
Journal of Arti�cial Intelligence Research 13 (2000) 305-338 Submitted 6/00; published 12/00

Conformant Planning via Symbolic Model Checking

Alessandro Cimatti cimatti@irst.itc.it
ITC-irst, Via Sommarive 18, 38055 Povo, Trento, Italy

Marco Roveri roveri@irst.itc.it

ITC-irst, Via Sommarive 18, 38055 Povo, Trento, Italy

DSI, University of Milano, Via Comelico 39, 20135 Milano, Italy

Abstract

We tackle the problem of planning in nondeterministic domains, by presenting a new
approach to conformant planning. Conformant planning is the problem of �nding a se-
quence of actions that is guaranteed to achieve the goal despite the nondeterminism of the
domain. Our approach is based on the representation of the planning domain as a �nite
state automaton. We use Symbolic Model Checking techniques, in particular Binary Deci-
sion Diagrams, to compactly represent and eÆciently search the automaton. In this paper
we make the following contributions. First, we present a general planning algorithm for
conformant planning, which applies to fully nondeterministic domains, with uncertainty in
the initial condition and in action e�ects. The algorithm is based on a breadth-�rst, back-
ward search, and returns conformant plans of minimal length, if a solution to the planning
problem exists, otherwise it terminates concluding that the problem admits no conformant
solution. Second, we provide a symbolic representation of the search space based on Binary
Decision Diagrams (Bdds), which is the basis for search techniques derived from symbolic
model checking. The symbolic representation makes it possible to analyze potentially large
sets of states and transitions in a single computation step, thus providing for an eÆcient
implementation. Third, we present Cmbp (Conformant Model Based Planner), an eÆcient
implementation of the data structures and algorithm described above, directly based on
Bdd manipulations, which allows for a compact representation of the search layers and an
eÆcient implementation of the search steps. Finally, we present an experimental compar-
ison of our approach with the state-of-the-art conformant planners Cgp, Qbfplan and
Gpt. Our analysis includes all the planning problems from the distribution packages of
these systems, plus other problems de�ned to stress a number of speci�c factors. Our ap-
proach appears to be the most e�ective: Cmbp is strictly more expressive than Qbfplan
and Cgp and, in all the problems where a comparison is possible, Cmbp outperforms its
competitors, sometimes by orders of magnitude.

1. Introduction

In recent years, there has been a growing interest in planning in nondeterministic domains.
Rejecting some fundamental (and often unrealistic) assumptions of classical planning, do-
mains are considered where actions can have uncertain e�ects, exogenous events are possible,
and the initial state can be only partly speci�ed. The challenge is to �nd a strong plan,
that is guaranteed to achieve the goal despite the nondeterminism of the domain, regardless
of the uncertainty on the initial condition and on the e�ect of actions. Conditional plan-
ning (Cassandra, Kaelbling, & Littman, 1994; Weld, Anderson, & Smith, 1998; Cimatti,
Roveri, & Traverso, 1998b) tackles this problem by searching for a conditional course of

c2000 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Cimatti & Roveri

actions, that depends on information that can be gathered at run-time. In certain domains,
however, run-time information gathering may be too expensive or simply impossible. Con-
formant planning (Goldman & Boddy, 1996) is the problem of �nding an unconditioned
course of actions, i.e. a classical plan, that does not depend on run-time information gath-
ering to guarantee the achievement of the goal. Conformant planning has been recognized
as a signi�cant problem in Arti�cial Intelligence since the work by Michie (1974): the Blind
Robot problem requires to program the activity for a sensorless agent, which can be po-
sitioned in any location of a given room, so that it will be guaranteed to achieve a given
goal. Conformant planning can be also seen as a problem of control for a system with
an unobservable and unknown state, such as a microprocessor at power-up, or a software
system under black-box testing.

Because of uncertainty, a plan is associated to potentially many di�erent executions,
which must be all taken into account in order to guarantee goal achievement. This makes
conformant planning signi�cantly harder than classical planning (Rintanen, 1999a; De Gia-
como & Vardi, 1999). Despite this increased complexity, several approaches to conformant
planning have been recently proposed, based on (extensions of) the main planning tech-
niques for classical planning. The most interesting are Cgp (Smith & Weld, 1998) based
on Graphplan, Qbfplan (Rintanen, 1999a) which extends the SAT-plan approach to
QBF, and Gpt (Bonet & Ge�ner, 2000) which encodes conformant planning as heuristic
search. In this paper, we propose a new approach to conformant planning, based on Sym-
bolic Model Checking (McMillan, 1993). Symbolic Model Checking is a formal veri�cation
technique, which allows one to analyze �nite state automata of high complexity, relying on
symbolic techniques, Binary Decision Diagrams (Bdds) (Bryant, 1986) in particular, for
the compact representation and eÆcient search of the automaton. Our approach builds on
the planning via model checking paradigm presented by Cimatti and his colleagues (1997,
1998b, 1998a), where �nite state automata are used to represent complex, nondeterministic
planning domains, and planning is based on (extensions of) the basic model checking steps.
We make the following contributions.

� First, we present a general algorithm for conformant planning, which applies to any
nondeterministic domain with uncertain action e�ects and initial condition, expressed
as a nondeterministic �nite-state automaton. The algorithm performs a breadth-�rst
search, exploring plans of increasing length, until a plan is found or no more candidate
plans are available. The algorithm is complete, i.e. it returns with failure if and only
if the problem admits no conformant solution. If the problem admits a solution, the
algorithm returns a conformant plan of minimal length.

� Second, we provide a symbolic representation of the search space based on Binary
Decision Diagrams, which allows for the application of search techniques derived from
symbolic model checking. The symbolic representation makes it possible to analyze
sets of transitions in a single computation step. These sets can be compactly rep-
resented and eÆciently manipulated despite their potentially large cardinality. This
way it is possible to overcome the enumerative nature of the other approaches to
conformant planning, for which the degree of nondeterminism tends to be a limiting
factor.

306

Conformant Planning via Symbolic Model Checking

� Third, we developed Cmbp (Conformant Model Based Planner), which is an eÆcient
implementation of the data structures and algorithm described above. Cmbp is de-
veloped on top of Mbp, the planner based on symbolic model checking techniques
developed by Cimatti, Roveri and Traveso (1998b, 1998a). Cmbp implements several
new techniques, directly based on Bdd manipulations, to compact the search layers
and optimize termination checking.

� Finally, we provide an experimental evaluation of the state-of-the-art conformant plan-
ners, comparing Cmbp with Cgp, Qbfplan and Gpt. Because of the di�erence in
expressivity, not all the problems which can be tackled by Cmbp can also be repre-
sented in the other planners. However, for the problems where a direct comparison
was possible, Cmbp outperforms its competitors. In particular, it features a better
qualitative behavior, not directly related to the number of initial states and uncertain
action e�ects, and more stable with respect to the use of heuristics.

The paper is structured as follows. In Section 2 we review the representation of (non-
deterministic) planning domains as �nite state automata. In Section 3 we provide the
intuitions and a formal de�nition of conformant planning in this setting. In Section 4 we
present the planning algorithm, and in Section 5 we discuss the symbolic representation
of the search space, which allows for an eÆcient implementation. In Section 6 we present
the Cmbp planner, and in Section 7 we present the experimental results. In Section 8 we
discuss some further related work. In Section 9 we draw the conclusions and discuss future
research directions.

2. Planning Domains as Finite State Automata

We are interested in complex, nondeterministic planning domains, where actions can have
preconditions, conditional e�ects, and uncertain e�ects, and the initial state can be only
partly speci�ed. In the rest of this paper, we use a very simple though paradigmatic domain
for explanatory purposes, a variation of Moore's bomb in the toilet domain (McDermott,
1987) (from now on called BTUC | BT with Uncertain Clogging). There are two packages,
and one of them contains an armed bomb. It is possible to dunk either package in the
toilet (actions Dunk1 and Dunk2), provided that the toilet is not clogged. Dunking either
package has the uncertain e�ect of clogging the toilet. Furthermore, dunking the package
containing the bomb has the e�ect of disarming the bomb. The action F lush has the e�ect
of unclogging the toilet.

We represent such domains as �nite state automata. Figure 1 depicts the automaton for
the BTUC domain. Each state is given a number, and contains all the propositions holding
in that state. For instance, state 1 represents the state where the bomb is in package 1, is
not defused, and the toilet is not clogged. Given that there is only one bomb, we write In2
as an abbreviation for the negation of In1. Arrows between states depict the transitions of
the automaton, representing the possible behavior of actions. The transition from state 2
to state 1 labeled by F lush represents the fact that the action F lush, if executed in state
2, only has the e�ect of removing the clogging. The execution of Dunk1 in state 1, which
has the uncertain e�ect of clogging the toilet, is represented by the multiple transitions to
states 5 and 6. Since there is no transition outgoing from state 2 and labelled by Dunk1,

307

Cimatti & Roveri

1

!Defused
!Clogged

 In_1

2

!Defused
 Clogged

 In_1

3

!Defused
!Clogged

 In_2

4

!Defused
 Clogged

 In_2 8

 Defused
 Clogged

 In_2

7

 Defused
!Clogged

 In_2

6

 Defused
 Clogged

 In_1

5

 Defused
!Clogged

 In_1

FlushFlush

Dunk_2

Dunk_1

FlushFlush

Dunk_2

Dunk_1

Flush

Flush

Flush

Flush

Dunk_1,
Dunk_2

Dunk_1,
Dunk_2

Figure 1: The automaton for the BTUC domain

state 2 does not satisfy the preconditions of action Dunk1, i.e. Dunk1 is not applicable in
state 2.

We formally de�ne nondeterministic planning domains as follows.

De�nition 1 (Planning Domain) A Planning Domain is a 4-tuple D = (P;S;A;R),
where P is the (�nite) set of atomic propositions, S � 2P is the set of states, A is the
(�nite) set of actions, and R � S �A� S is the transition relation.

Intuitively, a proposition is in a state if and only if it holds in that state. In the following
we assume that a planning domain D is given. We use s, s0 and s00 to denote states of D,
and � to denote actions. R(s; �; s0) holds i� when executing the action � in the state s the
state s0 is a possible outcome. We say that an action � is applicable in s i� there is at least
one state s0 such that R(s; �; s0) holds. We say that an action � is deterministic in s i�
there is a unique state s0 such that R(s; �; s0) holds. An action � has an uncertain outcome
in s if there are at least two distinct states s0 and s00 such that R(s; �; s0) and R(s; �; s00)
hold. As described by Cimatti and his colleagues (1997), the automaton for a given domain
can be eÆciently built starting from a compact description given in an expressive high level
action language, for instance AR (Giunchiglia, Kartha, & Lifschitz, 1997).

3. Conformant Planning

Conformant planning (Goldman & Boddy, 1996) can be described as the problem of �nding
a sequence of actions that is guaranteed to achieve the goal regardless of the nondeterminism
of the domain. That is, for all possible initial states, and for all uncertain action e�ects,
the execution of the plan results in a goal state.

Consider the following problem for the BTUC domain. Initially, the bomb is armed but
its position and the status of the toilet are uncertain, i.e. the initial state can be any of the
states in f1; 2; 3; 4g. The goal is to reach a state where the bomb is defused, and the toilet

308

Conformant Planning via Symbolic Model Checking

1

!Defused
!Clogged

 In_1

2

!Defused
 Clogged

 In_1

3

!Defused
!Clogged

 In_2

4

!Defused
 Clogged

 In_2

3

!Defused
!Clogged

 In_2 7

 Defused
!Clogged

 In_2

8

 Defused
 Clogged

 In_2

6

 Defused
 Clogged

 In_1

5

 Defused
!Clogged

 In_1

1

!Defused
!Clogged

 In_1 6

 Defused
 Clogged

 In_1

5

 Defused
!Clogged

 In_1

3

!Defused
!Clogged

 In_2

4

!Defused
 Clogged

 In_2

5

 Defused
!Clogged

 In_1

3

!Defused
!Clogged

 In_2 7

 Defused
!Clogged

 In_2

5

 Defused
!Clogged

 In_1
Flush

Flush

Flush

Flush

Dunk_1

Dunk_1

Dunk_2

Dunk_2

Flush

Flush

Flush

Flush

Flush

Flush

Flush

Flush

Figure 2: A conformant solution for the BTUC problem

is not clogged, i.e. the set of goal states is f5; 7g. A conformant plan solving this problem
is

F lush; Dunk1 ; F lush ; Dunk2; F lush (1)

Figure 2 outlines the possible executions of the plan, for all possible initial states and
uncertain action e�ects. The initial uncertainty lies in the fact that the domain might be
in any of the states in f1; 2; 3; 4g. The possible initial states of the planning domain are
collected into a set by a dashed line. We call such a set a belief state. Intuitively, a belief
state expresses a condition of uncertainty about the domain, by collecting together all the
states which are indistinguishable from the point of view of an agent reasoning about the
domain. The �rst action, F lush, is used to remove the possible clogging. This reduces the
uncertainty to the belief state f1; 3g. Despite the remaining uncertainty (i.e. it is still not
known in which package the bomb is), action Dunk1 is now guaranteed to be applicable
because its precondition is met in both states. Dunk1 has the e�ect of defusing the bomb if
it is contained in package 1, and has the uncertain e�ect of clogging the toilet. The resulting
belief state is f3; 4; 5; 6g. The following action, F lush, removes the clogging, reducing the
uncertainty to the belief state f3; 5g, and guarantees the applicability of Dunk2. After
Dunk2, the bomb is guaranteed to be defused, but the toilet might be clogged again (states
6 and 8 in the belief state f5; 6; 7; 8g). The �nal F lush reduces the uncertainty to the belief
state f5; 7g, and guarantees the achievement of the goal.

In general, in order for a plan to be a conformant solution, no action must be executed
in states which do not satisfy the preconditions, and any state that can result from the
execution of the plan (for all the initial states and for all the uncertain action e�ects) is
a goal state. The main diÆculty in achieving these conditions is that no information is
(assumed to be) available at run-time. Therefore, at planning time we face the problem of
reasoning about action execution in a belief state, i.e. under a condition of uncertainty.

De�nition 2 (Action Applicability) Let Bs � S be a Belief State. The action � is
applicable in Bs i� Bs 6= ; and � is applicable in every state s 2 Bs.

309

Cimatti & Roveri

In order for an action to be applicable in a belief state, we require that its preconditions
must be guaranteed notwithstanding the uncertainty. In other words, we reject \reckless"
plans, which take the chance of applying an action without the guarantee of its applicability.
This choice is strongly motivated in practical domains, where possibly fatal consequences
can follow from the attempt to apply an action when its preconditions might not be satis�ed
(e.g. starting to �x an electrical device without being sure that it is not powered). The e�ect
of action execution from an uncertain condition is de�ned as follows.

De�nition 3 (Action Image) Let Bs � S be a belief state, and let � be an action appli-
cable in Bs. The image (also called execution) of � in Bs, written Image[�](Bs), is de�ned
as follows.

Image[�](Bs) _= fs0 j there exists s 2 Bs such that R(s; �; s0)g

Notice that the image of an action combines the uncertainty in the belief state with the un-
certainty on the action e�ects. (Consider for instance that Image[Dunk1](f1; 3g)=f3; 4; 5; 6g.)
In the following, we write Image[�](s) instead of Image[�](fsg).

Plans are elements of A�, i.e. �nite sequences of actions. We use � for the 0-length
plan, � and � to denote generic plans, and �; � for plan concatenation. The notions of
applicability and image generalize to plans as follows.

De�nition 4 (Plan Applicability and Image) Let � 2 A�, and let Bs � S. � is ap-
plicable in Bs i� one of the following holds:

1. � = � and Bs 6= ;;

2. � = �; �, � is applicable in Bs, and � is applicable in Image[�](Bs).

The image (also called execution) of � in Bs, written Image[�](Bs), is de�ned as:

1. Image [�](Bs) _= Bs;

2. Image [�;�](Bs) _= Image[�](Image [�](Bs));

A planning problem is formally characterized by the set of initial and goal states. The
following de�nition captures the intuitive meaning of conformant plan given above.

De�nition 5 (Conformant Planning) Let D = (P;S;A;R) be a planning domain. A
Planning Problem for D is a triple (D;I;G), where ; 6= I � S and ; 6= G � S.

The plan � is a conformant plan for (that is, a conformant solution to) the planning
problem (D;I;G) i� the following conditions hold:

(i) � is applicable in I;

(ii) Image [�](I) � G.

In the following, when clear from the context, we omit the domain from the planning
problem, and we simply write (I;G).

310

Conformant Planning via Symbolic Model Checking

4. The Conformant Planning Algorithm

Our conformant planning algorithm is based on the exploration of the space of plans, limiting
the exploration to plans which are conformant by construction. The algorithm builds Belief
state-Plan (BsP) pairs of the form hBs : �i, where Bs is a non-empty belief state and �
is a plan. The idea is to use a BsP pair to associate each explored plan with the maximal
belief state where it is applicable, and from which it is guaranteed to result in goal states.
The exploration is based on the basic function SPreImage [�](Bs), that, given a belief state
Bs and an action �, returns the belief state containing all the states where � is applicable,
and whose image under � is contained in Bs.

De�nition 6 (Strong Pre-Image) Let ; 6= Bs � S be a belief state and let � be an
action. The strong pre-image of Bs under �, written SPreImage [�](Bs), is de�ned as
follows.

SPreImage [�](Bs) _= fs j � is applicable in s; and Image [�](s) � Bsg

If SPreImage [�](Bs) is not empty, then � is applicable in it, and it is a conformant so-
lution to the problem (SPreImage [�](Bs); Bs). Therefore, if the plan � is a conformant
solution for the problem (Bs;G), then the plan �;� is a conformant solution to the problem
(SPreImage [�](Bs);G).

Figure 3 depicts the space of BsP pairs built by the algorithm while solving the BTUC
problem. The levels are built from the goal, on the right, towards the initial states, on the
left. At level 0, the only BsP pair is hf5; 7g : �i, composed by the set of goal states indexed
by the 0-length plan �. (Notice that � is a conformant solution to every problem with goal set
f5; 7g and initial states contained in f5; 7g.) The dashed arrows represent the application
of SPreImage . At level 1, only the BsP pair hf5; 6; 7; 8g : F lushi is built, since the strong
pre-image of the belief state 0 for the actions Dunk1 and Dunk2 is empty. At level 2, there
are three BsP pairs, with (overlapping) belief states Bs2, Bs3 and Bs4, indexed, respectively,
by the length 2 plans Dunk1;F lush, F lush;F lush and Dunk2;F lush. (A plan associated
with a belief state Bsi is a sequence of actions labeling the path from Bsi to Bs0.) Notice
that Bs3 is equal to Bs1, and therefore deserves no further expansion. The expansion of
belief states 2 and 4 gives the belief states 5 and 6, both obtained by the strong pre-image
under F lush, while the strong pre-image under actions Dunk1 and Dunk2 returns empty
belief states. The further expansion of Bs5 results in three belief states. The one resulting
from the strong pre-image under F lush is not reported, since it is equal to Bs5. Belief state
7 is also equal to Bs2, and deserves no further expansion. Belief state 8 can be obtained by
expanding both Bs5 and Bs6. At level 5, the expansion produces Bs10, which contains all
the initial states. Therefore, both of the corresponding plans are conformant solutions to
the problem.

The conformant planning algorithm ConformantPlan is presented in Figure 4. It
takes as input the planning problem in the form of the set of states I and G (the domain
D is assumed to be globally available). The algorithm performs a backwards breadth-�rst
search, exploring BsP pairs corresponding to plans of increasing length at each step. The
status of the search (each level in Figure 3) is represented by a BsP table, i.e. a set of BsP
pairs

BsPT = fhBs1 : �1i; : : : ; hBsn : �nig

311

Cimatti & Roveri

Bs 0

Bs 1Bs 3

Bs 4

Bs 2

Bs 5

Bs 6

Bs 7

Bs 8

Bs 9

Bs 10

Level 0135 24

7

 Defused
!Clogged

 In_2

5

 Defused
!Clogged

 In_1

7

 Defused
!Clogged

 In_2

6

 Defused
 Clogged

 In_1

8

 Defused
 Clogged

 In_2

5

 Defused
!Clogged

 In_1

7

 Defused
!Clogged

 In_2

6

 Defused
 Clogged

 In_1

8

 Defused
 Clogged

 In_2

5

 Defused
!Clogged

 In_1

1

!Defused
!Clogged

 In_1

5

 Defused
!Clogged

 In_1

7

 Defused
!Clogged

 In_2

5

 Defused
!Clogged

 In_1

7

 Defused
!Clogged

 In_2

3

!Defused
!Clogged

 In_2

1

!Defused
!Clogged

 In_1

2

!Defused
 Clogged

 In_1

7

 Defused
!Clogged

 In_2

6

 Defused
 Clogged

 In_1

8

 Defused
 Clogged

 In_2

5

 Defused
!Clogged

 In_1

7

 Defused
!Clogged

 In_2

5

 Defused
!Clogged

 In_1

1

!Defused
!Clogged

 In_1

3

!Defused
!Clogged

 In_2

7

 Defused
!Clogged

 In_2

6

 Defused
 Clogged

 In_1

8

 Defused
 Clogged

 In_2

5

 Defused
!Clogged

 In_1

4

!Defused
 Clogged

 In_2

3

!Defused
!Clogged

 In_2

1

!Defused
!Clogged

 In_1

2

!Defused
 Clogged

 In_1

3

!Defused
!Clogged

 In_2

4

!Defused
 Clogged

 In_2

7

 Defused
!Clogged

 In_2

6

 Defused
 Clogged

 In_1

8

 Defused
 Clogged

 In_2

5

 Defused
!Clogged

 In_1

1

!Defused
!Clogged

 In_1

5

 Defused
!Clogged

 In_1

7

 Defused
!Clogged

 In_2

5

 Defused
!Clogged

 In_1

7

 Defused
!Clogged

 In_2

3

!Defused
!Clogged

 In_2

FlushFlush

Dunk_1

Dunk_2

Flush

Flush

Flush

Dunk_1

Dunk_2

Dunk_1

Dunk_2

Figure 3: The BsP tables for the BTUC problem

where the �i are plans of the same length, such that �i 6= �j for all 1 � j 6=i � n. We
call Bsi the belief set indexed by �i. When no ambiguity arises, we write BsPT(�i) for
Bsi. The array BsPTables is used to store the BsP tables representing the levels of the
search. The algorithm �rst checks (line 4) if there are plans of length 0, i.e. if � is a
solution. If no conformant plan of such length exists ((P lans = ;) in line 4), then the
while loop is entered. At each iteration, conformant plans of increasing length are explored
(lines 5 to 8). The step at line 6 expands the BsP table in BsPTables[i� 1] and stores the
resulting BsP table in BsPTables[i]. BsP pairs which are redundant with respect to the
current search are eliminated from BsPTables[i] (line 7). The possible solutions contained
in BsPTables[i] are extracted and stored in P lans (line 8). The loop terminates if either a
plan is found (P lans 6= ;), or the space of conformant plans has been completely explored
(BsPTables[i] = ;).

The de�nitions of the basic functions used in the algorithm are reported in Figure 5.
The function ExpandBsPTable expands the BsP table provided as argument, containing
conformant plans of length i� 1, and returns a BsP table with conformant plans of length
i. Each BsP in the input BsP table is expanded by ExpandBsPPair. For each possible

312

Conformant Planning via Symbolic Model Checking

function ConformantPlan(I,G)
0 begin

1 i = 0;
2 BsPTables[0] := f hG : �i g;
3 Plans := ExtractSolution(I;BsPTables[0]);
4 while ((BsPTables[i] 6= ;) ^ (P lans = ;)) do
5 i := i + 1;
6 BsPTables[i] := ExpandBsPTable(BsPTables[i-1]);
7 BsPTables[i] := PruneBsPTable(BsPTables[i];BsPTables; i);
8 Plans := ExtractSolution(I;BsPTables[i]);
9 done

10 if (BsPTables[i] = ;) then
11 return Fail;
12 else return Plans;
13 end

Figure 4: The conformant planning algorithm.

action �, the strong pre-image of Bs is computed, and if the resulting belief state Bs0 is
not empty, i.e. there is a belief state from which � guarantees the achievement of Bs, then
the plan � is extended with � and hBs0 : �;�i is returned. The expansion of a BsP table
is the union of the expansions of each BsP pair. The function ExtractSolution takes as
input a BsP table and returns the (possibly empty) set of plans which index a belief states
containing I. PruneBsPTable takes as input the BsP table to be pruned, an array of
previously constructed BsP tables BsPTables, and an index of the current step. It removes
from the BsP table in the input the plans which are not worth being explored because the
corresponding belief states have already been visited.

The algorithm has the following properties. First, it always terminates. This follows
from the fact that the set of explored belief sets (stored in BsPTables) is monotonically
increasing | at each step we proceed only if at least one new belief state is generated.
Because of its �niteness (the set of accumulated belief states is contained in 2S which is
�nite), a �x point is eventually reached. Second, it is correct, i.e. when a plan is returned
it is a conformant solution to the given problem. The correctness of the algorithm follows
from the properties of SPreImage : each plan is associated with a belief state for which it
is conformant, i.e. where it is guaranteed to be applicable and from which it results in a
belief state contained in the goal. Third, the algorithm is optimal, i.e. it returns plans of
minimal length. This property follows from the breadth-�rst style of the search. Finally,
the algorithm is able to decide whether a problem admits no solution, returning Fail in such
cases. Indeed, a conformant solution is always associated with a belief state containing the
initial states. SPreImage generates the maximal belief state associated with a conformant
plan, each new belief state generated in the exploration is compared with the initial states
to check if it is a solution, and a plan is pruned only if an equivalent plan has already been
explored.

313

Cimatti & Roveri

ExpandBsPTable(BsPT) _=
[

hBs : �i2BsPT

ExpandBsPPair(hBs : �i)

ExpandBsPPair(hBs : �i) _= fhBs0 : �;�ij such that Bs0 = SPreImage[�](Bs) 6= ;g

PruneBsPTable(BsPT;BsPTables; i) _=
fhBs : �i 2 BsPT j for all j < i; there is no hBs : �0i 2 BsPTables[j] such that (Bs0 = Bs)g

ExtractSolution(I;BsPT) _= f� j there exists hBs : �i 2 BsPT such that I � Bsg

Figure 5: The primitives used by the conformant planning algorithm.

5. Conformant Planning via Symbolic Model Checking

Model checking is a formal veri�cation technique based on the exploration of �nite state
automata (Clarke, Emerson, & Sistla, 1986). Symbolic model checking (McMillan, 1993) is
a particular form of model checking using Binary Decision Diagrams to compactly represent
and eÆciently analyze �nite state automata. The introduction of symbolic techniques into
model checking led to a breakthrough in the size of model which could be analyzed (Burch
et al., 1992), and made it possible for model checking to be routinely applied in industry,
especially in logic circuits design (for a survey see Clarke & Wing, 1996).

In the rest of this section, we will provide an overview of Binary Decision Diagrams,
and we will describe the representation of planning domains, based on the Bdd-based
representation of �nite state automata used in model checking. Then, we will discuss the
extension which allows to symbolically represent BsP tables and their transformations, thus
allowing for an eÆcient implementation of the algorithm described in the previous section.

5.1 Binary Decision Diagrams

A Reduced Ordered Binary Decision Diagram (Bryant, 1992, 1986) (improperly called Bdd)
is a directed acyclic graph (DAG). The terminal nodes are either True or False. Each non-
terminal node is associated with a boolean variable, and two Bdds, called left and right
branches. Figure 6 (a) depicts a Bdd for (a1 $ b1) ^ (a2 $ b2) ^ (a3 $ b3). At each
non-terminal node, the right [left, respectively] branch is depicted as a solid [dashed, resp.]
line, and represents the assignment of the value True [False, resp.] to the corresponding
variable. ABdd represents a boolean function. For a given truth assignment to the variables
in the Bdd, the value of the function is determined by traversing the graph from the root
to the leaves, following each branch indicated by the value assigned to the variables1. The

1. A path from the root to a leaf can visit nodes associated with a subset of all the variables of the Bdd.
See for instance the path associated with a1;:b1 in Figure 6(a).

314

Conformant Planning via Symbolic Model Checking

True False

a1

b1

a2

b2 b2

a3

b3 b3

b1

(a)

b1b1b1b1b1b1b1b1

a3 a3 a3 a3

a2a2

a1

b3 b3

b2b2b2b2

FalseTrue

(b)

Figure 6: Two Bdds for the formula (a1 $ b1) ^ (a2 $ b2) ^ (a3 $ b3).

reached leaf node is labeled with the resulting truth value. If v is a Bdd, its size jvj is the
number of its nodes. If n is a node, var(n) indicates the variable indexing node n.

Bdds are a canonical representation of Boolean functions. The canonicity follows by
imposing a total order < over the set of variables used to label nodes, such that for any
node n and respective non-terminal child m, their variables must be ordered, i.e. var(n) <
var(m), and requiring that the Bdd contains no isomorphic subgraphs.

Bdds can be combined with the usual boolean transformations (e.g. negation, con-
junction, disjunction). Given two Bdds, for instance, the conjunction operator builds and
returns the Bdd corresponding to the conjunction of its arguments. Substitution can also
be represented as Bdd transformations. In the following, if v is a variable, and � and are
Bdds, we indicate with �[v=] the Bdd resulting from the substitution of v with in �. If
v1 and v2 are vectors of (the same number of) distinct variables, we indicate with �[v1=v2]
the parallel substitution in � of the variables in vector v1 with the (corresponding) variables
in v2.

Bdds also allow for transformations described as quanti�cations, in the style of Quanti-
�ed Boolean Formulae (QBF). QBF is a de�nitional extension to propositional logic, where
propositional variables can be universally and existentially quanti�ed. In terms of Bdd
computations, a quanti�cation corresponds to a tranformation mapping the Bdd of � and
the variable vi being quanti�ed into the Bdd of the resulting (propositional) formula. If �
is a formula, and vi is one of its variables, the existential quanti�cation of vi in �, written
9vi:�(v1; : : : ; vn), is equivalent to �(v1; : : : ; vn)[vi=False] _ �(v1; : : : ; vn)[vi=True]. Analo-
gously, the universal quanti�cation 8vi:�(v1; : : : ; vn) is equivalent to �(v1; : : : ; vn)[vi=False]^

315

Cimatti & Roveri

�(v1; : : : ; vn)[vi=True]. In QBF, quanti�ers can be arbitrarily applied and nested. In gen-
eral, a QBF formula has an equivalent propositional formula, but the conversion is subject
to an exponential blow-up.

The time complexity of the algorithm for computing a truth-functional boolean trans-
formation f1 <op> f2 is O(jf1j � jf2j). As far as quanti�cations are concerned, the time
complexity is quadratic in the size of the Bdd being quanti�ed, and linear in the number
of variables being quanti�ed, i.e. O(jvj � jf j2) (Bryant, 1992, 1986).

Bdd packages are eÆcient implementations of such data structures and algorithms (Brace
et al., 1990; Somenzi, 1997; Yang et al., 1998; Coudert et al., 1993). Basically, a Bdd pack-
age deals with a single multi-rooted DAG, where each node represents a boolean function.
Memory eÆciency is obtained by using a \unique table", and by sharing common subgraphs
between Bdds. The unique table is used to guarantee that at each time there are no iso-
morphic subgraphs and no redundant nodes in the multi-rooted DAG. Before creating a
new node, the unique table is checked to see if the node is already present, and only if this
is not the case a new node is created and stored in the unique table. The unique table
allows to perform the equivalence check between two Bdds in constant time (since two
equivalent functions always share the same subgraph) (Brace et al., 1990; Somenzi, 1997).
Time eÆciency is obtained by maintaining a \computed table", which keeps track of the
results of recently computed transformations, thus avoiding the recomputation.

A critical computational factor with Bdds is the order of the variables used. (Figure 6
shows an example of the impact of a change in the variable ordering on the size of a Bdd.)
For a certain class of boolean functions, the size of the corresponding Bdd is exponential in
the number of variables for any possible variable ordering (Bryant, 1991). In many practical
cases, however, �nding a good variable ordering is rather easy. Beside a�ecting the memory
used to represent a Boolean function, �nding a good variable ordering can have a big impact
on computation times, since the complexity of the transformation algorithms depends on
the size of the operands. Most Bdd packages provide heuristic algorithms for �nding good
variable orderings, which can be called to try to reduce the overall size of the stored Bdds.
The reordering algorithms can also be activated dynamically by the package, during a Bdd
computation, when the total number of nodes in the package reaches a prede�ned threshold
(dynamic reoredering).

5.2 Symbolic Representation of Planning Domains

A planning domain (P;S;A;R) can be represented symbolically using Bdds, as follows. A
set of (distinct) Bdd variables, called state variables, is devoted to the representation of the
states S of the domain. Each of these variables has a direct association with a proposition
of the domain in P used in the description of the domain. For instance, for the BTUC
domain, each of In1, Defused and Clogged is associated with a unique Bdd variable. In
the following we write xxx for the vector of state variables. Because the particular order is
irrelevant but for performance issues, in the rest of this section we will not distinguish a
proposition and the corresponding Bdd variable.

A state is a set of propositions of P (speci�cally, the propositions which are intended
to hold in it). For each state s, there is a corresponding assignment to the state variables
xxx, i.e. the assignment where each variable corresponding to a proposition p 2 s is assigned

316

Conformant Planning via Symbolic Model Checking

to True, and each other variable is assigned to False. We represent s with the Bdd �(s),
having such an assignment as its unique satisfying assignment. For instance, �(6) _= (In1 ^
Defused ^ Clogged) is the Bdd representing state 6, while �(4) _= :In1 ^ :Defused ^
Clogged represents state 4, and so on. (Without loss of generality, in the following we do
not distinguish a propositional formula from the corresponding Bdd.) This representation
naturally extends to any set of states Q � S as follows:

�(Q) _=
_

s2Q

�(s)

In other words, we associate a set of states with the generalized disjunction of the Bdds
representing each of the states. Notice that the satisfying assignments of the �(Q) are
exactly the assignment representations of the states in Q. This representation mechanism
is very natural. For instance, the Bdd �(I) representing the the set of initial states of
the BTUC I _= f1; 2; 3; 4g is :Defused, while for the set of goal states G _= f5; 7g the
corresponding Bdd is Defused ^ :Clogged. A Bdd is also used to represent the set S of
all the states of the domain automaton. In the BTUC, �(S) = True because S = 2P . In a
di�erent formulation, where two independent propositions In1 and In2 are used to represent
the position of a bomb, �(S) would be the Bdd In1 $:In2.

In general, a Bdd represents the set of (states which correspond to) its models. As
a consequence, set theoretic transformations are naturally represented by propositional
operations, as follows.

�(SnQ) _= �(S) ^ :�(Q)
�(Q1 [Q2) _= �(Q1) _ �(Q2)
�(Q1 \Q2) _= �(Q1) ^ �(Q2)

The main eÆciency of this symbolic representation lies in the fact that the cardinality
of the represented set is not directly related to the size of the Bdd. For instance, �(G) uses
two (non-terminal) nodes to represent two states, while �(I) uses one node to represent four
states. As limit cases, �(S) and �(fg) are (the leaf Bdds) True and False, respectively. As
a further advantage, symbolic representation is extremely eÆcient in dealing with irrelevant
information. Notice, for instance, that only the variable Defused occurs in �(f5; 6; 7; 8g).
For this reason, a symbolic representation can have a dramatic improvement over an explicit,
enumerative representation. This is what allows symbolic, Bdd-based model checkers to
handle �nite state automata with a very large number of states (see for instance Burch
et al., 1992). In the following, we will collapse a set of states and the Bdd representing it.

Another set of Bdd variables, called action variables, written ���, is used to represent
actions. We use one action variable for each possible action in A. Intuitively, a Bdd action
variable is true if and only if the corresponding action is being executed. If we assume that
a sequential encoding is used, i.e. no concurrent actions are allowed, we also use a Bdd,
Seq(���), to express that exactly one of the action variables must be true at each time2. For

2. In the speci�c case of sequential encoding, an alternative approach using only dlog jAje is possible: an
assignment to the action variables denotes a speci�c action to be executed. Two assignments being
mutually exclusive, the constraint Seq(���) needs not to be represented. When the cardinality of the
set of actions is not a power of two, the standard solution is to associate more than one assignment to
certain values. This optimized solution, which is actually used in the implementation, is not described
here for the sake of simplicity.

317

Cimatti & Roveri

the BTUC problem, where A contains three actions, we use the three Bdd variables Dunk1,
Dunk2 and F lush, while we express the serial encoding constraint with the following Bdd:

Seq(���) _= (Dunk1_Dunk2_F lush)^:(Dunk1^Dunk2)^:(Dunk1^F lush)^:(Dunk2^F lush)

As for state variables, we are referring to Bdd action variables with symbolic names for
the sake of simplicity. In practice, they will be internally represented as integers, but their
position in the ordering of the Bdd package is totally irrelevant in logical terms.

A Bdd in the variables xxx and ��� represents a set of state-action pairs, i.e. a relation
between states and actions. For instance, the applicability relation in the BTUC (i.e., all
actions are possible in all states, except for dunking actions which require the toilet not
to be clogged) is represented by the Bdd :(Clogged ^ (Dunk1 _Dunk2)). Notice that it
represents a set of 16 state-action pairs, each associating a state with an applicable action.

A transition is a 3-tuple composed of a state (the initial state of the transition), an
action (the action being executed), and a state (the resulting state of the transition). To
represent transitions, another vector xxx0 of Bdd variables, called next state variables, is
allocated in the Bdd package. We write �0(s) for the representation of the state s in the
next state variables. With �0(Q) we denote the construction of the Bdd corresponding to
the set of states Q, using each variable in the next state vector xxx0 instead of each current
state variables xxx. We require that jxxxj = jxxx0j, and assume that the i-th variable in xxx and the
i-th variable in xxx0 correspond. We de�ne the representation of a set of states in the next
variables as follows.

�0(s) _= �(s)[xxx=xxx0]

We call the operation �[xxx=xxx0] \forward shifting", because it transforms the representation of
a set of \current" states in the representation of a set of \next" states. The dual operation
�[xxx0=xxx] is called backward shifting. In the following, we call xxx current state variables to
distinguish them from next state variables. A transition is represented as an assignment
to xxx, ��� and xxx0. For the BTUC, the transition corresponding to the application of action
Dunk1 in state 1 resulting in state 5 is represented by the following Bdd

�(h1;Dunk1; 5i) _= �(1) ^Dunk1 ^ �
0(5)

The transition relation R of the automaton corresponding to a planning domain is
simply a set of transitions, and is thus represented by a Bdd in the Bdd variables xxx, ��� and
xxx0, where each satisfying assignment represents a possible transition.

�(R) _= Seq(���) ^
_

t2R

�(t)

In the rest of this paper, we assume that the Bdd representation of a planning domain
is given. In particular, we assume as given the vectors of variables xxx;xxx0;���, the encoding
functions � and �0, and we simply call S, R, I and G the Bdd representing the states of the
domain, the transition relation, the initial states and the goal states, respectively. We write
�(v) to stress that the Bdd � depends on the variables in v. With this representation, it
is possible to reason about plans, simulating symbolically the execution of sets of actions in
sets of states, by means of QBF transformations. The Bdd representing the applicability
relation can be directly obtained with the following computation.

Applicable(xxx;���) _= 9xxx0:R(xxx;���;xxx0)

318

Conformant Planning via Symbolic Model Checking

The resulting Bdd, Applicable(xxx;���), represents the set of state-action pairs such that
the action is applicable in the state. The Bdd representing the states reachable from Q in
one step is obtained with the following computation.

9xxx:9���:(R(xxx;���;xxx0)^Q(xxx))[xxx0=xxx]

Notice that, with this single operation, we symbolically simulate the e�ect of the application
of any applicable action in A to any of the states in Q. Similarly, the following transforma-
tion allows to symbolically compute the SPreImage of a set of states Q under all possible
actions in one single computation:

8xxx0:(R(xxx;���;xxx0)! Q(xxx)[xxx=xxx0]) ^ Applicable(xxx;���)

The resulting Bdd represents all the state-action pairs hxxx : ���i such that ��� is applicable in
xxx and the execution of ��� in xxx results in states in Q.

5.3 Symbolic Search in the Space of Belief States

The main strength of the symbolic approach is that it allows to perform a symbolic breadth-
�rst search, and it provides a way for compactly representing and eÆciently expanding the
frontier. For instance, plans can be constructed by symbolic breadth-�rst search in the
space of states, repeatedly applying the strong pre-image to the goal states (Cimatti et al.,
1998b). However, the machinery presented in the previous section cannot be directly applied
to tackle conformant planning. The basic di�erence is that with conformant planning we are
searching in the space of belief states3, and therefore the frontier of the search is basically
a set of sets of states. We introduce a way to symbolically represent BsP tables. Basically,
this can be seen as a construction on demand, based on the algorithm steps, of increasingly
large portions of the space of belief states. The key intuition is that a BsP table

fhfs11; : : : ; s
1
n1
g : �1i; : : : ; hfs

k
1 ; : : : ; s

k
nk
g : �kig

is represented as a relation between plans (of the same length) and states, by associating
the plan directly with each state in the belief state indexed by the plan, as follows:

fhs11 : �1i; : : : ; hs
1
n1
: �1i; : : : ; hs

k
1 : �ki; : : : ; hs

k
nk
: �kig (2)

We use additional variables to represent the plans in the BsP tables. In order to represent
plans of increasing length, at each step of the algorithm, a vector of new Bdd variables,
called plan variables, is introduced. The vector of plan variables introduced at the i-th step
of the algorithm is written ���[i], with j���[i]j = j���j, and is used to encode the i-th to last action
in the plan4. At step one of the algorithm, we introduce the vector of plan variables ���[1]
to represent the action corresponding to each 1-length possible conformant plan. The BsP

3. In principle, the machinery for symbolic search could be used to do conformant planning if applied to
the determinization of the domain automaton, i.e. an automaton having 2S as its state space. However,
this would require the introduction of an exponential number of state variables, which is impractical
even for very small domains.

4. The search being performed backwards, plans need to be reversed once found.

319

Cimatti & Roveri

table BsPT1 at level 1 is built by ExpandBsPTable by performing the following Bdd
computation starting from the BsP table at level 0, i.e. G(xxx):

(8xxx0:(R(xxx;���;xxx0)! G(xxx)[xxx=xxx0]) ^ Applicable(xxx;���))[���=���[1]]

The computation collects those state-action pairs hxxx : ���i such that (the action represented
by) ��� is applicable in (the state represented by) xxx, and such that all the resulting (states
represented by) xxx0 are goal states. Then we replace the vector of action variables ��� with
the �rst vector of plan variables ���[1]. The resulting Bdd, BsPT(xxx;���[1]), represents a BsP
table containing plans of length one in the form of a relation between states and plans as
in (2). In the general case, after step i� 1, the BsP table BsPTi�1, associating belief states
to plans of length i � 1, is represented by a Bdd in the state variables xxx and in the plan
variables ���[i�1]; : : : ;���[1]. The computation performed by ExpandBsPTable at step i is
implemented as the following Bdd transformation on BsPTi�1

(8xxx0:(R(xxx;���;xxx0)! BsPTi�1(xxx;���[i�1]; : : : ;���[1])[xxx=xxx
0]) ^ Applicable(xxx;���))[���=���[i]](3)

The next state variables inR and in BsPTi�1 (resulting from the forward shifting) disappear
because of the universal quanti�cation. The action variables ��� are renamed to the newly
introduced plan variables ���[i], so that in the next step of the algorithm the construction can
be repeated.

ExtractSolution extracts the assignments to plan variables such that the correspond-
ing set contains the initial states. In terms of Bdd transformations, ExtractSolution is
implemented as follows:

8xxx:(I(xxx)! BsPTi(xxx;���[i]; : : : ;���[1])) (4)

The result is a Bdd in the plan variables ���[i]; : : : ;���[1]. If the Bdd is False, then there are
no solutions of length i. Otherwise, each of the satisfying assignments to the resulting Bdd
represents a conformant solution to the problem.

To guarantee the termination of the algorithm, at each step the BsP table returned
by ExpandBsPTable is simpli�ed by PruneBsPTable by removing all the belief states
which do not deserve further expansion. This requires the comparison of the belief states
contained in the BsP table with the belief states contained in each of the BsP tables built at
previous levels. This is one of the crucial steps in terms of eÆciency. An earlier implementa-
tion of this step with logical Bdd transformations, following directly from the set-theoretical
de�nition of PruneBsPTable, was extremely ineÆcient (Cimatti & Roveri, 1999). Fur-
thermore, we noticed that the serial encoding could yield BsP tables containing a large
number of equivalent plans, all indexing exactly the same belief state. Often these equiva-
lent plans only di�er in the order of some independent actions, and this is a potential source
of combinatorial explosion. This occurs even in the simple version of the BTUC (in Figure 3,
two equivalent conformant plans are associated with Bs8). Therefore, we developed a new
implementation which could tackle these two problems by operating directly on the BsP
table. The idea is depicted in Figure 7. Initially, the cache contains Bs1, Bs2 and Bs3. The
simpli�cation performs a traversal of the Bdd, by accumulating the subtrees representing
belief states, comparing them with the ones built at previous levels, and inserting the new
ones in the cache (in Figure 7, Bs4, Bs5 and Bs6). Each time a path is identi�ed which

320

Conformant Planning via Symbolic Model Checking

Bs4 Bs4Bs5 Bs5

Bs1 Bs2 Bs3

Bs5Bs4

Bs1 Bs2 Bs3

Bs6

Bs2 Bs6 Bs6

Cached Belief StatesCached Belief States

BsP Table Pruned BsP Table

Figure 7: An example of pruning of a BsP table

represents a plan indexing an already cached belief state, the plan is redundant and the
corresponding path is pruned5. The cost of the simpli�cation is linear in the size of the BsP
being simpli�ed and is highly e�ective in pruning.

6. CMBP: a BDD-based Conformant Planner

Cmbp (Conformant Model Based Planner) is a conformant planner implementing the data
structures and algorithms for conformant planning described in the previous sections. Cmbp
inherits the features of Mbp (Cimatti et al., 1997, 1998b, 1998a), a planner based on
symbolic model checking techniques. Mbp is built on top of NuSMV, a symbolic model
checker jointly developed by ITC-IRST and CMU (Cimatti et al., 2000), and uses the
CUDD (Somenzi, 1997) state-of-the-art Bdd package. Mbp is a two-stage system. In
the �rst stage, an internal Bdd-based representation of the domain is built, while in the
second stage planning problems can be solved. Currently, planning domains are described
by means of the high-level action language AR (Giunchiglia et al., 1997). AR allows to
specify (conditional and uncertain) e�ects of actions by means of high level assertions. For
instance, Figure 8 shows the AR description of the BTUC problem6. The semantics of
AR yields a serial encoding, i.e. exactly one action is assumed to be executed at each

5. This pruning mechanism is actually weaker than the earlier one (Cimatti & Roveri, 1999). Here we
require that the same belief state must not be expanded twice during the search, while in the earlier
version we prune belief states contained in previously explored ones. This may increase the number of
explored belief states. However, it allows for a much more eÆcient implementation, without impacting
on the properties of the algorithm.

6. ! and & stand for negation and conjunction, respectively. The description is slightly edited for the sake of
readability. In particular, Mbp currently does not accept parameterized AR descriptions. In practice we
use a script language to generate ground instances of di�erent complexity from a parameterized problem
description.

321

Cimatti & Roveri

DOMAIN BTUC

ACTIONS Dunk_1, Dunk_2, Flush;

FLUENTS In_1, In_2, Defused, Clogged : boolean;

INERTIAL Clogged, Defused, In_1, In_2;

ALWAYS In_1 <-> !In_2;

Flush CAUSES !Clogged;

for i in [1, 2] {

Dunk_<i> HAS PRECONDITIONS !Clogged;

Dunk_<i> CAUSES Defused IF In_<i>;

Dunk_<i> POSSIBLY CHANGES Clogged;

}

INITIALLY !Defused;

CONFORMANT Defused & !Clogged;

Figure 8: An AR description for the BTUC problem

time. The automaton corresponding to an AR description is obtained by means of the
minimization procedure by Giunchiglia (1996). This procedure solves the frame problem
and the rami�cation problem, and is eÆciently implemented inMbp (Cimatti et al., 1997).
Because of the separation between the domain construction and the planning phases, Mbp

is not bound to AR. Standard deterministic domains speci�ed in Pddl (Ghallab et al.,
1998) can also be given to Mbp by means of a (prototype) compiler. We are also starting
to investigate the potential use of the C action language (Giunchiglia & Lifschitz, 1998),
which allows to represent domains with parallel actions.

Di�erent planning algorithms can be applied to the speci�ed planning problems. They
operate solely on the automaton representation, and are completely independent of the
particular language used to specify the domain. Mbp allows for automatic construction of
conditional plans under total observability, by implementing the algorithms for strong plan-
ning (Cimatti et al., 1998b), and for strong cyclic plannig (Cimatti et al., 1998a; Daniele,
Traverso, & Vardi, 1999). In Cmbp, we implemented the ideas described in the previous
sections. The primitives to construct and prune BsP tables required a lot of tuning, in
particular with the ordering of Bdd variables. We found a general ordering strategy which
works reasonably well: action variables are positioned at the top of the ordering, followed by
plan variables, followed by state variables, with current state and next state variables inter-
leaved. The speci�c ordering within action variables, plan variables, and state variables is
determined by the standard mechanism implemented inNuSMV. Cmbp implements several
algorithms for conformant planning. In addition to the backward algorithm presented in

322

Conformant Planning via Symbolic Model Checking

Section 4, Cmbp implements an algorithm based on forward search, which allows to exploit
the initial knowledge of the problem, sometimes resulting in signi�cant speed ups (Cimatti
& Roveri, 2000). Backward and forward search can also be combined, to tackle the ex-
ponential growth of the search time with the depth of search. For all these algorithms,
di�erent options enable and disable di�erent versions of the termination check.

7. Experimental Evaluation

In this section we present an experimental evaluation of our approach, which was carried
out by comparing Cmbp with state-of-the-art conformant planners. We �rst describe the
other conformant planners considered in the analysis, and then we present the experimental
comparison that was carried out.

7.1 Other Conformant Planners

Cgp (Smith & Weld, 1998) extends the ideas of Graphplan (Blum & Furst, 1995, 1997) to
deal with uncertainty. Basically, a planning graph is built of every possible sequence of pos-
sible worlds, and constraints among planning graphs are propagated to ensure conformance.
The Cgp system takes as input domains described in an extension of Pddl (Ghallab et al.,
1998), where it is possible to specify uncertainty in the initial state. Cgp inherits from
Graphplan the ability to deal with parallel actions. Cgp was the �rst eÆcient confor-
mant planner: it was shown to outperform several other planners such as Buridan (Peot,
1998) and UDTPOP (Kushmerick, Hanks, & Weld, 1995). The detailed comparison re-
ported by Smith and Weld (1998) leaves no doubt on the superiority of Cgp with respect
to these systems. Therefore, we compared Cmbp with Cgp and did not consider the other
systems analyzed by Smith and Weld (1998). Cmbp is more expressive than Cgp in two
respects. First, Cgp can only handle uncertainty in the initial state. For instance, Cgp
cannot analyze the BTUC domain presented in Section 3. Smith and Weld (1998) describe
how the approach can be extended to actions with uncertain e�ects. Second, Cgp cannot
conclude that a planning problem has no conformant solutions.

Qbfplan is (our name for) the planning system by Rintanen (1999a). Qbfplan general-
izes the idea of SAT-based planning (Kautz, McAllester, & Selman, 1996; Kautz & Selman,
1996, 1998) to nondeterministic domains, by encoding problems in QBF. The Qbfplan
approach is not limited to conformant planning, but can be used to do conditional planning
under uncertainty, also under partial observability: di�erent encodings, corresponding to
di�erent structures in the resulting plan, can be synthesized. In this paper, we are only
considering encodings which enforce the resulting plan to be a sequence. Given a bound on
the length of the plan, �rst a QBF encoding of the problem is generated, and then a QBF
solver (Rintanen, 1999b) is called. If no solution is found, a new encoding for a longer plan
must be generated and solved. Qbfplan is able to handle actions with uncertain e�ects.
This is done by introducing auxiliary (choice) variables, the assignments to which the dif-
ferent possible outcomes of actions correspond. These variables are universally quanti�ed
to ensure conformance of the solution. Di�erently from e.g. Blackbox (Kautz & Selman,
1998), Qbfplan does not have a heuristic to guess the \right" length of the plan. Given
a limit in the length of the plan, it generates all the encodings up to the speci�ed length,
and repeatedly calls the QBF solver on encodings of increasing length until a plan is found.

323

Cimatti & Roveri

As Cgp, Qbfplan cannot conclude that a planning problem has no conformant solutions.
Similarly to Cmbp, Qbfplan relies on a symbolic representation of the problem, although
QBF transformations are performed by a theorem prover rather than with Bdds.

Gpt (Bonet & Ge�ner, 2000) is a general planning framework, where the conformant
planning problem is seen as deterministic search problem in the space of belief states. Gpt
uses an explicit representation of the search space, where each belief state is represented
as a separate data structure. The search is based on the A� algorithm (Nilsson, 1980),
driven by domain dependent heuristics which are automatically generated from the problem
description. Gpt accepts problem descriptions in a syntax based on Pddl, extended to deal
with probabilities and uncertainty. It is possible to represent domains with uncertain action
e�ects (although the representation of actions resulting in a large number of di�erent states
is rather awkward). As for the planning algorithm, Gpt is able to conclude that a given
planning problem has no conformant solution by exhaustively exploring the space of belief
states.

7.2 Experiments and Results

The evaluation was performed by running the systems on a number of parameterized prob-
lem domains. We considered all the problems from the Cgp and Gpt distributions, plus
other problems which were de�ned to test speci�c features of the planners. We considered
domains with uncertainty limited to the initial state, and domains with uncertain action
e�ects. Besides problems admitting a solution, we also considered problems not admitting
a solution, in which case we measured the e�ectiveness of the plannner in returning with
failure.

Given their di�erent expressivity, it was not possible to run all the systems on all the
examples. Cmbp was run on all the classes of examples, while Gpt was run on all but one.
Cgp was run only on the problems which admit a solution, and with uncertainty limited
to the initial condition. Qbfplan was run on all the examples for which an encoding was
already available from the Qbfplan distribution. This is only a subset of the problems
expressible in Cgp. The main limiting factor was the low level of the input format of
Qbfplan: problem descriptions must be speci�ed as ML code which generates the QBF
encodings. Writing new encodings turned out to be a very diÆcult task, especially due to
the lack of documentation.

We ran Cgp, Qbfplan and Cmbp on an Intel 300MHz Pentium-II, 512MB RAM,
running Linux. The comparison between Cmbp and Gpt was run on a Sun Ultra Sparc
270MHz, 128Mb RAM running Solaris (Gpt was available as a binary). However, the
performance of the two machines is comparable | the run times for Cmbp were almost
identical. CPU time was limited to 7200 sec (two hours) for each test. To avoid swapping,
the memory limit was �xed to the physical memory of the machine. In the following, we
write \|" or \===" for a test that did not complete within the above time and memory
limits, respectively. The performance of the systems are reported in tables listing only the
search time. This excludes the time needed by Qbfplan to generate the encodings, the
time spent by Cmbp to construct the automaton representation into Bdd, and the time
needed by Gpt to generate the source code of its internal representation, and to compile
it. Overall, the most signi�cant time ignored is the automaton construction of Cmbp.

324

Conformant Planning via Symbolic Model Checking

Currently, the automaton construction is not fully optimized. Even in the most complex
examples, however, the construction never required more than a couple of minutes7.

7.2.1 Bomb in the Toilet

Bomb in the Toilet. The �rst domain we tackled is the classical bomb in the toilet,
where there is no notion of clogging. We call the problem BT(p), where the parameter p
is the number of packages. The only uncertainty is in the initial condition, where it is not
known which package contains the bomb. The goal is to defuse the bomb. The results for
the BT problem are shown in Table 1. The columns relative to Cmbp are the length of the
plan (jPj), the number of cached belief states and the number of hits in the cache (#BS and
#NBS respectively), the time (expressed in seconds) needed for searching the automaton
under Pentium/Linux (Time(L)) and under Sparc/Solaris (Time(S)). In the following, when
clear from the context, the execution platform is omitted. The columns relative to Cgp are
the number of levels in the planning graphs (jLj) and the search time. The column relative
to Gpt is the search time.

Cmbp Cgp Gpt

jPj #BS/#BSH Time(L) Time(S) jLj Time Time
BT(2) 2 2 / 2 0.000 0.000 1 0.000 0.074
BT(3) 3 6 / 11 0.000 0.000 1 0.000 0.077
BT(4) 4 14 / 36 0.000 0.000 1 0.000 0.080
BT(5) 5 30 / 103 0.000 0.000 1 0.000 0.087
BT(6) 6 62 / 266 0.010 0.010 1 0.010 0.102
BT(7) 7 126 / 641 0.010 0.030 1 0.010 0.139
BT(8) 8 254 / 1496 0.030 0.030 1 0.020 0.230
BT(9) 9 510 / 3463 0.070 0.070 1 0.020 0.481
BT(10) 10 1022 / 7862 0.150 0.140 1 0.020 1.018

Table 1: Results for the BT problems.

The BT problem is intrinsically parallel, i.e. the depth of the planning graph is always
one, because all the packages can be dunked at the same time. Cgp inherits from Graph-

plan the ability to deal with parallel actions eÆciently, and therefore it is almost insensitive
to the problem size. For this problem Cgp outperforms both Cmbp and Gpt. Notice that
the number of levels explored by Cgp is always 1, while the length of the plan produced by
Cmbp and Cgp grows linearly. Cmbp performs slightly better than Gpt.

Bomb in the Toilet with Clogging. We call BTC(p) the extension of the BT(p) where
dunking a package (always) clogs the toilet, ushing can remove the clogging, and no clog-
ging is a precondition for dunking a package. Again, p is the number of packages. The toilet
is initially not clogged. With this modi�cation, the problem no longer allows for a parallel
solution. The results for this problem are listed in Table 2. The impact of the depth of
the plan length becomes signi�cant for all systems. Both Cmbp and Gpt outperform Cgp.
In this case Cmbp performs better than Gpt, especially on large instances (see BTC(16)).

7. More precisely, the maximum time in building the automaton was required for the BMTC(10,6) examples
(88 secs.), the RING(10) example (77 secs.), the BMTC(9,6) examples (40 secs.), and the BMTC(10,5)
examples (41 secs.). For most of the other examples, the time required for the automaton construction
was less than 10 seconds.

325

Cimatti & Roveri

Cmbp Cgp Gpt

jPj #BS/#BSH Time(L) Time(S) jLj Time Time
BTC(2) 3 6 / 8 0.000 0.010 3 0.000 0.074
BTC(3) 5 14 / 23 0.000 0.000 5 0.010 0.077
BTC(4) 7 30 / 61 0.010 0.010 7 0.030 0.082
BTC(5) 9 62 / 150 0.020 0.020 9 0.130 0.094
BTC(6) 11 126 / 347 0.020 0.020 11 0.860 0.113
BTC(7) 13 254 / 796 0.070 0.080 13 2.980 0.166
BTC(8) 15 510 / 1844 0.150 0.160 15 13.690 0.288
BTC(9) 17 1022 / 4149 0.320 0.330 17 41.010 0.607
BTC(10) 19 2046 / 9190 0.710 0.700 19 157.590 1.309

BTC(16) 31 131070 / 921355 99.200 99.800 351.457

Qbfplan

BTC(6) BTC(10)
jPj Time jPj Time
1 0.00 1 0.02
2 0.01 2 0.03
3 0.26 3 0.78
4 0.63 4 2.30
5 1.53 5 4.87
6 2.82 6 8.90
7 6.80 7 22.61
8 14.06 8 52.72
9 35.59 9 156.12
10 93.34 10 410.86
11 (+) 2.48 11 1280.88

13 3924.96
14 |
: : : : : :

18 |
19 (+) 16.84

Table 2: Results for the BTC problems.

The comparison with Qbfplan is limited to the 6 and 10 package instances (the ones avail-
able from the distribution package). The performance of Qbfplan is reported in the left
table in Table 2. Each line reports the time needed to decide whether there is a plan of
length i. The performance of Qbfplan is rather good when tackling an encoding admit-
ting a solution (in Table 2 these entries are labeled by (+)). For instance, in the BTC(10)
Qbfplan �nds the solution solving the encodings at depth 19 reasonably fast. However,
when a solution cannot be found, i.e. the QBF formula admits no model, the performance
of Qbfplan degrades signi�cantly (for the depth 18 encoding, we let the solver run for 10
CPU hours and it did not complete the search). Because of the di�erence in performance,
and the diÆculty in writing new domains, in the rest of the comparison we will not consider
Qbfplan.

Bomb in Multiple Toilets. The next domain, called BMTC(p,t), is the generalization
of the BTC problem to the case of multiple toilets (p is the number of packages, while t
is the number of toilets). The problem becomes more parallelizable when the number of
toilets increases. Furthermore, we considered three versions of the problem with increasing
uncertainty in the initial states. In the �rst class of tests (\Low Uncertainty" columns), the
only uncertainty is the position of the bomb which is unknown, while toilets are known to
be not clogged. The \Mid Uncertainty" and \High Uncertainty" columns show the results
in presence of more uncertainty in the initial state. In the second [third, respectively] class
of tests, the status of every odd [every, resp.] toilet can be either clogged or not clogged.
This increases the number of possible initial states.

The results are reported in Table 3 (for the comparison with Cgp) and in Table 4
(for the comparison with Gpt). The IS column represents the number of initial states of
the corresponding problem. Cgp is able to fully exploit the parallelism of the problem.
However, Cgp is never able to explore more than 9 levels in the planning graph, with depth
decreasing with the number of initial states. The results also show that Cmbp and Gpt

are much less sensitive to the number of initial states than Cgp. With increasing initial

326

Conformant Planning via Symbolic Model Checking

L
o
w

U
n
c
e
rt
a
in
ty

M
id
U
n
c
e
rt
a
in
ty

H
ig
h
U
n
c
e
rt
a
in
ty

b
m
t
c

C
m
b
p

C
g
p

C
m
b
p

C
g
p

C
m
b
p

C
g
p

(p
,t
)

IS

jP
j

#
B
S
/
#
B
S
H

T
im
e

jL
j

T
im
e

IS

#
B
S
/
#
B
S
H

T
im
e

jL
j

T
im
e

IS

#
B
S
/
#
B
S
H

T
im
e

jL
j

T
im
e

(2
,2
)

2

2

1
0
/
1
8

0
.0
0
0

1

0
.0
0
0

4

1
2
/
3
4

0
.0
0
0

2

0
.0
1
0

8

1
2
/
4
0

0
.0
0
0

2

0
.0
3
0

(3
,2
)

3

4

2
6
/
8
4

0
.0
0
0

3

0
.0
2
0

6

2
8
/
1
0
6

0
.0
0
0

3

0
.0
4
0

1
2

2
8
/
1
1
2

0
.0
1
0

4

1
3
.5
6
0

(4
,2
)

4

6

5
8
/
2
5
0

0
.0
2
0

3

0
.0
3
0

8

6
0
/
2
8
6

0
.0
2
0

4

0
.4
6
0

1
6

6
0
/
2
9
4

0
.0
1
0

4

1
4
5
.8
3
0

(5
,2
)

5

8

1
2
2
/
6
5
2

0
.0
3
0

5

1
.3
9
0

1
0

1
2
4
/
7
0
2

0
.0
3
0

5

1
3
,1
8
0

2
0

1
2
4
/
7
1
0

0
.0
4
0

4

|

(6
,2
)

6

1
0

2
5
0
/
1
5
5
2

0
.0
7
0

5

3
.4
9
0

1
2

2
5
2
/
1
6
1
4

0
.0
8
0

5

|

2
4

2
5
2
/
1
6
2
2

0
.0
8
0

(7
,2
)

7

1
2

5
0
6
/
3
5
8
6

0
.1
8
0

7

5
0
8
.5
1
0

1
4

5
0
8
/
3
6
6
2

0
.1
9
0

2
8

5
0
8
/
3
6
7
0

0
.1
9
0

(8
,2
)

8

1
4

1
0
1
8
/
8
2
6
2

0
.4
0
0

7

9
1
8
.9
6
0

1
6

1
0
2
0
/
8
3
6
2

0
.4
3
0

3
2

1
0
2
0
/
8
3
7
2

0
.4
5
0

(9
,2
)

9

1
6

2
0
4
2
/
1
8
4
8
4

0
.9
4
0

7

|

1
8

2
0
4
4
/
1
8
6
0
2

0
.9
6
0

3
6

2
0
4
4
/
1
8
6
1
2

0
.9
5
0

(1
0
,2
)

1
0

1
8

4
0
9
0
/
4
0
6
7
6

1
.8
2
0

2
0

4
0
9
2
/
4
0
8
1
0

1
.9
9
0

4
0

4
0
9
2
/
4
0
8
2
0

2
.0
3
0

(2
,3
)

2

2

1
8
/
4
2

0
.0
0
0

1

0
.0
1
0

8

2
4
/
9
9

0
.0
0
0

2

0
.0
9
0

1
6

2
4
/
1
2
6

0
.0
1
0

2

0
.1
7
0

(3
,3
)

3

3

4
7
/
2
0
2

0
.0
1
0

1

0
.0
1
0

1
2

5
6
/
3
4
9

0
.0
2
0

2

0
.2
0
0

2
4

5
6
/
3
7
3

0
.0
2
0

2

0
.6
9
0

(4
,3
)

4

5

1
1
0
/
7
3
6

0
.0
3
0

3

0
.1
1
0

1
6

1
2
0
/
9
4
2

0
.0
4
0

3

0
.9
9
0

3
2

1
2
0
/
9
7
2

0
.0
4
0

3

|

(5
,3
)

5

7

2
3
7
/
2
0
3
4

0
.0
8
0

3

0
.1
7
0

2
0

2
4
8
/
2
3
3
5

0
.1
1
0

3

|

4
0

2
4
8
/
2
3
7
1

0
.1
2
0

(6
,3
)

6

9

4
9
2
/
5
1
0
6

0
.2
3
0

3

0
.3
4
0

2
4

5
0
4
/
5
5
2
0

0
.2
5
0

4
8

5
0
4
/
5
5
6
2

0
.2
4
0

(7
,3
)

7

1
1

1
0
0
3
/
1
2
1
2
8

0
.5
6
0

5

6
2
4
8
.0
1
0

2
8

1
0
1
/
1
2
6
7
3

0
.5
9
0

5
6

1
0
1
6
/
1
2
7
2
1

0
.6
4
0

(8
,3
)

8

1
3

2
0
2
6
/
2
7
8
3
6

1
.3
0
0

4

|

3
2

2
0
4
/
2
8
5
3
0

1
.3
5
0

6
4

2
0
4
0
/
2
8
5
8
4

1
.3
3
0

(9
,3
)

9

1
5

4
0
7
3
/
6
2
4
7
0

3
.3
3
0

3
6

4
0
8
/
6
3
3
3
1

3
.3
7
0

7
2

4
0
8
8
/
6
3
3
9
1

3
.3
9
0

(1
0
,3
)

1
0

1
7

8
1
6
8
/
1
3
8
0
4
6

7
.2
8
0

4
0

8
1
8
/
1
3
9
0
9
2

7
.4
6
0

8
0

8
1
8
4
/
1
3
9
1
5
8

7
.4
3
0

(2
,4
)

2

2

2
9
/
7
5

0
.0
1
0

1

0
.0
0
0

8

2
9
/
7
5

0
.0
0
0

1

0
.0
2
0

3
2

4
8
/
3
3
2

0
.0
2
0

2

1
.6
1
0

(3
,4
)

3

3

9
2
/
4
9
2

0
.0
2
0

1

0
.0
1
0

1
2

1
0
8
/
8
0
8

0
.0
3
0

2

0
.2
9
0

4
8

1
1
2
/
9
6
0

0
.0
4
0

2

8
.6
9
0

(4
,4
)

4

4

2
0
6
/
1
6
8
6

0
.0
6
0

1

0
.0
1
0

1
6

2
3
6
/
2
3
5
6

0
.0
8
0

2

0
.7
3
0

6
4

2
4
0
/
2
5
3
2

0
.0
9
0

2

3
2
.1
9
0

(5
,4
)

5

6

4
5
7
/
4
9
8
7

0
.1
9
0

3

0
.5
0
0

2
0

4
9
2
/
5
8
8
8

0
.2
3
0

2

|

8
0

4
9
6
/
6
0
9
2

0
.2
4
0

3

|

(6
,4
)

6

8

9
6
4
/
1
2
4
5
6

0
.4
1
0

3

1
.1
6
0

2
4

1
0
0
4
/
1
3
6
4
8

0
.4
7
0

9
6

1
0
0
8
/
1
3
8
7
6

0
.4
7
0

(7
,4
)

7

1
0

1
9
8
3
/
2
9
4
5
3

1
.0
4
0

3

2
.4
1
0

2
8

2
0
2
8
/
3
1
0
0
4

1
.1
2
0

1
1
2

2
0
3
2
/
3
1
2
6
0

1
.1
6
0

(8
,4
)

8

1
2

4
0
2
6
/
6
8
4
6
6

2
.7
4
0

3

8
.5
4
0

3
2

4
0
7
6
/
7
0
5
8
4

2
.8
7
0

1
2
8

4
0
8
0
/
7
0
9
1
2

2
.9
1
0

(9
,4
)

9

1
4

8
1
1
7
/
1
5
3
8
9
5

6
.6
9
0

4

|

3
6

8
1
7
2
/
1
5
6
5
4

6
.9
0
0

1
4
4

8
1
7
6
/
1
5
6
9
0
4

6
.9
7
0

(1
0
,4
)

1
0

1
6

1
6
3
0
4
/
3
3
9
1
6
0

1
4
.4
2
0

4
0

1
6
3
6
4
/
3
4
2
3
4

1
4
.6
3
0

1
6
0

1
6
3
6
8
/
3
4
2
7
3
6

1
4
.7
7
0

(2
,5
)

2

2

4
3
/
1
1
7

0
.0
1
0

1

0
.0
1
0

1
6

4
3
/
1
1
7

0
.0
1
0

1

0
.1
3
0

6
4

9
3
/
7
5
1

0
.0
3
0

2

2
1
.1
2
0

(3
,5
)

3

3

1
6
4
/
1
0
3
1

0
.0
4
0

1

0
.0
2
0

2
4

2
1
2
/
2
0
0
8

0
.0
8
0

2

3
.5
4
0

9
6

2
2
4
/
2
5
9
1

0
.1
2
0

2

1
3
8
.4
3
0

(4
,5
)

4

4

4
1
6
/
4
3
0
4

0
.1
5
0

1

0
.0
2
0

3
2

4
7
5
/
6
3
7
5

0
.2
6
0

2

6
.3
2
0

1
2
8

4
8
0
/
6
7
4
0

0
.2
6
0

2

5
5
1
.2
1
0

(5
,5
)

5

5

8
7
2
/
1
1
7
6
3

0
.4
9
0

1

0
.0
5
0

4
0

9
8
7
/
1
5
9
2
8

0
.7
0
0

2

3
7
,9
5
9

1
6
0

9
9
2
/
1
6
3
9
3

0
.7
3
0

2

1
5
2
3
.8
4
0

(6
,5
)

6

7

1
8
7
5
/
3
1
6
9
5

1
.3
0
0

3

5
.9
2
0

4
8

2
0
1
1
/
3
7
7
5
9

1
.8
9
0

2

|

1
9
2

2
0
1
6
/
3
8
3
3
4

1
.9
8
0

2

|

(7
,5
)

7

9

3
9
0
1
/
7
8
0
0
9

3
.9
9
0

3

1
8
.4
1
0

5
6

4
0
5
9
/
8
6
7
1
6

4
.4
8
0

2
2
4

4
0
6
4
/
8
7
4
1
1

4
.5
4
0

(8
,5
)

8

1
1

7
9
7
4
/
1
8
3
0
3
6

9
.6
7
0

3

6
2
.0
4
0

6
4

8
1
5
5
/
1
9
5
0
5
5

1
0
.5
9
0

2
5
6

8
1
6
0
/
1
9
5
8
8
0

1
0
.6
4
0

(9
,5
)

9

1
3

1
6
1
4
2
/
4
1
6
3
3
3

2
4
.2
5
0

3

1
9
4
.6
4
0

7
2

1
6
3
4
7
/
4
3
2
4
0
8

2
5
.6
0
0

2
8
8

1
6
3
5
2
/
4
3
3
3
7
3

2
5
.3
7
0

(1
0
,5
)

1
0

1
5

3
2
5
0
1
/
9
2
7
3
2
9

5
4
.9
1
0

3

2
8
9
,6
8
0

8
0

3
2
7
3
1
/
9
4
8
2
7
9

5
6
.4
2
0

3
2
0

3
2
7
3
6
/
9
4
9
3
9
4

5
6
.2
9
0

(2
,6
)

2

2

6
0
/
1
6
8

0
.0
1
0

1

0
.0
1
0

1
6

6
0
/
1
6
8

0
.0
1
0

1

0
.2
0
0

1
2
8

1
7
1
/
1
5
3
3

0
.0
4
0

2

3
3
7
.6
0
4

(3
,6
)

3

3

2
7
0
/
1
8
4
8

0
.0
7
0

1

0
.0
1
0

2
4

2
7
0
/
1
8
4
8

0
.0
7
0

1

0
.8
3
0

1
9
2

4
4
8
/
6
2
4
8

0
.3
1
0

2

1
4
5
9
.1
1
0

(4
,6
)

4

4

7
8
6
/
9
2
9
4

0
.3
0
0

1

0
.0
4
0

3
2

9
2
0
/
1
3
8
1
0

0
.5
0
0

2

3
0
.6
3
0

2
5
6

9
6
0
/
1
6
3
4
4

0
.6
9
0

2

5
6
4
3
.4
5
0

(5
,6
)

5

5

1
7
7
7
/
2
9
0
7
5

1
.1
6
0

1

0
.0
6
0

4
0

1
9
5
8
/
3
7
6
3
6

1
.9
4
0

2

3
0
.1
4
0

3
2
0

1
9
8
4
/
3
9
7
1
0

2
.1
2
0

2

|

(6
,6
)

6

6

3
6
1
3
/
7
1
1
2
3

3
.2
9
0

1

0
.1
0
0

4
8

4
0
0
5
/
9
0
1
1
1

4
.0
8
0

2

5
7
.3
0
0

3
8
4

4
0
3
2
/
9
2
7
7
2

4
.6
0
0

(7
,6
)

7

8

7
6
2
5
/
1
8
0
1
2
7

9
.0
6
0

3

2
1
1
.7
2
0

5
6

8
1
0
0
/
2
0
8
0
5
0

1
0
.1
3
0

2

|

4
4
8

8
1
2
8
/
2
1
1
3
7
0

1
0
.4
0
0

(8
,6
)

8

1
0

1
5
7
2
6
/
4
2
9
1
9
8

2
0
.7
1
0

3

1
0
1
5
.1
6
0

6
4

1
6
2
9
1
/
4
6
9
2
7
7

2
2
.6
2
0

5
1
2

1
6
3
2
0
/
4
7
3
3
2
8

2
3
.0
0
0

(9
,6
)

9

1
2

3
2
0
1
2
/
9
8
6
1
8
8

5
0
.6
1
0

3

3
0
5
1
.9
9
0

7
2

3
2
6
7
4
/
1
.0
4
1
7
3
e
+
0
6

5
3
.5
1
0

5
7
6

3
2
7
0
4
/
1
.0
4
6
5
8
e
+
0
6

5
4
.0
1
0

(1
0
,6
)

1
0

1
4

6
4
6
7
5
/
2
.2
1
1
0
6
e
+
0
6

1
1
1
.8
3
0

2

|

8
0

6
5
4
4
1
/
2
.2
8
5
8
5
e
+
0
6

1
1
6
.4
4
0

6
4
0

6
5
4
7
2
/
2
.2
9
1
5
8
e
+
0
6

1
1
6
.2
4
0

T
ab
le
3:
R
es
u
lt
s
fo
r
th
e
B
M
T
C
p
ro
b
le
m
s.

327

Cimatti & Roveri

Low Unc. High Unc.
bmtc Cmbp Gpt Cmbp Gpt

(p,t) Time Time Time Time

(2,2) 0.000 0.079 0.010 0.079
(3,2) 0.010 0.087 0.010 0.091
(4,2) 0.000 0.105 0.020 0.121
(5,2) 0.040 0.146 0.040 0.198
(6,2) 0.080 0.227 0.070 0.376
(7,2) 0.190 0.441 0.200 0.850
(8,2) 0.390 0.922 0.400 1.966
(9,2) 0.910 2.211 0.950 4.743
(10,2) 1.850 5.169 1.900 10.620

(2,4) 0.000 0.109 0.010 0.121
(3,4) 0.010 0.156 0.040 0.284
(4,4) 0.050 0.270 0.100 1.016
(5,4) 0.180 0.616 0.240 3.282
(6,4) 0.370 1.435 0.460 9.374
(7,4) 1.080 3.484 1.190 27.348
(8,4) 2.700 8.767 2.830 72.344
(9,4) 8.970 23.858 6.920 180.039
(10,4) 14.210 59.966 114.690 440.308

(2,6) 0.010 0.303 0.060 0.482
(3,6) 0.050 0.562 0.260 2.471
(4,6) 0.310 1.354 0.620 17.406
(5,6) 1.110 3.257 2.060 74.623
(6,6) 3.400 8.691 4.660 243.113
(7,6) 8.910 25.677 10.430 701.431
(8,6) 21.240 68.427 23.860 ===
(9,6) 49.880 289.000 54.190
(10,6) 113.680 486.969 118.590

Table 4: Results for the BMTC problems.

uncertainty, Cgp is almost unable to solve what were trivial problems. Gpt performs better
than Cgp, but it su�ers from the explicit representation of the search space.

Bomb in the Toilet with Uncertain Clogging. The BTUC(p) domain is the domain
described in Section 2, where clogging is an uncertain outcome of dunking a package. This
kind of problem cannot be expressed in Cgp. The results for Cmbp and Gpt are reported
in Table 5. Although Cmbp performs better than Gpt (by a factor of two to three), there
is no signi�cant di�erence in the behavior. It is interesting to compare the results of Cmbp
for the BTC and BTUC problems. For Gpt a slight di�erence is noticeable, resulting from
the increased branching factor in the search space due to the uncertainties in the e�ects of
action executions. In the performance of Cmbp, the number of uncertainties is not a direct
factor | for example, in the BTC(16) and BTUC(16), the performance is almost the same.

7.2.2 Ring of Rooms

Simple Ring of Room. We considered another domain, where a robot can move in a
ring of rooms. Each room has a window, which can be either open, closed or locked. The
robot can move (either clockwise or counterclockwise), close the window of the room where
it is, and lock it if closed. The goal is to have all windows locked.

328

Conformant Planning via Symbolic Model Checking

Cmbp Gpt

jPj #BS/#BSH Time Time
BTUC(2) 3 6 / 8 0.000 0.076
BTUC(3) 5 14 / 23 0.000 0.078
BTUC(4) 7 30 / 61 0.010 0.085
BTUC(5) 9 62 / 150 0.010 0.098
BTUC(6) 11 126 / 347 0.030 0.128
BTUC(7) 13 254 / 796 0.050 0.205
BTUC(8) 15 510 / 1844 0.170 0.380
BTUC(9) 17 1022 / 4149 0.310 0.812
BTUC(10) 19 2046 / 9190 0.720 1.828

BTUC(16) 31 131070 / 921355 98.270 486.252

Table 5: Results for the BTUC problems.

1 2N-1 N

In the problem RING(r), where r is the number of rooms, the uncertainty is only in the
initial condition: both the position of the robot and the status of the windows can be
uncertain. These problems do not have a parallel solution, and have a large number of initial
states (r � 3r), corresponding to full uncertainty on the position of the robot and on the
status of each window. The results8 are reported on the left in Table 6. Cmbp outperforms

Cmbp Cgp Gpt

jPj #BS/#BSH Time jLj Time Time
RING(2) 5 8 / 24 0.000 3 0.070 0.085
RING(3) 8 26 / 78 0.020 4 | 0.087
RING(4) 11 80 / 240 0.040 0.392
RING(5) 14 242 / 726 0.120 1.150
RING(6) 17 728 / 2184 0.370 6.620
RING(7) 20 2186 / 6558 1.420 23.636
RING(8) 23 6560 / 19680 4.950 105.158
RING(9) 26 19682 / 59046 27.330 ===
RING(10) 29 59048 / 177144 106.870

Cgp on RING(5)
IS jLj Time jLj Time
1 5 0.010 9 0.020
2 5 0.060 9 0.140
4 5 0.420 9 1.950
8 5 6.150 9 359.680
16 5 | 9 |

Table 6: The results for the RING problems.

both Cgp and Gpt, although Gpt performs much better than Cgp. Both Cgp and Gpt
su�er from the increasing complexity of the problem. On the right in Table 6, we plot (for
the RING(5) problem) the dependency of Cgp on the number of initial states combined
with the number of levels to be explored (di�erent goals were provided which require the
exploration of di�erent levels). It is clear that the number of initial states and the depth of
the search are both critical factors for Cgp.

8. The times reported for Cgp refer to a scaled-down version of the problem, where locking is not taken
into account, and thus the maximum number of initial states is r � 2r.

329

Cimatti & Roveri

Ring of Rooms with Uncertain Action E�ects. We considered a variation of the
RING domain, called URING, �rst introduced by Cimatti and Roveri (1999), which is not
expressible in Cgp. If a window is not locked and the robot is not performing an action
which will determine its status (e.g. closing it), then the window can open or close nondeter-
ministically. For instance, while the robot is moving from room 1 to room 2, the windows in
room 3 and 4 could be open or closed by the wind. This domain is clearly designed to stress
the ability of a planner to deal with actions having a large number of resulting states. In the
worst case (e.g. a move action performed when no window is locked), there are 2r possible
resulting states. Although seemingly arti�cial, this captures the fact that environments can
be in practice highly nondeterministic. We tried to compare Cmbp and Gpt on the URING
problem. In principle Gpt is able to deal with uncertainty in the action e�ects. However,
we failed to codify the URING in the Gpt language, because it requires a conditional de-
scription of uncertain e�ects. Therefore, we experimented with a variation of the RING
domain featuring a higher degree of nondeterminism, called NDRING in the following. The
NDRING domain contains an increasing number of additional propositions, called in the
following noninertial propositions, which are initially unknown and are nondeterministically
altered by each action. If i is the number of noninertial propositions, each action has 2i

Cmbp Gpt

jPj #BS/#BSH Time (5) Time (2) Time (3) Time (4) Time (5)
NDRING(2) 5 8 / 24 0.000 0.140 0.384 0.948 4.544
NDRING(3) 8 26 / 78 0.020 0.256 0.679 2.574 13.960
NDRING(4) 11 80 / 240 0.040 1.046 3.025 12.548 67.714
NDRING(5) 14 242 / 726 0.110 4.550 12.960 48.426 ===
NDRING(6) 17 728 / 2184 0.350 18.758 57.300 ===
NDRING(7) 20 2186 / 6558 1.350 108.854 ===
NDRING(8) 23 6560 / 19680 4.990 ===
NDRING(9) 26 19682 / 59046 27.060
NDRING(10) 29 59048 / 177144 103.760

Table 7: The results for the NDRING problems.

possible outcomes. The results are listed in Table 7, with columns labeled with Time(i).
The growing branching factor during the search has a major impact on the performance of
Gpt, while Cmbp is insensitive to this kind of uncertainty. (The performance of Cmbp for
a lower number of noninertial propositions are not reported because they are basically the
same.)

The URING problem was run only on Cmbp. The results are listed in Table 8. It can
be noticed that the performances of Cmbp improve signi�cantly with respect to the RING
problem. This can be explained considering that, despite the larger number of transitions,
the number of explored belief states is signi�cantly smaller (see the Bs cache statistics in
Tables 6 and 8).

7.2.3 Square and Cube

The following domains are the SQUARE(n) and CUBE(n) from theGpt distribution (Bonet
& Ge�ner, 2000). These problems consist of a robot navigating in a square or cube of side
n. In both domains there are actions for moving the robot in all the possible directions.
Moving the robot against a boundary leaves the robot in the same position. The original

330

Conformant Planning via Symbolic Model Checking

Cmbp

jPj #BS/#BSH Time
URING(2) 5 5 / 16 0.000
URING(3) 8 11 / 34 0.010
URING(4) 11 23 / 70 0.020
URING(5) 14 47 / 142 0.040
URING(6) 17 95 / 286 0.080
URING(7) 20 191 / 574 0.190
URING(8) 23 383 / 1150 0.410
URING(9) 26 767 / 2302 0.980
URING(10) 29 1535 / 4606 2.2300

Table 8: Results for the URING problems.

problems, called CORNER in the following, require the robot to reach a corner, starting
from a completely unspeci�ed position. We introduced two variations. In the �rst, called
FACE, the initial position is any position of a given side [face] of the square [cube], while
the goal is to reach the central position of the opposite side [face]. In the second, called
CENTER, the initial position is completely unspeci�ed, and the goal is the center of the
square [cube]. For the corner problem, a simple heuristic is to perform only steps towards
the corner, thus pruning half of the actions. The variations are designed not to allow for a
simple heuristic | for instance, in the CENTER problem, no action can be eliminated.

CORNER FACE CENTER

SQUARE(i) Cmbp Gpt Cmbp Gpt Cmbp Gpt

jPj #BS/#BSH Time Time jPj #BS/#BSH Time Time jPj #BS/#BSH Time Time
SQUARE(2) 2 2 / 4 0.000 0.074 2 2 / 4 0.000 0.058 2 2 / 4 0.000 0.060

SQUARE(4) 6 15 / 37 0.000 0.080 7 33 / 83 0.000 0.065 8 76 / 190 0.010 0.083
SQUARE(6) 10 35 / 93 0.000 0.092 12 86 / 232 0.020 0.089 14 218 / 592 0.040 0.216

SQUARE(8) 14 63 / 173 0.020 0.115 17 163 / 453 0.040 0.139 20 432 / 1210 0.090 0.695
SQUARE(10) 18 99 / 277 0.030 0.149 22 264 / 746 0.090 0.228 26 718 / 2044 0.190 2.135
SQUARE(12) 22 143 / 405 0.050 0.196 27 389 / 1111 0.150 0.371 32 1076 / 3094 0.360 5.340

SQUARE(14) 26 195 / 557 0.070 0.261 32 538 / 1548 0.230 0.582 38 1506 / 4360 0.560 12.284
SQUARE(16) 30 255 / 733 0.080 0.357 37 711 / 2057 0.320 0.908 44 2008 / 5842 0.820 26.241

SQUARE(18) 34 323 / 933 0.120 0.503 42 908 / 2638 0.540 1.343 50 2582 / 7540 1.330 52.091
SQUARE(20) 38 399 / 1157 0.160 0.638 47 1129 / 3291 0.650 1.883 56 3228 / 9454 1.790 94.204

CORNER FACE CENTER
CUBE(i) Cmbp Gpt Cmbp Gpt Cmbp Gpt

jPj #BS/#BSH Time Time jPj #BS/#BSH Time Time jPj #BS/#BSH Time Time

CUBE(2) 3 6 / 19 0.000 0.332 3 6 / 19 0.000 0.061 3 6 / 19 0.010 0.061
CUBE(3) 6 26 / 99 0.010 0.168 6 26 / 99 0.000 0.069 6 26 / 99 0.010 0.144

CUBE(4) 9 63 / 261 0.020 0.430 11 319 / 1360 0.050 0.193 12 722 / 3091 0.130 0.569
CUBE(5) 12 124 / 537 0.040 0.276 14 709 / 3095 0.220 0.412 15 1696 / 7402 0.430 2.010

CUBE(6) 15 215 / 957 0.050 0.500 19 1343 / 6116 0.430 1.479 21 3365 / 15432 0.910 10.717
CUBE(7) 18 342 / 1551 0.100 0.567 22 2255 / 10377 0.840 3.323 24 5797 / 26814 1.860 34.074

CUBE(8) 21 511 / 2349 0.160 1.082 27 3519 / 16464 1.400 8.161 30 9248 / 43541 3.520 109.852
CUBE(9) 24 728 / 3381 0.330 1.765 30 5169 / 24331 2.810 16.272 33 13786 / 65237 7.260 701.910
CUBE(10) 27 999 / 4677 0.440 2.068 35 7279 / 34564 4.550 32.226 39 19667 / 93898 9.990 ===

CUBE(15) 42 3374 / 16167 1.940 9.207 54 26439 / 127825 28.560 === 60 74041 / 359354 58.930

Table 9: Results for the SQUARE and CUBE problems.

The results for these problems are reported in Table 9. The tests were run only with
Cmbp and Gpt. The experiments highlight that the eÆciency of Gpt strongly depends on
the quality of the heuristic function. If, as in the �rst set of experiments, the heuristics are

331

Cimatti & Roveri

e�ective, then Gpt is almost as good as Cmbp. Otherwise, Gpt degrades signi�cantly. In
general, �nding heuristics which are e�ective in the belief space appears to be a nontrivial
problem. Cmbp appears to be more stable9, as it performs a blind, breadth-�rst search,
and relies on the cleverness of the symbolic representation to achieve eÆciency.

7.2.4 Omelette

Finally, we considered the OMELETTE(i) problem (Levesque, 1996). The goal is to have i
good eggs and no bad ones in one of two bowls of capacity i. There is an unlimited number of
eggs, each of which can be unpredictably good or bad. The eggs can be grabbed and broken
into a bowl. The content of a bowl can be discarded, or poured to the other bowl. Breaking
a rotten egg in a bowl has the e�ect of spoiling the bowl. A bowl can always be cleaned
by discarding its content. The problem is originally presented as a partial observability
problem, with a sensing action allowing to test if a bowl is spoiled or not. We considered
the variation of the problem without sensing action: in this case no conformant solution
exists. We used the OMELETTE problems to test the ability of Cmbp and Gpt to discover
that the problem admits no conformant solution. The results are reported in Table 10. The
table shows that Cmbp is very e�ective in checking the absence of a conformant solution,
and outperforms Gpt by several orders of magnitude.

CMBP GPT
steps #BS/#BSH Time Time

OMELETTE(3) 9 15 / 34 0.020 0.237
OMELETTE(4) 11 19 / 42 0.030 0.582
OMELETTE(5) 13 23 / 50 0.040 1.418
OMELETTE(6) 15 27 / 58 0.050 2.904
OMELETTE(7) 17 31 / 66 0.060 5.189
OMELETTE(8) 19 35 / 74 0.090 10.307
OMELETTE(9) 21 39 / 82 0.110 18.744
OMELETTE(10) 23 43 / 90 0.120 32.623

OMELETTE(15) 33 63 / 130 0.210 225.530

OMELETTE(20) 43 83 / 170 0.440 ===

OMELETTE(30) 63 123 / 250 0.890

Table 10: Results for the OMELETTE problems.

7.3 Summarizing Remarks

Overall, Cmbp appears to implement the most e�ective approach to conformant planning,
both in terms of expressivity and performance. Cgp is only able to deal with uncertainties
in the initial states, and cannot conclude that the problem does not admit a conformant
solution. The main problem in Cgp seems to be its enumerative approach to uncertainties,
and the increased number of initial states severely a�ects the performance (see Table 3 and
Table 6).

Qbfplan is in principle able to deal with uncertain action e�ects, but cannot conclude
that the problem does not admit a conformant solution. From the small number of ex-

9. Consider also that the problems are increasingly more diÆcult (see for instance the plan length).

332

Conformant Planning via Symbolic Model Checking

periments that we could perform, the approach implemented by Qbfplan is limited by
the Satplan style of search: the intermediate results obtained while solving an encoding
at depth k are not reused while solving encodings of increasing depth. Furthermore, the
solver appears to be specialized in �nding a model, rather than in proving unsatis�ability.
However, the latter ability is needed in all encodings but the �nal one.

Gpt is a very expressive system, which allows eÆciently dealing with a wide class of
planning problems. As far as conformant planning is concerned, it is as expressive as
Cmbp. It allows dealing with uncertain action e�ects, and can conclude that a problem
does not have a conformant solution. However, Cmbp appears to outperform Gpt in
several respects. First, the behaviour of Gpt appears to be directly related to the number
of possible outcomes in an action. Furthermore, the eÆciency of Gpt depends on the
e�ectiveness of the heuristic functions, which can be sometimes diÆcult to devise, and
cannot help when the problem does not admit a solution.

The main strength of Cmbp is its independence on the number of uncertainties, which
is achieved with the use of symbolic techniques. Being fully symbolic, Cmbp does not
exhibit the enumerative behaviour of its competitors. Compared to the original approach
described by Cimatti and Roveri (1999), a substantial improvement of the performance
has been obtained by the new implementation of the pruning step. A disclaimer is in
order. It is well known that Bdd based computations are subject to a blow-up in memory
requirements when computing certain classes of boolean functions, e.g. multipliers (Bryant,
1986). It would be trivial to make up an example where the performance of Cmbp degrades
exponentially. However, in none of the examples we considered, which included all the
examples in the distribution of Cgp and Gpt, this phenomenon occurred.

8. Other Related Work

The term conformant planning was �rst introduced by Goldman (1996), while presenting a
formalism for constructing conformant plans based on an extension of dynamic logic. Re-
cently, Ferraris and Giunchiglia (2000) presented another conformant planner based on SAT
techniques. The system is not available for a direct comparison with Cmbp. The e�ective-
ness of the approach is diÆcult to evaluate, as only a limited testing is described (Ferraris &
Giunchiglia, 2000). The performance is claimed to be comparable with Cgp. However, the
results are reported only for the enconding corresponding to the solution, and the behaviour
of Qbfplan reported in Table 2 suggests that this kind of analysis might be limited.

Several works share the idea of planning based on automata theory. The most closely
related are the works in the lines of planning via model checking (Cimatti et al., 1997), upon
which our work is based. This approach allows, for instance, to automatically construct
universal plans which are guaranteed to achieve the goal in a �nite number of steps (Cimatti
et al., 1998b), or which implement trial-and-error strategies (Cimatti et al., 1998a; Daniele
et al., 1999). These results are obtained under the hypothesis of total observability, while
here run-time observation is not available. The main di�erence is that a substantial ex-
tension is required to lift symbolic techniques to search in the space of belief states. De
Giacomo and Vardi (1999) analyze several forms of planning in the automata theoretic
framework. Goldman, Musliner and Pelican (2000) present a method where model checking
in timed automata is interleaved with the plan formation activity, to make sure that the

333

Cimatti & Roveri

timing constraints are met. Finally, Hoey and his colleagues (1999) use algebraic decision
diagrams to tackle the problem of stochastic planning.

9. Conclusions and Future Work

In this paper we presented a new approach to conformant planning, based on the use
of Symbolic Model Checking techniques. The algorithm is very general, and applies to
complex planning domains, with uncertainty in the initial condition and in action e�ects,
which can be described as �nite state automata. The algorithm is based on a breadth-
�rst, backward search, and returns conformant plans of minimal length, if a solution to the
planning problem exists. Otherwise, it terminates with failure. The algorithm is designed
to take full advantage of the symbolic representation based on Bdds. The implementation
of the approach in the Cmbp system has been highly optimized, in particular in the crucial
step of termination checking. We performed an experimental comparison of our approach
with the state of the art conformant planners Cgp, Qbfplan and Gpt. Cmbp is strictly
more expressive than Qbfplan and Cgp. On all the problems for which a comparison
was possible, Cmbp outperformed its competitors in terms of run times, sometimes by
orders of magnitude. Thanks to the use of symbolic data structures, Cmbp is able to deal
eÆciently with problems with large numbers of initial states and action outcomes. On
the other hand, the qualitative behavior of Cgp and Gpt seems to depend heavily on the
enumerative nature of their algorithms. Di�erently from Gpt, Cmbp is independent of the
e�ectiveness of the heuristic used to drive the search.

The research presented in this paper will be extended in the following directions. First,
we are investigating an alternative approach to conformant planning, where the breadth-
�rst style of the search is given up. These techniques appear to be extremely promising |
preliminary experiments have led to speed ups of up to two orders of magnitude over the
results presented in this paper for problems which admit a solution. Second, we will tackle
the problem of conditional planning under partial observability, under the hypothesis that
a limited amount of information can be acquired at run time. As conformant planning, this
problem can be seen as search in the belief space. However, it appears to be signi�cantly
complicated by the need for dealing with run-time observation and conditional plans. Fi-
nally, we are considering the extension of the domain construction of the planner with more
expressive input language, such as C, and invariant detection techniques.

Acknowledgements

Fausto Giunchiglia provided continuous encouragement and feedback on this work. We
thank Piergiorgio Bertoli, Blai Bonet, Marco Daniele, Hector Ge�ner, Enrico Giunchiglia,
Jussi Rintanen, David Smith, Paolo Traverso, Dan Weld for valuable discussions on con-
formant planning and various comments on this paper. David Smith provided the code of
Cgp, a large number of examples, and the time-out mechanism used in the experimental
evaluation. Jussi Rintanen made Qbfplan available under Linux.

334

Conformant Planning via Symbolic Model Checking

References

Blum, A. L., & Furst, M. L. (1995). Fast planning through planning graph analysis. In
Proc. Ijcai.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Arti-
�cial Intelligence 1{2, 90, 279{298.

Bonet, B., & Ge�ner, H. (2000). Planning with Incomplete Information as Heuristic Se
arch in Belief Space. In Chien, S., Kambhampati, S., & Knoblock, C. (Eds.), 5th

International Conference on Arti�cial Intelligence Planning and Scheduling, pp. 52{
61. AAAI-Press.

Brace, K., Rudell, R., & Bryant, R. (1990). EÆcient Implementation of a BDD Pack-
age. In 27th ACM/IEEE Design Automation Conference, pp. 40{45 Orlando, Florida.
ACM/IEEE, IEEE Computer Society Press.

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35 (8), 677{691.

Bryant, R. E. (1991). On the complexity of VLSI implementations and graph representations
of Boolean functions with application to integer multiplication. IEEE Transactions
on Computers, 40 (2), 205{213.

Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24 (3), 293{318.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., & Hwang, L. J. (1992). Symbolic
Model Checking: 1020 States and Beyond. Information and Computation, 98 (2),
142{170.

Cassandra, A., Kaelbling, L., & Littman, M. (1994). Acting optimally in partially observable
stochastic domains. In Proc. of AAAI-94. AAAI-Press.

Cimatti, A., Clarke, E., Giunchiglia, F., & Roveri, M. (2000). NuSMV : a new symbolic
model checker. International Journal on Software Tools for Technology Transfer
(STTT), 2 (4).

Cimatti, A., Giunchiglia, E., Giunchiglia, F., & Traverso, P. (1997). Planning via Model
Checking: A Decision Procedure for AR. In Steel, S., & Alami, R. (Eds.), Proceeding
of the Fourth European Conference on Planning, No. 1348 in Lecture Notes in Arti�cial
Intelligence, pp. 130{142 Toulouse, France. Springer-Verlag. Also ITC-IRST Technical
Report 9705-02, ITC-IRST Trento, Italy.

Cimatti, A., & Roveri, M. (1999). Conformant Planning via Model Checking. In Biundo,
S. (Ed.), Proceeding of the Fifth European Conference on Planning, Lecture Notes
in Arti�cial Intelligence Durham, United Kingdom. Springer-Verlag. Also ITC-IRST
Technical Report 9908-01, ITC-IRST Trento, Italy.

335

Cimatti & Roveri

Cimatti, A., & Roveri, M. (2000). Forward Conformant Planning via Symbolic Model
Checking. In Proceeding of the AIPS2k Workshop on Model-Theoretic Approaches to
Planning Breckenridge, Colorado.

Cimatti, A., Roveri, M., & Traverso, P. (1998a). Automatic OBDD-based Generation of
Universal Plans in Non-Deterministic Domains. In Proceeding of the Fifteenth National
Conference on Arti�cial Intelligence (AAAI-98) Madison, Wisconsin. AAAI-Press.
Also IRST-Technical Report 9801-10, Trento, Italy.

Cimatti, A., Roveri, M., & Traverso, P. (1998b). Strong Planning in Non-Deterministic
Domains via Model Checking. In Proceeding of the Fourth International Conference
on Arti�cial Intelligence Planning Systems (AIPS-98) Carnegie Mellon University,
Pittsburgh, USA. AAAI-Press.

Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future directions.
ACM Computing Surveys, 28 (4), 626{643.

Clarke, E., Emerson, E., & Sistla, A. (1986). Automatic veri�cation of �nite-state concur-
rent systems using temporal logic speci�cations. ACM Transactions on Programming
Languages and Systems, 8 (2), 244{263.

Coudert, O., Madre, J. C., & Touati, H. (1993). TiGeR Version 1.0 User Guide. Digital
Paris Research Lab.

Daniele, M., Traverso, P., & Vardi, M. Y. (1999). Strong Cyclic Planning Revisited. In
Biundo, S. (Ed.), Proceeding of the Fifth European Conference on Planning, Lecture
Notes in Arti�cial Intelligence Durham, United Kingdom. Springer-Verlag.

De Giacomo, G., & Vardi, M. (1999). Automata-Theoretic Approach to Planning for Tem-
porally Extended Goals. In Biundo, S. (Ed.), Proceeding of the Fifth European Confer-
ence on Planning, Lecture Notes in Arti�cial Intelligence Durham, United Kingdom.
Springer-Verlag.

Ferraris, P., & Giunchiglia, E. (2000). Planning as satis�ability in nondeterministic do-
mains. In Proceedings of Seventeenth National Conference on Arti�cial Intelligence
(AAAI'00) Austin, Texas. AAAI Press.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Weld, D., & Wilkins,
D. (1998). PDDL | The Planning Domain De�nition Language. Tech. rep. CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.

Giunchiglia, E. (1996). Determining Rami�cations in the Situation Calculus. In In Fifth
International Conference on Principles of Knowledge Representation and Reasoning
(KR'96) Cambridge, Massachusetts. Morgan Kaufmann Publishers.

Giunchiglia, E., Kartha, G. N., & Lifschitz, V. (1997). Representing action: Indeterminacy
and rami�cations. Arti�cial Intelligence, 95 (2), 409{438.

336

Conformant Planning via Symbolic Model Checking

Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal explanation:
Preliminary report. In Proceedings of the 15th National Conference on Arti�cial Intel-
ligence (AAAI-98) and of the 10th Conference on Innovative Applications of Arti�cial
Intelligence (IAAI-98), pp. 623{630 Menlo Park. AAAI Press.

Goldman, R. P., Musliner, D. J., & Pelican, M. J. (2000). Using Model Checking to
Plan Hard Real-Time Controllers. In Proceeding of the AIPS2k Workshop on Model-
Theoretic Approaches to Planning Breckenridge, Colorado.

Goldman, R., & Boddy, M. (1996). Expressive Planning and Explicit Knowledge. In
Proceedings of the 3rd International Conference on Arti�cial Intelligence Planning
Systems (AIPS-96), pp. 110{117. AAAI Press.

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999). Spudd: Stochastic planning us-
ing decision diagrams. In Proceedings of the Fifteenth Conference on Uncertainty in
Articial Intelligence (1999), pp. 279{288. AAAI Press.

Kautz, H., & Selman, B. (1998). BLACKBOX: A New Approach to the Application of
Theorem Proving to Problem Solving. InWorking notes of the Workshop on Planning
as Combinatorial Search Pittsburgh, PA, USA.

Kautz, H. A., McAllester, D., & Selman, B. (1996). Encoding Plans in Propositional Logic.
In Proc. KR-96.

Kautz, H. A., & Selman, B. (1996). Pushing the Envelope: Planning, Propositional Logic,
and Stochastic Search. In Proc. AAAI-96.

Kushmerick, N., Hanks, S., & Weld, D. S. (1995). An algorithm for probabilistic planning.
Arti�cial Intelligence, 76 (1-2), 239{286.

Levesque, H. J. (1996). What is planning in the presence of sensing?. In Proceedings of the
Thirteenth National Conference on Arti�cial Intelligence and the Eighth Innovative
Applications of Arti�cial Intelligence Conference, pp. 1139{1146 Menlo Park. AAAI
Press / MIT Press.

McDermott, D. (1987). A critique of pure reason. Computational Intelligence, 3 (3), 151{
237.

McMillan, K. (1993). Symbolic Model Checking. Kluwer Academic Publ.

Michie, D. (1974). Machine Intelligence at Edinburgh. In On Machine Intelligence, pp.
143{155. Edinburgh University Press.

Nilsson, N. (1980). Principles of Arti�cial Intelligence. Morgan Kaufmann Publishers, Inc.,
Los Altos, CA.

Peot, M. (1998). Decision-Theoretic Planning. Ph.D. thesis, Dept. Engineering-Economic
Systems | Stanford University.

Rintanen, J. (1999a). Constructing conditional plans by a theorem-prover. Journal of
Arti�cial Intellegence Research, 10, 323{352.

337

Cimatti & Roveri

Rintanen, J. (1999b). Improvements to the Evaluation of Quanti�ed Boolean Formulae.
In Dean, T. (Ed.), 16th Iinternational Joint Conference on Arti�cial Intelligence, pp.
1192{1197. Morgan Kaufmann Publishers.

Smith, D. E., & Weld, D. S. (1998). Conformant graphplan. In Proceedings of the 15th
National Conference on Arti�cial Intelligence (AAAI-98) and of the 10th Conference
on Innovative Applications of Arti�cial Intelligence (IAAI-98), pp. 889{896 Menlo
Park. AAAI Press.

Somenzi, F. (1997). CUDD: CU Decision Diagram package | release 2.1.2. Department of
Electrical and Computer Engineering | University of Colorado at Boulder.

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extending graphplan to handle
uncertainty and sensing actions. In Proceedings of the 15th National Conference on
Arti�cial Intelligence (AAAI-98) and of the 10th Conference on Innovative Applica-
tions of Arti�cial Intelligence (IAAI-98), pp. 897{904 Menlo Park. AAAI Press.

Yang, B., Bryant, R. E., O'Hallaron, D. R., Biere, A., Coudert, O., Janssen, G., Ranjan,
R. K., & Somenzi, F. (1998). A performance study of BDD-based model checking. In
Proceedings of the Formal Methods on Computer-Aided Design, pp. 255{289.

338

