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CONFORMING AND DIVERGENCE-FREE STOKES ELEMENTS

ON GENERAL TRIANGULAR MESHES

JOHNNY GUZMÁN AND MICHAEL NEILAN

Abstract. We present a family of conforming finite elements for the Stokes
problem on general triangular meshes in two dimensions. The lowest order case
consists of enriched piecewise linear polynomials for the velocity and piecewise
constant polynomials for the pressure. We show that the elements satisfy the
inf-sup condition and converges with order k for both the velocity and pressure.
Moreover, the pressure space is exactly the divergence of the corresponding
space for the velocity. Therefore the discretely divergence-free functions are
divergence-free pointwise. We also show how the proposed elements are related
to a class of C1 elements through the use of a discrete de Rham complex.

1. Introduction

Let Ω ⊂ R
2 be a simply connected bounded polygonal domain. We consider

conforming finite element approximations for the Stokes equation:

−νΔu+∇p = f in Ω,(1.1a)

divu = 0 in Ω,(1.1b)

u = 0 on ∂Ω.(1.1c)

In (1.1a) f is a given L2(Ω) := [L2(Ω)]2 function and ν > 0 is the kinematic
viscosity. A detailed account of the notation used is given below. A pair of functions
(u, p) ∈ V × W := H1

0 (Ω) × L2
0(Ω) are defined to be a solution of (1.1) if there

holds

ν(∇u,∇v)− (p, div v) = (f ,v) ∀v ∈ V ,(1.2a)

(divu, q) = 0 ∀q ∈ W,(1.2b)

where L2
0(Ω) denotes the set of square integrable functions with vanishing mean.

We consider finite element methods that take the same form as (1.2). Namely, let
Vh×Wh ⊂ V ×W be a pair of conforming finite element spaces with discretization
parameter h. Then the finite element method reads: find (uh, ph) ∈ Vh ×Wh such
that

ν(∇uh,∇v)− (ph, div v) = (f ,v) ∀v ∈ Vh,(1.3a)

(divuh, q) = 0 ∀q ∈ Wh.(1.3b)
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16 J. GUZMÁN AND M. NEILAN

The stability and the error estimates of the approximate pair (uh, ph) depend on
the classical inf-sup condition

sup
v∈Vh\{0}

(div v, q)

‖v‖H1(Ω)
≥ α‖q‖L2(Ω) ∀q ∈ Wh,(1.4)

where α > 0 is a constant independent of the parameter h. If (1.4) is satisfied, then
one may easily deduce the solvability of (1.3) as well as derive the quasi-optimal
estimate

‖u− uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C inf
v∈Vh, q∈Wh

(
‖u− v‖H1(Ω) + ‖p− q‖L2(Ω)

)
,

(1.5)

where the constant C > 0 depends on ν and α, but is independent of h.
In this paper we find a pair of spaces Vh ×Wh that satisfy the inf-sup condition

(1.4) and in addition satisfy the following desirable property:

(1.6) {v ∈ Vh : (div v, q) = 0 ∀q ∈ Wh} ⊂ {v ∈ H1(Ω) : div v ≡ 0}.

In other words, we find inf-sup stable spaces for the Stokes problem such that dis-
cretely divergence-free functions are divergence-free pointwise. In fact, our spaces
satisfy divVh = Wh.

Finite element spaces that do not satisfy (1.6) can lead to undesired instabilities
in nonlinear problems; see for example [5, 17]. However on general meshes, most
stable pairs (i.e., pairs satisfying (1.4)) in the literature do not satisfy (1.6), e.g.,
Taylor–Hood elements [25], the MINI element [1], and Bernardi–Raugel elements
[6]; see the review paper [7] for a more comprehensive list of examples. On the
other hand, the spaces Pk − Pk−1 (with Pk continuous and Pk−1 discontinuous)
are inf-sup stable and satisfy (1.6) provided certain restrictions of the polynomial
degree and mesh hold. For example, Scott and Vogelius [22] proved that these
elements are stable if k ≥ 4 and the mesh does not contain nearly singular vertices.
In [2, 21, 27, 29] it was shown that the spaces Pk − Pk−1 satisfy (1.6) for smaller
values of k if the meshes were Hsieh–Clough–Tocher or Powell–Sabin triangulations.
As far as we are aware, conforming finite element spaces that satisfy both (1.4) and
(1.6) on general triangulations have not appeared in the literature.

However, there are nonconformingmethods that are inf-sup stable and lead to ex-
actly divergence-free approximation (at least locally) for the Stokes problem. These
methods include the classical Crouzeix–Raviart elements [12] and the Fortin–Soulie
elements [13]. Another strategy for constructing nonconforming methods with these
properties is to modify H(div ; Ω) conforming elements so that they possess (weak)
tangental continuity [15,18,24,26]. The motivation behind this approach is the fact
that classical H(div ; Ω) finite element spaces (e.g., RT and BDM) satisfy (1.4)–
(1.6), and therefore, if they can be enriched with div-free elements that enforce
weak continuity, then the end result is a convergent finite element for the Stokes
problem satisfying (1.4)–(1.6). To be more precise, the local spaces constructed in
[15, 18, 24, 26] are of the form

M (T ) + curl (bTQ(T )),(1.7)

where M (T ) is the local space corresponding to the H(div ; Ω) space, bT is the
triangle cubic bubble function and Q(T ) is some scalar space. For example, in [15]
this scalar space in the lowest order case is defined as Q(T ) = span{bei}3i=1, where
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STOKES ELEMENTS ON TRIANGULAR MESHES 17

{bei}3i=1 denotes the quadratic edge bubbles. Since only divergence-free functions
are added in (1.7), the resulting space (1.7) still satisfies (1.4)–(1.6).

The results in the current paper are motivated by the finite element methods
construction in [15, 18]. Namely, we also modify H(div ; Ω) conforming finite el-
ements (locally) to enforce tangental continuity. However, enriching these spaces
with only polynomials (as done in (1.7)) is not flexible enough to guarantee con-
formity. This is in large part to the relatively high polynomial degree of both bT
and Q(T ). For this reason, in this paper we instead enhance H(div ; Ω) elements
with divergence-free rational functions, which seem to offer the correct flexibility to
enforce (strong) continuity. We also mention that we use a nonstandard H(div ; Ω)
base space M (T ) in our construction which, as far as we are aware, has not ap-
peared in the literature before.

In order to lessen the number of degrees of freedom, we also introduce reduced
elements. The dimension of the reduced local velocity space VR(T ) restricted to a
triangle T is as follows:

dimVR(T ) =

⎧⎪⎨⎪⎩
dimPk(T ) + 3 if k = 1,

dimPk(T ) + 5 if k = 2,

dimPk(T ) + 6 if k ≥ 3.

We note that the lowest order element (k = 1) has the same dimension as the
Bernardi–Raugel element [6] (the global dimension is the same as well).

The construction and properties of the new finite element pairs is closely related
to the smoothed de Rham complex,

R

⊂
−−−−−→ H2(Ω)

curl
−−−−−→ H1(Ω)

div
−−−−−→ L2(Ω) −→ 0.(1.8)

The complex is exact provided the domain Ω is simply connected [14]; that is
the range of each map is the kernel of the following one. In particular, every
divergence-free H1(Ω) function can be written as the curl of some H2(Ω) function.
The finite element velocity space enjoys a similar property: every divergence-free
velocity function is the curl of a function in a generalized Zienkiewicz finite element
space [11, 30] (cf. Section 4). We establish this property by showing that certain
commutativity properties hold for the natural projections. The result then follows
by using the fact that the complex (1.8) is exact and employing similar arguments
as those found in [3, 4].

Of course, there are many practical issues that must be addressed for the method
to be viable in practice. The most obvious is the issue of numerical integration.
Since we are enriching piecewise polynomial spaces with (singular) rational func-
tions, the approximation properties of standard quadrature rules and its effect on
the accuracy of the numerical method is not obvious. Another issue is the scaling of
the condition number, that is, how the condition number depends on the discretiza-
tion parameter h. Again, due to the presence of rational functions, one must be
careful that the condition number does not grow too quickly as the mesh is refined.
The theoretical aspects of these issues are beyond the scope of the paper. However,
we provide several numerical experiments in Section 7 which indicate that: (i) rela-
tively low order quadrature rules can be used to obtain accurate solutions, and (ii)
the condition number scales such as O(h−2), comparable to other standard mixed
finite element methods for the Stokes problem.
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18 J. GUZMÁN AND M. NEILAN

Finally, we mention that there has been recent development in the construc-
tion of conforming, divergence-free, and stable elements for the Stokes problem on
rectangular grids. These include the Qk+1,k × Qk,k+1 elements [16, 28] as well as
using splines [10]. However, it is not at all obvious how to extend these elements
to triangular meshes.

The rest of the paper is organized as follows. After presenting some notation
and preliminary results in Section 2, we present our finite element method in the
lowest order case in Section 3. Here we define the local space and the associated
degrees of freedom, and derive the approximation properties of the corresponding
projection (Fortin) operator. We then proceed with the convergence analysis of the
finite element method using the abstract results discussed above. In Section 4 we
characterize the divergence-free finite element functions with the Zienkiewicz finite
element space and derive the corresponding discrete de Rham complex of (1.8).
In Section 5 we define the analogous higher order elements for any polynomial
degree k ≥ 1. In Section 6 we describe some reduced elements that enjoy the
same orders of convergence, but have fewer degrees of freedom. We present some
numerical experiments of the lowest order (nonreduced) elements in Section 7. Here
we support the theoretical results as well as perform a numerical study of the
effect of quadrature as well as the size of the condition number with respect to the
discretization parameter. We end the paper with some conclusions in Section 8.

2. Notation and preliminaries

Given a set D ⊂ Ω, we denote by Hm(D) (m ≥ 0) the Sobolev space consisting
of all L2(D) functions whose distributional derivatives up to order m are in L2(Ω),
and Hm

0 (D) to denote the set of functions whose traces vanish up to order m−1 on
∂D. We then set the corresponding vector Sobolev spaces as Hm(D) = (Hm(D))2

and Hm
0 (D) = (Hm

0 (D))2, and define the space of square integrable with vanishing
mean as L2

0(D).
The L2 inner product over a two dimensional (resp., one dimensional) set D is

denoted by (·, ·)D (reps.,
〈
·, ·
〉
D
). In the case D = Ω we set (·, ·) := (·, ·)Ω and〈

·, ·
〉
:=

〈
·, ·
〉
∂Ω

. The curl of a scalar function is a vector given by

curl v =

(
∂v

∂x2
,− ∂v

∂x1

)t

,

where as the curl and divergence of a vector valued function v = (v1, v2)
t is defined,

respectively, by

div v =
∂v1
∂x1

+
∂v2
∂x2

, curlv =
∂v2
∂x1

− ∂v1
∂x2

.

The corresponding Sobolev spaces of these two operators are then given by

H(div ;D) =
{
v ∈ L2(D) : div v ∈ L2(D)

}
,

H(curl ;D) =
{
v ∈ L2(D) : curlv ∈ L2(D)

}
,

and we also define

H0(div ;D) =
{
v ∈ H(div ;D) : v · n|∂D = 0

}
,

where n denotes the outward normal of the boundary ∂D.
For a given simplex S and m ≥ 0, the vector-valued polynomials are defined as

Pm(S) = [Pm(S)]2, where Pm(S) is the space of polynomials defined on S of degree
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STOKES ELEMENTS ON TRIANGULAR MESHES 19

less than or equal to m. We also set Pm(S) and Pm(S) to be the empty set for
any negative valued m. Let Th be a shape-regular triangulation of Ω [8, 11] with
hT = diam(T ) for all T ∈ Th and h = maxT∈Th

hT . We define the patch of an edge
e in Th as

ω(e) :=
{
T ∈ Th : ∂T ∩ e �= ∅

}
,

and we use the convention

‖v‖2Hm(ω(e)) =
∑

T∈ω(e)

‖v‖2Hm(T ).

Given T ∈ Th, we denote by n the outward unit normal of ∂T , by t the unit tangent
of ∂T obtained by rotating n 90 degrees counterclockwise, and by {λi}3i=1 the three
barycentric coordinates of T labeled such that λi vanishes on ei ⊂ ∂T . We also
denote by {xi}3i=1 the three vertices of T with λi(xj) = δij . The element bubble
and edge bubbles are then, respectively, given by

bT = λ1λ2λ3 ∈ P3(T ) bei = λi+1λi+2 ∈ P2(T ) (mod 3).(2.1)

Due to their definitions, the element and edge bubbles satisfy the following prop-
erties:

bT
∣∣
∂T

= 0,
∂bT
∂ni

∣∣
ei

= aibei , bei
∣∣
∂T\ei = 0, bei

∣∣
ei

> 0,(2.2)

where

ai := −|∇λi|,(2.3)

and ni denotes the outward unit normal of ei. We emphasize that ai �= 0, as this
property will be used frequently in the sequel. We also set the rational bubble
functions [11, 30] as (i = 1, 2, 3)

Bei =
bT bei

(λi + λi+1)(λi + λi+2)
for 0 ≤ λi ≤ 1, 0 ≤ λi+1, λi+2 < 1,

Bei(xi+1) = Bei(xi+2) = 0 otherwise.

A few properties of the rational bubble functions are established in the following
lemma.

Lemma 2.1. There holds

Bei ∈ C1(T ) ∩W 2,∞(T ), Bei

∣∣
∂T

= 0, ∇Bei(xj) = 0 (j = 1, 2, 3),

(2.4a)

∇Bei

∣∣
∂T\ei

= 0,
∂Bei

∂ni

∣∣
ei

= aibei , ∇Bei

∣∣
ei

∈ P2(ei).

(2.4b)

Proof. The property Bei ∈ C1(T ) as well as the second and third properties have
been shown in [11, pp. 347–348]. To show the fourth property, we note that since
bT vanishes on ∂T ,

∂Bei

∂xk

∣∣∣∣∣
∂T

=

∂bT
∂xk

bei

(λi + λi+1)(λi + λi+2)

∣∣∣∣∣
∂T

.(2.5)
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20 J. GUZMÁN AND M. NEILAN

Thus, since bei vanishes on ∂T\ei, we obtain ∇Bei

∣∣
∂T\ei

= 0. Moreover since λi

vanishes on ei, we have by (2.5) and (2.2),

∂Bei

∂ni

∣∣∣∣∣
ei

=

∂bT
∂ni

bei

(λi + λi+1)(λi + λi+2)

∣∣∣∣∣
ei

=
∂bT
∂ni

∣∣∣∣∣
ei

= aibei .

Since
∂Bei

∂t

∣∣
∂T

= 0 and
∂Bei

∂n

∣∣
∂T

∈ P2(∂T ), we have ∇Bei

∣∣
∂T

∈ P2(∂T ).

Finally we show the property Bei ∈ W 2,∞(T ). It is easy to see that Bei is
well behaved away from the vertices of T , so it suffices to show that the second
derivatives of Bei are bounded at the vertices. Furthermore, since the property
Bei ∈ W 2,∞(T ) is invariant through affine transformations, it is enough to consider
the case when T is the unit triangle with vertices (0, 1), (1, 0) and (0, 0). The
rational bubble is then given by

Be1 =
x1x

2
2(1− x1 − x2)

2

(x1 + x2)(1− x2)
.

We study the behavior of Be1 at the origin as the other vertices follow from the
symmetry of the rational bubble functions. Writing Be1 = s(x1, x2)g(x1, x2) with

s(x1, x2) =
x1x

2

(x1 + x2)
and g(x1, x2) =

(1− x1 − x2)
2

(1− x2)
, it suffices to show that

s ∈ W 2,∞(T ) since g is smooth at the origin. An easy calculation shows

∂2s

∂x2
1

= − 2x3
2

(x1 + x2)3
,

∂2s

∂x2
2

=
2x3

1

(x1 + x2)3
,

∂2s

∂x1∂x2
=

x2
2(3x1 + x2)

(x1 + x2)3
.

Since x1, x2 ≥ 0 in T we have∣∣∣ ∂2s

∂x2
1

∣∣∣ ≤ 2x3
2

(x1 + x2)3
≤ 2 and

∣∣∣ ∂2s

∂x2
2

∣∣∣ ≤ 2x3
1

(x1 + x2)3
≤ 2.

Similarly we obtain ∣∣∣ ∂2s

∂x1∂x2

∣∣∣ ≤ 3x1x
2
2

(x1 + x2)3
+

x3
2

(x1 + x2)3
≤ 4.

It then follows that the second derivatives of s are bounded at the origin, and
therefore Be1 ∈ W 2,∞(T ). �

Remark 2.2. Since Bei

∣∣
T
∈ W 2,∞(T ), we clearly have Bei |T ∈ H2(T ).

Remark 2.3. Although the rational bubbles lie in W 2,∞(T ), they are not C2(T )
[11].

3. The finite element method in the lowest order case

3.1. The local space. In this section, we describe a finite element for the Stokes
problem using enriched piecewise linear polynomials for the velocity and piecewise
constants for the pressure. Essentially, we enrich H(div ; Ω) elements with rational
bubbles to obtain H1(Ω) approximations. First we describe the local space of the
H(div ; Ω) element.

For T ∈ Th we define

M2(T ) = P1(T ) + span
{
curl (beiλi+1)

}3

i=1
.(3.1)
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STOKES ELEMENTS ON TRIANGULAR MESHES 21

The associated degrees of freedom of M2(T ) are given by

v(xi) for all vertices xi,(3.2a) 〈
v · ni, κ

〉
ei

for all κ ∈ P0(ei) (i = 1, 2, 3).(3.2b)

To see that the degrees of freedom (3.2) are unisolvent onM2(T ) we first notice that
the sum in (3.1) is direct, and therefore the dimension ofM2(T ) is dimP1(T )+3 = 9
(proving that the sum is direct can easily be shown by using the techniques used
below). Since there are a total of nine degrees of freedom given in (3.2), it suffices
to show that if v ∈ M2(T ) vanishes at the degrees of freedom, then v ≡ 0.

First since v ∈ P2(T ), we have v ·n
∣∣
∂T

= 0. Writing v = v0+s with v0 ∈ P1(T )

and s =
∑

i=1 dicurl (beiλi+1) with di ∈ R, we then deduce that s ·n
∣∣
∂T

∈ P1(∂T ).

Therefore by (2.1), we have for any j = 1, 2, 3,

s · nj

∣∣
ej

=
3∑

i=1

di
∂(beiλi+1)

∂tj

∣∣∣
ej

= dj
∂(bejλj+1)

∂tj

∣∣∣
ej

= dj
∂(λ2

j+1λj+2)

∂tj

∣∣∣
ej

∈ P1(ej).

Noting λj+1 + λj+2 = 1 on ej , it follows that

s · nj

∣∣
ej

= djλj+1

(
2λj+2

∂λj+1

∂tj
+ λj+1

∂λj+2

∂tj

)∣∣∣
ej

= djλj+1
∂λj+1

∂tj

(
2− 3λj+1

)∣∣∣
ej

∈ P1(ej).

We then conclude that djλj+1(2 − 3λj+1)
∣∣
ej

∈ P1(ej), and therefore dj = 0. It

then follows that s ≡ 0 and therefore v0 · n
∣∣
∂T

= 0. This implies v0 ≡ 0 and so
v ≡ 0 as well. Thus the unisolvency of the degrees of freedom (3.2) is proved.

With the local space of the H(div ; Ω) established, we now describe the local
space of the conforming velocity finite element for the Stokes problem. Set

V (T ) = M2(T ) +Q2(T )(3.3)

with

Q2(T ) = span
{
curl (Bei)

}3

i=1
.(3.4)

The associated degrees of freedom of V (T ) are as follows:

v(xi) for all vertices xi,(3.5a) 〈
v,κ

〉
ei

for all κ ∈ P0(ei) (i = 1, 2, 3).(3.5b)

Lemma 3.1. There holds

V (T ) = M2(T )⊕Q2(T ),(3.6)

dimV (T ) = 12.(3.7)

Furthermore, any function v ∈ V (T ) is uniquely defined by the degrees of freedom
(3.5), and V (T ) restricted to ei is a subspace of P2(ei) for i = 1, 2, 3.

Proof. It is clear from the definition of Bei that the sum in (3.3) is direct and
therefore dimV (T ) = dimM2(T ) + 3 = 12.

Next, since the number of degrees of freedom given in (3.5) is 12, to show uni-
solvency, it suffices to show that if v ∈ V (T ) vanishes at the degrees of freedom,
then v ≡ 0. To this end, we write v = v0 + q with v0 ∈ M2(T ) and q ∈ Q2(T ).
By Lemma 2.1, q vanishes at the vertices of T and q · n

∣∣
∂T

= 0. Since these two
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22 J. GUZMÁN AND M. NEILAN

types of degrees of freedom uniquely determine a function in M2(T ), it follows that

v0 ≡ 0. Next, write q =
∑3

i=1 dicurl (Bei). Then by (3.5b), (2.2) and Lemma 2.1
we have

0 =

∫
ei

q · ti ds = di

∫
ei

∂Bei

∂ni
ds = aidi

∫
ei

bei ds =⇒ di = 0.

It then follows that v ≡ 0, and hence the degrees of freedom (3.5) are unisolvent
on V (T ).

Finally, the fact that V (T ) restricted to the boundary ∂T is a subspace of P2(T )
follows directly from the definition (3.3) and Lemma 2.1. �

3.2. The global space and its approximation properties. The degrees of
freedom (3.5) naturally lead us to define the global space as

Vh =
{
v ∈ H1

0 (Ω) : v
∣∣
T
∈ V (T )

}
,(3.8)

and a projection Π̂h : C0(Ω) → Vh defined locally by

Π̂hv(xi) = v(xi),

∫
ei

Π̂hv ds =

∫
ei

v ds (i = 1, 2, 3).(3.9)

Remark 3.2. Since the rational bubble functions satisfy Bei

∣∣
T

∈ W 2,∞(T ), there

holds the inclusion Vh ⊂ W 1,∞(Ω).

We also define the pressure space as the space consisting of piecewise constants

Wh =
{
q ∈ L2

0(Ω) : q
∣∣
T
∈ P0(T )

}
.(3.10)

Note that by (3.9), we have

(∇ · (v − Π̂hv), q)T =
〈
(v − Π̂hv) · n, q

〉
∂T

= 0 ∀q ∈ P0(T ).(3.11)

Thus, denoting by Ph the L2(Ω) projection onto Wh, equation (3.11) is equivalent
to the following commutativity property:

div Π̂hv = Phdiv v ∀v ∈ C0(Ω) ∩H1
0 (Ω).(3.12)

However, due to the first condition in (3.9), the operator Π̂h is not well defined on
H1

0 (Ω), and therefore some modifications are in order. To this end, we use the com-
mon approach of replacing v(xi) in (3.9) with ΠSv(xi), where ΠS : H1

0 (Ω) → Lh

denotes the Scott–Zhang interpolant [23] and Lh ⊂ H1
0 (Ω) is the linear Lagrange

finite element space. This then leads to the definition of Πh : H1
0 (Ω) → Vh with

Πhv(xi) = ΠSv(xi),

∫
ei

Πhv ds =

∫
ei

v ds (i = 1, 2, 3).(3.13)

It is easily seen that the commutative property (3.12) holds for Πh as well; i.e.,

divΠhv = Phdiv v ∀v ∈ H1
0 (Ω).(3.14)

We now address the approximation properties of Πh. To this end, we first
introduce the two auxiliary spaces

Mh =
{
v ∈ H0(div; Ω) : v

∣∣
T
∈ M2(T ) ∀T ∈ Th

}
,(3.15)

Qh =
{
v ∈ H1

0 (Ω) : v
∣∣
T
∈ Q2(T ) ∀T ∈ Th

}
.(3.16)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STOKES ELEMENTS ON TRIANGULAR MESHES 23

The associated projections of Mh and Qh are then given respectively as ΠM :
H1

0 (Ω) → Mh, ΠQ : H1
0 (Ω) → Qh, defined locally by

ΠMv(xi) = ΠSv(xi),

∫
ei

(ΠMv) · ni ds =

∫
ei

v · ni ds,(3.17) ∫
ei

(ΠQv) · ti ds =
∫
ei

v · ti ds.(3.18)

Following the arguments in Section 3.1, we see that these spaces and their corre-
sponding projections are well defined. Since functions in Qh vanish at the vertices,
see (2.4a)3, it follows from (3.17) that

ΠMv(xi) +ΠQ(I −ΠM )v(xi) = ΠMv(xi) = ΠSv(xi).(3.19)

At the same time, the vanishes of the zeroth order normal moments, recall the proof
of Lemma 2.1, implies that∫

ei

(
ΠMv +ΠQ(I −ΠM )v

)
· ni ds =

∫
ei

ΠMv · ni ds =

∫
ei

v · ni,(3.20)

where I denotes the identity operator on H1
0 (Ω). Moreover, by (3.18) we have∫

ei

(
ΠMv +ΠQ(I −ΠM )v

)
· ti ds(3.21)

=

∫
ei

(
ΠMv + (I −ΠM )v

)
· ti ds =

∫
ei

v · ti ds.

Thus, Πh = ΠM + ΠQ(I − ΠM ) satisfies conditions (3.13). We can equivalently
write

I −Πh = (I −ΠQ)(I −ΠM ).(3.22)

Hence, the approximation properties of Πh reduce to the stability estimates of ΠQ

together with the approximation properties of ΠM . We now address the first issue.
Given v ∈ H1

0 (Ω), we write

ΠQv
∣∣
T
=

3∑
i=1

dicurl (Bei)
∣∣
T

with di ∈ R.

By Lemma 2.1, we have

ΠQv · tj
∣∣
ej

= dj
∂Bej

∂nj

∣∣∣
ej

= ajdjbej
∣∣
ej
.(3.23)

Therefore by (3.18), we obtain

ajdj

∫
ej

bej dx =

∫
ej

ΠQv · tj ds =
∫
ej

v · tj ds,

and thus,

ajdj =
1∫

ej
bej ds

∫
ej

v · tj ds =
6

|ej |

∫
ej

v · tj ds ≤
6

|ej |1/2
‖v · tj‖L2(ej).(3.24)
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Hence by a scaling argument using the Piola transformation and (3.23)–(3.24), we
obtain

‖ΠQv‖L2(T ) ≤ Ch
1/2
T

3∑
i=1

∥∥ΠQv · ti
∥∥
L2(ei)

(3.25)

= Ch
1/2
T

3∑
i=1

aidi‖bei‖L2(ei)

≤ Ch
1/2
T

3∑
i=1

aidi|ei|1/2 ≤ Ch
1/2
T ‖v · t‖L2(∂T ),

where C > 0 is independent of h.
The arguments in [3] can be used to derive the approximation properties of

Mh so we only sketch the main points. First, we introduce the operator ΠM,0 :
H1

0 (Ω) → Mh, defined locally as

ΠM,0v(xi) = 0,

∫
ei

ΠM,0v · ni ds =

∫
ei

v · ni ds.(3.26)

By (3.17) and (3.26), we have I − ΠM = (I − ΠM,0)(I − ΠS). Furthermore, by
standard scaling arguments, we have ‖ΠM,0v‖L2(T ) ≤ C

(
‖v‖L2(T ) + hT ‖v‖H1(T )

)
.

It then follows that ‖v−ΠMv‖L2(T ) ≤ C
(
‖v−ΠSv‖L2(T ) + hT ‖v−ΠSv‖H1(T )

)
,

and therefore by approximation properties of the Scott–Zhang operator and the
inverse estimate, we deduce

‖v −ΠMv‖Hm(T ) ≤ Chs−m
T ‖v‖Hs(ω(T )) (0 ≤ m ≤ s, 1 ≤ s ≤ 2).(3.27)

Combining the decomposition (3.22) with (3.25), (3.27) and the trace inequality,
we obtain

‖v −Πhv‖L2(T ) ≤ ‖v −ΠMv‖L2(T ) + Ch
1/2
T ‖v −ΠMv‖L2(∂T )

≤ C
(
‖v−ΠMv‖L2(T )+hT ‖v−ΠMv‖H1(T )

)
≤ Chs

T ‖v‖Hs(ω(T )).

With a further scaling argument we have the following lemma.

Lemma 3.3. For any v ∈ Hs(Ω) ∩H1
0 (Ω) with 1 ≤ s ≤ 2, there holds

‖v −Πhv‖Hm(T ) ≤ Chs−m
T ‖v‖Hs(ω(T )) (0 ≤ m ≤ 1).(3.28)

3.3. Convergence analysis. To start the convergence analysis, we first verify
that the inf-sup condition (1.4) holds, and show that the discretely divergence-free
functions in Vh are divergence-free pointwise, that is, (1.6) holds. First, for given
q ∈ Wh ⊂ L2

0(Ω) there exists v ∈ H1
0 (Ω) such that [14]

C‖q‖L2(Ω) ≤
(div v, q)

‖v‖H1(Ω)
.

It then follows from (3.14) and (3.28) that

C‖q‖L2(Ω) ≤
(divΠhv, q)

‖v‖H1(Ω)
≤ C

(divΠhv, q)

‖Πhv‖H1(Ω)
≤ sup

w∈Vh\{0}

(divw, q)

‖w‖H1(Ω)
.

Thus, the inf-sup condition holds. Furthermore it is easy to see from the definition
of Vh and Wh that divVh ⊂ Wh, from which we easily deduce divVh = Wh. It
then follows that (1.6) holds as well.
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As is well known, since our spaces satisfy (1.6), we get estimates of the velocity
which are independent of p. We omit the proof of the following theorem as it is
found in many places in the literature (e.g., [7, 9]).

Theorem 3.4. Let (u, p) satisfy (1.1), and let (uh, ph) ∈ Vh ×Wh satisfy (1.3).
We then have

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u−Πhu)‖L2(Ω)

and

‖Php− ph‖L2(Ω) ≤ C ν‖∇(u−Πhu)‖L2(Ω).

Consequently, by (3.28) and the Poincaré inequality there holds

‖u− uh‖H1(Ω) ≤ Ch‖u‖H2(Ω),

‖p− ph‖L2(Ω) ≤ Ch
(
ν‖u‖H2(Ω) + ‖p‖H1(Ω)

)
.

4. Characterization of divergence-free elements

In this section, we discuss how the divergence-free functions of Vh can be ex-
plicitly characterized, and we show the relation of this space with the C1 singular
Zienkiewicz finite element space [11]

Zh =
{
z ∈ H2

0 (Ω) : z
∣∣
T
∈ Z(T )

}
,(4.1)

where

Z(T ) = P3(T )\span{bT } ⊕ span
{
Bei

}3

i=1
.(4.2)

The space Zh consists of (reduced) Hermite polynomials enriched with rational
bubble functions to enforce C1 continuity across the interior edges of the mesh.
The local space Z(T ) has dimension 12 and its degrees of freedom can be chosen
as

z(xi),∇z(xi) for all vertices xi,(4.3a) 〈
∂z/∂ni, κ

〉
ei

for all κ ∈ P0(ei) (i = 1, 2, 3).(4.3b)

We now show that the divergence-free functions in Vh can be written as the curl of
functions in Zh. Furthermore, we establish the commutativity property

curl Ihz = Πhcurl z,(4.4)

where Ih : H2(Ω) → Zh denotes the projection onto Zh corresponding to the choice
of degrees of freedom (4.3); that is,

Ihz(xi) = z(xi), ∇Ihz(xi) = ΠS∇z(xi),

∫
ei

∂Ihz

∂ni
ds =

∫
ei

∂z

∂ni
ds ∀z ∈ H2(Ω).

From the commuting property (4.4), we can then easily establish that the following
de Rham complex is an exact sequence (i.e., the range of each map is the kernel of
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the following one).

R

⊂
−−−−−→ H2(Ω)

curl
−−−−−→ H1(Ω)

div
−−−−−→ L2(Ω) −→ 0⏐⏐⏐⏐� Ih

⏐⏐⏐⏐� Πh

⏐⏐⏐⏐�Ph

R

⊂
−−−−−→ Zh

curl
−−−−−→ Vh

div
−−−−−→ Wh −→ 0

(4.5)

First, we claim that the curl operator maps Zh to the space of divergence-
free function of Vh. Indeed, this follows by writing P3(T )\span{bT } = P2(T ) ⊕
span{beiλi+1}3i=1. Therefore, we have

curlZ(T ) = curlP2(T )⊕ span{curl (beiλi+1)}3i=1 ⊕ span{curl (Bei)}3i=1 ⊂ V (T ).

Since curlZh ⊂ H1
0 (Ω), the claim is proved.

We also note that curl (Ihz)(xi) = ΠScurl (z)(xi) = Πhcurl (z)(xi). Moreover,
we have∫

ei

curl (Ihz) · ti ds =
∫
ei

∂(Ihz)

∂ni
ds =

∫
ei

∂z

∂ni
ds =

∫
ei

(Πhcurl z) · ti ds

and ∫
ei

curl (Ihz) · ni ds =

∫
ei

∂(Ihz)

∂ti
ds =

∫
ei

∂z

∂ti
ds =

∫
ei

(Πhcurl z) · ni ds.

Since curl (Ihz) ∈ Vh, it follows that the commutative property (4.4) holds.
Now suppose that v ∈ Vh with div v = 0. It then follows from the first row

of (4.5) that there exists z ∈ H2(Ω) such that curl z = v. Then by (4.4) and
the idempotency of Πh there holds v = Πhv = Πh(curl z) = curl (Ihz). It then
follows that the diagram (4.5) is exact.

Remark 4.1. From the discussion above, we can deduce that the divergence-free
functions in Mh (defined by (3.15)) can be written as the curl of reduced cubic
Hermite functions, and the analogous exact de Rham complex holds:

R

⊂
−−−−−→ H(curl ; Ω)

curl
−−−−−→ H(div ; Ω)

div
−−−−−→ L2(Ω) −→ 0⏐⏐⏐⏐� Ĩh

⏐⏐⏐⏐� ΠM

⏐⏐⏐⏐�Ph

R

⊂
−−−−−→ Z̃h

curl
−−−−−→ Mh

div
−−−−−→ Wh −→ 0,

(4.6)

where Z̃h denotes the reduced cubic Hermite finite element space and Ĩh the corre-
sponding projection.

5. Higher order elements

The elements discussed above can be generalized to form a hierarchy of conform-
ing finite elements of arbitrary order. Of course for k ≥ 4 the practical values of the
proposed elements are questionable, since the Scott–Vogelius elements are known
to be stable in this case.
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For an integer k ≥ 1, we set

V (T ) = Mk+1(T ) +Qk+1(T )(5.1)

with

Mk+1(T ) = Pk(T ) + span
{
curl (beiλ

k
i+1)

}
,(5.2)

Qk+1(T ) =

3∑
i=1

curl (BeiQ
(i)
k−1(T )),(5.3)

and

Q
(i)
k−1(T ) =

{
q ∈ Pk−1(T ) : (q, Beip)T = 0 ∀p ∈ Pk−2(T )

}
.(5.4)

In the case k = 1, we set Q
(i)
k−1(T ) = P0(T ) so that we recover the local space

discussed in Section 3. The degrees of freedom that uniquely determine a function
in V (T ) can be chosen as

v(xi) for all vertices xi,(5.5a) 〈
v,κ

〉
ei

for all κ ∈ Pk−1(ei) (i = 1, 2, 3),(5.5b)

(v,ρ)T for all ρ ∈ Nk−1(T ),(5.5c)

where

Nk−1(T ) = Pk−2(T ) +
{
w ∈ Pk−1(T ) : w · x = 0

}
denotes the Nedelec space of index k − 1 [19].

We now prove the higher order analogue of Lemma 3.1.

Lemma 5.1. There holds

V (T ) = Mk+1(T )⊕Qk+1(T ),(5.6)

dimV (T ) = dimPk(T ) + 3(k + 1).(5.7)

Moreover, the degrees of freedom (5.5) are unisolvent on V (T ), and V (T ) restricted
to ∂T is a subspace of Pk+1(∂T ).

Proof. First we show that Mk+1 = Pk(T ) ⊕ span{beiλk
i+1}. Suppose that v =∑3

i=1 dibeiλ
k
i+1 ∈ Pk(T ) with di ∈ R. Then v ·ni

∣∣
ei

= di
∂(beiλ

k
i+1)

∂ti

∣∣∣
ei

∈ Pk(ei). It

then follows that

0 = di
∂k+2(beiλ

k+1)

∂tk+2
i

∣∣∣
ei

=
di
2
(k + 1)(k + 2)

∂2bei
∂t2i

∂k(λk
i+1)

∂tki

∣∣∣
ei

=
di
2
k!(k + 1)(k + 2)

∂2bei
∂t2i

(∂λi+1

∂ti

)k∣∣∣
ei
.

Since
∂2bei
∂t2i

(
∂λi+1

∂ti

)k

is a nonzero constant, it follows that di = 0. It then follows

that the direct sum (5.6) holds. Furthermore, it is clear that dimQk+1(T ) = 3k
and dimSk+1(T ) = 3, and therefore the dimension count (5.7) follows from (5.6).

Now suppose that v ∈ V (T ) vanishes at all the degrees of freedom (5.5). Then
to show unisolvency, it suffices to show that v ≡ 0, since the number of degrees of
freedom equals the dimension of V (T ). Write v = v0 + q with v0 ∈ Mk+1(T ) and
q ∈ Qk+1(T ). Noting that q · n

∣∣
∂T

= 0, we see that v0 vanishes at the vertices of
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T and its normal components vanish on ∂T up to moments of degree k − 1. Since
v0 ∈ Pk+1(T ), we have v0 · n

∣∣
∂T

= 0. By using the same arguments as above, we

deduce v0 ∈ Pk(T ).

Next, we write q =
∑3

i=1 curl (Beiqi) with qi ∈ Q
(i)
k−1(T ). By (5.5c) and (5.4),

we have

0 = (v,ρ)T = (v0,ρ)T +

3∑
i=1

(curl (Beiqi),ρ)T

= (v0,ρ)T −
3∑

i=1

(qi, Beicurl (ρ))T = (v0,ρ)T ∀ρ ∈ Nk−1(T ).

Here we have used the inclusion curlNk−1(T ) ⊂ Pk−2(T ). Since v0 ·n vanishes on
∂T , it follows that v0 ≡ 0 [20]. Finally by (5.5c) and Lemma 2.1, we have

0 =
〈
v · ti, qi

〉
ei

=
〈
∂(Biqi)/∂ni, qi

〉
ei

= ai
〈
beiqi, qi

〉
ei
.

Therefore qi = 0 (i = 1, 2, 3) on ei and hence we may write qi = λipi for some
pi ∈ Pk−2(T ). But then by (5.4) we have 0 = (qi, Beipi)T = (pi, Beiλipi)T . It then
follows that qi ≡ 0, and therefore v ≡ 0. This completes the proof. �

In the general case, the global spaces are defined as

Vh =
{
v ∈ H1

0 (Ω) : v
∣∣
T
∈ V (T )

}
,

Wh =
{
q ∈ L2

0(Ω) : q
∣∣
T
∈ Pk−1(T )

}
.

It is easy to see that the corresponding projections Πh and Ph satisfy the commuta-
tivity property (3.14). Moreover, the following estimates can be shown by following
the derivation of Lemma 3.3

‖v −Πhv‖Hm(T ) ≤ Chs−m
T ‖v‖Hs(ω(T )) 0 ≤ m ≤ 2, m ≤ s ≤ k + 1.

Finally, we mention that divergence-free functions in Vh can be written as the
curl of functions belonging to a generalized Zienkiewicz finite element space. Indeed,
define

Z(T ) = Pk+1(T )⊕ span
{
beiλ

k
i+1

}3

i=1
+ span

{
BeiQ

(i)
k−1(T )

}3

i=1
,

and let Zh =
{
z ∈ H2

0 (Ω) : z
∣∣
T
∈ Z(T )

}
be the corresponding global space. The

degrees of freedom that uniquely determine functions in the local space of Zh are

z(xi), ∇z(xi) for all vertices xi,〈
z, κ

〉
ei

for all κ ∈ Pk−2(ei),

(z, ρ)T for all ρ ∈ Pk−2(ei),〈
∂z/∂ni, ω

〉
ei

for all ω ∈ Pk−1(ei).

Following the arguments in the proof of Lemma 5.1, it is straightforward to show
that these degrees of freedom are unisolvent on Z(T ). Similar to the lowest or-
der Zienkiewicz finite elements, the space Z(T ) consists of reduced Hermite-type
elements plus 3k rational basis functions. We are not aware of any higher order
generalization of the Zienkiewicz elements nor the reduced Hermite elements in the
literature, although their practical value may be questionable.
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6. Reduced elements

In this section, we discuss how to construct reduced elements with smaller di-
mension. One plausible approach is to impose the condition that the tangental
component of functions in V (T ) (defined by (5.1)) are a subset of Pk(∂T ) when
restricted to the boundary of T . The resulting local space has dimension that is
exactly three less than V (T ); i.e., the dimension is dimPk(T ) + 3k. The degrees
of freedom of this reduced space would then be the same as (5.5), except that the
degrees of freedom (5.5b) are replaced by the (k − 1)-th moments of the normal
component of v and the (k − 2)-th moments of the tangental component.

Here, we construct an alternative reduced space that has a smaller dimension
than the one discussed above when k ≥ 2. To describe the local space of these
reduced elements, we first need the following result.

Lemma 6.1. Define

si := curl
(
beiλ

k
i+1 + ciλ

k−1
i+1 Bei + λk−1

i+1 Bei+2

)
,(6.1)

where

ci :=
(
∇λi+2 − (k + 1)∇λi+1

)
· ∇λi/a

2
i .(6.2)

Then si enjoys the following properties:

div si = 0, si · t
∣∣
∂T

∈ Pk(∂T ),(6.3a)

si · nj

∣∣
ej

= 0 (i �= j), si · ni

∣∣
ei

∈ Pk+1(ei)\Pk(ei).(6.3b)

Proof. The identity div si = 0 is clear from the definition of si. To show that
s · t

∣∣
∂T

∈ Pk(∂T ), we employ Lemma (2.1) and (6.1) to obtain for any ej ⊂ ∂T ,

si · tj
∣∣∣
ej

=
∂(beiλ

k
i+1)

∂nj
+ δi,jciaiλ

k−1
i+1 bei − δi+2,jai+2λ

k−1
i+2 bei+2

= δi,j(k + 1)λk−1
i+1 bei

∂λi+1

∂nj
+ λk+1

i+1

∂λi+2

∂nj

+ δi,jciaiλ
k−1
i+1 bei − δi+2,jai+2λ

k−1
i+1 bei+2

= δi,j

[
(k + 1)

∂λi+1

∂nj
+ ciai

]
λk−1
i+1 bei − δi+2,jai+2λ

k−1
i+1 bei+2

+ λk+1
i+1

∂λi+2

∂nj
.

We note that if j = i+ 1, then si · tj
∣∣
ej

= 0. On the other hand, if j = i, then by

(6.2), and since nj = ∇λj/aj , we obtain

s · tj
∣∣∣
ej

=
(
(k + 1)

∂λi+1

∂nj
+ ciai

)
λk−1
i+1 bei + λk+1

i+1

∂λi+2

∂nj

=
(
(k + 1)

∂λi+1

∂ni
+ ciai

)
λk
i+1(1− λi+1) + λk+1

i+1

∂λi+2

∂ni

=

[
−
(
(k + 1)

∂λi+1

∂ni
+ ciai

)
+

∂λi+2

∂ni

]
λk+1
i+1 +

(
(k + 1)

∂λi+1

∂ni
+ ciai

)
λk
i+1

=
(
(k + 1)

∂λi+1

∂ni
+ ciai

)
λk
i+1 ∈ Pk(ei).
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When j = i+ 2, we have

s · tj
∣∣∣
ej

= ai+2λ
k−1
i+1 bei+2

+ λk+1
i+1

∂λi+2

∂ni+2

= ai+2λ
k
i+1(1− λi+1) + ai+2λ

k+1
i+1 = ai+2λ

k
i+1 ∈ Pk(ei+2).

Finally, since the rational bubbles vanish on ∂T , we have si ·n
∣∣
∂T

=
∂(beiλ

k
i+1)

∂t

∣∣
∂T

.

Since bei vanishes on ∂T\ei, there holds si ·nj

∣∣
ej

= 0 for i = j. On the other hand,

on edge ei, we have si · ni

∣∣
ei

=
∂(λk+1

i+1 λi+2)

∂t

∣∣
ei

∈ Pk+1(ei)\Pk(ei). �

We define the local space of the reduced elements as follows:

VR(T ) = MR(T ) +QR(T )(6.4)

where

MR(T ) = Pk(T ) + span{si}3i=1,(6.5)

and

QR(T ) =

⎧⎨⎩
∅ if k = 1,
span{curl (Bei)}2i=1 if k = 2,
span{curl (λi+1Bei)}3i=1 if k ≥ 3.

(6.6)

In (6.5), the functions si are defined in Lemma 6.1. It is easy to see that the
summations in (6.4) are direct and

dimVR(T ) =

⎧⎪⎨⎪⎩
dimPk(T ) + 3 if k = 1,

dimPk(T ) + 5 if k = 2,

dimPk(T ) + 6 if k ≥ 3.

The degrees of freedom of VR(T ) are then

v(xi) for all vertices xi,(6.7a) 〈
v · ni, κ

〉
ei

for all κ ∈ Pk−1(ei) (i = 1, 2, 3),(6.7b) 〈
v · ti, ω

〉
ei

for all ω ∈ Pk−2(ei) (i = 1, 2, 3),(6.7c)

(v,∇q)T for all q ∈ Pk−1(T ),(6.7d)

(v, curl (b2Tm))T for all m ∈ Pk−5(T ).(6.7e)

Here we have used the convention that if k ≤ 4, then the degrees of freedom (6.7e)
are omitted, and if k = 1, then the degrees of freedom (6.7c) are omitted.

Lemma 6.2. The degrees of freedom (6.7) are unisolvent on VR(T ).

Proof. We prove the (harder) case k ≥ 3 as the other cases can be handled similarly.
We proceed by showing that if v ∈ VR(T ) vanishes at the degrees of freedom (6.7),
then v ≡ 0. Unisolvency then follows since the number of degrees of freedom in
(6.7) and the dimension of VR(T ) match.
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Write

v = v0 + q, v0 = v̄ + s, v̄ ∈ Pk(T ),

s =

3∑
i=1

disi, q =

3∑
i=1

giqi ∈ QR(T ), qi = curl (λi+1Bei),

and di, gi ∈ R. By Lemmas 6.1 and 2.1 there holds v ·n
∣∣
∂T

∈ Pk+1(∂T ). Therefore

by (6.7a)–(6.7b), we have v · n
∣∣
∂T

= 0. Hence, by (6.1) and Lemma 2.1 we obtain

0 = v · n
∣∣
ej

= v0 · n
∣∣
ej

+ dj
∂(bejλ

k
j+1)

∂tj

∣∣∣
ej
.

It then follows that dj∂(bejλ
k
j+1)/∂tj

∣∣
ej

∈ Pk(ej), and therefore we conclude dj = 0

by using the same arguments found in the proof of Lemma 5.1. Thus, v = v̄ + q.
Next, by (6.7d) we have

0=(v,∇q)T =(v̄,∇q)T +

3∑
i=1

gi(curl (λi+1Bei),∇q)T =(div v̄, q) ∀q ∈ Pk−1(T )

since v̄ · n
∣∣
∂T

= 0. It then follows that div v̄ = 0 and therefore v̄ = curl (bT r) for
some r ∈ Pk−2(T ). By (6.7c), Lemma 2.1, and equation (2.2), we have

0 =
〈
v · tj , ω

〉
ej

=
〈
v̄ · tj , ω

〉
ej

+ ajgj
〈
λj+1bej , ω

〉
ej

=
〈
curl (bT r) · tj , ω

〉
ej

+ ajgj
〈
λj+1bej , ω

〉
ej

= aj
〈
(r + gjλj+1)bej , ω

〉
ej

∀ω ∈ Pk−2(ej).

It then follows that r+gjλj+1

∣∣
ej

= 0, and therefore we may write r = pjλj−gjλj+1

for some pj ∈ Pk−3(T ). Similarly, we have r = pj+1λj+1 − gj+1λj+2 for some
pj+1 ∈ Pk−3(T ). Then on edge ej+1 we have

pjλj

∣∣
ej+1

= r
∣∣
ej+1

= −gj+1λj+2

∣∣
ej+1

.

From this identity, we conclude that gj+1 = 0 and therefore q ≡ 0 and r vanishes
on ∂T . We can then write v̄ = curl (b2Tm) for some m ∈ Pk−5(T ), and hence the
degree of freedom (6.7e) implies v̄ ≡ 0. �

7. Numerical experiments

In this section we validate the theory derived in the previous sections with some
numerical experiments. In addition, we look at the effect of numerical integration
and observe how the condition number scales with respect to the discretization
parameter. We take the domain to be the unit square Ω = (0, 1)2 and choose the
data such that the exact solution is given by

u = 2π sin(πx1) sin(πx2)
(
sin(πx1) cos(πx2),− sin(πx2) cos(πx1)

)t
= curl

(
sin2(πx1) sin

2(πx2)
)
,

p = x1 + x2 − 1.

In our computations, we use uniform meshes similar to the one depicted in Figure 1.
We list the errors of the computed solution and the maximum divergence of the

computed velocity using various quadrature rules in Tables 1–4. Table 1 clearly
shows that using a 3-point quadrature rule (exact for quadratic polynomials) is
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insufficient to accurately capture the exact solution. In particular, we observe
that the velocity errors and pressure errors converge at a rate that is less than
what is expected (cf. Theorem 3.4), although the L∞ error of the divergence is
close to zero. Higher order quadrature rules clearly yield better approximations,as
seen in Tables 2–4. Here we observe the expected rates of convergence using a
6-point, 16-point, and 37-point quadrature rule (exact for 4th degree, 8th degree,
and 13th degree polynomials, respectively). The differences between Tables 2–4 are
negligible, indicating that the relatively low order 6-point quadrature rule suffices.

Finally, we list the condition number of the symmetric positive definite (SPD)
part of the resulting linear system in Table 5 (we use the 37-point quadrature rule
to construct the stiffness matrix). The table indicates that the condition number
scales the same as O(h−2), which is similar to other mixed finite elements for the
Stokes problem.

Figure 1. The mesh used in our computations with h = 1/16.

Table 1. Errors using a 3-point quadrature rule, exact for qua-
dratic polynomials.

h ‖u− uh‖L2 rate |u− uh|H1 rate ‖p− ph‖L2 rate ‖divuh‖L∞

1/2 5.36E+00 8.03E+00 8.51E−01 2.66E−14
1/4 2.89E+00 0.89 6.17E+00 0.38 5.10E−01 0.74 7.82E−14
1/8 2.68E+00 0.11 5.06E+00 0.29 3.62E−01 0.50 3.20E−13
1/16 2.51E+00 0.10 4.23E+00 0.26 2.59E−01 0.48 2.25E−12
1/32 1.71E+00 0.55 3.62E+00 0.23 1.95E−01 0.41 9.38E−13
1/64 1.09E+00 0.65 2.97E+00 0.28 1.35E−01 0.52 2.56E−12
1/128 5.94E−01 0.88 2.13E+00 0.48 7.14E−02 0.92 4.32E−12
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Table 2. Errors using a 6-point quadrature rule, exact for quartic polynomials.

h ‖u− uh‖L2 rate |u− uh|H1 rate ‖p− ph‖L2 rate ‖divuh‖L∞

1/2 3.74E−01 4.36E+00 2.25E+00 5.36E−15
1/4 1.26E−01 1.57 1.97E+00 1.15 8.57E−01 1.39 3.62E−14
1/8 3.75E−02 1.75 7.92E−01 1.32 2.35E−01 1.87 2.84E−14
1/16 1.03E−02 1.86 3.01E−01 1.40 6.84E−02 1.78 1.74E−13
1/32 2.71E−03 1.92 1.19E−01 1.34 2.34E−02 1.55 3.02E−13
1/64 6.98E−04 1.96 5.30E−02 1.17 9.83E−03 1.25 5.04E−12
1/128 1.77E−04 1.98 2.56E−02 1.05 4.65E−03 1.08 9.76E−12

Table 3. Errors using a 16-point quadrature rule, exact for eighth
degree polynomials.

h ‖u− uh‖L2 rate |u− uh|H1 rate ‖p− ph‖L2 rate ‖divuh‖L∞

1/2 4.53E−01 5.39E+00 1.41E+00 7.99E−15
1/4 1.49E−01 1.60 2.70E+00 0.99 5.60E−01 1.33 3.20E−14
1/8 4.04E−02 1.89 1.18E+00 1.20 3.27E−01 0.77 5.68E−14
1/16 1.03E−02 1.97 4.88E−01 1.27 1.45E−01 1.17 1.42E−13
1/32 2.63E−03 1.97 2.13E−01 1.20 5.64E−02 1.37 2.27E−13
1/64 6.69E−04 1.97 1.01E−01 1.08 2.32E−02 1.28 5.68E−13
1/128 1.69E−04 1.98 4.96E−02 1.02 1.05E−02 1.14 8.67E−12

Table 4. Errors using a 37-point quadrature rule, exact for 13th
degree polynomials.

h ‖u− uh‖L2 rate |u− uh|H1 rate ‖p− ph‖L2 rate ‖divuh‖L∞

1/2 4.55E−01 5.40E+00 1.48E+00 2.67E−15
1/4 1.50E−01 1.60 2.70E+00 1.00 5.37E−01 1.46 4.72E−15
1/8 4.05E−02 1.89 1.17E+00 1.21 2.97E−01 0.86 1.36E−14
1/16 1.04E−02 1.97 4.80E−01 1.29 1.34E−01 1.14 1.97E−14
1/32 2.64E−03 1.97 2.07E−01 1.21 5.26E−02 1.35 4.16E−14
1/64 6.72E−04 1.97 9.72E−02 1.09 2.17E−02 1.28 8.46E−14
1/128 1.70E−04 1.98 4.78E−02 1.02 9.84E−03 1.14 1.46E−13
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Table 5. Condition number of the SPD part of the linear system.

h Condition # rate

1/2 7.29E+02
1/4 2.86E+03 −1.97
1/8 1.09E+04 −1.93
1/16 4.22E+04 −1.95
1/32 1.65E+05 −1.97
1/64 6.53E+05 −1.98
1/128 2.60E+06 −1.99

8. Conclusion

In this paper, we have developed a family of Stokes finite elements that produce
conforming, pointwise divergence-free approximations. We have exploited the cor-
responding smoothed de Rham complex to make connections with H2-conforming
elements. We note that using complexes of function spaces have helped to develop
conforming and symmetric elements for linear elasticity [3]. Our reduced elements
seem to be computationally competitive. For example, the lowest order element has
the same degrees of freedom as the Bernardi–Raugel element. We plan to develop
the analogous three dimensional elements on general tetrahedral meshes in the near
future.
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