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Random copolymers made up of subunits with arbritary degrees of flexibility are useful as models
of biomolecules with different kinds of secondary structural motifs. We show that the mean square
end-to-end distancêR2& of a two-letterA–B random heteropolymer in which the constituent
polymeric subunits are represented as continuum wormlike chains and the randomness is described
by the two-state Markov process introduced by Fredrickson, Milner, and Leibler@Macromolecules
25, 6341~1992!# can be obtained in closed form. The expression for^R2& is a function of several
parameters, including the numbern of subunits, the fractionf of one kind of subunit, the persistence
lengthsl A and l B of the two subunits, and the degree of correlationl between successive subunits.
The variation of̂ R2& with each of these parameters is discussed.
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I. INTRODUCTION

Many of the most important biological macro
molecules—proteins and polynucleotides in particular—
copolymers of a small number of chemically distinctive m
nomeric subunits whose arrangement along the backbon
the polymer often leads to quite specific three-dimensio
geometries. The relation between sequence and structu
such molecules is generally complex, but it can sometim
be inferred from the study ofminimal models of the mol-
ecule. Random heteropolymers of just two elementary s
units A andB have proven to be especially useful as pro
types of the more complex heteropolymers typical
biological systems.1 But there are certain recurring structur
motifs in biomolecules that are incorporated into these m
mal models only with difficulty. Helices are an example.
isolation, helices are frequently represented as worm
chains using the Kratky–Porod model,2,3 or one of its many
variants.4 When helices are part of a larger complex that m
contain extended regions of complete flexibility distribut
at random, however, an analogous description of the res
ing randomlysemiflexible polymer is less readily develope

To varying levels of sophistication, there do exist calc
lations of the combined effects of stiffness and backbo
disorder5–7 ~as well as of stretching forces, in some case8!
on the conformational properties of polymers. But anexact
treatment~along the lines of Saitoˆ, Takahashi, and Yunoki’s
path integral approach to the Kratky–Porod wormli
chain3!, which could, potentially, exploit powerful field theo
retic techniques to address questions that might otherw
prove intractable, does not appear to have been formula
Such treatments, being exact, could provide valuable re
ence points for the development of approximate theories
related, more complicated systems when exact solutions
unavailable.

These considerations suggest exploring the utility of
STY methodology in analyzing the behavior of chains ma
up of randomly distributed semiflexible segments. Acco
ingly, in this paper, we apply the methodology to calcula
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the average radial dimensions of a polymer in whichA andB
‘‘prepolymers’’ of arbitrary stiffness are arranged at rando
along the chain backbone. The sequence ofA’s andB’s along
the chain is assumed to be governed by the statistics of
same two-state Markov process that was used by Fredr
son, Milner, and Leibler~FML!7 to analyze microphase or
dering in random block copolymer melts. We show that w
this choice of disorder, the STY model of the random h
eropolymer so defined, also admits of an exact soluti
Moreover, we find that the results are independent
whether the disorder is regarded as annealed or quench

The following section introduces the model, and sets
the expressions needed to calculate the mean square en
end distance of the chain. Section III uses the STY propa
tor to reduce these expressions to simpler analytical for
which are then averaged over the sequence distribution
discussed in Sec. IV. The final expressions obtained by
averaging operation are extremely lengthy, so all but
most pertinent results are relegated to the Appendix. Sec
V discusses these results in terms of the various parame
that define the model.

II. THE MODEL

We are interested in the conformational properties~spe-
cifically the mean square end-to-end distance! of a chain of
length M made up of a sequence ofn polymeric subunits
~‘‘prepolymers’’!. Each prepolymer is of lengthN ~hence
nN5M !, and is of one of two kinds:A or B. The prepoly-
mers are regarded as semiflexible, so in a continuum re
sentation of the chain, they can be completely character
by the set of unit tangent vectorsu(t) at each of the pointst
along the backbone. Within this representation, using unit
which kBT51, the HamiltonianH is given by

H5
1

2
eA(

i 51

n

du i ,1
E

~ i 21!N

iN

dtu̇2~t!

1
1

2
eB(

i 51

n

du i ,21
E

~ i 21!N

iN

dtu̇2~t!, ~1!
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whereu i is a discrete random variable that takes on the v
ues61, 11 when thei th prepolymer is of typeA and 21
when it is of typeB; eA andeB are the energies of bending o
the segmentsA and B, respectively, and can be identifie
with the persistence lengthsl A andl B of these segments; an
d is the Kronecker delta. Figure 1 is a sketch of one poss
realization of the copolymer sequence when theA and B
prepolymers have fairly different degrees of stiffness. In
sketch, theA prepolymers are ‘‘coil-like,’’ while theB pre-
polymers are ‘‘helixlike.’’ Had theA segments been com
pletely rigid, the chain would have corresponded to the b
ken rod model studied by Murogaet al.5

A simple transformation9 of the Kronecker deltas allow
H to be rewritten more succinctly as

H5
1

2 (
i 51

n

D iE
~ i 21!N

iN

dtu̇2~t!, ~2!

where

D i5
1
2 ~eA1eB!1 1

2 ~eA2eB!u i ~3!

[D11D2u i . ~4!

The vectorial distanceR from one end of the chain to th
other is the sum of the end-to-end vectorsRi of each of the
prepolymers, i.e.,

R5(
i 51

n

Ri , ~5!

whereRi itself is given by

Ri5E
~ i 21!N

iN

dtu~t!. ~6!

Thus, the mean square end-to-end distance^R2& can be writ-
ten in the form

^R2&5S112~S21S3!, ~7!

where

FIG. 1. A sketch of one possible realization of anA–B heteropolymer in
which theA andB segments have different degrees of stiffness.
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S15(
i 51

n

^Ri
2&

5(
i 51

n E
~ i 21!N

iN

dt1E
~ i 21!N

iN

dt2^u~t1!•u~t2!&, ~8!

S25 (
i 51

n21

^Ri•Ri 11&

5 (
i 51

n21 E
~ i 21!N

iN

dt1E
iN

~ i 11!N
dt2^u~t1!•u~t2!&, ~9!

S35 (
i 51

n22

(
j 5 i 12

n

^Ri•Rj&

5 (
i 51

n22

(
j 5 i 12

n E
~ i 21!N

iN

dt1E
~ j 21!N

jN

dt2^u~t1!•u~t2!&.

~10!

The angular brackets in Eqs.~7!–~10! denote an average
both over the conformational degrees of freedom of the ch
as well as the distribution of the discrete random variab
u i . From these expressions the calculation of^R2& is seen to
reduce essentially to the calculation of the ‘‘bond’’ correl
tion function ^u(t1)•u(t2)&.

III. EVALUATION OF THE BOND CORRELATION
FUNCTION

In general, the correlation function of the tangent vect
can be written in the form

^u~t1!•u~t2!&5
1

Q E D@u~t!#u~t1!•u~t2!e2H, ~11!

where H is given by Eq.~1!, Q is the partition function,
defined as

Q5E D@u~t!#e2H, ~12!

andD@u(t)# is the functional integral measure on the spa
of functionsu(t). From the general approach to the evalu
tion of functional integrals described, for example, in R
10, Eq.~11! can be reduced to a product of ordinary integr
involving a Green’s functionG(u,u8ut2t8), which de-
scribes the probability density that a monomer at the point8
on the chain has the bond orientationu8 if the monomer att
has the orientationu. When these points are located on t
j th andi th prepolymers, respectively, the expression for
bond correlation function can be shown to be given by
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^u~t1!•u~t2!&

5
1

Q E du0E du1¯E dui 21E duE dui¯E duj 21

3E du8E duj¯E dun21

3E dunu•u8G~u0 ,u1uN!

3G~u1 ,u2uN!¯G~ui 21 ,uut12~ i 21!N!

3G~u,ui u iN2t1!¯G~uj 21 ,u8ut2

2~ j 21!N!G~u8,uj u jN2t2!¯G~un21 ,unuN!, ~13!

where, in general,

G~uk21 ,ukut22t1!5E
u~t1!5uk21

u~t2!5uk D@u~t!#

3expF2
1

2
DkE

t1

t2
dtu̇2~t!G . ~14!

In terms of this distribution function, the partition functionQ
can be similarly written as

Q5E du0)
i 51

n E duiG~ui 21 ,uu iN2~ i 21!N!. ~15!

Adopting the STY model of the semiflexible chain3 ~which
ensures inextensibility of the chain through the constra
uu(t)u51!, one can determine the Green’s function as
expansion in spherical harmonics:

G~uk21 ,ukut22t1!5(
m,n

e2anut22t1u2Dk

3Ym,n* ~uk21!Ym,n~uk!, ~16!

wherean[n(n11). These spherical harmonics satisfy t
relations

E duYm1 ,n1
* ~u!Ym2 ,n2

~u!5dm1 ,m2
dn1 ,n2

, ~17!

E duYm,n~u!5A4pdm,0dn,0 , ~18!

Y0,05
1

A4p
, ~19!

from which it immediately follows thatQ54p, independent
of the random variableu i . This implies that there is no dis
tinction here between quenched and annealed disorder.

To evaluate the functionsS1 , S2 , andS3 that are needed
in determininĝ R2&, it is helpful to refer to Fig. 2~a!, which
is a diagrammatic representation of the bond correla
function ^u(t1)•u(t2)&. The straight line segments in th
figure stand for the Green’s function@Eq. ~14!# for the sec-
tion of prepolymer of typeA or B that lies between the junc
tion points at the indicated contour positions. The cros
mark the locations of the pointst1 andt2 that appear in Eq.
~11!, defining the correlation function; these points may
t
n

n

s

anywhere on the backbone of the chain. Squiggles indic
prepolymer segments that are not shown. Integrations
understood to be carried out over the vectorial positions
all junction points~including those labeled byt1 andt2!.

When the spherical harmonic expansion of the Gree
function is substituted into Eq.~13!, and the integrations car
ried out using Eqs.~17!–~19!, ^u(t1)•u(t2)& in S1 is seen to
simplify to the diagram shown in Fig. 2~b!. If the algebraic
expression for this diagram is denotedD1 , one can show tha

D154pE du1E du2u1•u2

3(
n,m

exp~2anut22t1u/2D i !Yn,m* ~u1!Yn,m~u2!.

~20!

Similarly, ^u(t1)•u(t2)& in S2 , reduces toD2 @Fig.
2~c!#, which is given by

D254pE du1E du2u1•u2(
n,m

exp~2anu iN2t1u/2D i !

3exp~2anut22 iNu/2D i 11!Yn,m* ~u1!Yn,m~u2!. ~21!

Likewise, but after somewhat more algebra,^u(t1)
•u(t2)& in S3 , reduces toD3 @Fig. 2~d!#, which is given by

FIG. 2. ~a! A schematic representation of anA–B heteropolymer ofn pre-
polymer segments showing coordinates relevant to the calculation of
end-to-end distance. Each straight line segment terminated by full circle
an A or a B prepolymer of contour lengthN. Letters above the circles an
crosses stand for the unit tangent vectors at the contour positions indic
by the letters below these symbols. Squiggles denote sections of the
that are not shown in the diagram.~b! The diagrammatic representation o
the integralD1 @Eq. ~20!#. ~c! The diagrammatic representation of the int
gral D2 @Eq. ~21!#. ~d! The diagrammatic representation of the integralD3

@Eq. ~22!#.
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D354pE du1E du2u1•u2(
n,m

exp~2anu iN2t1u/2D i !

3expS 2anN (
l 51

j 2 i 21
1

2D i 1 l
D

3exp~2anut22~ j 21!Nu/2D j !Yn,m* ~u1!Yn,m~u2!.

~22!

This expression applies specifically to the case where thej th
prepolymer satisfiesj > i 12.

The calculation of the average over the conformatio
degrees of freedom is finally completed by evaluating
integrals overu1 and u2 in Eqs. ~20!–~22!. Noting thatu1

•u25cosu1 cosu21sinu1 sinu2 cos(f12f2), one can use
standard results from the theory of spherical harmonics
show that11

E du1E du2u1•u2Yn,m* ~u1!Yn,m~u2!

5
4p

3
dn,1~dm,211dm,01dm,1!. ~23!

When the above equation is used in Eqs.~20!–~22!, and the
resulting expressions then substituted into Eq.~7!, we obtain

^R2&52N(
i 51

n

D iF12
D i

N
~12e2N/D i !G

12(
i 51

n21

D iD i 11~12e2N/D i !~12e2N/D i 11!

12(
i 51

n22

(
j 5 i 12

n

D iD j expF2N (
l 51

j 2 i 21
1

D i 11
G

3~12e2N/D i !~12e2N/D j !. ~24!

When this expression is averaged over the sequence d
bution ~as discussed in the following section!, the desired
disorder-averaged end-to-end distance is obtained.

IV. AVERAGE OVER THE SEQUENCE DISTRIBUTION

In the absence of sequence disorder, there is no dis
tion betweenA and B segments, so the model describes
homopolymer ofn semiflexible prepolymer segments who
stiffness can be characterized by a single persistence lenl,
where l 5eA5eB . It is easily verified that in this limit, Eq.
~24! for ^R2& correctly reproduces the Kratky–Porod d
scription of the chain. In particular, whenl @1, ^R2& scales
asn2N2, whereas whenl !1, ^R2& scales asMl 2.

When the chain is a random heteropolymer, an aver
over the sequence distribution must be carried out explic
to produce the final expression for^R2&. To perform this
average, we adopt the model introduced by Fredrickson, M
ner, and Leibler7 to discuss phase separation in random
polymer blends. In this model, the probability thati th pre-
polymer in the chain is of a given type is assumed to
determined solely by the chemical identity of the imme
ately preceding prepolymer and no others. Thus, the p
ability of realizing a given sequence ofA’s andB’s is deter-
l
e

to

tri-

c-
a

h

e
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e
-
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mined, in general, by a set of four conditional probabiliti
pKL , K, L5A, B, wherepKL is conditional probability of
observingK given L. If it is further assumed that this se
quence is the end result of a living polymerization proce
under steady state conditions, thepKL can be expressed in
terms of the mole fractionsf and 12 f that define the com-
position ofA andB in the initial reaction mixture~and in the
chain that is generated thereby.! These assumptions, alon
with the Markov condition, establish that onlytwo param-
eters need be specified to fix the overall average sequ
distribution: one isf itself, and the other is the nontrivia
eigenvaluel of the matrix of conditional probabilities. In
terms of these parameters, the following relations for thepKL

can be derived:7

pAA5 f ~12l!1l, ~25!

pBB5 f ~l21!11, ~26!

pAB512pAA , ~27!

pBA512pBB . ~28!

Physically, the parameterl is a measure of the extent o
‘‘blockiness’’ ~to use FML’s phrase! of the chain; it can be
shown to assume values between21 and11. The limit l
→21 describes a chain in whichA andB prepolymers tend
to succeed each other in alternation, the limitl→11 de-
scribes a chain in whichA’s tend to succeedA’s, andB’s tend
to succeedB’s, and the limitl50 describes a chain in which
the A’s andB’s follow each other entirely randomly.

To return to Eq.~24!, we see that the sequence avera
of the end-to-end distance requires averages over quan
like exp(2N/Di). To perform such averages, recall thatD i

5D11D2u i , where D1 and D2 are defined in Eq.~4! in
terms of the bending energieseA andeB . It follows therefore
that

1

D i
5

D1

D1
22D2

22
D2

D1
22D2

2 u i . ~29!

Defininga5D1 /(D1
22D2

2) andb5D2 /(D1
22D2

2), we now
have

^e2N/D i&5e2Na^e2Nbu i&, ~30!

where the angular brackets now refer to the average ove
distribution of theu i ’s. Sinceu i takes the values61, it is
easy to show that

^e2Nbu i&5coshNb1^u i&sinhNb. ~31!

The average ^u i& is obtained from the relation̂ u i&
5(u561ups(u), where ps(11)5 f and ps(21)512 f .
Clearly,^u i&52 f 21. From this result it is easy to show tha

^S1&52nNFD11~2 f 21!D22
D1

21D2
2

N

3$12e2Na~coshNb1~2 f 21!sinhNb!%

2
2D1D2

N
$2 f 212e2Na~sinhNb

1~2 f 21!coshNb!%G . ~32!
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The sequence averaged value ofS2 is similarly calculated as

^S2&52~n21!D1
2~12e2Na coshNb!2

3F H 12
AD2

D1
2~2 f 21!S A2

D2

D1
D J 2

14 f ~12 f !lS A2
D2

D1
D 2G , ~33!

where

A[
e2Na sinhNb

12e2Na coshNb
. ~34!

The calculation of̂ S3& is much less trivial, but it can be
done analytically. Details of the calculation are provided
Appendix A. Here we quote the result in terms of four oth
averageŝS31&, ^S32&, ^S33&, and^S34&, whose complete ex
pressions in terms of the various parameters of the mode
given in Eqs.~A21!, ~A24!, ~A27!, and~A30!:

^S3&52(
i 51

n22

(
j 5 i 12

n

D1
2~22e2Na coshNb!2

3F S 12
AD2

D1
D 2

e2~ j 2 i 21!Na^S31&2S 12
AD2

D1
D

3S A2
D2

D1
De2~ j 2 i 21!Na~^S32&1^S33&!

1S A2
D2

D1
D 2

e2~ j 2 i 21!Na^S34&G . ~35!

After substituting the equations for^S31&, ^S32&, ^S33&, and
^S34& into the above equation, the sums become trivial, a
can be done at once.

V. DISCUSSION

Equation~7!, along with Eqs.~32! and~33!, and Eq.~35!
~after carrying out the summations!, is the desired expressio
for the disorder averaged mean square end-to-end distan
the givenA–B copolymer, but it is far too lengthy and com
plicated to be particularly perspicuous on its own. It is the
fore depicted graphically in a series of figures~3–6! that
highlight its behavior in terms of one or other of the para
eters that̂ R2& depends on. These parameters are the len
N of the prepolymer, the numbern of prepolymers in the
chain as a whole, the fractionf of A-type prepolymers, the
extent of blockinessl, and the persistence lengthsl A and l B

of the A and B prepolymers, respectively. As a matter
convenience,N is kept constant throughout. Althoughf andl
are regarded as free parameters, the fact that the condit
probabilities in Eqs.~25!–~28! are constrained to lie betwee
0 and 1 implies thatf andl can only be chosen within certai
limits; these limits are always respected when numerical
ues are assigned to the parameters.

We plotaR[^R2&/M2 against the dimensionless inver
persistence length 1/l * [N/eB[N/ l B for four different val-
ues of one other parameter, all other parameters staying
same. A fifth curve is included for reference: this is the var
r
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tion of aR as a function ofM / l for a semiflexiblehomopoly-
mer of contour lengthM as calculated with the following
Kratky–Porod expression:3

^R2&5Ml F12
1

2M / l
~12e22M / l !G . ~36!

This expression~which is reproduced by our model in th
homopolymer limit! yields the resultsaR→1 as l @1 and
aR→0 asl !1.

Figure 3 shows the variation ofaR @as determined from
Eqs. ~7! along with ~32!, ~33! and ~35!# with 1/l * ~the full
lines! for four different values off ~0.10, 0.25, 0.50, and
0.90! at the following values of the other parameters:l

FIG. 3. Full curves are the variation of the parameteraR[^R2&/M2 with the
dimensionless inverse persistence lengthN/ l B as a function of the fractionf
of A at fixed values ofl, N/ l A andn ~0.0, 0.01, and 10, respectively.! The
dashed curve is the Kratky–Porod expression foraR of a homopolymer of
lengthM derived from Eq.~36!. Curves 1, 2, 3, and 4 correspond, respe
tively, to f 50.1, 0.25, 0.5, and 0.9.

FIG. 4. Variation ofaR with N/ l B as a function ofn at fixed values off
~0.5!, l~0.0!, andN/ l A ~0.01!. Curves 1, 2, 3, and 4 correspond ton510, 25,
50, and 100, respectively. The dashed curve is the same Kratky–Porod
shown in Fig. 3.
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50.0,N/ l A50.01 andn510. The dashed line is the Kratky
Porod result derived from Eq.~36!. Flexibility increases
from left to right along the abscissa. In general,N/ l A values
less than unity correspond to prepolymer segments that
semiflexible or rigid, so the choiceN/ l A50.01 indicates that
A is relatively stiff. The choicel50.0 indicates that chain is
an ideal random copolymer. The figure shows that princi
effect of increasing the proportion ofA in the chain is to
render it increasinglyinflexible, as one would expect. At th
smallest fractions ofA, however, there is a fairly narrow
range ofN/ l B values over which increasing the stiffness ofB
leads to a fairly sharp rise in the stiffness of the chain a
whole. This is a trend that is repeated, to greater or
degree, in all the other figures.

FIG. 5. Variation ofaR with N/ l B as a function ofN/ l A at fixed values off
~0.5!, l ~0.0!, andn ~10!. Curves 1, 2, 3, and 4 correspond toN/ l A50.01,
1.0, 2.0, and 5.0, respectively. The dashed curve is the same Kratky–P
result shown in Fig. 3.

FIG. 6. Variation ofaR with N/ l B as a function ofl at fixed values off
~0.5!, N/ l A ~0.01!, and n ~10!. Curves 1, 2, 3, and 4 correspond tol
520.9, 20.5, 0.5, and 0.9, respectively. The dashed curve is the s
Kratky–Porod result shown in Fig. 3.
re

l
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The sharpness of the change from flexible to rigid geo
etries is especially pronounced in Fig. 4, which shows
variation ofaR with 1/l * for 4 different values ofn ~10, 25,
50, and 100! at the following fixed values of the other pa
rameters:f 50.5, l50.0 andN/ l A50.01. Presumably, asn
→`, there is something akin to a genuine discontinuity b
tween the flexible and rodlike configurations of the rando
heteropolymer.

The transition can be completely suppressed for cer
ranges of parameter values, as illustrated in Fig. 5, wh
shows the variation ofaR with 1/l * for 4 different values of
N/ l A ~0.01, 1, 2, and 5! at the following fixed values of the
other parameters:f 50.5, l50.0 andn510. At the largest
values ofN/ l A ~1, 2 and 5!, corresponding to the greate
degree of conformational flexibility, the chain never attai
more than about 40% of its full extension.

The blockiness parameterl provides one final measur
of conformational control, as illustrated in Fig. 6, whic
shows the variation ofaR with 1/l * for four different values
of this parameter~20.9,20.5, 0.5, and 0.9! at the following
fixed values of the other parameters:f 50.5,N/ l A50.01 and
n510. The negative values ofl correspond to chains with
the tendency to alternate betweenA and B segments, and
such chains show the greatest degree of flexibility atN/ l B

values greater than about 2. Below that number, when boA
and B segments are relatively stiff, the conformation of t
chain is increasingly insensitive to how frequently the tw
segments alternate with each other.

In conclusion, we have found an exact solution for t
size of a random heteropolymer based on the STY model
highlights the interplay between flexibility and disorder
chain statistics. The analytical expression for^R2& that is
derived from the model can be used to make rough estim
of the range of allowed sizes of chains of unknown struct
but definite sequence.

APPENDIX A: CALCULATION OF ŠS3‹

The functionsS31, S32, S33 and S34 that appear inS3

@Eq. ~35!# are defined as

S315expS Nb (
l 51

j 2 i 21

u i 1 l D , ~A1!

S325u i expS Nb (
l 51

j 2 i 21

u i 1 l D , ~A2!

S335expS Nb (
l 51

j 2 i 21

u i 1 l D u j , ~A3!

S345u i expS Nb (
l 51

j 2 i 21

u i 1 l D u j . ~A4!

By definition,

^S31&5 (
u i 11

(
u i 12

¯ (
u j 21

ps~u i 11!p~u i 12uu i 11!

3p~u i 13uu i 12!¯p~u j 21uu j 22!exp~mu i 11!

3exp~mu i 12!¯ exp~mu j 21!, ~A5!

rod

e



whereps(u i) is the equilibrium~i.e., steady state! probability for the occurrence of the stateu i , p(u i 11uu i) is the conditional
probability of seeingu i 11 given u i , andm is Nb. One may verify that Eq.~A5! may be expressed in matrix form as

~A6!
where pAA[p(1u1), pAB[p(1u21), pBA[p(21u1) and
pAA[p(21u21). Defining the matrix

P5S pAAem pABe2m

pBAem pBBe2mD ~A7!

it is seen that

^S31&5~em e2m!Pj 2 i 22S pA

pB
D . ~A8!

The eigenvaluesL1 andL2 of P are given by

L1,25
1
2 ~pAAem1pBBe2m!T1,2, ~A9!

where

T1,2516A12Q, ~A10!

with

Q5
4l

~pAAem1pBBe2m!2 . ~A11!

The upper symbol in~A10! corresponds toT1 while the
lower symbol corresponds toT2 . Introduce a set of left
eigenvectorsx1 and x2 , and a set of right eigenvectorsy1

andy2 satisfying

Px15L1x1 , Px25L2x2 ~A12!

and

y1
TP5y1

TL1 , y2
TP5y2

TL2 . ~A13!

The right eigenvectors may be chosen as

x1,25S 1
2~pAAem2L1,2!/pABe2m D . ~A14!

Similarly, the left eigenvectors may be chosen as

y1,2
T 5~1, 2~pAAem2L1,2!/pBAem!. ~A15!

For iÞ j , one may see from Eqs.~25!–~28! that yi
Txj50.

When i 5 j , we have
yi
Txi511

1

pABpBA
~pAAem2L i !

2[Ci , i 51,2. ~A16!

Furthermore, if we define the matricesA1 andA2 according
to

A i5S 1 2f*

2f ff* D , i 51,2 ~A17!

where

f i* 5~pAAem2L i !/pBAem, i 51,2 ~A18!

and

f i5~pAAem2L i !/pABe2m, i 51,2, ~A19!

then, in general, for some integerm,12

Pm5
1

C1
A1L1

m1
1

C2
A2L2

m . ~A20!

Hence,

^S31&5~em e2m!F 1

C1
A1L1

j 2 i 221
1

C2
A2L2

j 2 i 22G S pA

pB
D

5
L1

j 2 i 22

C1
@ f 2~12 f !f1* #~em2f1e2m!

1
L2

j 2 i 22

C2
@ f 2~12 f !f2* #~em2f2e2m!. ~A21!

In the same way

^S32&5(
u i

(
u i 11

¯ (
u j 21

ps~u i !p~u i 11uu i !p~u i 12uu i 11!

¯p~u j 21uu j 22!u i exp~mu i 11!

3exp~mu i 12!¯ exp~mu j 21!, ~A22!

which in matrix notation is given by
~A23!



so using the result of Eq.~A20!

^S32&5~em e2m!F 1

C1
A1L1

j 2 i 221
1

C2
A2L2

j 2 i 22G
3S pAApA2pABpB

pBApA2pBBpB
D

5
L1

j 2 i 22

C1
~em2f1e2m!

3@ f pAA2~12 f !pAB2f1* ~ f pBA2~12 f !pBB!#
1
L2

j 2 i 22

C2
~em2f2e2m!@ f pAA2~12 f !pAB

2f2* ~ f pBA2~12 f !pBB!#. ~A24!

Similarly,

^S33&5 (
u i 11

(
u i 12

¯(
u j

ps~u i 11!p~u i 12uu i 11!

3p~u i 13uu i 12!¯p~u j uu j 21!exp~mu i 11!

3exp~mu i 12!¯ exp~mu j 21!u j , ~A25!

which in matrix notation is given by
~A26!

5
L1

j 2 i 21

C1
@ f 2~12 f !f1* #~11f1!1

L2
j 2 i 21

C2
@ f 2~12 f !f2* #~11f2!. ~A27!

Finally,

^S34&5(
u i

(
u i 11

¯ (
u j 21

(
u j

ps~u i !p~u i 11uu i !p~u i 12uu i 11!¯p~u j uu j 21!u i

3exp~mu i 11!exp~mu i 12!¯ exp~mu j 21!u j , ~A28!

which in matrix notation is given by

~A29!

5~121!F 1

C1
A1L1

j 2 i 211
1

C2
A2L2

j 2 i 21G S pAApA2pABpB

pBApA2pBBpB
D

5
L1

j 2 i 21

C1
~11f1!@ f pAA2~12 f !pAB2f1* ~ f pBA2~12 f !pBB!#

1
L2

j 2 i 21

C2
~11f2!@ f pAA2~12 f !pAB2f2* ~ f pBA2~12 f !pBB!#. ~A30!
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