we present the Visibly Pushdown Labeled Transition System (VPTS) and introduce its
variation, the Input/Output VPTS. But first we establish some notation that will be useful.

3.1 Basic Notation

Let X and Y be sets. We indicate by P(X) ={Z|Z C X} the powerset of X, and X—-Y ={z|z€ X,z ¢ Y}
indicates set difference. An alphabet is any non-empty set of symbols. Let A be an alphabet. A word over
A is any finite sequence o = 7 ...x, of symbols in A, that is, n > 0 and z; € A for all i = 1,2,... n.
When n = 0, ¢ is the empty sequence, also indicated by €. The set of all finite sequences, or words, over
A is denoted by A*, and the set of all nonempty finite words over A is indicated by AT™. When we write
T1To ...z, € A*, it is implicitly assumed that n > 0 and that x; € A, 1 < i < n, unless noted otherwise.
The length of a word « over A is indicated by |«|. Let 0 = 01 ...0, and p = p1 ... py, be words over A. The
concatenation of ¢ and p, indicated by op, is the word o1 ...0,p01...pm- A language G over A is any set
G C A*. It Gy, G2 C A*, their product is the language G1G2 = {op|o € G1,p € Ga}. If G C A*, then its
complement is G = A* — G.

We will also need the notion of a morphism between alphabets. Let A, B be alphabets, a homomorphism,
or just a morphism, from A to B is a function h : A — B*. Such a morphism can be inductively extended
to a function h : A* — B*, thus:

~ € ifo=c¢
h(o) = ~ :
h(a)h(p) if o =ap with a € A.

We can further lift A to a function h : P(A*) — P(B*) by letting h(G) = |J h(o), when G C A*. We may
oeG

write h instead of lAz, or of 77,, when no confusion can arise. When a € A, we let h, : A — A — {a} be the
morphism where hq(a) = €, and hq(z) =  when z # a. Hence, h, (o) erases all occurrences of a in the word
o.

3.2 Visibly Pushdown Labeled Transition Systems

A Labeled Transition System (LTS) is a formalism convenient to express an asynchronous exchange of
messages between participating entities, in the sense that outputs do not have to occur synchronously with
inputs, but are generated as separated events. Any LTS, however, has only a finite memory, represented by
its set of states. A Visibly Pushdown Labeled Transition System (VPTS), on the other hand, has a pushdown
memory associated to it, and thus can make use of a potentially infinite memory. The next definition is
inspired by the notion of a Visibly Pushdown Automaton [7].
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Definition 1 A Visibly Pushdown Labeled Transition System (VPTS) over an input alphabet L is a tuple
8 = (S, Sin, L, T, T), where:

— S is a finite set of states or locations;

— Sin € S is the set of initial states;

— L is a set of labels, or action symbols,, partitioned thus L = L. U L. U L;;

— There is a special symbol ¢ ¢ L, the internal action symbol;

— T is a set of pushdown symbols. There is a special symbol L & T", the bottom-of-stack symbol;

— T =T UT,UT;, where T, C SXL.xT'xS, T, CSXxL,xTU{L}xS, and T; C Sx(L;U{s})x{#} xS,
where § T U{L} is a place-holder symbol.

The class of VPTSs over a set of labels L will be indicated by VP(L).

Let t = (p,x,Z,q) € T. If t € T, we say that it is a push-transition. Its intended meaning is that 8, in state
p € S and reading the push symbol x, changes to state ¢ and pushes Z onto the stack. When ¢ € T,. we have
a pop-transition, with the intended meaning that, in state p € S, reading the pop symbol x € L, and having
Z as the topmost symbol in the stack, § pops Z from the the stack and changes to state q. Further, when
the stack is reduced to the bottom of stack symbol, L, then a pop move can be taken, leaving the stack
unchanged. We have a simple-transition when t € T; and x € L;, and we have an internal-transition when
t € T; and x = ¢. The meaning of a simple-transition ¢ is to change from state p to state ¢, while reading
the simple symbol x and leaving the stack unchanged. An internal-transition also changes from state p to
state ¢ leaving the stack unchanged, but reads no symbol from the input. The following definition makes
these notions precise.

Definition 2 Let 8 = (S, Sy, L, I, T) € VP(L). A configuration of 8 is a pair (p,a) € S x (I'*{L}). When
p € Sin and a = L, (p,a) is an initial configuration. The set of all configurations of 8 is indicated by Cg.

Let (q,«0) € Cg, and let £ € LU {s}. Then we write (p,«) N (g, B) if there is a transition (p,¢,Z,q) € T,
and either:

1. L€ L., and 8 =Za;
2. L€ L,, and either (i) Z # L and a=Zp, or (i) Z=a == 1;
3. LeL;U{s}, Z=4and a = 3.

We call (p, «) RN (¢,0) an elementary move of 8, and we say that (p,¢, Z,q) is the transition used in the
¢
move (p, ) = (q,3)-

It is clear that after any elementary move (p, o) 4 (¢, 8) we have (¢,0) € Cs, that is, (¢, ) is also a
configuration of 8. Hence, — induces a binary relation on Cg.

Remark 1 In figures, a push-transition (s,x,Z,q) will be graphically represented by x/Z. next to the cor-
responding arc from s to q. Similarly, the label x/Z_ will indicate a pop-transition (s,x,Z,q). A simple- or
internal-transition (s, x, 4, q) will be indicated by the label x next to the corresponding arc.

Example 1 Figure represents a VPTS 81 = (S, Sin, L, T, T) with S = {s0,$1}, Sin = {80}, Le = {b},
L. ={c,t}, L; =1}, and T = {Z}. We have a push-transition (so,b, Z, s9), the pop-transitions (sg, ¢, Z, $1),
(s0,t,Z,81), (s1,¢,Z,81), (s1,t,Z,s1), and an internal-transition (s1,<, 4, So). O

Paths in VPTS models are just chains of elementary moves.
Definition 3 Let 8 = (S, S;,, L, I, T) € VP(L) and let (p, ), (q,B) € Cs.
1. Awordo =1y,...,l, € (LU{s})* is a path from (p,a) to (g, B) if there are configurations (r;,o;) € Cs,
0 <i<mn, such that (r;—1,c;_1) Ly (riya;), 1 <i <mn, with (r9,0) = (p, @) and (1, an) = (g, F).

2. Let o € L*. We say that o is an observable path from (p,«) to (¢,8) in 8 if there is a path p from
(p, ) to (g, B) in 8 such that o = h(p).

In both cases we say that the path starts at (p,«) and ends at (q,53), and we say that the configuration
(g, B) is reachable from (p,a). We also say that (q, ) is reachable in 8 if it is reachable from an initial
configuration of 8.
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Figure 1: A VPTS 8;.
Figure 2: An IOVPTS specification 8.

Moves labeled by the internal symbol ¢ can occur in a path. An observable path is just a path from which
s-labels were removed. If o is a path from (p, @) to (g, 8), this can also be indicated by writing (p, a) = (g, B).
When |o| = 1 this has exactly the same meaning as indicated in Definition 2} so that no confusion can arise.
We may also write (p, ) 2 to indicate that there is some (g, 3) € Cs such that (p,a) > (¢, 3); likewise,
(p,«) — (g, ) means that there is some o € (L U {¢})* such that (p,a) > (¢,). Also (p,a) — means
(p, @) % (g, B) for some (g, B) € Cs and some o € (LU {s})*. When ¢ is an observable path from (p, a) to
(q,8) we may write (p,a) = (g, 3), with similar shorthand notation also carrying over to the = relation.
When we want to emphasize that the underlying VPTS is 8, we write (p, «) %) (g,8), or (p, ) % (g,0).

Paths starting at (p, ) are also called the traces of (p, @), or the traces starting at (p, a). The semantics
of a VPTS is related to traces starting at an initial configuration.

Definition 4 Let 8§ € VP(L) and let (p,a) € Cs.

1. The set of traces of (p,a) is tr(p,a) = {o|(p,a) &}. The set of observable traces of (p,a) is
otr(p,a) = {o| (p,a) = }.

2. The semantics of 8§ istr(8) = | tr(q, L), and the observable semantics of 8 is otr(8) = |J otr(g, L).
qESin gESin

Clearly, otr(8) = he(tr(8)). If $ has no internal transitions, then otr(8) = ¢r(8).

We can restrict the syntactic description of VPTS models somewhat, without loss of generality, by
removing states that are not reachable from any initial state, since these states can not affect the system
behavior. Moreover, we can also eliminate ¢-labeled self-loops. We formalize these observations in the
following hypothesis.

Hypothesis 1 Let (S, Sin, L,T,T) € VP(L). For any s € S there is some o € T and sy € Sy, such that
(s0, L) 2 (s,aL). Also, if (s,s,4,q) €T then s # q.

We see that a VPTS can autonomously move along ¢-transitions, without consuming any input symbol.
However, in some situations such moves may not be desirable, or simply we might want no observable
behavior leading to two distinct states. This motivates the notion of determinism.

Definition 5 Let 8 = (S, S;n, L, I',T) € VP(L). We say that 8 is deterministic if, for all s, p € Sin,
(s1,51), (s2,P82) € Cs, and all 0 € L*, we have that (s, L) = (s1,B1) and (p, L) = (s2, B2) imply s1 = s9

and By = Ba.
As a consequence, deterministic VPTSs have no internal moves.

Proposition 1 If (S, S;,, L,T,T) € VP(L) is deterministic, then 8 has no ¢-labeled transitions.

Proof By contradiction, assume that (s,<,,¢) € T. From Remark [1| we get s # ¢ and we also get o € T'*,
o € L* such that (so, L) 5 (s,al), with so € S;. Hence, (so, L) % (s,aL) < (¢, L). Using Definition |4
we get (so, L) 2 (s,al) and (so, L) £ (¢, L), where y = h (o). Since s # ¢, this contradicts Deﬁnition

3.3 The Product of two VPTSs

It captures the synchronous behavior of the two models, and will be useful when testing conformance between
two VPTS models.

Definition 6 Let 8 = (S, Sin, L, T, T), Q = (Q, Qin, L, A, R) € VP(L). Their product is the VPTS 8§ x Q =
(S x Q,Sin X Qin, L, T x A,v), where ((s1,q1),a,(Z1,Zs),(s2,q2)) € v if either:
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1. a€ L.UL;, (s1,a,71,82) €T, (q1,a,Z2,q2) € R

2. a € Ly, (s1,a,721,82) €T, (q1,a,Z2,q2) € R with either Zy # L # Zy or Zy = Zy = L
3. a=cg, Z =14, and either s1 = sa, (q1,5,8,q2) € R or q1 = g2, (81,6, 4,82) € T.

The following result links moves in the original VPTSs to their product.

Proposition 2 Let 8,9 € VP(L), and assume that
(5, X1 Xoo L) 5 (1, W W L) and (@, Y1 Yiel) 3 (621 Zn 1),

where k,n,m >0, and with he(n) = he(p). Then, we have n =m and

((5,9),Ur--- U L) = (), Vie-- Vil )

where 0 = he(n), Uy = (X;,Y;) fori=1,...)k and V; = (W, Z;) fori=1,... n.
Proof A routine induction on || + |u| > 0.

On the other direction, we have a similar result.

Proposition 3 Let §,Q € VP(L), and assume

((s,q), Uy -+ Uy L) S%g ((r,t), V-V L)

with U; = (X;,Y;) fori = 1,...0k, V; = Wy, Z;) for i = 1,...,n, and k,n > 0. Then we have
(5, X1 Xp L) > (W Wa L), (g1 Yidl) 5 (8, 21 Zn L) with ho(n) = he(o) = he(p).

Proof A simple induction on |o| > 0.

3.4 Input Output Pushdown Transition Systems

The VPTS formalism can be used to model systems with a potentially infinite memory and with a capacity
to interact asynchronously with an external environment. In such situations, we may want to treat some
labels as symbols that the VPTS “receives” from the environment, and some other labels as symbols that
the VPTS “sends back” to the environment. The next VPTS variation captures this idea.

Definition 7 An Input/Output Visibly Pushdown Transition System (IOVPTS) is a tuple J =
(S, Sin, L1, Ly, T, T), where

e L;, Ly are finite sets of input, output labels, respectively, and Ly N Ly = ()
e (S,Sin, Ly ULy, T, T) is the underlying VPTS associated to J.
JOVP(Ly, Ly) is the class of all such IOVPTSs.

Remark 2 In order to keep the number of definitions under control, we agree that in any reference to a
notion based on IOVPTSSs, and that has not been explicitly defined at some point, we substitute the IOVPTS
model by its underlying VPTS.

The semantics of an IOVPTS is just the set of its observable traces, that is, the observable traces of its
underlying VPTS.

Definition 8 Let I € JOVP(L;, Ly). The semantics of J is the set otr(J) = otr(8y), where Sy is the
underlying VPTS associated to J.

Also, when referring an IOVPTS J, the notation ? and :J> are to be understood as §> and :S>, respectively,
where § is the underlying VPTS associated to J.
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Example 2 Figure[]] can be seen as an IOVPTS that describes a simple drink dispensing machine. In this
case we have Ly = {b} and Ly = {c,t}. From the context we can see that L. = {b}, L, = {c,t} and L; = (.
The start state is sg. Symbol b stands for button an user can press when asking for a cup of coffee or a
cup of tea, with corresponding buttons represented by the labels ¢ and t, respectively. Fach time b button is
activated, the model pushes the symbol Z on the stack, so that the stack is used to count how many times
the b button was hit by the user.

At any instant, after the user has activated the b button at least once, the machine moves to state s; and
starts dispensing either coffee or tea, indicated by the ¢ and t buttons. It decrements the stack each time a
drink is dispensed, so that it will never deliver more drinks than the user asked for.

A move back to state sg, over the internal label ¢ interrupts the delivery of drinks, so that the user can,
possibly, receive less drinks than originally asked for. In this case, when the next user operates the machine
it is possible, eventually, to collect more drinks than asked for. An alternative model could use one more
state so to interrupt the transition from s1 to sg and install a self-loop at so that empties the stack. A more
realistic drink dispensing machine is illustrated in Subsection[5.4 O

We register one more example which will be used later.

Example 3 Figure [q depicts another IOVPTS, where L1 = {a,b}, Ly = {z}, L. = {a}, L, = {b,z} and
L; =10. Also, Sin, = {so} and T = {A}.

4 Conformance Relation and Fault Models

In this section we provide a method to check whether IUTs, described as IOVPTSs, conform to a given
specification IOVPTS model. We define an ioco-like conformance relation for IOVPTSs. The idea is that,
given a specification 8§ and an IUT J, we say that J conforms to 8 when, for any observable behavior o of
8, any output symbol that J can emit after running over o is, necessarily, among the output symbols that §
can also emit after it runs over the same o. That notion captures the same behavior as the standard notion
of ioco-conformance [3} [6] for LTS models, but the latter do not have access to an auxiliary pushdown store,
as IOVPTSs models do.

4.1 An ioco Conformance Relation for IOVPTS Models

Let 8 be a specification and J an IUT. The ioco-like relation essentially says that if o leads J to a configuration
from which it can emit the output ¢, then this must also hold for 8.

Definition 9 Let 8§ = (S, Sin, Ly, Ly, T, T), I =(Q, Qin, L1, Ly, A, R) € JOVP(L;, Ly), with L = L; U Ly.
Define

1. The function after: Cg x L* — P(Cg) by letting
(s,a) after o = {(q,8) | (s,a) = (¢,B8)}, for all (s,a) € Cs, and o € L*.
2. The function out: P(Cs) — Ly thus

out(V)= |J {teLu|(s,a) S},
(s,a)€V

3. J ioco-like 8 if £ € out((qo, L) after o) with o € otr(8) and qo € Qin, then there is some sg € Sip
such that £ € out((sp, L) after o).

Now we characterize the ioco-like conformance relation using the observable behaviors of both the
specification and the given implementation.

Lemma 1 Let 8, J € JIOVP(L;,Ly) and D = otr(8)Ly. Then, J ioco-like 8 if and only if otr(J) N D C
otr(8).

Proof Write 8 = (S, S, Ly, Ly, I, T) and J = (Q, Qin, L1, Ly, A, R).

Assume otr(J) N D C otr(8). Let o € otr(8) and let £ € out((qo, L) after o) for some gy € Qi We
must show that £ € out((sg, L) after o) for some sy € S;,. Because ¢ € out((qo, L) after o) we get
o,0l € otr(J). Since £ € Ly, we get of € otr(8)Ly and so of € D. We conclude that of € otr(J) N D.
Hence, ol € otr(8), and so, £ € out((sg, L) after o) for some sy € S;y,, as desired.

Next, assume that J ioco-like 8. Let o € otr(J) N D. Then, 0 € D and so 0 = of with £ € Ly
and « € otr(8). Also, o € otr(J) gives al € otr(J), and so a € otr(J). Then, because ¢ € Ly, we get
¢ € out((qo, L) after «) for some gy € Q;n. Because we assumed J ioco-like 8 and we have « € otr(8), we
also get £ € out((sp, L) after a), for some sg € S;,. So ol € otr(8). Because o = af, we have o € otr(8).
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Example 4 We illustrate Lemma[1], using the specification IOVPTS 8 depicted in Figure[d and the imple-
mentation J depicted in Figure[3

We want to check whether J ioco-like 8 holds. Let o0 = aabb. From Fzgurel it is apparent that (sg, L) =
(s2,L) and that (so, L) after o = {(s2,1)}. From Figure [ we get (qo, L) after o = {(g2, L)}. Also,
z € out((ga, L)), but z & out((ss, L)). So, by Definition[9 I ioco-like 8 does not hold.

Now take o = aabbx. Since aabb € otr(8), we get aabbr € otr(8)Ly = D. Also, aabbx € otr(J) and
aabbz & otr(8), so that aabbz € otr(IJ) N D ¢ otr(8). O

We can also characterize the ioco-like relation as follows.

Corollary 1 Let 8, J € JOVP(L;, Ly). Then J ioco-like 8 if and only if otr(J) NT = (), where T =
otr(8) N [otr(8)Ly].

Proof Immediate from Lemma [l

Example 5 Let the IOVPTS 8 of Figure @ be the specification, with Ly = {a,b}, and Ly = {z}. We want
to construct a model for a test suite T C (L; U Ly)* that can be used for testing whether J ioco-like 8, for
any implementation J. From C’orollary we know that J ioco-like 8 is equivalent to otr(JNT) = (), where
T = otr(8) N D, where D = otr(8)Ly. So, we want a model that describes such a T.

We start with a representation for D = otr(8)Ly. Consider the VPTS T8 depicted in Figure . Note
that x is the only symbol in Ly. TS was obtained from 8 by adding all possible transitions over x to the new
state d of T8, starting at all states of 8 from which that transition was not present in 8. Hence, it is clear
that D = otr(8)Ly is the set of all o that lead TS from the initial configuration (dy, L) to a configuration
(d,al). Also, note that all transitions into state dy add a symbol A to the stack. Hence, 8 can never make
a move on the pop symbol x from state sqg when the stack is empty. The other possible moves of TS into d
from states dy and dy obuviously are not possible moves in 8. We conclude that all elements in D are also in
otr(8). This gives T = otr(8) N D = D.

Thus, to verify if an IUT J ioco-like-conforms to S, we must check if there is some element in D that is
also in the observable semantic of J. In the next two subsections we use the notion of a fault model to make
this procedure more systematic. O

4.2 TOVPTS Fault Models

First, we formally model the external environment as an IOVPTS with a special fail state. Such a model,
T, operates in conjunction with an IUT, J. Their joint behavior can be interpreted as J sending symbols to
J, and J responding by sending symbols back to T. Note that, in this setting, the sets of input and output
symbols in T and J must be interchanged.

Definition 10 Let L; and Ly be sets of input and output symbols, respectively. An Input/Output Visibly
Pushdown Fault Model (IOVPEFM) is any T € JOVP(Ly, Lr) with a distinguished fail state.

Given an IOVPFM T and an IUT J, the exchange of action symbols between T and J can be described
by the product of their underlying VPTSs. Recall Definition [6}

Definition 11 Let S, J € JIOVP(Ly, Ly) and L = Ly U Ly. Their product is Vg x Vg, with Vg, Vg € VP(L)
being the underlying VPTSs of 8 and J, respectively.
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In order to facilitate the notation, we will also denote the cross-product of & and J simply by 8§ x J.
Having an implementation J and an IOVPFM T as a tester, we need to say when a test run is successful
with respect to a given specification 8. Recalling that T signals an unsuccessful run when it reaches a fail
state, we will say that an IUT J passes T when no synchronous execution of T and J reaches a (fail, ¢) state
in 7' x J. In this case, we want J ioco-like 8 to hold. Alternatively, if some run of T x J does reach a (fail, q)
state, that is, if J does not pass T, then we want a guarantee that J ioco-like 8§ does not hold. In other
words, we need a property of completeness.

Definition 12 Let T = (Q,Qun,Lu, L1, A R) € JOVP(Ly,L;), and I = (S, Sim, Ly, Ly,T,T) €
JOVP(Ly, Ly). We say that I passes T if, for all o € (L1 U Ly)* and all initial configurations ((to,qo), L)

g,

of T x J we do not have ((to,qo),L) (Téj ((fail, q), L), for any configuration ((fail,q),aLl) of T x J. Also
X

let § € JIOVP(Ly, Ly). We say that T is ioco-like complete for 8 if we have J ioco-like 8 if and only if J
passes T, for all I € IOVP(L;, Ly).

Now we construct an IOVPFM which is complete for a given specification §.

Lemma 2 Let 8§ € JOVP(Ly, Ly) be deterministic with n states. We can effectively construct an IOVPFM
T which is ioco-like complete for 8. Moreover, T is deterministic and has n + 1 states.

Proof According to Definition in order for T to be ioco-like complete for 8§ we need that, for all
implementations J, it holds that J passes T if and only if J ioco-like 8. From Corollary 1| we know that
J ioco-like § if and only if otr(J) N T = B, where T' = otr(8) N [otr(8)Ly]. That is, we need T such that J
passes T if and only if otr(J) NT = ().

Let 8§ = (Ss,Sin, L1, Ly, As,Ts) be the given deterministic specification, L = L; U Ly and n = |Sg].
The desired fault model T = (S5, T}y, Ly, L1, Ay, Ty) is constructed as follows. Let Ty, = Sin, Ay = Ag,
and extend the state set Ss and the transition set Ts as follows. Define S = Sg U {fail} where fail ¢ Ss.
Fix some symbol Z € Ag, and let

Ty =13
U{(s,¢, Z fail) | € Ly N L. and (s,¢,W,p) & Ts, for any p € Ss, W € Ag} (1)
U {(s,¢,W,fail) | € Ly N L, and (s,¢,W,p) & Ts,for any p € Ss} (2)
U {(s,é,ﬁ,fail) |[¢ € Ly NL; and (s,4,8,p) € Ts, for any p € Sg} (3)

Since 8 has n states, it is clear that T has n+1 states and a single fail state. Further, using Proposition|[l]
we see that 8 has no ¢-moves. Hence, by construction T has no ¢-moves.
Claim 1. T is deterministic.
Proof. Let ¢ € (Ly U L;)* and (s;, 1) :;> (pi, ;L) with s1,89 € Tjp, = Sin, @ = 1,2. According

to Definition [5| we want to show that s;
(56, L) = (pi s L), i = 1,2,

so and a1 = ag. Since T has no ¢-moves, we can write

If p; # fail # py then, since fail is a sink state, we must have (s;, L) %) (pi,a; L), i = 1,2. The
determinism of § gives the desired result in this case.

Now assume p; # fail, p; = fail. Since s; € S;, we get s; # p; so that ¢ = pzx with x € Ly U Ly,
and we can write (s;, 1) % (rs, Bil) ? (pi,a; L), i = 1,2. Again, we have (s;, L) % (r, BiL) for
i = 1,2. The determinism of 8§ implies 11 = ro and §; = 8. So, we have (ry,x, Zy,fail) in T and
(ro,x, Zo,pa) = (r1,x, Za,p2) in T, for some Zy,Zy € Ag. Clearly, (r1,z,Z2,p2) is 8. If x is a push
symbol, then Z; = Z. Now, (r1,x,Zs,p2) in 8 and (r1,z, Z, fail) in T contradict Eq. . Similarly
when z is a simple symbol we get a contradiction to Eq. . When z is a pop symbol, let W be the
first symbol in 81 L = B3 L. We now have Z; = W = Z; and then (r1,x, W, p2) in 8 and (r1, z, W, fail)
in T contradict to Eq. .

Lastly take p; = fail = ps. This gives 0 = px with x € L; U Ly and (s;, 1) % (rs, Bi L) %) (fail, o; L)
for i = 1,2. Again, (s;,1) % (riyB; L) for i = 1,2. The determinism of § implies r; = 79 and

B1 = B2. We now have transitions (r;,z, Z;, fail) in T, ¢ = 1,2. If = is a push symbol, Eq. gives
Zy = Z = Zs, so that ay = Zf, = Zf> = ay and we have the result. When z is a simple symbol, we
get oy = B1 = B2 = a. Assume that x is a pop symbol. If §; = B3 # ¢ we must have 81 = By = W,
and then a; = v = as. Otherwise, we have 51 = ¢ = 83 and again a; = 1 = as.

We conclude that T is deterministic.
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The next claim shows that any o € otr(8) N [otr(8)Ly | leads T to the fail state.
Claim 2. Let o € otr(8) N [otr(8)Ly|. Then, (so, L) ‘:} (fail, L) for some sg € Ty, o € (Ag)*.

Proof. Let 0 = ul, o & otr(8), £ € Ly and p € otr(8). Then, from Definition |3| and since 8 has no
¢-moves, we get (sq, L) % (p,al), where sg € Sy, = Tip, @ € (Ag)*. By construction, all transitions

in 8 are also transitions of T, so that (sg, L) ’—‘;> (p,al).

We now argue that (p,al) é (fail, 8L) where 8 € (Ag)*. Composing we get (sq, L) %é (fail, 5L),
as needed. We note that we cannot have (p,al) é) (z,7L) for any z € Ss, v € (Ag)*, because

then we would get (so, L) i; (z,7L1), and then ul = o € otr(8), a contradiction. There are three

simple cases. If £ € L., then (p,f,W,z) € Ts for any z € Ss and any W € Ag. Then, Eq. gives
(p, ¢, Z, fail) € Ty, as needed. If £ € L;, the reasoning is the same, using Eq. . Now let £ € L,.. Since

(p,al) é (z,7L1) is not allowed, we cannot have (p,¢, W, z) in Ts for any z € Ss, where W € Ag is

the first symbol in aL. Now, Eq. 1} gives (p, ¢, W, fail) € Ty. Since 0 = pf and (sg, L) %é (fail, 51),

we get (so, L) T—‘} (fail, 3.L).

The next claim deals with the converse.

Claim 3. Let o € (Ly U Ly)*, (tg, L) % (fail, 8L) with tg € Tin, B € (Ag)*. Then o € otr(8) N [otr(8)Ly].
Proof. Since there are no ¢-moves in T, we must have (¢g, L) ? (p,al) é (fail, 5L), with o = pf.

Since fail is a sink state we get p # fail, and we know that all transitions in (¢g, L) % (p,al) are in

8, so that (tg, L) % (p,al). Thus, u € otr(8). We must also have a transition (p, ¢, X, fail) in T. By

the construction, it can only be inserted in T by force of Equations ,, or . In any case, we
get £ € Ly. Hence o = pl € otr(8)Ly.

Assume that o € otr(8). Since 8 has no ¢-moves we get (sg, L) ? (p',a/ L) é (r,yL), with so € Sin,

p,r € Sg, o,y € (Ag)*. We now have (tg, L) % (p,al) and (sg, L) % (p',a’Ll). Since § is
deterministic and has no ¢-moves, Definition |5| gives p = p’ and @ = o/. Thus, (p,al) é (r,vlL).

Since (p, ¢, X, fail) is a transition of T, together with (p, a.L) é (r,yL), there are three cases. We show
that all lead to a contradiction, thus showing that o & otr(8) as desired.

If ¢ € L. then (p,¢,W,r) is a transition of 8§ for some W € Ag. In this case we must have used Eq.
to insert (p, ¢, X, fail) in Tr. But then we need X = Z and (p,¢,Y,q) & Ts for any ¢ € Ss, Y € Ag,
and we get a contradiction. If £ € L; then W =, (p, £, #,r) is a transition of § and we must have used
Eq. to insert (p, 4,4, fail) in T5. But this requires (p, ¢, 4, q) € Ts for any q € Ss, and we reach a
contradiction again. If £ € L, then (p, ¢, W,r) is a transition of 8§ where W is the first symbol in «L.
According to used Eq. we now need (p, ¢, W, q) ¢ Ts for any g € Ss.

Let 3= (Sq, Lin, L1, Ly, Ag,Ty) be an arbitrary IUT. As argued above, we need J does not pass T if and
only if otr(J) N T # 0, where T = otr(8) N [otr(8)Ly]. According to Definition J does not pass T if

a

and only if for some o € (Ly U Ly)* we get ((to,q0),1) = ((fail, q), L) where ((t0,q0), L) is an initial
X

configuration of T x J, ¢ € Sy and a = (X1,Y1) -+ (Xpn, Ya) € (Ag x Ag)*, n > 0. Since fail is a sink state
and transitions into fail are over symbols in Ly, we can say that J does not pass T if and only if

(to:q0), 1) 2 ((0.r),BL) = ((Fail g), L),

for some p € L*, L € Ly, p € Sy, p#fail, r € Sy, 8= (W1,Z1) -+ (Wi, Zin) € (Ag X Ag)*, m > 0.
First, we assume otr(J) N T # () and argue that J does not pass T. We have o € otr(J) N T for some
o € (Ly U Ly)*. Hence, (qo, L) % (r,al) with o = h¢(n) and qo € Qi Since o € otr(8) N [otr(8)Ly],

Claim 2 gives (to, 1) % (fail, L) with o = h(p) and t9 € T, We can now use Proposition [2[ and write
((to,q0), L) ng ((fail,r),~vL). Since (o, qo) is initial in T x J, we see that J does not pass 7.
X

10
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Lastly, assume that J does not pass . We get o € (L; U Ly)* and ((t9, qo), L) {Iéj ((fail, r),vL) with
X

(to, qo) initial in T x J. From Claim 3 we get o € otr(8) N [otr(8)Ly]. It is also clear that ((to,qo),L) TEG
X

((fail,r),vL) with hc(n) = o. From Proposition |3| we see that (qq,L) % (r,yLl), where v € Aj and

he(p) =<(n) = 0. Thus, (go,L1) é} (r,vL) and, since qo € I;y, we get o € otr(J). Hence o € otr(J) NT.
Now we have that J does not pass T if and only if otr(J) N T # 0, as needed.

5 Testing IOVPTS Models for ioco-like conformance

Given an IOVPFM which is complete for a given specification, we can test whether IUTs ioco-like conform
to that specification. But first we define the notion of balanced run.

Let V € VP(L), and let p, ¢ be states of V. We say that a string o € L* induces a balanced run from
p to ¢ in V if we have (p, L) %) (g, L). The next theorem gives a decision procedure for testing ioco-like

conformance.

Theorem 6 Let 8 = (Ss,{so}, L1, Lu,As,Ts) € JOVP(L;,Ly) be a deterministic specification, and let
J={(Sq9,Lin, Ly, Ly, Aq,Ty) € IOVP(L;, Ly) be an IUT. Then we can effectively decide whether J ioco-like S
holds. Further, if J ioco-like S does not hold, we can find o € otr(8), £ € Ly that verify this condition, i.e.,
¢ € out((qo, L) after o) for some qo € Iy, and ¢ ¢ out((sg, L) after o).

Proof To simplify the notation, let L = Ly U Ly. The proof of Lemma [2] indicates how to obtain a
deterministic fault model T = (S, T}, Ly, L1, Ay, T3) such that J ioco-like 8 does not hold if and only if
((to,q0), L) % ((fail, q), L) for some o € L*, where P = T x J is the product IOVPTS, and (tp, qo) is an
initial state of P. So, in order to check for ioco-like conformance it suffices to check whether a configuration
((fail, g), L) is reachable from some initial configuration of P. First, we modify P in a simple way in order
to make this reachability problem more amenable.

Emptying the stack after reaching a state (fail,¢). For all states (fail,¢), add the internal transition
((fail, q),s,, f1) to P, where f; is a new state. Then, for all stack symbols W add the self-loops
(f1,01, W, f1) to P, where b is a new pop symbol added to L. Next, add the transition (f1,b1, L, f2) to
P, where f5 is another new state. Let P; be the resulting IOVPTS obtained after these modifications
to P. Since (fail, ¢) is a sink state in P, it is easy to see that

(1) If ((to,qo), L) 2 ((fail,q), L) in P then ((to,q0), L) & (f2, L) in Py, where p = o¢b¥ with
k=lal+1.
(2) If ((to, qo), L) & (fa, L) in Py then u = acb¥ and ((to, qo), L) > ((fail, q), aL) in P for some a € L*
with o] =k + 1.
Assume that P has been transformed as described, so that we can always empty the stack after reaching a
(fail, g) state, for all states g of J.

Eliminating pop moves on an empty stack. Let sy be yet a new state, as a new push symbol, and Z5 a new
stack symbol. Add the self-loop (sg, az, Z2,s0) to P. Next we connect sg to all original initial states
of P with internal transitions (so,<,f,s) where s is initial P, and make sy the new, unique, initial
symbol of P. Finally, we replace any pop transition on an empty stack (p, ¢, L, q) by the pop transition
(p, ¢, Za,q). Let Py be the new IOVPTS after these modifications to P. Now we have
(1) If (s, 1) > (g, L) in P where s is one of its initial state, and if we have 0 < k < |o| pop moves

on the empty stack on this run, then by an induction on k we can show that (sg, L) a—;; (s0, 25 1) >
(5,251) % (¢, 1) in Py.

(2) If (s9, L) % (g, L) in Py, then an easy argument shows that o = afcu, with & > 0, and we have
(s,1) LN (g, 1) in P, where s is the initial state in P and this run makes k pop moves on an empty

stack.

Assume that the original product P = T x J has been transformed into the IOVPTS P’ after the mod-
ifications that allow us to empty the stack after reaching a (fail, q) state and to avoid pop moves on an
empty stack. Then, we have ((to,qo), L) % ((fail, q), L), with (¢o,qo) as the initial state in P, if and only

11
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if we have (sg, L) ;“? (fa, L), where p = aksocb? for some k > 0 and n > 1. Now, from the definition,

we have ((to,qo0), L) % ((fail, q), L) if and only if ((t0,q0), L) %) ((fail, q), L) where n = h. (o). Thus,

((to,q0), L) % ((fail, ¢), L) if and only if we have a balanced run p from sg to fo in T and 7 = hya, », ¢} (1),

i.e., we get n from p by erasing all occurrences of as, by and ¢. Putting it together, we have: J ioco-like 8§
does not hold if and only if (sg, L) % (f2, L), and hyq, p, <} (1) is a string that corroborates this fact.

We have reduced the ioco-like conformance test to the following problem: given two states p and g of
an IOVPTS, find a string o that induces a balanced run from p to g, or indicate that such a string does not
exist. Next, we solve this problem.

The following construction was inspired from ideas of previous works [I4, [19]. Now, it is sufficient to
consider the underlying VPTS. So, let P = (Q, Qin, L, T, p) be a VPTS given by an incidence vector P of
transitions, indexed by @, where P[p] points to a list of all transitions (p, z, Z, q) € p where p is the source
state. We assume that P has no pop transitions on the empty stack, that is, of the form (p,z, L, q) where z
is a pop symbol. Algorithm [1| shows the pseudo-code.

Algorithm 1: Checking for balanced runs in a VPTS P = (Q, Qin, L, T, p)

Data: Given: a vector P, where P[p] is a list of all (p,a, Z, q) € p; states s;, Se.
Data: Assumptions: P has no transition on the empty stack and s; # se.

Data: Uses: vectors In, Out indexed by @; matrix R indexed by @ X Q; queue V.
Result: Check for a BR from s; to s.; if there is one find a string that induces it.
// Initialize V, R, In and Out

2 V =null
3 forall p,q in Q do {R[p,q] =0}
4 forall p in Q do { In[p] = null; Out[p] = null }
5 forall p in QQ do
6 forall (p,a, Z,q) in P[p] do
7 if a € Ly U{s} and p # q and R[p,q] = 0 then

{R]p,q] = [p,a,q]; add (p,q) to V'} // simp & inter transitions
8 else if a € L, then add (a, Z, q) to Out[p] // pop transition
9 else add (p,a, Z) to In]g] // push transition
10 forall (q,b,W,r) € P[q] do // BR from push & pop transitions
11 if W=2Zandb € L, and p # r and R[p,r] = 0 then

{R[p,r] = [a,q,q,b]; add (p,r) to V' }
//

// Main loop
12 while V # null and R|[s;, sc] =0 do

13 Remove (p, q) from V // We have a BR from p to ¢
14 forall s in Q do // new BR from s to q
15 | if R[s,p] # 0 and s # q and R[s,q] = 0 then { R[s,q] = [s,p,q]; add (s,q) to V' }
16 forall t in @) do // new BR from p to t
17 | if R[g,t] # 0 and p #t and R[p,t] = 0 then { R[p,t] = [p,q,t]; add (p,t) to V' }
18 forall (s,a,Z) in In[p] do
19 forall (b, W, t) in Out[g] do // push Z from s to p, pop Z from q to t
20 | if W =2 ands#t and R[s,t] =0 then { R[s,t] = [a,p,q,b]; add (s,t) to V }

//

// Issue the verdict
21 if R[s;,se] =0 then Print THERE ARE NO BALANCED RUNS FROM §; TO S
22 else Print A STRING THAT INDUCES A BALANCED RUN FROM 8; TO s. (BETWEEN | |): | getstring (si, se) |

//
23 Function getstring(p,q): // Print the string
24 switch R[p,q] do
25 case [p,a,q] do Print “a”
26 case [p,s,q] do { getstring (p,s); getstring (s,q) }
27 case [a,p,q,b] do if p # g then { Print “a”; getstring (p,q); Print “b” } else { Print “a”;
Print “b” }
28

We will use two vectors of pointers, In and Out, both indexed by @, and a queue V. The entry In[p] will
point to a list of triples (s, a, Z) corresponding to transitions (s, a, Z, p) where a € L., that is, p as the target
state of a push transition. Likewise, an entry in Out[p] will point to a list of triples (a, Z, s) corresponding
to transitions (p, a, Z, s) where a € L,, that is, p is the source state of a pop transition. We will also need a
square matrix R, indexed by @ x @, where R[p, ¢] will contain: (i) [a,p, ¢,b], or (ii) [p, ¢, q], or (iii) [p, s, ¢, or
(iv) 0, where a € L., b € L., ¢ € L, U{s}, and p, q, s are states. The general idea is that, when R[p,q] # 0
then it will code for a string ¢ that induces a balanced run from p to q.

We now examine Algorithm [I] Lines 1-10 initialize V', In, Out and R. At line 6, note that a transition
(p,a, 4, ¢) immediately induces a balanced run from p to g. At line 10, we collect a simple balanced run from

12
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p to r that is induced by a push transition (p, a, Z, ¢) and a pop transition (g, b, Z,r). In the main loop, lines
11-19, removing (p, ¢) from V indicates that we already have a string, say o, that induces a balanced run
from p to ¢. At lines 13-14, a string p that induces balanced run from s to p is encoded in R][s, p]. Hence,
po induces a balanced run from s to ¢q. If we still do not have a balanced run from s to g, we can now
encode the string po in R[s, q] and move the pair(s,q) to V so that it can be examined later. Lines 15-16
do the same, but now we encode in Rp, t] a string that induces a balanced run from p to ¢t. At lines 17-19,
we search for a push transition (s, a, Z, p) and a matching pop transition (¢, b, Z, t) and, when successful, we
encode aob as a string that induces a balanced run from s to t. The cycle repeats until saturation when
V = null, or until we find a balanced run from s; to s., as requested. Lines 22-26 list a recursive procedure
that extracts the string encoded in R|[p, q] # 0.

5.1 Correctness and Complexity
First we argue for correctness.

Theorem 7 Let P = (Q,Qin, L, T, p) be a VPTS with no transitions of the form (p,a, L,q) in p. Also let
Si, Se € Q, with s; # s.. Suppose P, s;, s. are input to Algorithm [1 Then it stops and returns a string
o € L* such that (s;, L) % (Se, L), or it indicates that such a string does not exist.

Proof A VPTS P = (Q, Q:n, L, T, p) with no transitions of the form (p,a, L,q) in p, and two states s;, s
with s; # s., are input to Algorithm [I]

At lines 1 and 2 we start with V' = null and R[p,¢] = 0 for all pairs (p,q). Inspecting lines 6, 10, 14,
16 and 19, we see that a pair (p,q) is added to V only when we currently have R[p,q] = 0 and, when(p, q)
enters V we immediately set R[p, q] to some nonzero value. Further, at no other point in the main loop, at
lines 11-19, we reset R[p, q] to zero. Hence, a pair (p,q) can enter V at most once and, therefore, the main
loop at line 11 must terminate. So, Algorithm [T] always stops.

Next we claim that, at any point during the execution of the algorithm, if R[p,q] # 0 then it codes
for a string that induces a balanced run from p to ¢q. This is immediate from the initialization lines 6 and
10. Proceeding inductively, assume that this property holds after a number of executions of the main loop.
At line 14, we have removed (p,q) from V, and so we now have R[p, q] # 0 because (p,q) entered V in a
previous iteration. At that moment we made R[p,q] # 0 and then, inductively, it codes for a string o such
that (p, L) > (¢, L). Now, at line 14 we require R[s,p] # 0 so that, inductively, it also codes for a string

p such that (s, L) & (p, L). Composing, we get (s, L) “3 (¢, 1), and so by making R[s, q] # 0 code for the
string po, we extend the induction in this case. The reasoning at line 16, is very similar. We now look at
line 19. At that point we have a push transition (s, a, Z, p), a pop transition (¢,b, Z,t), and (p, L) % (¢, L)

for some o € (L U {s})*. Recall that the algorithm assumes that the given VPTS P has no pop transitions
on the empty stack. With this hypothesis, we claim the following general property of P:

g

If (p,a;l) ? (q,2l) with p, ¢ € Q and a1,y € T*, then for all 81,8, € I'* we also have
(p,c1pr1l) % (q,2B2.1).

A simple proof can be obtained by induction on |o| > 0.

With a1 = ag = ¢, B1 = B2 = Z, from (p, L) > (¢, L) we get (p, ZL) % (¢, Z1). Now we have (s, L) %

(p, Z1) > (¢, Z1) LA (t, L), so that making R[s,t] code for the string acb also extends the induction after

line 19 is passed. Since we have completed one more iteration of the main loop, we see that upon termination
of the main loop, if we have R|[s;, s.] # 0, then we do have a string that induces a balanced run from s; to
Se. Moreover, it easy to see that the simple recursive call getstring(s;, s.) at line 21 does correctly extract
one such string.

Next, we argue in the other direction. Suppose that the main loop terminates with V = null. Then we
claim that for all pairs (p, ¢), with p # ¢, if R[p, q] = 0 then there is no string capable of inducing a balanced
run from p to g. For the sake of contradiction, assume that the main loop terminates with V = null, and
we have p # ¢, R[p,q] = 0, and a string o such that (p, L,) % (¢, L). Among all such pairs, choose one for

which |o| is minimum. Since p # ¢, we need |o| > 1. If |o| = 1, then we need a transition (p,o,4,¢q) in p.
But then, at line 6, we make R[p,q] = [p,0,q] and it is never rest to 0 again. This is a contradiction, and
we can assume |o| > 2.

Now there are two cases, depending on the configurations that occur between (p, L) and (g, L) in the
run (p, 1) % (g, 1):
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Case 1: A configuration (r, L) occurs in the run (p, 1) % (g, L). Write (p, L) & (r, L) & (¢, 1), with

o = g109. We know that o1 # € # 02 because P has no transitions on the empty stack. If p = r we get
(p, L) B (g, L). Since |oa| < |o|, the minimality of |o| forces R[p,q] # 0, a contradiction. Similarly,

q = r also leads to a contradiction.

Now, assume p # r # ¢. Since |01| < |o| and |o2| < |o|, when the main loop terminates with V' = null
we must have R[p,r] # 0 and R[r,q] # 0. Moreover, for this to happen, both (p,r) and (r,q) were
added to V. Suppose that (p,r) is removed from V before (r,q). Then, at the iteration of the main
loop when (r, q) is removed from V we have R[p,r] # 0 and p # q. Hence, at line 14, since R[p, q] = 0,
we make Rlp,q] = [p,r,q] and, since it is never reset to 0 again, we have a contradiction. If (r,q) is
removed first from V', the reasoning is the same using line 16. So, this case can not happen.

Case 2: A configuration (r, L) does not occur in the run (p, L) % (g, L). Then, we must have a

xZ

push transition (p,z, Z, s) with 0 = xoy, and we are left with (p, L) = (s,ZL) & (¢, L). If |oy| = 1,

we need a pop transition (s,y, Z, ¢) and now line 10 makes R[p, ¢] = [z, q, ¢,y], a contradiction. Hence
|o1] > 2. Since no configuration of the form (u, L) occurs in the run over o, we must have a pop

transition (¢,y, Z,q) and (p, L) = (s, ZL) & (t,ZL) 5 (¢, L), with o = zpuy.

Next we claim that in any VPTS 8 = (S, S;,, L, I, T) if a run does not shorten the initial stack, then
that stack can be replaced by any other. More precisely,

Letp, g€ S, 0 € (LU{s})* and a € I'* with (p,aL) % (¢, ). Assume that a configuration

(u,7), with || < ||, does not occur in that run over o. Then, for any 5 € I'* we also have
(p, L) = (q,8L).

An easy induction over |o| > 0 gives the result.

Recall that we already have (s, ZL) & (¢, Z1) and a configuration (u, L) dos not occur on the run over

1 since it can not occur on a run over o. Using the claim we get (s, L) £ (¢, 1). Now, since |u| < ||,

the minimality of |o| says that when the main loop terminates with V' = null, we must have R[s,t] # 0.
But then, at some moment (s,t) was added to V. Since the main loop terminates with V' = null, at
some iteration we have removed (s,t) from V. Note that we have a push transition (p,z, Z,s) and a
pop transition (¢,y, Z,q). Hence, line 19 says that we will set R[p,q] = [z, s,t,y] and, since R[p,q] is
never reset, we see that the main loop terminates with R[p, q] # 0, which is a contradiction.

Since both cases lead to contradictions, we get that when the main loop terminates with V' = null and
R[s;,8¢] = 0, then there is no string capable of inducing a balanced run from s; to s.. Hence, line 20
correctly reports the inexistence of any such strings.

Thus, lines 2021 always report as expected, and Algorithm [1] is correct.

Now we examine the complexity of our testing approach.

Theorem 8 Let 8§ € JOVP(Ly, Ly) be a deterministic specification with ng states and mg transitions, and
let 3 € JOVP(Ly, Ly) be an IUT with n; states and m; transitions. Then there is a procedure, with worst case
asymptotic polynomial time complezity bounded by O(n3n3 + n2mim?), that verifies whether J ioco-like 8.
Moreover, if J ioco-like S does not hold, the procedure finds an input string that proves this condition.

Proof Write L = Ly U Ly, |L| = ¢ and let g5, g; be the number of stack symbols in 8 and J, respectively.
We now follow the argument in the proof of Theorem [6]

First, the fault model 7T is constructed in Lemma From Equations 7 we see that ny = ng + 1
and m; < mg + nggsl, where n; and m; are the number of states and transitions in 7T, respectively. It is
easy to see that T can be effectively constructed from § by an algorithm with worst case time complexity
bounded by O(ms + nsgsf). We can safely assume mg > g5 and mg > ¢. Hence, m; and n; can be bounded
by O(nsm?) and O(ny), respectively, and the worst case time complexity to obtain T can also be bounded
by O(nsm?2).

Next, we construct the product P = T x J. Let n,, m;, and g, be the number of states, transitions and
stack symbols in P, respectively. Using Definition @ and since J has no ¢-moves, we see that n, = nun,,
mp < mymy; +nymy, and g, = gsg;. As before, a simple algorithm with worst case time complexity bounded
by O(mym; + ngm;) can construct P given T and J. Hence, n,, m, and g, can be bounded by O(nsn;),
O(nsm?m;) and O(mgm;), respectively, and the worst case time complexity to obtain P can be bounded by

O(nsm?m;).
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Finally, Theorem [0 requires that we modify P to an IOVPTS with an underlying VPTS A
(Say {80}, La,Tay pa) with the property that J ioco-like S does not hold if and only if we have (sg, L)

(f,L) for some p € (L, U{c})*, where f is a specific state in S, with sy # f. Moreover, if such is the
case, the final steps in the proof of Theorem [f] indicate how to obtain the desired string o that proves that
J ioco-like S fails. Let n, = |S,| and m, = |ps|. From the proof of Theorem@7 it is easy to get n, = np+3
and m, = my, + 2n; + g, + 2. Also, a simple procedure, running in worst case time complexity O(mq, + ng),
can be used construct the VPTS A given the product P. Then, n, can be bounded by O(nsn;), m, can be
bounded by O(nsm?m;), and the worst case time complexity to construct A can be bounded by O(nsm?m;).

The final step is to submit A and the two states sg, f to Algorithm Theorem [7] guarantees that
Algorithm [I] correctly produces a desired string or indicates that no such string exists.

We now derive an asymptotic upper bound on the number of steps required for Algorithm [I]in the worst
case. Clearly, the number of steps for lines 1-3 can be bounded by O(n2).

For each state p € S, let s,, t; be the number of transitions in A that have p as a source and ¢ as a
target state, respectively. Thus, ZpeQ sp < mg and > t, < mg, for all p € S,. The total number of
steps pertaining to lines 4-10 can be bound by

Z (Sp Z tq) S Z (spma) =My Z Sp S mi.

PESa q€Sq PESa pES,

==

PEQ

From the proof of Theorem |7} we have that each pair (p,q) can enter the queue V' at most once. Hence,
a state p will appear in a pair (p,q) removed from V at most n, times. Since the number of steps at each
execution of lines 13-14 can be bounded by O(n2), the total effort spent for lines 13-14 is bound by O(n2).
Likewise for lines 15-16. Now we bound the total number of steps for lines 17-19. For each pair (p,q)
removed from V', the cost relative to lines 17-19 is O(tps,). Since each pair of (p,¢) can enter V at most
once, the total cost is bound by

Z tpSq = Z tp(z 5q) < Z(tpma)

P,q€Q PER q€Q PEQ

and Z(tpma) =m, Z t, <m?2.

PEQ PER

Hence, the total number of steps to execute the main loop at lines 12-19 is bound by O(n? + m2). We can
now conclude that the total number of steps to execute Algorithm [1| is bound by O(n3 + m2). Using the
previously computed values, we see that a worst case asymptotic time complexity for Algorithm I]is bounded

by O(n3n + n2mim?). Since this bound dominates all the preprocessing steps needed to construct T, P

and A, the overall worst case time complexity of the ioco-like checking procedure is O(n3n + n2mim?).
In some practical situations we may assume that the number of stack and alphabet symbols as constants,
for any specifications and IUTs models that will be considered. In these cases, the number of transitions of
the fault model T can be bounded by O(my), in the proof of Theorem [8] As a consequence, the worst case
time complexity for Algorithm [1] can be seen to be bounded by O(n?n? + m2m?).

5.2 Example: a Drink Dispensing Machine

Now we want to apply the previous results in a more realistic setting where a drink dispensing machine is
operated. Because the overall testing procedure is not yet fully implemented on software, the example has
to be somewhat contrived, so that we can proceed manually. So we show only some possible interactions
that may occur. When dealing with a practical implementation, of course, many other situations could be
represented, making the model as complex as required by the testing requirements one is dealing with.

We first describe the drink dispensing machine and its specification IOVPTS model. In the sequel we
construct the fault model for the given specification and then we test some possible IUTs for ioco-like
conformance.

5.2.1 A Drink Dispensing Machine

In a typical drink dispensing machine, a customer puts in some money and then order the desire beverage.
After choosing the beverage, the right amount of money will be charged and the machine will dispense the
chosen drink. If the amount of money was in excess, the customer can ask for the balance. If the amount
of money already in the machine is not enough, the customer has to add more money or the customer can
decide to get a full refund. Usually, real machines accept several payment methods such as cash and credit
cards. In order to ease our modeling we specify that only unit coins can be used for payment.
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The complete IOVPTS specification model 8§ = (Ss, Sin, L1, Lu, As, Ts) is depicted in Figure [5] where
L; = {coi,rch,crd, wtr,tea, cof,deb} is the set of input events and Ly = {chg, dwt,dte,dco} is the set of

@Dcoi /Cy

coi/Cy dte/C_ coi/Cy

ﬁ& N T Tea () ab/C é
,Oi/C+
rch) chg/L  cof deo/C

deb]jC— @ debjC—

coi/Cy coi/Cy coi/Cy

Q
3
U

!
R

Figure 5: A drink dispensing machine S.

output events. The alphabet L = L; U Ly is partitioned into the set of push events L. = {coi}, the set
of pop events L, = {crd, chg, deb, dwt, dte,dco} and the set of simple events L; = {rch,wtr,tea,cof}. We
have split state s; to make the figure clearer. Recall Remark [I| for the notation. The underlying VPTS is
Asg = <Sg, Sin, L7 Ag, TS>.

The system starts at state s; where the customer can either insert coins into the machine — event labeled
cot —, request his change — event labeled rch —, or ask for a drink, namely, label wtr for water, label tea
for tea, or label cof for coffee. Inserting coins is represented by the self-loop labeled coi/C at state si.
Note that the pushdown stack keeps track of the number of coins inserted into the machine. At state s; the
customer can also request a refund, or the remaining change, by activating the rch event. The machine will
then return the correct balance via the pop self-loop crd/C_ at state ss.

The customer orders a drink by pushing the button for water, tea, or coffee, moving the machine to states
Sa2, 54 and sg, respectively. The price associated to water is one coin, for tea it is two coins and for coffee it
is three coins. When the customer asks for water, the pop transition dwt/C_ is taken, returning to state si,
and the correct charge is applied subtracting one coin from the total amount. The event dwt indicates that
water has been dispensed. However, if not enough coins have been inserted, the transition from state s, back
to state s; is blocked. The customer can proceed by inserting more coins using the self-loop coi/C at state
s2. The behavior when ordering tea or coffee follows similar paths. For simplicity, once the customer has
made a commit to order some of the beverages, the machine will wait until enough coins have been inserted
to pay for the chosen drink.

Figure [6] depicts the fault model T that is constructed for the specification § using Lemma [2} We have
split the fail state in order keep the figure uncluttered. The sets Dy, for ¢ € {a,r, w,t,c}, collect the label
of several transitions, as indicated in the figure caption. Note that Ly N L. = @ = Ly N L;, so that the only
transitions into the fail state we need to check are those over the symbols of Ly N L, = {chg, dwt, dte, dco}
together with stack symbols in {C, L}. For example, the set D, denotes transitions to the fail state with
pairs (z,y) for all z € Ly N L, and all y € {C, 1 }.

5.2.2 Testing Some Implementations

In this subsection, we examine some implementations, and test them for ioco-like conformance against the
specification 8 depicted in Figure 5] and whose fault model T is shown in Figure [6]

Our first example is an TUT J,, depicted in Figure [7] where coffee is wrongly charged at two coins only.
Here we notice that the state sg of 8 is missing, so that in the ITUT J, we have a self-loop (s7,deb/C_, s7)
instead of the transition (s7,deb/C_, sg) as in the specification model. In this case a fault can occur and the
machine may charge less for a cup of coffee.

Consider the sequence of events n = p dco, where p = coi coi cof deb. The customer has inserted only two
coins and ordered coffee, and still the machine may deliver a cup of coffee. It is easy to see that n leads T to
the fail state, while J, reaches state s;. Again, from Lemma [2] we obtain that J, ioco-like 8 does not hold.
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Figure 6: The fault model T for 8.

In this example we have dco € Ly and deo € out((s1, L) after p) in J,, while dco ¢ out((s1, L) after p)
in 8. So, from Definition [9} we can declare that J, ioco-like 8 does not hold. In the product T x J,, we get
the corresponding run

((s1,51), L) = ((fail,s1), L).

Notice that, in this same IUT J,, coffee could be charged more than three coins, i.e., the machine may
subtract more than three coins before dispensing a cup of coffee, when the user has inserted more than three
coins before asking for the cup of coffee.

Now, we turn to IUT Jj, obtained from 8 by adding the extra self-loop (s5,deb/C_, s5) to Figure [5} This
allows the machine to subtract any number of extra coins after the customer has ordered a drink, given that
more than enough coins have been inserted. Consider the sequence of events coi coi coi tea deb deb dte rch chg,
signaling that the customer initially has inserted three coins, then decided to order tea. According to the
IUT Jp, however, when requesting the remaining change the customer gets no coins back, and the net effect
was that the customer was charged three coins for a cup of tea. However, even in face of that mistake, we
show below that J, does conform to the specification 8.
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Figure 7: An IUT J, charges wrong.
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Recall the original specification 8. We note that J, differs from 8 only by the extra transition at state
s5. Further, for each symbol x € Ly and state s;, there is at most one transition out of s; on z, both in J,
and in §. Reasoning more formally, it is easy to see that for any sequence of events o a simple induction
on |o| > 0 shows that if we have (s;,al) € (s1, L) after ¢ in § and (s;,5L) € (s1, L) after o in J;, then
i = j and a = B. According to Definition [} if J, ioco-like 8 did not hold, we would need ¢ € Ly and
a sequence o such that ¢ € out((s;,al)) where (s;,al) € (s1, L) after ¢ in J, and ¢ ¢ out((s;,[L1))
where (s;,8L) € (s1,L) after o in 8. Since the transitions of § and J, are identical, except at state s5, we
conclude that s; = s; = s5 and ¢ = deb. Because deb ¢ Ly we reached a contradiction, and must conclude
that J, ioco-like S does hold.

We note that deb ¢ Ly was crucial to the preceding argument. In fact, if we move deb from L; to Ly,
then we clearly would get that J, ioco-like 8 fails. This is because the nature of the ioco-like relation checks
only that the IUT may not emit any output symbol that was not enabled in the specification, after they both
experience any sequence of events that runs on the specification. On the other hand, the definition of the
ioco-like relation says nothing about input symbols that may be emitted by the IUT and the specification
after a common run in both models.

6 Concluding Remarks

Testing conformance of reactive systems implementations is usually a hard task, due to the intrinsic nature of
these systems, which allows for the asynchronous interactions of messages with an external environment. In
such situations, the use of rigorous approaches capable of generating test suites for these models is indicated.

Previous studies focused on simple systems which have access only to a finite memory, represented by its
states, e.g., LTS models. Here we studied a more powerful class of reactive systems, those that can make
use of a potentially infinite memory, in the form of a pushdown stack. We extended the classical notion
of ioco-conformance to cope with this new formalism that can make use of a potentially infinite memory.
Essentially, this conformance relation still says that the implementation can only emit an output signal that
is already present in the specification, after a common exchange of symbols has taken place in both models,
but now both having access to a pushdown stack.

We developed, and proved correct, polynomial time algorithms that can be used to generate complete test
suites and that can verify whether any implementation ioco-conforms to a given specification. In common
practical situations the algorithms exhibit asymptotic worst case time complexity that can be bounded
by O(n® + m?) where n and m are proportional to the product of the number of states and transitions,
respectively, present in the implementation and in the specification.

As discussed in Section [2| other works have also investigated recursive systems where a stack memory
is present. They are, in general, based on classes of formal models which are proper subsets of Visibly
Pushdown Languages, such as the class of Dyck languages. Therefore our approach is more complete and
general in the sense that those systems and their respective models treated by our framework are also more
powerful.

As additional work one could implement into a prototype the theoretical ideas developed here, and test
the prototype with models that represent more practical situations. Also, one could investigate whether
these ideas could be carried further using more powerful formal models, like some other forms of restricted
PDAs, models where the communication channels have an infinite memory, or other formalisms that can
represent timed events.
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