
Conformance Testing and Interoperability:
A Case Study in Healthcare Data Exchange

L. Gebase1, R. Snelick1, and M. Skall1

1National Institute of Standards and Technology (NIST), Gaithersburg, MD, State, USA

Abstract - Correct data exchange is critical for ensuring
reliable healthcare systems. Standards based systems are
the foundation for achieving this goal. However, standards
alone are not enough to ensure this promise; conformance
and interoperability testing are essential. We present and
compare conformance testing strategies for a widely used
healthcare clinical data exchange messaging standard. We
discuss in detail an actor-based testing framework and give
insight on the approach used in developing the framework.
We present an architecture that extends this framework to
support testing of integrated healthcare systems using
multiple messaging and document data exchange standards.

Keywords: Conformance; Interoperability; Messaging
Systems; Testing Framework; Test Strategies.

1 Introduction
 A major challenge for the healthcare industry is
achieving interoperability among proprietary applications
provided by different vendors. Each hospital department
may use multiple applications to share clinical and
administrative data. Interoperability can be better achieved
through the use of standardized interfaces. Even though the
applications may implement the same standard, there is no
assurance of interoperating. There are two primary reasons
for this problem. One is that the applications don’t
implement the same set of options allowed by the standard.
This problem can be addressed with conformance
provisions offered by the standard. The second problem is
that applications implement the standard incorrectly. This is
addressed with conformance testing. Applying conformance
processes and successfully conducting conformance testing
will not ensure interoperability, but they will increase the
likelihood of implementations interoperating. Employing a
comprehensive testing program at the onset of an
implementation leads to more reliable systems, and
ultimately, reduced costs.

We propose and examine testing strategies for the Health
Level Seven version 2.x (hereafter HL7) messaging standard
[1]. HL7 is a widely used standard for the exchange of
clinical and administrative data among healthcare
applications. HL7 provides an interesting testing challenge
due to the wide array of options allowed by the standard. To

reduce the number of choices implementers are confronted
with and increase the likelihood of different
implementations interoperating, the HL7 standard has
introduced a conformance section that allows implementers
to support a subset of the functionality offered by the
standard. By reducing the large set of options allowed by
the standard, implementers are able to significantly increase
the likelihood of interoperating. The principle mechanism to
constrain the allowed set of options is a message profile.
Message profiles not only aid interoperability, they also
enhance the capabilities and effectiveness of conformance
testing and the overall testing process.

We are interested in establishing conformance metrics for
HL7 implementations and evaluating vendors’ adherence to
those metrics in a pragmatic environment designed to
simulate a real world environment that does not require
changes to the vendor implementation. We examine two
approaches for evaluating conformance. One approach
employs an Upper Tester, which sits above the application
being tested and makes use of whatever user interface—
possibly an application programming interface (API)—that
the application provides, along with a Lower Tester which
acts as a peer application and drives the testing. The second
approach we examine employs actors to interact with the
application being tested. Actors are autonomous, relatively
small modules, generally run on separate execution threads
that support a well defined subclass of the total functionality
defined by the standard. Finally, while our initial focus is on
HL7 testing, our objective is to develop tools and
methodologies that can readily be applied more broadly to
environments outside of HL7.

2 Conformance and Interoperability
 Standards, no matter how good they are, are just pieces
of paper. They are a means to an end. The goal of any
standard is the eventual binding of the requirements in the
standard into correct, reliable software. To accomplish this
goal, the standard must be a clear, precise, unambiguous,
complete and testable enumeration of detailed requirements.
Using the English language to provide this detailed
specification is a challenge in itself because English is not a
precise language and lends itself to ambiguities. There are,
however, principles that one can implement to help ensure a

precise, testable standard. A good standard should 1) define
what/who needs to implement the standard, 2) distinguish
between normative (mandatory) and informative sections of
the standard, 3) use universally accepted key words to
specify requirements, 4) be modular with minimal
redundancy, 5) be adaptable as things change, and 6) be
technology and design-independent. If a standard
encapsulates these principles it stands a good chance of
being implemented correctly. However, in order to
substantially increase the likelihood of developing correct
implementations, tests need to be developed to determine
conformance.

Conformance is defined as the fulfillment of a product,
process, or service of specified requirements [6].
Conformance is essential to any standard because it
specifies who needs to conform to the standard and what
they need to do to claim conformance.

Conformance testing is a way to determine directly or
indirectly that all relevant requirements in a standard have
been implemented correctly. Conformance testing is black
box testing. In black box testing, the tester does not have
knowledge of the implementation’s internal structure or
have access to the source code. A tester examines that
requirements have been met by probing the implementation
through a series of test cases comprised of both valid and
invalid input and examines the output for correctness, as
defined by the standard. This is contrasted with white box
testing where the internal structure of the code is known to
the tester. With white box testing, the tester chooses inputs
that exercise paths through the code in order to determine if
the implementation is working correctly.

There is a relationship, much like a three-legged stool
among standards, implementations, and conformance
testing. If one leg of our stool does not work correctly, we
will not have confidence that our requirements have been
faithfully implemented. The implementation is tested (via
conformance testing) against the requirements in the
specification to determine if all requirements are met. There
are only two possible outcomes. If any of the tests result in
at least one error, then we know to a certitude that the
implementation does not conform. However, ironically, if
the implementation passes all of the tests, we don’t know
anything for certain. Either the implementation does indeed
conform or the tests are not comprehensive enough to find
the non-conformity. This is another way of stating that
conformance testing can never be exhaustive. Conformance
testing can only prove the presence, not the absence, of
errors.

The goal of interoperability testing, on the other hand, is to
ensure that diverse systems can “work together” and thus
interoperate. In the world of messaging standards,
interoperability will result in implementations reliably
exchanging messages without error. Note that conformance

testing is a pre-requisite for interoperability testing since we
need to ensure that the information being exchanged is the
correct information. However, interoperability testing
requires another layer of testing after conformance has been
ascertained. Interoperability plus conformance ensures that
both systems are speaking the same language. Systems can
send and receive messages and respond with appropriate
messages and ultimately incorporate the information into
their systems and workflow.

Conformance testing is often (but not always) performed by
testing laboratories, with a resulting issuance of a certificate
to implementations that pass all the tests. This process is
called certification. However, even if certification is not the
goal, conformance testing is still necessary, since it is the
only way to ascertain if requirements in the standard have
been correctly implemented. Additionally, conformance
testing serves as a communication between buyers and
sellers allowing sellers to substantiate their claims and
buyers to increase their confidence in the product.

Figure 1: Certification Building Blocks

There is a relationship among the standard, conformance
testing, conformity assessment and certification as a set of
inter-connected building blocks much like a Russian nested
doll with the standard as the inter shell (see Figure 1). None
of the higher-level blocks can be performed unless the box
beneath it has been completed. Thus, conformance testing
can not be performed unless the standard (with its
conformance clause and clear, testable requirements) has
been completed. Conformity assessment (processes and
policies for testing) can not be implemented until the
standard and the conformance testing test suite are in place.
Finally, certification can only be accomplished when all of
the three lower level building blocks are in place. Also, one
can stop anywhere along this spectrum. Many standards
exist without conformance testing or certification. Some
standards have associated conformance tests but no
certification regime while some standards contain all the
components all the way up through certification.

3 Testing HL7 Healthcare Systems
 Typical healthcare organizations have many
proprietary heterogeneous information systems that must
exchange data reliably. Not only are the systems
heterogeneous but standards for exchanging data among
them are different. Seamlessly sharing data among systems
and testing them is complex. In this section we focus on
homogeneous systems for the exchange of clinical data
using the HL7 messaging standard. We provide an overview
of HL7 version 2 and our conformance approach, an
analysis of testing strategies, and tools that facilitate testing
and interoperability. We then focus on an actor-based
testing framework. In the section that follows, we extend the
framework to a heterogeneous healthcare system that uses
multiple message types and employs more than one
document exchange standard.

3.1 HL7 and Conformance
 The Health Level Seven (HL7) version 2.x is a data
exchange messaging standard for moving clinical and
administrative information among healthcare applications
[1]. Typical HL7 messages include admitting a patient to a
hospital or requesting a lab order for a blood test. HL7
messages are structured hierarchically, but the hierarchy is
limited to exactly four levels and composed of building
blocks generically called elements. These elements are
segments, fields, components, and sub-components. Each
element has associated attributes that may constrain it.
These include the degree of options allowed, repeatability,
value set, length, and data type attributes. Segments can
contain additional elements, fields and components can
contain additional elements or be primitive elements; sub-
components are strictly primitive elements. Primitive
elements are those that can hold a data value and have no
descendant structure. Additionally, a container element
called a group can be used to group a related collection of
segments.

This four-tiered hierarchical structure appears simple
enough, but the real complexity in the message structure is
revealed when the possible sequence of segments and fields
making up a message is examined [8]. Every HL7 message
can be identified by its message type. The type limits the
segments allowed in the message, but generally, even for a
specific message type, a great deal of variation is possible.
Segments may be designated as required or optional;
required segments may also be allowed to repeat an
arbitrary number of times, or they may be required to repeat
a specified number of times. Optional segments may be
absent or they may be present and repeat an arbitrary
number of times. For any message, a segment present in one
instance of the message may not be present in another;
repeating segments may occur multiple times in one
instance and not at all in another. The message content is
further complicated by the fact that the sequence of fields
making up each segment may themselves be optional or

required and also may or may not repeat. An application
capable of processing messages of one type may be
incapable of processing messages of a different type, and an
application capable of processing a specific message type
may not be able to process all instances of the type. Clearly
the realm of message possibilities is large and for
applications to have a reasonable chance of interoperating,
the spectrum of possibilities has to be constrained. The
conformance section of the HL7 standard has defined a
message profile (also commonly referred to as conformance
profiles or profiles) for precisely this purpose.

…
<Segment Name="PID" LongName="Patient identification"
Usage="R" Min="1" Max="1">
 <Field Name="Set ID - PID" Usage="R" Min="1" Max="1"
Datatype="SI" Length="4" ItemNo="00104">
 </Field>
…
 <Field Name="SSN Number - Patient" Usage="X" Min="0"
Max="*" Datatype="ST" Length="16" ItemNo="00122">
 </Field>
 <Field Name="Driver's License Number - Patient" Usage="R"
Min="1" Max="1" Datatype="DLN" Length="250"
ItemNo="00123">
 <Component Name="Driver's License Number" Usage="R"
Datatype="ST" Length="100">
 </Component>
 <Component Name="Issuing State, province, country"
Usage="R" Datatype="IS" Length="10" Table="0333">
 </Component>
 <Component Name="expiration date" Usage="R"
Datatype="DT" Length="30">
 </Component>
 </Field>
…

Message profiles define processing rules and provide an
unambiguous description of HL7 messages. Vendors
agreeing to a common profile are more likely to
interoperate. Furthermore, the profile provides a measure
for evaluating the validity of the messages exchanged
among vendors. Vendors may employ tools specifically
designed to facilitate message validation. This may be the
first step in the overall process of evaluating conformance.
A message profile can be represented as an XML document
(see the profile snippet shown). The document includes each
element allowed in the message along with its associated
attributes. For a more detailed description of a message
profile refer to version 2.5 of the HL7 standard [1].

Profiles reduce the number of possibilities to a manageable
set, and their use helps to ensure that systems attempting to
communicate with each other implement compatible sets of
possibilities. A profile defines a set of constraints on the
options allowed by the standard. When the profile is
specified in XML, it also may be machine processed,
thereby greatly facilitating the effort required to produce an
implementation and reducing the likelihood of errors.

3.2 HL7 Conformance Testing
 Conformance testing focuses on evaluating an
implementation's external behavior and assessing its
adherence to the standard. For HL7 implementations,
assessing external behavior generally encompasses
determining the implementation's state and evaluating the
content of the data it transmits in its current state.
Messaging protocols are typically stateless, but nevertheless
an HL7 application can be treated as simple state machines.
Initially a responding HL7 application is in a wait state,
ready to receive HL7 messages from an initiating
application. On receipt of a message, it transitions to a send
state in which an acknowledgement message must be
returned to the initiating application. An initiating
application reverses the responding application's state
transitions and is initially ready to send and then transitions
to a wait state.

Figure 2: Classic Test System

To evaluate a responding application, it is necessary to
measure the content of messages it receives and the
acknowledgement message it returns. To ensure the content
of sent messages is correct, the messages must first be
validated. Validation encompasses message parsing to
ensure correct structure and syntax and semantic checking
to ensure values are correctly constrained. Criteria that must
be satisfied by the returned message can be established from
the message that was sent. However, the content of the
returned message may also depend on the state of the
responding application's database. To track the content of
the database, it is necessary to control the initialization of
the database and then track changes to it.

Evaluating the behavior of an initiating application largely
reduces to validating the messages sent by the application.
But when testing both initiating and responding
applications, the ability to measure the content of messages
sent by an initiator may be limited. In general the exact
content of the message cannot be determined without
knowing the user request that triggered the sending of the
message, but without access to the application user's
interface, this is often not possible. Nevertheless, in the case
of HL7, message validation with some limitations can still
performed. This is possible if the HL7 message profile is

used to enforce proper message structure and syntax and to
enforce value constraints. It is also possible to conduct more
robust testing by constructing messages with invalid values,
or with an invalid structure, and evaluating an
implementation's reaction to the receipt of the invalid
messages.

3.3 Testing with a Lower and Upper Tester
 One commonly employed approach to black box
testing is to place the implementation being tested—
commonly referred to as the system-under test (SUT)—
between a so called Upper Tester (UT) and Lower Tester
(LT). Figure 2 illustrates the approach.

The approach has been widely employed in conducting
protocol testing. With this approach, the SUT communicates
with the LT via the protocol defined by the specification
and the UT takes the place of the user or the business
application supported by the SUT. No additional
requirements are placed on the SUT to enable
communications with the LT, since the environment does
not differ from the operational environment the SUT would
otherwise function in. The LT drives the testing. Acting as
an initiating application, the LT sends messages to the SUT
and evaluates the SUT's behavior based on the
acknowledgment messages returned from the SUT. The UT
may be used to evaluate the SUT's service interface. The LT
may also direct the UT to issue requests to the SUT and in
this way the SUT's role as an initiating application can be
evaluated.

This approach allows for effectively evaluating the
externally observable behavior of the application, but places
no requirements on the internal structure of the application
or the methods it uses to satisfy the requirements.

Figure 3: Typical HL7 Environment

Employing a LT to replace a peer application in this
environment can usually be achieved without difficulty, but
the same is not true for employing an UT. An UT must
typically be deployed outside the tester's local environment,
in the environment running the SUT. This places
requirements on the SUT that may not be easy to achieve,
particularly when a standardized user interface for the SUT

is not defined, as is often the case. Testing can still be
conducted without the use of an UT, but it does place some
limitations on the capabilities of the test system and what
can be tested.

A further limitation of this form of black box testing is that
it cannot be applied in an environment made up of multiple
communicating applications, nor can it be used if there are
multiple systems to be tested simultaneously.

3.4 Actor Based HL7 Test Framework
A typical HL7 environment is made up of many

communicating HL7 applications. A representative
environment is show in Figure 3.

Actors are autonomous implementations, typically running
on separate execution threads that the testing framework
employs in place of HL7 applications needed to simulate the
operational environment in which the SUT functions. In
general HL7 actors can serve in place of any HL7 system.
This enables the construction of an environment completely
controlled by the test system that mimics the real world
operational environment in which the SUT operates. In this
environment the test system can track and monitor all
message exchanges with the SUT. The actor based
architecture is shown in Figure 4. To the SUT and any other
HL7 implementation that is part of the testing environment,
the actors are indistinguishable from HL7 applications they
might interact with in an operational environment. The
actors are distinguishable from other HL7 systems only in
that they are driven by a test script and provide complete
logging of all activities.

Figure 4: Actor Based Testing Environment

Figure 5 depicts an example environment in which an HL7
Order Placer System is to be tested. The operational
environment of the Order Placer includes ADT, Order Filler,
and Image Manager HL7 systems. The testing environment
consists of the SUT and three actors that carry out the same
functionality generally supported by the other systems

making up the operational environment. Figure 5 shows a
scenario in which message transactions begin with the ADT
actor sending a message to the Order Placer. The receipt of
this message by the Order Placer SUT is expected to trigger
a series of message exchanges. The Order Placer must
acknowledge the message sent by the ADT actor, and in
addition it is expected to send a message to the Order Filler.
But there are no differences between the Order Filler actor
and the Order Filler itself that are apparent to the SUT.
Thus, no changes are necessary to test the Order Placer.

The messages exchanged in this environment are
constrained by a message profile that all participating
entities agree to. The profile restricts the set of messages
exchanged from the broad spectrum allowed by the standard
to a manageable set.
This actor based methodology to testing offers some
advantages over the Upper-Lower Tester approach. It is
easily extensible; regardless of how many applications are
employed in the operational environment, actors can always
be employed to replace them in the testing environment.
The approach also lends itself better to deployment in more
complex environments, such as the environment depicted in
Figure 4 where more than one SUT is being tested
simultaneously. Actors and applications may be mixed
arbitrarily in this environment, which cannot be readily
accomplished in the Upper-Lower Tester environment.

Figure 5: Typical HL7 Testing Scenario

Although message validation is not strictly required prior to
performing conformance testing, validating messages in
advance can greatly facilitate the process. If it is not
performed in advance, it must be conducted simultaneously
with the testing. Evaluating message content is critical to
accurately conducting conformance testing. If the test
system is to evaluate the message responses returning from
an HL7 system, it cannot do so accurately unless it is certain
of precisely what the content of each message is.

The testing framework does not vary depending on whether
or not message validation has been done in advance.
However, message validation can be turned off if it was
done previously, and, if it is employed, testing should
proceed smoothly when validation has been done in
advance.

As with the black box testing described above, testing with
actors is used to evaluate only external behavior. The
approach does not employ any counterpart to an UT and this
places some limitations on what can be tested; messages
sent and received can be evaluated, but evaluating the
functionality provided to the user or the business application
cannot be done. Without a counterpart to an UT, triggering
an HL7 implementation to initiate a message exchange can
be problematic; it may be possible as the result of receiving
a message, but short of this some means of accessing the
application's service interface is necessary.

3.5 Message Profiles and Interoperability
 A message profile applies implementation specific
constraints to the standard that eliminate the potential
ambiguities that the standard permits as implementation
alternatives and thus increase the likelihood of
implementations interoperating [3]. Message profiles are an
integral part of a testing framework. They provide the
message template upon which better test message generation
and message validation can be performed.

A desktop tool for creating and documenting message
profiles in a common format is the Messaging Workbench
(MWB) [2]. The MWB supports all the HL7 version 2.x
artifacts in the form of libraries that are readily available
within the tool for use in message profile composition. An
XML representation of the message profile is an important
output of the tool.

An important aspect for achieving interoperability is
determining if communicating applications have correctly
implemented an interface based on a message profile. To
achieve this, the existence of a well-defined and extensive
set of test messages is paramount. At NIST, we have
developed utilities for message generation that can be
incorporated into a testing environment. The utilities are
delivered as a collection of APIs, web services, and as a
desktop application called Message Maker [3,4,5].

A critical function of testing is message validation utilities.
NIST has developed tools to validate messages instances
based on a message profile and has extended functionality
to support content testing based on a given test scenario. A
Java message validation API provides the core
functionality. Additionally the functionality has been built
into a desktop application, web services [9], and a web
application [10]. The APIs and web service APIs can be
used to integrate validation services into a testing
framework.

4 Extending the Testing Framework
 We have described an approach for assessing the
conformance and interoperability of HL7 healthcare systems
utilizing a set of actors designed to simulate HL7

application behavior. However, healthcare organizations
exchange data using a number of messaging and document
standards—since there is not a single standard to cover all
aspects of data exchange among healthcare systems. Some
standards are needed for moving clinical data, others for
medical images, and yet others for personal health records,
for example. A testing framework can be used to evaluate
systems with complex integration requirements. The
Integrating the Healthcare Enterprise (IHE) initiative [7]
has defined numerous integrated test scenarios for various
healthcare domains (e.g., radiology). IHE hosts an annual
connect-a-thon event [12] where numerous vendors
implementations are evaluated using the testing scenarios.
The IHE Gazelle project [13] is an effort to develop a
testing framework to automate the testing of the integrated
test scenarios. The Gazelle framework extends the actor
based testing approach to a heterogeneous environment.

Figure 6: Gazelle Testing Architecture

The IHE environment is a heterogeneous environment
designed for exchanging different message types in an
environment employing multiple messaging protocols. The
Gazelle architecture is shown in Figure 6. The core of the
Gazelle test system is the test engine which is responsible
for orchestrating message exchanges among the diverse
messaging systems. The Gazelle system aggregates the
multiple homogeneous systems into a single, complex
whole heterogeneous system. A set of HL7 actors make up
one homogeneous system, DICOM [14] actors can make up
another, and other healthcare data exchange protocols can
make yet others. The SUT may be an HL7 system, or it may
be a DICOM system; it's possible to test both HL7 and
DICOM systems in this environment. Message exchanges
within the homogeneous set of HL7 actors proceed as they
do when deployed in a strictly HL7 environment; DICOM
exchanges proceed in a similar way, but exchanges may also
be required that bridge the two protocols. This requires
actors capable of processing both HL7 and DICOM
messages and presents a challenging problem in itself. The
solution employed hinges on implementing a satisfactory
translation between DICOM and HL7 messages.

Since the Gazelle system is made up of multiple diverse
systems with no common protocol, the test engine is faced
with the problem of how to communicate with each system
without requiring support for a separate communications
technique for each system that is part of the environment.
To deal with this problem, a web service interface is
employed. Each actor in the system supports a web service
interface that the test engine uses to communicate with the
actor. The challenge in defining the web service interface is
to define a suitable interface that is common to all actors,
rather than employing different definitions for each type of
system. Since the common thread running through each
homogeneous system is that it is actor based, it is possible to
abstract the requirements so that a single interface will serve
the requirements for all systems. Clearly doing so not only
simplifies development of the test engine, it also means that
it can readily be extended to incorporate any number of new
systems.

5 Conclusions
 We have analyzed two techniques for conducting
conformance testing, one employing an Upper Tester and
Lower Tester, the other actor based. We have shown that
the Upper-Lower Tester method can be effectively utilized
in conducting conformance testing, but that the method does
not scale well to environments incorporating multiple
applications or requiring multiple systems to be tested
simultaneously. For these systems we have shown that
actors—autonomous systems providing limited, but well
defined functionality—can be effectively employed for
testing. Moreover, we have shown that the actor based
approach can be readily extended beyond the HL7
environment. We have also shown that properly conducting
conformance testing requires careful evaluation of message
content and that while conformance testing cannot ensure
that implementations that undergo successful conformance
testing will interoperate, it will increase the likelihood of
them doing so.

6 References

[1] Health Level 7 (HL7) Standard Version 2.5,
ANSI/HL7 V2.5-2003, June 26, 2003, http://www.hl7.org.

[2] Messaging Workbench (MWB). Developed by Peter
Rontey at the U.S. Veterans Administration (VA) in
conjunction with the HL7 Conformance Special Interest
Group; http://www.hl7.org.

[3] Towards Interoperable Healthcare Information
Systems: The HL7 Conformance Profile Approach. R.
Snelick, P. Rontey, L. Gebase, L. Carnahan. Enterprise
Interoperability II: New Challenges and Approaches.
Springer-Verlag, London Limited 2007 pp. 659-670.

[4] Message Maker; Developed by the National Institute
of Standards and Technology (NIST) in conjunction with
the HL7 Conformance Special Interest Group;
http://www.nist.gov/messagemaker.

[5] “Dynamically Generating Conformance Tests for
Messaging Systems” Robert Snelick, Len Gebase, Sydney
Henrard. 2006 Software Engineering Research and Practice
(SERP06) conference proceedings, WORLDCOMP’06 June
26-29, 2006, Las Vegas, Nevada.

[6] ISO Reference - ISO/IEC 17000 Conformity
assessment - Vocabulary and general principles, first edition
2004-11-02.

[7] Integrating the Healthcare Enterprise (IHE);
http://www.ihe.net.

[8] “Selecting Effective Test Message” Len Gebase, Roch
Bertucat, Robert Snelick. 2006 Software Engineering
Research and Practice (SERP06) conference proceedings,
WORLDCOMP’06 June 26-29, 2006, Las Vegas, Nevada.

[9] NIST HL7 Message Validation Web Services.
http://hl7v2tools.nist.gov.

[10] NIST HL7 Message Validation Web Application.
http://hl7v2tools.nist.gov.

[11] ISO Reference - ISO/IEC 17000 Conformity
assessment - Vocabulary and general principles, first edition
2004-11-02

[12] IHE Connect-a-thon
http://www.ihe.net/Connectathon/index.cfm

[13] Gazelle Testing Framework. A collaboration effort led
by S. Moore (Washington University of St. Louis) and E.
Poiseau (INRIA) to build a testing framework to support
IHE test scenarios.

[14] Digital Imaging and Communication in Medicine
(DICOM); http://medical.nema.org.

http://www.hl7.org/
http://www.hl7.org/
http://www.nist.gov/messagemaker
http://www.ihe.net/
http://www.ihe.net/Connectathon/index.cfm
http://medical.nema.org/

	1 Introduction
	2 Conformance and Interoperability
	3 Testing HL7 Healthcare Systems
	3.1 HL7 and Conformance
	3.2 HL7 Conformance Testing
	3.3 Testing with a Lower and Upper Tester
	3.4 Actor Based HL7 Test Framework
	3.5 Message Profiles and Interoperability

	4 Extending the Testing Framework
	5 Conclusions
	6 References

