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Random copolymers made up of subunits with arbritary degrees of flexibility are useful as models
of biomolecules with different kinds of secondary structural motifs. We show that the mean square
end-to-end distancéR?) of a two-letter A~B random heteropolymer in which the constituent
polymeric subunits are represented as continuum wormlike chains and the randomness is described
by the two-state Markov process introduced by Fredrickson, Milner, and L¢Mkcromolecules

25, 6341(1992] can be obtained in closed form. The expressior R?) is a function of several
parameters, including the numbeof subunits, the fractiohof one kind of subunit, the persistence
lengthsl , andlg of the two subunits, and the degree of correlafiobpetween successive subunits.

The variation of( R?) with each of these parameters is discussed.

I. INTRODUCTION the average radial dimensions of a polymer in whicindB
“prepolymers” of arbitrary stiffness are arranged at random

Many of the most important biological macro- along the chain backbone. The sequencA'®findB’s along
molecules—proteins and polynucleotides in particular—arehe chain is assumed to be governed by the statistics of the
copolymers of a small number of chemically distinctive mo-same two-state Markov process that was used by Fredrick-
nomeric subunits whose arrangement along the backbone gbn, Milner, and LeibleFML)’ to analyze microphase or-
the polymer often leads to quite specific three-dimensionatlering in random block copolymer melts. We show that with
geometries. The relation between sequence and structure fihis choice of disorder, the STY model of the random het-
such molecules is generally complex, but it can sometimesropolymer so defined, also admits of an exact solution.
be inferred from the study ofinimal models of the mol- Moreover, we find that the results are independent of
ecule. Random heteropolymers of just two elementary subwhether the disorder is regarded as annealed or quenched.
units A and B have proven to be especially useful as proto-  The following section introduces the model, and sets up
types of the more complex heteropolymers typical ofthe expressions needed to calculate the mean square end-to-
biological system$.But there are certain recurring structural end distance of the chain. Section Il uses the STY propaga-
motifs in biomolecules that are incorporated into these minitor to reduce these expressions to simpler analytical forms,
mal models only with difficulty. Helices are an example. In which are then averaged over the sequence distribution, as
isolation, helices are frequently represented as wormlikeliscussed in Sec. IV. The final expressions obtained by this
chains using the Kratky—Porod modelor one of its many averaging operation are extremely lengthy, so all but the
variants? When helices are part of a larger complex that maymost pertinent results are relegated to the Appendix. Section
contain extended regions of complete flexibility distributedV discusses these results in terms of the various parameters
at random, however, an analogous description of the resulthat define the model.
ing randomlysemiflexible polymer is less readily developed.

To varying levels of sophistication, there do exist calcu-!!- THE MODEL
lations of the combined effects of stiffness and backbone We are interested in the conformational proper{sze-
disorder~" (as well as of stretching forces, in some c&ses cifically the mean square end-to-end distanaa chain of
on the conformational properties of polymers. Butexact length M made up of a sequence af polymeric subunits
treatment(along the lines of SaitoTakahashi, and Yunoki's (“prepolymers”). Each prepolymer is of lengthN (hence
path integral approach to the Kratky—Porod wormlikenN=M), and is of one of two kindsA or B. The prepoly-
chair?), which could, potentially, exploit powerful field theo- mers are regarded as semiflexible, so in a continuum repre-
retic techniques to address questions that might otherwisgentation of the chain, they can be completely characterized
prove intractable, does not appear to have been formulatetly the set of unit tangent vectoug§r) at each of the points
Such treatments, being exact, could provide valuable referalong the backbone. Within this representation, using units in
ence points for the development of approximate theories ofvhich kgT=1, the HamiltoniarH is given by
related, more complicated systems when exact solutions are

! n iN
unavailable. ' ' . N H= EEAE 8o | dru3(7)
These considerations suggest exploring the utility of the 2 %= ) G-oN
STY methodology in analyzing the behavior of chains made n .
up of randomly distributed semiflexible segments. Accord- n 16 E 5 f'N dr02(7) 1)
ingly, in this paper, we apply the methodology to calculate 2785 T (i-DN ’
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FIG. 1. A sketch of one possible realization of ArR-B heteropolymer in
which theA and B segments have different degrees of stiffness.
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where¢; is a discrete random variable that takes on the val- iN iN
ues*1, +1 when theith prepolymer is of typeA and —1 E J dr J
when it is of typeB; e, andeg are the energies of bending of =1 ( (
the segment®\ and B, respectively, and can be identified (10
with the persistence lengtlg andl g of these segments; and
dis the Kronecker delta. Figure 1 is a sketch of one possibl
realization of the copolymer sequence when theand B
prepolymers have fairly different degrees of stiffness. In the
sketch, theA prepolymers are “coil-like,” while theB pre-
polymers are “helixlike.” Had theA segments been com-
pletely rigid, the chain would have corresponded to the bro-
ken rod model studied by Muroggt al®

A simple transformatiohof the Kronecker deltas allows
H to be rewritten more succinctly as

d7y(u(7y)-u(7p)).

i—1)N j—1)N

She angular brackets in Eq$7)—(10) denote an average
both over the conformational degrees of freedom of the chain
€as well as the distribution of the discrete random variables
6, . From these expressions the calculatiod®f) is seen to
reduce essentially to the calculation of the “bond” correla-
tion function(u(7y)-u(7,)).

n .
EE dTUZ(T) 2) I1l. EVALUATION OF THE BOND CORRELATION
2> (i—1)N ' FUNCTION
where In general, the correlation function of the tangent vectors
can be written in the form
Ai=3(eatep)+ 3(ep—€p) b, (€©))
1
=D;+D36;. 4 <U(Tl)'u(7'2)>=6f Dlu(7)Ju(ry)-u(m)e ", (11

The vectorial distanc® from one end of the chain to the
other is the sum of the end-to-end vect&sof each of the whereH is given by Eq.(1), Q is the partition function,

prepolymers, i.e., defined as
=2 R, ® o= D 12

whereR; itself is given by ) ) .
andD[u(7)] is the functional integral measure on the space
iN of functionsu(7). From the general approach to the evalua-
Ri= f( dru(7). (6)  tion of functional integrals described, for example, in Ref.

10, Eq.(11) can be reduced to a product of ordinary integrals
Thus, the mean square end-to-end distaiR% can be writ-  involving a Green's functionG(u,u’|7—7'), which de-

i—1)N

ten in the form scribes the probability density that a monomer at the pdint
on the chain has the bond orientatiohif the monomer atr
(R)=S,+2(S,+S;), (7) has the orientatiom. When these points are located on the

jth andith prepolymers, respectively, the expression for the
where bond correlation function can be shown to be given by
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where, in general,
u(7p)=uy

G(U_1., U 7= 71) = f Dlu(»)]

u(7y)=Ug_1q

1 2
Xexr{_EAkJ dr?(7)|. (14
1

In terms of this distribution function, the partition functigh
can be similarly written as

szduoﬂ fduiG(ui_l,uHN—(i—l)N). (15)
i=1

Adopting the STY model of the semiflexible chifwhich
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FIG. 2. (a) A schematic representation of @&x-B heteropolymer of pre-
polymer segments showing coordinates relevant to the calculation of the
end-to-end distance. Each straight line segment terminated by full circles is
an A or aB prepolymer of contour lengtN. Letters above the circles and
crosses stand for the unit tangent vectors at the contour positions indicated
by the letters below these symbols. Squiggles denote sections of the chain
that are not shown in the diagrari) The diagrammatic representation of
the integralD, [Eq. (20)]. (c) The diagrammatic representation of the inte-
gral D, [Eq. (22)]. (d) The diagrammatic representation of the inteddal

[Eq. (22)].

anywhere on the backbone of the chain. Squiggles indicate

ensures inextensibility of the chain through the .constrainbrepmymer segments that are not shown. Integrations are
lu(7)[=1), one can determine the Green's function as anynderstood to be carried out over the vectorial positions of

expansion in spherical harmonics:

G(Uy_1,U | 7p— )=, e nl727 7128
m,n

XY:mn(ukfl)Ym,n(uk)a (16)
wherea,=n(n+1). These spherical harmonics satisfy the
relations

J dUYﬁl,nl(u)sz,nz(u): 5m1,m25n1,n21 (17)

f duY mn(u)= V4760 06n0, (18
1

Yo,0= 77— (19

Jan

from which it immediately follows tha® =41, independent

all junction points(including those labeled by, and 7,).
When the spherical harmonic expansion of the Green’s

function is substituted into Eq13), and the integrations car-

ried out using Eqs(17)—(19), {u(1) -u(7,)) in S; is seen to

simplify to the diagram shown in Fig.(B). If the algebraic
expression for this diagram is denoted, one can show that

D1:4Wf dulJ' dUZUl' U2

X 2 expl = an| 72— mal/ 2A0) Y7 n(Un) Y m(U)-

(20

Similarly, {(u(71)-u(7,)) in S,, reduces toD, [Fig.

of the random variabl@; . This implies that there is no dis- 2(C)], which is given by

tinction here between quenched and annealed disorder.

To evaluate the functionS,;, S,, andS; that are needed
in determining(R?), it is helpful to refer to Fig. &), which .
is a diagramr<nati>c representation of the bond correlatiorPZ:‘hTf dulf duzul-uzg] exp(—an[iN—7,]/24;)
function (u(r,)-u(7,)). The straight line segments in this
figure stand for the Green’s functidiq. (14)] for the sec- Xexp(—ag| 7~ iN[/24i ) Y] n(UD) Yo m(uz).  (21)
tion of prepolymer of typeA or B that lies between the junc-
tion points at the indicated contour positions. The crosses
mark the locations of the points and r, that appear in Eq. Likewise, but after somewhat more algebraj(7;)
(11), defining the correlation function; these points may lie-u(7,)) in S;, reduces td; [Fig. 2(d)], which is given by



mined, in general, by a set of four conditional probabilities
D3=47Tf dulf duyus Uy, expl—ap|iN—7;[/2A) Pk, K, L=A, B, wherepy, is conditional probability of
i observingK given L. If it is further assumed that this se-
=1 quence is the end result of a living polymerization process
Xexp( —ayN Z 2A. ) under steady state conditions, thg, can be expressed in
=t H terms of the mole fractionsand 1—f that define the com-
X exp(—ap| 72— (j = LIN|/2A)) Y} 1(U1) Y m(Us). position of A andB in the initial reaction mixturéand in the
chain that is generated therebfhese assumptions, along
(22 with the Markov condition, establish that ontwo param-
This expression applies specifically to the case whergtthe eters need be specified to fix the overall average sequence
prepolymer satisfieg=1+ 2. distribution: one isf itself, and the other is the nontrivial
The calculation of the average over the conformationakigenvalue\ of the matrix of conditional probabilities. In
degrees of freedom is finally completed by evaluating theerms of these parameters, the following relations forthe
integrals overu; andu, in Egs. (20)—(22). Noting thatu; can be derived:
- Uy=C0SHh; COSh,+sin h; sin 6, cos(p,— ¢»), one can use

standard results from the theory of spherical harmonics to Paa=T(1=N)+A, (25
show that! pee=f(A—1)+1, (26)
f dulf dU2U1' UZY:,m(ul)Yn,m(uz) pAB:l_ Paa; (27)
Pea=1—Pgs- (28)
a
= —0n1(Om 11 OmoT Om1)- (23 Physically, the parametex is a measure of the extent of

3 “blockiness” (to use FML's phraseof the chain; it can be
When the above equation is used in E@0)—(22), and the  shown to assume values betweed and+1. The limit A
resulting expressions then substituted into &g, we obtain  — —1 describes a chain in whioh andB prepolymers tend
to succeed each other in alternation, the liit- +1 de-
scribes a chain in whicA's tend to succeed’s, andB's tend

A.
1-—(1—e N4y S . 15 tenc
N to succeed'’s, and the limit, =0 describes a chain in which

<R2>=2N§:‘,1 A

n-1 the A’'s andB's follow each other entirely randomly.
+2> AA L (1—e Ny (1—e NAisy) To return to Eq.(24), we see that the sequence average
=R of the end-to-end distance requires averages over quantities

like exp(—=N/A)). To perform such averages, recall that
=D,;+D,#6;,, whereD; and D, are defined in Eq(4) in

n-2 n j—i—1 1
+22 2 AiAjex;{—N Z
=1 A

i=1 j=1+2 terms of the bending energieg andeg . It follows therefore
that
X (1—e NAi)(1—e N4y, (24)
. S o1 D D
When this expression is averaged over the sequence distri- —=—; ! >— = 2 5 6; . (29
bution (as discussed in the following sectiprihe desired A; Di-D; Di-D;
disorder-averaged end-to-end distance is obtained. Defining a=D,/(D3-D3) andB=D,/(D2—D3), we now
have
IV. AVERAGE OVER THE SEQUENCE DISTRIBUTION CNUA —Ne/ - —NB6:
<e N/A,>:e N <e N,80,>, (30)

In the absence of sequence disorder, there is no distinc-

tion betweenA and B segments, so the model describes aW.here the angular b’rack_ets now refer to the average over the
homopolymer of semiflexible prepolymer segments Whosed|str|but|on of the#,’s. Since 0, takes the valuestl, it is
stiffness can be characterized by a single persistence Nangtheasy to show that
wherel=ep=€g. It is easily verified that in this limit, Eq. (e~ NB%y=coshNB+( 6;)sinhN . (31
(24) for (R?) correctly reproduces the Kratky—Porod de-
scription of the chain. In particular, whee>1, (R?) scales
asn®N2, whereas wheh<1, (R?) scales ad?.

When the chain is a random heteropolymer, an averag

The average(6;) is obtained from the relatiory6,)
=X ,-+10ps(6), where ps(+1)=Ff and pgy(—1)=1-f.
glearly,(ai)=2 f—1. From this result it is easy to show that

over the sequence distribution must be carried out explicitly Di+ D%

to produce the final expression fdR?). To perform this (S)=2nN Dy +(2f-1)Dy— —

average, we adopt the model introduced by Fredrickson, Mil-

ner, and Leiblefto discuss phase separation in random co- x{1—e N*(coshNB+ (2 f—1)sinhNg)}

polymer blends. In this model, the probability th#t pre-
polymer in the chain is of a given type is assumed to be
determined solely by the chemical identity of the immedi- N
ately preceding prepolymer and no others. Thus, the prob-

ability of realizing a given sequence 8fs andB's is deter- +(2f—1)coshNB)}

2D,D,

{2f—1—e Ne(sinhNgB

. (32




The sequence averaged valueSgfis similarly calculated as 1

(S;)=2(n—1)D?(1—e N*coshNp)? 0s
1= APz o) a- D)) )
X —_—— — —_—
5.~ (2f-D|A-5
D2 2 0.6
+4f(1—f))\(A— D_1> } 33 =
where oaf
A e N*sinhNg 34 os}
1—e N*coshNg" i
The calculation of(S;) is much less trivial, but it can be otk
done analytically. Details of the calculation are provided in
Appendix A. Here we quote the result in terms of four other %% % N;’| s 7 8 8 10
averagesSsy), (Ss0), (Ss3), and(S;4), whose complete ex- e
p_resspns in terms of the various parameters of the model a¥G. 3. Full curves are the variation of the parametge (R?)/M? with the
given in Eqgs.(A21), (A24), (A27), and(A30): dimensionless inverse persistence lergth, as a function of the fractioh
n—2 n of A at fixed values of\, N/l, andn (0.0, 0.01, and 10, respectiveljthe
2 Na 2 dashed curve is the Kratky—Porod expressiondgrof a homopolymer of
<S3>:2i21 j;rz Di(2-e coshNg) lengthM derived from Eq.(36). Curves 1, 2, 3, and 4 correspond, respec-

tively, to f=0.1, 0.25, 0.5, and 0.9.

AD,\2 AD

X 1_D_2) e(]ll)Na<831>_(l_ 5 2)
L ! tion of ag as a function oM/I for a semiflexiblehomopoly-

D, C=i-DN mer of contour lengthM as calculated with the following

x A_[)_l et “((Ss2 +(Ss)) Kratky—Porod expressioh:
1

D,\?2 . 2y _ _ _a—2Ml

+ A—D—Z) e—<l—'—1>Na<sg4>} (35 (RO=MI 1= o (1-e 70 ). (39
1

T : This expressior(which is reproduced by our model in the
After substituting the equations f@S;,), (Ssy), (Ss3), and S
(Sz,) into the above equation, the sums become trivial, an@omopolymer limi} yields the resultsze—1 as|>1 and

can be done at once. ag—0 asl<L. - .
Figure 3 shows the variation efg [as determined from

Egs. (7) along with (32), (33) and (35] with 1/1* (the full
lines for four different values off (0.10, 0.25, 0.50, and

V. DISCUSSION 0.90 at the following values of the other parameteks:

Equation(7), along with Eqs(32) and(33), and Eq.(35)
(after carrying out the summationss the desired expression
for the disorder averaged mean square end-to-end distance «
the givenA—B copolymer, but it is far too lengthy and com-  oe
plicated to be particularly perspicuous on its own. It is there-
fore depicted graphically in a series of figur€s-6) that
highlight its behavior in terms of one or other of the param- °7
eters thaf R?) depends on. These parameters are the lengtr
N of the prepolymer, the number of prepolymers in the .
chain as a whole, the fractionof A-type prepolymers, the =°*

08

extent of blockinesa, and the persistence lengthsandlg 04
of the A and B prepolymers, respectively. As a matter of
conveniencel is kept constant throughout. Althou@land\ os

are regarded as free parameters, the fact that the conditioni o,
probabilities in Eqs(25)—(28) are constrained to lie between
0 and 1 implies thatand\ can only be chosen within certain '
limits; these limits are always respected when numerical val- oL
ues are assigned to the parameters.

We plotag=(R?)/M? against the dimensionless inverse

: _ _ : _ FIG. 4. Variation ofag with N/Iz as a function ofn at fixed values of
persistence length [¥/=N/eg=N/Ig for four different val (0.5, (0.0, andN/l , (0.01. Curves 1. 2, 3, and 4 correspondtts 10, 25,

ues of one other pgrgmeter, all other parame?er's staying. th® and 100, respectively. The dashed curve is the same Kratky—Porod result
same. A fifth curve is included for reference: this is the varia-shown in Fig. 3.

1 2 3 4 5 6 7 8 9 10
Nilg



! T ' y T T r T g T The sharpness of the change from flexible to rigid geom-
etries is especially pronounced in Fig. 4, which shows the
variation of ag with 1/1* for 4 different values ohf (10, 25,

50, and 10D at the following fixed values of the other pa-
rameters:f=0.5,A=0.0 andN/l ,=0.01. Presumably, as
—oo, there is something akin to a genuine discontinuity be-
tween the flexible and rodlike configurations of the random
heteropolymer.

The transition can be completely suppressed for certain
ranges of parameter values, as illustrated in Fig. 5, which
shows the variation ofrg with 1/1* for 4 different values of
N/l 5 (0.01, 1, 2, and pat the following fixed values of the
other parameterst=0.5, \=0.0 andn=10. At the largest
values ofN/l, (1, 2 and 3, corresponding to the greatest
—— ~ - - degree of conformational flexibility, the chain never attains
N7'a 6 7 8 s more than about 40% of its full extension.

The blockiness parametarprovides one final measure

FIG. 5. Variation ofag with N/Iz as a function oN/I, at fixed values of of conformational control, as illustrated in Fig, 6, which
i S, s s e sy _porg WS th vatition ok wih U1 for our iferent values
rosult shown I Hig. S ecve: y C%thlS parametef—0.9, —0.5, 0.5, and 0.9at the following
fixed values of the other parametefs: 0.5, N/l ,=0.01 and
n=10. The negative values of correspond to chains with
the tendency to alternate betweénand B segments, and
such chains show the greatest degree of flexibilityN&tg

=0.0,N/I,=0.01 andh=10. The dashed line is the Kratky—

Porod result derived from Eq(36). Flexibility increases gjyes greater than about 2. Below that number, when Aoth

from left to right along the abscissa. In genefdl| , values 54 segments are relatively stiff, the conformation of the
less than unity correspond to prepolymer segments that atgain is increasingly insensitive to how frequently the two
semiflexible or rigid, so the choidd/l ,=0.01 indicates that segments alternate with each other.

Ais relatively stiff. The choice. = 0.0 indicates that chain is In conclusion. we have found an exact solution for the

an ideal random copolymer. The figure shows that principa; e of 4 random heteropolymer based on the STY model that
effect of increasing the proportion & in the chain is 0 highlights the interplay between flexibility and disorder in
render it mcre_asmglynflexmle as one unld expect. Atthe (nain statistics. The analytical expression {&2) that is
smallest fractions ofA, however, there is a fairly narmow gerjyed from the model can be used to make rough estimates

range ofN/l values over which increasing the stiffnessf  4f the range of allowed sizes of chains of unknown structure
leads to a fairly sharp rise in the stiffness of the chain as gt definite sequence.

whole. This is a trend that is repeated, to greater or less

degree, in all the other figures.
APPENDIX A: CALCULATION OF (S3)

The functionsS;;, Sz, Szz and Si, that appear infS;

1 r r r . . T r ' T [Eq. (35)] are defined as
j—i-1
831=exp< NG 2 em), (A1)
j—i—1
Sso= 6, exp( NG 2 0i+|), (A2)
j—i—1
Ssszexl{ NS Zl 0i+|)0ja (A3)
j—i—1
534:6i eX[{ NS IZl 0i+|>0j' (A4)
By definition,
T I <531>:0_2 92 02 Ps(0i+1)P(b; 12|61 1)
i+1 Vi+2 -1

FIG. 6. Variation ofag with N/l as a function of\ at fixed values of

(0.5, N/l (0.0, and n (10). Curves 1, 2, 3, and 4 correspond Xo XP(6i13|012) - p( 0j_1|0j_2)exp(,u0i+1)
=-0.9, —0.5, 0.5, and 0.9, respectively. The dashed curve is the same

Kratky—Porod result shown in Fig. 3. Xexpubiio) - expub_1), (A5)



wherepg(6;) is the equilibrium(i.e., steady stajgorobability for the occurrence of the stafle, p(6,.4]6;) is the conditional
probability of seeingy; ., given 6;, andu is NB. One may verify that Eq(A5) may be expressed in matrix form as

et

Paa Pan
0

_ 0 Paa Pas
<S31>=(e'“ e M)( M)(
PBa PBB 4 PBa PBB

j—i—2 factors

where paa=p(1|1), pas=p(1|—1), psa=p(—1|1) and
par=p(—1|—1). Defining the matrix

_ ( Pan” Pag€ “ ) A7)
Psa€” Pge€
it is seen that
(S =(e* e #pPI=i—2 EA) (A8)
B
The eigenvalued ; and A, of P are given by
A12= 3 (Pane+pege )Ty, (A9)
where
T1,=1xy1-Q, (A10)
with
4N
(A11)

Q= (Pan€”+pgge “)?’

The upper symbol in(A10) corresponds tdl; while the
lower symbol corresponds td,. Introduce a set of left
eigenvector; andx,, and a set of right eigenvectoys

andy, satisfying

PX1: A]_Xl y PX2: A2X2 (A12)
and

yiP=yiA1, Y;P=y;A;. (AL3)
The right eigenvectors may be chosen as

B 1

X2~ —(Pan“—A12)/page */) (A14)
Similarly, the left eigenvectors may be chosen as

Y12= (L —(Pane"—A12)/Pea"). (A15)

For i#j, one may see from Eq4$25—(28) that yiTxJ:O.
Wheni=j, we have

et

Paa Pan
0

<S32> —(ef e ( PBa PBB

0 >”‘<pAA pAB)(
e PBa PaB

e 0
Pa
0 e“)(PB)’ (A6)
|
yixi=1+ (Pan€*—A)?=C;, i=12. (A16)
PasPBa
Furthermore, if we define the matricds andA, according
to
1 gk
A= , 1=172 (A17)
' (—¢ ¢¢*)
where
& =(pane“—Aj)/pgaet, =12 (A18)
and
di=(Pane”—Aj)/page #, 1=12, (A19)
then, in general, for some integer?
m 1 m 1 m
P =C—1A1A1 + C_2A2A2 . (A20)
Hence,
1 o 1 o p
— (et o~ M) j—i-2, T j—i—2|[ FA
(Ssp=(e* e™*) ClAlAl + C2A2A2 Ps

Almi—2
1 —(1— *7(al — —u
oL (=N)aile —ge )

j—i-2
2

C, [f=

+

(1-f)p3](ek— e #). (A21)

In the same way

(S=> > 02 Ps(601)P(0i+1|6)P( ;42| 65 s1)
i1

0 bir1

p(0j-1]6;_2) 6 exp( ;1 1)

Xexp(ubiiz) - expub;-1), (A22)
which in matrix notation is given by
et 0 )(pAA pAB)( Pa ) (A23)
0 e */\pga ppp/\~P8l’

j—i—2 factors



so using the result of EqA20)

j—i—-2
Az

+ (e =" ) fpapr—(1—f)pas
. 1 i — ¢35 (fpea—(1—1)pgs)]. (A24)
_ j—ic2, T i
(S =(e" e AlA T, e Similarly,
pAApA:pABpB (Ssa)= E E 2 Ps(6i+1)P(6;+2]6i+1)
PsAPA— PBBEPB Oi+1 Oi+2
j—i-2 | o -
:Alc (&'~ dre ) X p( |+3|9|+2) P(6;]0;—1)exp( b 1)
1 Xexp(pubyz) - explud;_1)6;, (A25)
X[fpaa— (1= )pag— 1 (fPsa—(1—F)pee)]  which in matrix notation is given by
Paa Pap\|e” 0) (pAA pAB><€M 0 )(pA>
Sypy=(1 —1 Ll B
($30=( )<pBA pBB)( 0 e* PBa PBB e ®/\PB (A26)
j—i—1 factors ’
i—1 i—1|{Pa
=(1 —1)[ AN +—A2A’ ( )
PB
Aj*i*l AJ i—1
[f—(1-f)pT1(1+¢1) + [f=(1=1)p31(1+ ). (A27)
Finally,
(Sw=2 2 - 2 2 Po(0)P(0i+16)P(6i2l 61+2)-P(6]]6; 1) 6
0; i+1 11 '
Xexppu by 1)exp(ub; i) - exp(pbj_1)0;, (A28)
which in matrix notation is given by
Paa Pagile* O ) (pAA pAB><€M 0 )(pAA pAB)( pA>
Sy)=(1 —1 ]t . A29
($30=( )<pBA pBB><O e ¥ PBa PBB e “/\ppa ppp/\ " PB (A29)
1 j—i—1 factors
—(1-1 A AI-I1L A Aiil} pAApA_pABpB)
= ){ 1 C, %2 PsaPa— PsBPB
(1+¢1)[prA (1-1)pag— &5 (fpea—(1—f)pgs)]
A]—*i*l
+ (1+ @) [ fpan— (1—T)pag— &5 (fPea— (1—T)pgp)]. (A30)

V. S. Pande, A. Y. Grosberg, and T. Tanaka, Rev. Mod. Pfgs.259
(2000, and references therein.

20. Kratky and G. Porod, Recl. Trav. Chim. Pays-B&&. 1106 (1949.

3N. Saifg K. Takahashi, and Y. Yunoki, J. Phys. Soc. Jpg, 219 (1967).

4R. A. Harris and J. E. Hearst, J. Chem. Ph44, 2595 (1966; M. G.
Bawendi and K. F. Freed, J. Chem. Ph§8,2491(1985; J. B. Lagowski
and J. Noolandi, J. Chem. Phy85, 1266(199)); L. Harnau, R. G. Win-
kler, and P. Reineker, J. Chem. Ph$82 7750(1995.

5Y. Muroga, Macromoleculeg1, 2751(1988; Y. Muroga, H. Tagawa, Y.
Hiragi, T. Ueki, M. Kataoka, Y. lzumi, and Y. Amemiyabid. 21, 2756
(1988.

8G. H. Fredrickson, Macromolecul@®, 2746(1989.

’G. H. Fredrickson, S. T. Milner, and L. Leibler, Macromolecu®&s 6341
(1992.

8D. Bensimon, D. Dohmi, and M. Mezard, Europhys. Ld®, 97 (1998;
A. Buhot and A. Halperin, Phys. Rev. Let®4, 2160 (2000; M. N.



Tamashiro and P. Pincus, Phys. Rev6& 021909(2001). 11G. B. Arfken and H. J. WebeMathematical Methods for Physicistaca-
L. Gutman and A. Chakraborty, J. Chem. Phy81, 10074(1994. demic, San Diego, CA, 1995
10K, F. Freed, Adv. Chem. Phy&2, 1 (1972; K. F. FreedRenormalization ~ '2N. T. J. Bailey, Elements of Stochastic Process@iley, New York,
Group Theory of MacromoleculgyViley, New York, 1987. 19649.



