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Conformational enantiodiscrimination for
asymmetric construction of atropisomers

Shouyi Cen 1,2, Nini Huang1,2, Dongsheng Lian1, Ahui Shen 1,
Mei-Xin Zhao 1 & Zhipeng Zhang 1

Molecular conformations induced by the rotation about single bonds play a
crucial role in chemical transformations. Revealing the relationship between
the conformations of chiral catalysts and the enantiodiscrimination is a for-
midable challenge due to the great difficulty in isolating the conformers.
Herein, we report a chiral catalytic system composed of an achiral catalytically
active unit and an axially chiral 1,1′-bi-2-naphthol (BINOL) unit which are con-
nected via a C–O single bond. The two conformers of the catalyst induced by
the rotation about the C–O bond, are determined via single-crystal X-ray dif-
fraction and found to respectively lead to the formation of highly important
axially chiral 1,1′-binaphthyl-2,2′-diamine (BINAM) and 2-amino-2′-hydroxy-1,1′-
binaphthyl (NOBIN) derivatives in high yields (up to 98%), with excellent
enantioselectivities (up to 98:2 e.r.) and opposite absolute configurations. The
results highlight the importance of conformational dynamics of chiral cata-
lysts in asymmetric catalysis.

Conformations are spatial arrangements of the atoms formed by
rotations about a single bond. In most cases, pure conformers can-
not be isolated, because the molecules are constantly rotating
through all the possible conformations (Fig. 1a). When the rotation
about a single bond is restricted, a special class of conformers called
atropisomers can be isolated as different chemical species (Fig. 1b).
Conformations and rotations about single bonds are crucial to
molecular functions and chemical transformations. For example,
conformational dynamics play a key role in enzyme catalysis1,2.
However, in asymmetric catalysis, it is well-known that structural
rigidity of non-enzymatic chiral catalysts, such as the 2,2′-bis(di-
phenylphosphino)−1,1′-binaphthyl (BINAP)-metal complexes3,4 and
BINOL-based phosphoric acids5,6 shown in Fig. 1c, is usually essential
in achieving high levels of asymmetric inductions7–9 and less atten-
tion has been paid to the molecular flexibility and conformational
dynamics of the chiral catalysts10–15. Due to the great difficulty in
isolating the conformers, it is very challenging to reveal the rela-
tionship between the conformations of chiral catalysts and the
enantiodiscrimination.

Axially chiralmolecules not only are abundant in nature16, but also
make great success in many scientific fields such as materials science
and asymmetric synthesis especially17–24. BINOL, BINAM, and NOBIN
(Fig. 1b) are among the most prominent and valuable axially chiral
molecules17–24. Enantiopure (R)- and (S)-BINOL and some of their
derivatives are commercially available nowadays, in contrast, enan-
tiopure BINAMs andNOBINswith diverse substitution patterns are still
very difficult to obtain despite the fact that great efforts have been
devoted to their synthesis in the past three decades22–43.

In this work, we design a chiral catalytic system (Fig. 1d) which is
composed of an achiral catalytically active unit (copper complex of
1,10-phenanthroline unit) and an axially chiral BINOL unit. The two
units are connected via a C–O single bond, the rotation about which
induces two distinct conformers. This dynamic catalytic system exhi-
bits high activity andexcellent enantioselectivity in the atroposelective
synthesis of axially chiral BINAM and NOBIN derivatives which are
highly important biaryl atropisomers. Moreover, the two conformers
of the catalyst are determined via single-crystal X-ray diffraction
and the relationship between the favored conformers and the
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enantiodiscrimination as well as the observed absolute configurations
of the two classes of products is revealed.

Results and discussion
Asymmetric construction of BINAMs
To commence our investigation, we employed (R)-BINOL as the chiral
unit and classical N,N-bidentate 1,10-phenanthroline as the achiral
chelating unit. The two units were merged into a novel class of ligands
via the formation of a C–O bond between the C2 carbon of the phe-
nanthroline unit and the oxygen of one phenolic hydroxy group (see
Section 2.1 in the Supplementary Information (SI) for details). Thus, the
ligands are endowed with axial chirality, excellent coordination ability
as well as conformational flexibility. In addition, the C9 position of the
phenanthroline unit was left to be modified with sterically demanding
groups which serve as a shield to narrow the chiral space around the
metal center (Fig. 2a). The asymmetric cross-coupling of azonaphtha-
lene 1a with N-benzyl-2-naphthylamine 2a which produces BINAM
derivative 3a was selected as the reaction37 to evaluate the ligands
(Fig. 2a) and copper, which has never been reported to catalyze this
reaction, was employed as the metal.

We initiated our study by screening the substituents on the C9
position of the phenanthroline unit to find an appropriate shield
(Fig. 2a). Although the reaction could hardly proceed under the opti-
mized conditions (see Section 2.2 in the SI for optimization) when L1
was employed as ligand, the desired product 3a was obtained in 40%
yield when L2 which possesses a chlorine atom on the C9 position of
thephenanthrolinewasused as ligand.However, the enantioselectivity
is very low (52:48 e.r.). Introducing a phenyl substituent on the C9
position as the shield (L3) can dramatically improve the enantios-
electivity (72:28 e.r.). Replacing the phenyl substituent with more
sterically hindered 3,5-dimethylphenyl group (L4) did not improve the

enantioselectivity. Although replacing it with 3,5-di(trifluoromethyl)
phenyl group (L5) improved the yield to 69%, the enantioselectivity is
low. After evaluating the ligands (L6-L10) with fused aromatic ring on
theC9position of the phenanthroline, L8 (9-anthracenyl as shield) was
found tobe the optimal ligand in termsof enantioselectivity, giving the
desired product with 97.5:2.5 e.r. and in 67% yield. It is worthy to note
that the absolute configuration of the major product is (R). Ligand L11
with the same structure as L8 except that the hydroxy group was
converted to the methoxy group, was also tested under the same
conditions (Fig. 2b). Surprisingly, both the yield (25%) and the enan-
tioselectivity (47:53 e.r) decreased dramatically. These results indicate
that possibly in the transition state hydrogen bond is formed between
the substrate and the phenolic hydroxy group.

Further study revealed that extending the reaction time to 60 h
increases the yield to 91% and the excellent e.r. (97.5:2.5) remains
(Fig. 2c, product 3a) utilizing L8 as ligand. With the best ligand and
optimized conditions in hand, we explored the scope of the produced
BINAM derivatives (Fig. 2c). Replacing the benzyl moiety in the ester
part of azonaphthalene with phenyl group renders 3b in better yield
but lower enantioselectivity. Whereas azonaphthalene with n-propyl
ester group gives 3c in lower yield with almost same level of enan-
tioinduction (97:3). Azonaphthalenes with bromo, methyl, or ester
group on C6 position and with bromo, methyl, phenyl, or methoxy
group on C7 position are well tolerated. The corresponding BINAM
derivatives 3d–3j were obtained in yields ranging from 72 to 98%
and with almost same level of enantioselectivities (from 96.5:3.5 to
97.5:2.5 e.r.). Introducing substituents on C6 or C7 position of
2-naphthylamines exhibits neglectable effect on the e.r. (ranging from
96:4 to 98:2) and products 3k-3q were successfully obtained in mod-
erate to excellent yields. 2-Naphthylamines with other similar pro-
tecting groupswere also examined and all the corresponding products
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3r-3vwere produced in excellent enantioselectivities (from 96.5:3.5 to
97.5:2.5 e.r.) and moderate to excellent yields. Furthermore, the cata-
lyst is also compatible with various substituents in both azonaphtha-
lenes and 2-naphthylamines simultaneously. Highly enantioenriched
(from 96:4 to 98:2 e.r.) disubstituted BINAM derivatives 3w-3ad have
been successfully synthesized in good to excellent yields. To study the
practicability of the protocol, a reaction was carried out on one-gram
scale using 1a (1.00 g, 3.45mmol) and 2a as reactants (Section 2.4 in
the SI), producing 3a in 79% yield and with excellent e.r. (97:3). In
addition, product 3a was successfully transformed to (R)-BINAM in
85% yield with the same e.r. (97:3) through Raney nickel-catalyzed
hydrogenation under 1 atm (Section 2.5 in the SI). Thus, this catalytic
system proves to be efficient for asymmetric synthesis of BINAM
derivatives.

Asymmetric construction of NOBINs
Encouraged by the previous results, we then targeted the asymmetric
cross-coupling of azonaphthalene 1a with 2-naphthol 4a which

produces NOBIN derivative 5a (Fig. 3a)37. When the optimal ligand
L8 in the previous cross-coupling of azonaphthalenes with
2-naphthylamines was employed, in combination with Cu(acac)2 to in-
situ prepare the catalyst, good yield (70%) but poor enantioselectivity
(66:34 e.r.) was obtained. The absolute configuration of the major
product is determined to be (R),which is the same as those ofproducts
3 in cross-coupling of azonaphthalene 1a with N-benzyl-2-naphthyla-
mine 2a (Fig. 2). Since 2-naphthol is an acidic substrate, the hydrogen
bonding may be interrupted which may partly account for the
observed low enantioinduction. Both the yield (78%) and the enan-
tioselectivity (68.5:31.5) are slightly improved in the presence of
20mol%NaHCO3, possiblydue to an enhancedhydrogen bonding (see
Supplementary Table 8). Interestingly, ligand L11 gives better results
(89% yield and 24.5:75.5 e.r.) compared with L8. More importantly, the
absolute configuration of themajor product is (S).We speculate that in
the cross-coupling of azonaphthalenes with 2-naphthols, the azo-
naphthalene is activated by the copper center and could react
with 2-naphthol directly. Hydrogen bonding interaction is not
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indispensable in the transition state, and the steric repulsion gener-
ated from the methoxy group may shift the conformational equili-
brium of the ligand and favor the distribution of conformation-B.
Therefore, to enhance the dominance of conformation-B so as to
obtain more efficient enantiodiscrimination, more sterically hindered
tert-butyldimethylsilyl, triisopropylsilyl, and tert-butyldiphenylsilyl
groups were employed to protect the phenolic hydroxy group, and
ligands L12–L14 were synthesized and evaluated (Fig. 3a). All these
three ligandsdisplay excellent yields and enantioselectivities (e.r. up to
2.5:97.5 for L13). These results are consistent with the designed
conformation-controlled enantiodiscrimination model (Fig. 1d) and
the observed absolute configuration of the major product.

This catalytic system (L13/Cu(acac)2) was further evaluated with
various substituted azonaphthalenes and 2-naphthols (Fig. 3b). Inmost
of the cases, the transformations proceeded smoothly and the corre-
sponding NOBIN derivatives were obtained in excellent yields and
enantioselectivities under the optimized conditions (see Section 3.2 in
the SI for optimization). Replacing the benzyl moiety in the ester part
of azonaphthalene with n-propyl or iso-propyl group provides the
products 5b and 5c respectively, in slightly reduced yields and enan-
tioselectivities. Azonaphthalenes with bromo, methyl or phenyl at
either C7 or C6 position of the naphthalene ring are compatible,
affording the corresponding products (5d-5i) in good to excellent

yields (83–97%) and excellent e.r. (up to 3.5:96.5). Introducing amethyl
ester group on the C6 position gave the product (5j) in 97% yield and
with an e.r. of 3:97. In addition, the effect of substituents on the
2-naphthol were also examined. 2-Naphthols with bromo, methyl,
phenyl, cyano or methoxy group on either C7 or C6 position were
tolerated well, and products 5k-5twere produced in good to excellent
yields (84–98%) and enantioselectivities (up to 3.5:96.5 e.r.). Methyl
ester, formyl and cyclohexyl groups on C6 position of 2-naphthol are
also compatible, affording product 5u in 98%, 5v in 75%, and 5w in 87%
yield respectively with almost identical level of enantioinductions.
More importantly, substituents (bromo, methyl, especially phenyl) on
C3 position of 2-naphthol were well-tolerated, rendering the products
(5x-5z) in good to excellent yields and enantioselectivities. Substrates
with methyl, bromo, or methyl ester group on both azonaphthalenes
and 2-naphthol were tested and corresponding NOBIN derivatives
(5aa-5ad) were successfully synthesized with good to excellent enan-
tioinductions. A gram-scale reaction for asymmetric cross-coupling of
1a (1.16 g, 4.00mmol) and 4a was also carried out (Section 3.4 in the
SI), producing 5a in 96% yield and with excellent e.r. (6:94). Further-
more, product 5a can be transformed to (S)-NOBIN in 96% yield and
with 6:94 e.r. through Raney nickel-catalyzed hydrogenation (Section
3.5 in the SI). Therefore, the catalytic system can also be applied to the
atroposelective construction of NOBIN derivatives.
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Fig. 3 | Conformational enantiodiscrimination for the asymmetric cross-
coupling of azonaphthalenes with 2-naphthols. a Influence of the conforma-
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with red thick bonds is S.
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Determination of the conformers
To determine the major conformations of this chiral catalytic system
induced by the rotation about the C–O bond, single-crystal X-ray dif-
fraction was employed to determine the structure of copper com-
plexes prepared from the optimal ligands. A single crystal (Cu-1) was
successfully obtained by using 2-(anthracen-9-yl)−9-chloro-1,10-phe-
nanthroline (L15) to stabilize the catalyst prepared from L8 and
Cu(MeCN)4PF6. As shown in Fig. 4a, two distinct conformers of L8
induced by the rotation of the carbon-oxygen single bond which
connects the BINOL unit with the phenanthroline unit, were observed
in the crystal structures (corresponding to two copper complexes co-
crystallized in 1:1 ratio). In Cu-1(A) the hydroxy group points towards
the front (conformation-A) and the anthracene group of the stabilizer
L15 is under the phenanthroline unit. In Cu-1(B), the hydroxy group
extends towards the back (conformation-B) and the anthracene group
of L15 is above the phenanthroline unit. This indicates the conforma-
tions of the ligand could discriminate the coordination modes of the
substrate with the catalyst if we imagine that substrate 1a would take
the place of L15 during the catalytic process. Since previous results
proved the hydroxy group is crucial to the reactivity and enantios-
electivity, conformation-A shown in Cu-1(A) is believed to be favorable
and productive. By reacting L13with CuCl (1.0 equiv.) inmethanol and
recrystallizing from dichloromethane/n-hexane, a copper complex
composed of Cu(L13)2 and CuCl2 was obtained. The crystal structure

of Cu-2 in Fig. 4b shows two L13 coordinates to one copper in a criss-
cross pattern, forming a C2-symmetric complex in which the bulky
triisopropylsilyl groups point away from the metal center (similar to
the conformation-B shown in Cu-1(B)). Conformation-A was not
observed in the solid state of L13, and conformation-B is proposed to
be the favored one during catalysis. A shift in the conformational
equilibrium of the ligands may occur when the steric hindrance of R1

increases (Figs. 1d and 3a). These crystallographic data are in agree-
ment with the proposed possible transition states (TS-A and TS-B)
shown in Fig. 1d and the observed conformation-controlled enantio-
discrimination in the two reactions for the asymmetric construction of
BINAM and NOBIN derivatives (Figs. 2 and 3).

In summary, conformational flexibility hasbeen incorporated into
the design and development of a chiral catalytic system which proves
to be efficient and highly enantioselective for the atroposelective
synthesis of highly valuable axially chiral BINAM and NOBIN deriva-
tives. The relationship between the conformational preference of the
catalysts and the conformation-controlled enantiodiscrimination has
been revealed. The absolute configuration of the products is deter-
mined by the conformation of the catalysts rather than the absolute
configuration of the BINOLunit. Thefindings in this study highlight the
importance of conformational dynamics of chiral catalysts in asym-
metric catalysis and may inspire future development of other chiral
catalysts.

HO

Fig. 4 | Determination of the conformers via single-crystal X-ray diffraction.
a Copper complex Cu-1 prepared from L8, Cu(MeCN)4PF6 and 2-(anthracen-9-yl)

−9-chloro-1,10-phenanthroline (L15). b Copper complex Cu-2 prepared from L13
and CuCl.
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Methods
General procedure for the asymmetric synthesis of BINAM
derivatives
To a solution of Cu(MeCN)4PF6 (3.7 mg, 0.010mmol, 10mol%) and
L8 (7.7 mg, 0.012 mmol, 12 mol%) in 1,2-dichlorobenzene (2.0 mL)
were added azo compound 1 (0.10mmol) and the 2-naphthylamine
derivative 2 (0.12 mmol). The mixture was stirred under air at
30 °C for 60 h. Upon completion, the resulting mixture was
directly purified by flash chromatography on silica gel using pet-
roleum ether/ethyl acetate as the eluent to afford the desired
products 3.

General procedure for the asymmetric synthesis of NOBIN
derivatives
To a solution of Cu(acac)2 (2.6mg, 0.010mmol, 10mol%) and L13
(9.6mg, 0.012mmol, 12mol%) in m-xylene (2.0mL) were added azo
compound 1 (0.10mmol) and the 2-naphthylamine derivative 4
(0.12mmol). Themixture was stirred under N2 atmosphere at 25 °C for
12 h. Upon completion, the resulting mixture was directly purified by
flash chromatography on silica gel using petroleumether/ethyl acetate
as the eluent to afford products 5.

Data availability
The data supporting the findings of this study are available within
the paper and its Supplementary Information. Metrical parameters
for the structure of copper complexes (Cu-1 and Cu-2 in Fig. 4)
(see Supplementary Information) are available free of charge from
the Cambridge Crystallographic Data Centre (https://www.ccdc.
cam.ac.uk/) under reference numbers CCDC 2096699 and CCDC
2096715, respectively. Any further relevant data are available from
the authors on request.
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