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existing software and in many situations without the use of Markov chain Monte Carlo methods, resulting in computation on the
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matter (PM2 5) exposure on birth weight in Mecklenburg County, North Carolina.
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1. Introduction

In many applications, the effect of an exposure or treatment X on an outcome Y is estimated while
controlling for other explanatory or confounding variables. These additional covariates are often
selected from a potentially large number of observed variables U, and the estimated exposure
effect can be sensitive to the set of covariates included. In such cases, omitting confounding
variables, those correlated with both X and Y, can bias the estimate of the exposure effect.
On the other hand, including variables that are correlated with neither X nor Y increases the
variance of the exposure effect. Estimating the exposure effect is particularly difficult when the
number of potential confounders is large relative to the sample size. However, accounting for all
confounding variables while minimizing the number of variables uncorrelated with the outcome
that are included in the model is essential for inference on the exposure effect.

There are numerous variable selection methods that can be used to select a model that balances
model fit and parsimony. Popular methods include a variety of penalized regression models: the
least absolute shrinkage and selection operator (LASSO; Tibshirani, 1996), smoothly clipped ab-
solute deviation (SCAD; Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), the adaptive
LASSO (Zou, 2006), and octagal shrinkage and clustering algorithm for regression (OSCAR;
Bondell and Reich, 2008). Bayesian methods have also been developed for variable selection
(George and McCulloch, 1993; George and Foster, 2000; Brown et al., 2002; Carvalho et al.,
2010; Bondell and Reich, 2012). However, these variable selection methods emphasize predic-
tion, not estimation of the effect of one exposure of interest while treating the other predictors
as confounders. Applying these general variable selection methods without specifically treating
covariates as confounders could be problematic. For example, if a confounder is highly correlated
with the exposure and the exposure is forced to be included in the model, the confounder will likely
be dropped, leading to bias.

Rather than selecting a single model, Bayesian model averaging (BMA) attempts to account
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for effect uncertainty by averaging the effect estimate over the entire model space, giving higher
weights to models that have greater support from the data. However, to insure an unbiased effect
estimate the model should contain all confounding variables. Crainiceanu et al. (2008) noted
that BMA averages over the subspace of models that includes all confounding variables and the
subspace that does not, and demonstrated the bias in the effect estimate that can result. To address
this, Crainiceanu et al. (2008) proposed a two-step approach. In the first step, the exposure is
regressed on the other covariates to identity potential confounders. In the second step, the outcome
is regressed on the exposure and the confounders identified in the first step. Additional explanatory
variables not identified as confounders are selected in this second step.

Wang et al. (2012) combine the exposure and outcome models into a one-step Bayesian model.
For both models, a set of indicator variables parameterize which covariates are included, and
those included in the exposure model are included in the outcome model with probability one.
Conceptually, this is BMA that only averages over the subspace of exposure models that include
all confounders while simultaneously accounting for uncertainty in confounder selection. This
method worked well for larger sample sizes, but is biased in simulations for smaller sample sizes
and no optimality properties have been identified. In addition, it is computationally intensive.

In this paper we take a decision-theoretic approach to confounder selection and effect estimation.
Our approach extends that of Bondell and Reich (2012) from the usual variable selection setting
to the important problem of confounder adjustment. We first fit the standard Bayesian regression
model and then post-process the posterior distribution in a decision-theoretic way using a loss
function that penalizes models that do not include confounding variables and other important
covariates. Thus, the proposed estimator is the Bayes rule associated with the proposed confounder-
specific loss function. The distinction between the different losses associated with errors in the
estimates of the variable of interest and confounders are made explicit in our loss function that leads

to the final estimate. This approach allows the priors on the regression coefficients to represent the



Confounder Selection via Penalized Credible Regions

state of knowledge before seeing the data as in the usual subjective Bayesian model, rather than
assigning priors designed to avoid errors caused by failing to include important confounders, which
is less natural in the Bayesian framework.

The proposed method has several appealing properties. Under general conditions it exhibits the
oracle properties (Fan and Li, 2001) and simulation studies show good finite sample performance.
Our method can be easily fit with existing software for a wide variety of outcome and exposure
models, including all generalized linear models. In some cases Markov chain Monte Carlo methods
are not required, for example, the normal linear model with normal or flat priors. We also establish
a connection between our method and the adaptive LASSO (Zou, 2006), but with weights tailored

to confounder adjustment rather than variable selection.

2. Methods

2.1 Modeling approach

The idea behind the proposed method is to find the simplest model among all feasible models. We
define a feasible model as one with coefficients in the (1 — /) x 100% posterior region of the full
model. Within this credible region we select the model that maximizes parsimony. In this case,
parsimony is defined as the model containing all confounders and other covariates associated with
the outcome, but no other covariates.

Consider the normal linear outcome model
Y =05 +X68+UB, +¢, € ~N(0,0I) (1)
and exposure model
X =1 +Uy, +e, € ~N0 o). 2)

For notational simplicity, let 3 = (8, 8., B2)". B, = (B, . .. )Ty = (10,757, and v, =

(Y15 -,7)" and assume W = (1,X,U) is n x (p + 2) with a column of ones for the intercept.
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Let C? and C2 be (1 — a) x 100% posterior credible regions of 3 and ~, respectively. In the
case of flat or N(0, o /7,I) prior on 3 (with 7, fixed) and inverse-gamma prior on o, the highest
posterior density region is of the form C? = {3 : (3 — B)TEy_l(ﬁ — ,@) < C,} where 3 and 3,
are the posterior mean and covariance. For regions of this form, there is a one-to-one relationship
between the chosen « level and the scaler C,,. For the exposure model, C) has a similar form. In
general, elliptical credible regions of this form exist for other priors on 3 and for other likelihoods
such as generalized linear models, but may not be the highest posterior density regions.

The set of feasible exposure and confounder coefficients are {3 : 3 € C2} and {~ : v € C]} for
a given probability level o € (0, 1). This feasible space will potentially include coefficient vectors
with some parameters equal to zero, and thus a reduced model.

The model of interestis Y = By + X3, + U, B4, + €, where A, = {j|5; # 0} U {j|v; # 0}
and Uy, and 3 4, are the corresponding subsets of U and 3. This includes all variables correlated
with the outcome or exposure. It is possible that this may include some variables correlated with X
but not Y; however, the errors resulting from including these variables are less severe than errors
from omitting variables that are correlated with both the outcome and exposure.

To find a sparse estimate we are interested in the feasible coefficient vector that minimizes the

cardinality of A,,. The proposed estimator is

B = argmin e (82 + 82) + 1B+ 1v.llp subjectto e ClandyeC)  (3)
3

where ||-||o denotes the Lg norm of a vector, that is, the number of nonzero elements, and ¢ is fixed

and small so the intercept and exposure effect are essentially unpenalized.

2.2 Penalized regression reformulation

The solution to (3) can be hard to find in practice as it requires a search over potentially high-
dimensional posterior regions. To ease computation, we use the smooth homotopy between L, and

L, proposed by Lv and Fan (2009) and used by Bondell and Reich (2012) for the usual linear
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regression setting, p, (t) = {(a + 1)t}/(a + t). The proposed criterion is > _*_, pa(|3;]+]7;]) and
limg 0+ 2271 pallB8j]4|7;1) = I1(1B.]+17.])llo- The penalty can be further simplified with a local

linear approximation (Zou and Li, 2008). The local linear approximation of p, (|5;|+|v;|) around

~

the posterior mean ( 3, 7;) is

afa+ 1) (+1) |, a+ ) (1B+171)
(a+1B150) (at 1B+

Since both credible regions are convex sets of the form {3 : 3 € C?} and {~v : v € C)}, the

pa (1851 + ;1) = )

proposed estimator in (3) with the local linearized penalty (4) is equivalent to the Lagrangian

optimization problem

B = orgrnin (B-B)"Z, BB+ (-3 (v-7)
v T+ 1B+

el s | e (BRI

= | (a+ IB+A) T (ot 1B+

&)

In (5), the Lagrangian multiplier \ absorbs the a(a + 1) in the numerator of (4).

Because our primary interest is in the effect of X, we let ¢ = 0 to completely remove the penalty
from the intercept and exposure. The second and fifth terms on the right hand side of (5) and the
~y; from the numerator of the fourth term do not effect the minimization with respect to 3 and can

be removed. Finally, by letting a — 0 we get the objective function

B = argmin (8- B)'S,' (8- B) + 2> AL
8 = (1B1+il)

For any given dataset, there is a one-to-one and decreasing relationship between o and \ because

(6)

of the one-to-one relationships between o and C, and between C, and A. The path of estimates
obtained by varying « is identical to the path obtained by varying A. This converts (3) into a
convex optimization problem with a single tuning parameter that can be easily solved with existing

software.
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2.3 Simplification under flat prior

Assuming the linear model in (1) and a flat prior for 3, pr(3) o 1, the posterior mean is the
least squares estimate B = (W'W)~'W”Y and the posterior covariance is proportional to 3,
(W W)~ In this case, (8 — B)T2; (B — B) is a linear function of the sum of squared errors and

the estimate can be written

3— m«ggm (Y -WB)T(Y -WB) + 2> @15 (7
j=1

where w; = 1/(|7;]+| @])2 for confounders j = 1,...,p. This is a special case of the adaptive
LASSO solution (Zou, 2006) with data-driven weights w; tailored to confounder adjustment so
that variables associated with either the exposure (large |7;|) or the response (large | B\] |) have small

penalty and are thus encouraged to be included in the outcome model.

2.4 Extension to multiple exposures
There is often interest in the effect of multiple exposures on an outcome. The penalized credible
region confounder selection method naturally extends to the multiple exposure case. For a second

exposure X, there is a second exposure model, for example

X, =0y +Ub, +€,,, €, ~N(0,021). (8)

Y T

Using a similar approach to the single exposures setting the penalized regression estimator for

multiple exposures is

B = argmin (8BS, (8- B) + 2> — L ©)
8 =1 (1 Byl 351+ 351

All the computation remains the same with (9). Additional exposure models can be used when
there are more than two exposures of interests. In addition, more complex relationships can be
estimated when it is appropriate. For example, X5 could be a covariate in (2) if it is believed that

confounders are correlated with the first exposure conditionally on X, i.e. Simpson’s paradox.
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3. Theoretical Results

Although motivated by Bayesian decision theory, the proposed estimator can take the form of a
standard penalized regression objective function. Therefore, it is of interest to evaluate this new
estimate using the techniques of penalized regression. Theorem 1 demonstrates that the credible
region confounder method has the oracle property for a properly chosen \,. Without loss of

generality let A = {0, x,1,...,po} and make the following assumptions:

ASSUMPTION 1: The posterior covariance %' /n 4, C, where C is a (p+2) x (p+2) positive

definite matrix that can be partitioned as

Cll C12
C= . (10)

C21 C22
ASSUMPTION 2: The posterior means are asymptotically normal, \/E(B - B) 4, N(0,C™1),

and analogously for ~y.

THEOREM 1: Under conditions 1 and 2, if \,/\/n — 0 and \,/n — oo the penalized
credible region confounder method is consistent in variable selection, lim,,_,., pr(A, = A) = 1,

and asymptotically normal, \/ﬁ(BA —B4) 4N (0, Cl_ll).

REMARK 1: Theorem 1 requires that the posterior mean is consistent for 3, which holds if 3’s
prior does not change with the sample size and has positive mass in the neighborhood of the truth,

and that the asymptotic covariance matrix of W is full rank.

2

REMARK 2:  Assumption 2 is satisfied in many settings. In the case of flat or N(0, o,

/7,1) prior
on 3 (with 7, fixed) and inverse-gamma prior on ag, as used in this paper, the posterior of 3 is
multivariate-t with degrees of freedom on the order of n. Hence, the posterior is asymptotically

normal. More generally, the Bayesian central limit theorem implies asymptotic normality under

loose regularity conditions.
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Theorem 1 assumes a rate on \,,. However, for the Bayesian credible regions approach it would
be more natural to study asymptotics as a function of the confidence level «,,. For a given dataset,
there is a one-to-one correspondence between A and . However, the limiting behavior as a function
of o, can be quite different than those for \,, (Gunes and Bondell, 2012; Bondell and Reich, 2012).
Theorem 1 implies path consistency as a function of «,,. Because the solution paths obtained by
varying o and )\ are identical for each dataset, the selection consistency result in Theorem 1 implies
that the correct model will be included in the solution path with probability tending to one for the

Bayesian credible regions approach. A proof of Theorem 1 is in the Web Appendix.

4. Computation and tuning

We first fit the full exposure and outcome models separately. This can be done with MCMC or with
a closed form solution when it is known to exist. Given the posterior means B and 4 and posterior
covariances 3, and X, we obtain the solution to (6) using least angle regression (LARS; Efron
et al., 2004). We then refit the outcome model using only confounders with nonzero coefficients
for our final estimates.

Let X* = XD where D = diag{6~',07!, (IBL+AD2 - - -, (1Bo|+[A,])?} and 6 is a very
small number that effectively removes the penalty on 3y and (.. If § is O then the model fit is
exactly (6); however, approximation with a very small number results in the same solution and a
nonzero value is required for LARS. Then let Y* = 3/ 1 2,@. Solving the L, penalized regression
function with Y* and X* gives the solution 3*. The solution to (3) is B = D@3". The full solution
can be estimated with the BayesPen package in R which is available on CRAN (Wilson et al.,
2014).

The method must be tuned by selecting either the confidence level & € (0, 1) or the penalty
parameter A > 0. For any given dataset, there is a one-to-one relationship between o and A and
the path of estimates obtained by varying « is identical to the path obtained by varying A. Gunes

and Bondell (2012) discuss this relationship in detail and note that most tuning methods (AIC,
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BIC, and cross-validation) can result in similar models but very different « levels for different
data sets. Further, the solution corresponding to a certain « level is not related to controlling the
false positive rate at that level. As such, tuning based on a pre-specified « level can result in poor
selection properties, while using the solution path obtained from varying « or A performs well. For
convenience, we tune based on A since this is the approach taken in the LARS package in R. This
gives the entire solution path.

There are several approaches to selecting a model from that path. We found that forward selection
performed best in our simulation study. We performed forward selection on the exposure and
outcome model simultaneously using the same path. Forward selection stops when the minimum
of the 2 tests for adding an additional covariate to the outcome and exposure model fails to reject
at a particular « level denoted by o/*. Larger o/* values will include more covariates and can be
considered more conservative. The LARS path may have a variable appear in a model and then
be removed before reappearing (Efron et al., 2004). For forward selection, we modified the LARS
path to include a covariate in every model after it first appears in order to ensure nested models
for testing. Alternative selection methods include cross-validation, Mallow’s C,, (Mallows, 1973),
Akaike information criterion (Akaike, 1973), and Bayesian information criterion (Schwarz, 1978).

The Web Appendix contains a simulation comparing these methods.

5. Simulation Study

5.1 Simulation with linear model

Our first simulation design follows from Wang et al. (2012). We assume Y ~ N(Wg3,I) where W
isann x (p+ 1) design matrix with the variable of interest in the first column and p = 57 potential
confounders. We let the covariates for the ith observation, W;, be independent N(0, X). The
covariance matrix 3 = {o0;;} has diagonal elements o;; = 1 and nonzero off-diagonal elements

ojr = 0.77"*=2 for j # k = 0,...,7. The remaining off-diagonal elements are zero; hence, w,
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for k > 7 are independent standard normal. The coefficients are 8, = $; = --- = 14 = 0.1 and
B15 = - - - = P57 = 0. Hence, we have seven confounding variables correlated with Y and X, seven
additional explanatory variables correlated with Y but not X, and 43 variables uncorrelated with
both X and Y.

We present the results for the penalized credible regions using three different priors on 3 and ~:
flat as assumed in Section 2.3; 3 ~ N(0,07/7,) and v ~ N(0,02/7,) with 7, and 7, estimated
from a linear model and fixed (empirical Bayes); and with independent Gamma(0.001,0.001) priors
on 7, and 7, for a fully Bayesian approach with proper priors. For the empirical Bayes approach
welet?, = o, /{(p+1)7' 30, @2} and 7, = 77 /(p~' X_F_, 77) where 7, B3, and 4 are estimated

from the full linear model. In all cases we put independent Gamma(0.001,0.001) priors on o,/ 2 and

-2
T

o

Table 1 compares model performance for the credible region method with the three priors. For
comparison we evaluate the simulated data with the true frequentist linear model that includes only
the first 14 covariates; the full frequentist linear model that includes all 57 covariates; BMA with

B; = m;aj, n; ~ Bern(0.5), and o; ~ N(0,10%); Bayesian adjustment for confounding (BAC;

Wang et al., 2012) with w = oo using the R package BEAU; and adaptive LASSO with v = 2.
[Table 1 about here.]

In general, the fully Bayesian credible region approach performed similarly to the true model in
terms of bias, MSE, and interval coverage for Bw, with the exception of the smallest sample size
where it was biased and had lower coverage. At the larger sample sizes, the empirical Bayes and
flat prior versions perform well and provide faster computation. These methods (and the adaptive
LASSO) require a large enough sample size to get good initial least squares estimates B and ~,
as well as 7, and 7, for the empirical Bayes priors, and thus perform poorly for small n. BMA,
BAC, and adaptive LASSO had higher MSE, were more biased, and had lower interval coverage

compared to the fully Bayesian credible region method, although the MSE for BAC and adaptive
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LASSO approaches that of the credible region at higher sample sizes. At the larger sample sizes,
BAC was notably slower than the other methods. For the moderate and larger sample sizes the
interval coverage for Bx achieved the nominal 95% level indicating that proper inference is being
made with the credible region method.

We computed the AUC for the credible region approach and adaptive LASSO by calculating the
sensitivity and specificity as additional variables are added along the path formed by varying A.
The credible region approach had larger AUC showing the benefit of weights specifically tailored
to confounder adjustment. For BAC and BMA the AUC is estimated by adding variables to the
model according to their inclusion probability. BAC had slightly higher AUC than the credible
region method at the smallest sample size but smaller AUC at the largest sample size.

Despite the higher AUC at small sample sizes, BAC tended to give more weight to smaller
models. For n = 100, Figure 1 compares the inclusion probability for each of the important
covariates and the average inclusion probability of the other covariates, using the empirical Bayes
priors for the confounder method. This shows that the credible region approach and BMA had a

higher inclusion rate for the confounding variables than BAC and adaptive LASSO.
[Figure 1 about here.]

While variables 1 through 14 have the same effect size, their correlation with the exposure varies.
The credible region approach includes confounding variables with greater frequency. The same is
true for BAC but the pattern is not as strong. Adaptive LASSO and BMA do not account for the
correlation with the outcome resulting in similar inclusion probabilities for all true predictors, not
an emphasis on those correlated with the exposure that can impact the exposure effect estimation.
The inclusion rate for the true confounders is below one because confounders that do not reduce
the sum of squared errors for either model are excluded. By excluding true confounders that do not
reduce the sum of squared errors the credible region approach can have lower MSE than the true

model due to the larger error degrees of freedom.

11
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These simulation results highlight the advantage of the penalized credible region approach rather
than BMA or BAC which use zero-inflated priors for selection. Specifically, at smaller sample
sizes the credible regions approach has smaller bias and MSE and higher interval coverage. The
credible regions approach with flat priors has a similar objective function to the adaptive LASSO,
except the weights in the penalty are augmented for confounder selection. Hence, the comparison
of the results for the adaptive LASSO and the penalized credible region approach with flat priors
highlights the advantage gained by including the confounder specific weights. These advantages
include smaller bias and MSE as well as better interval coverage and AUC. Using the approach of
Bondell and Reich (2012) with flat priors results in an estimator identical to the adaptive LASSO;
hence, the use of the exposure model and confounder-specific loss function proposed in this paper
improve performance when the primary interest is in estimating an exposure effect. Compared
to a purely penalized regression approach, by using the Bayesian framework that motivated this
method a practitioner can select priors for the regression coefficients. Even a vague normal prior
improves finite sample performance as demonstrated by the empirical Bayes and fully Bayesian
penalized credible region methods used here, and there is potential for additional gains when more

prior information is available.

5.2 Simulation in the ultra high-dimensional setting.

In many cases there is interest in inference for p > n. To test the confounder selection performance
in this setting we add additional covariates to the simulation that are independent standard normal
uncorrelated with both the outcome and the exposures. Hence, the simulation design remains
unchanged with the exception of additional noise variables added to the design. We use the fully
Bayesian prior with gamma prior on 7, and 7, and let nn grow at three rates: n = 100, n = 15+ ,/p,
and n = p/2. Figure 2 shows the resulting AUC. When n = p/2 the credible regions approach

performs well for variable selection at large sample sizes. However, for slower rates of growth the
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credible regions approach does not adequately select confounding variables. Hence, for p > n if n

grows at a sufficiently rate the penalized credible region method performs well.

[Figure 2 about here.]

5.3 Simulation with binary treatment and logistic confounder model
Our second simulation design assumes two treatment groups with no treatment effect. We assume
that there is a set of five confounders that are predictors of Y and have different distribution for the

two treatment groups. We generate X; as independent Bernoulli with probability 0.5 and let U;;

be normal with mean 5! X; and standard deviation j~! for j = 1, ..., 5. The remaining variables
(Uss, - - -, Uiso) are independent standard normal. The regression coefficients are 51, -+, 05 = 0.1
and B, = B =--- = 50 =0and Y is N(Wg3, I).

We fit the penalized credible regions using a logistic exposure model: X; is normal Bernoulli(p; ),
p; = logit(yo+u’~,), and the elements of « have independent standard normal priors. We present
the same three priors for the outcome model as used in simulation design one: flat, empirical Bayes,
and Gamma. For comparison we show the true and full regression model as well as Bayesian model
averaging and adaptive LASSO, but not BAC because the BEAU package does not model a binary
treatment effect.

The credible regions methods and BMA had smaller MSE than the true model but were biased
at the smaller sample sizes. For n = 200 and 500 the credible region methods were unbiased and
had MSE similar to the true model, whereas BMA and adaptive LASSO were still biased and had
larger MSE. In addition, the credible region method had interval coverage near the nominal level
throughout, whereas BMA and adaptive LASSO were lower. The AUC with the credible region
method was larger than with the adaptive LASSO at all sample sizes and larger than with BMA for

all except the smallest sample size.

[Table 2 about here.]
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6. Data Analysis

To illustrate the credible region method we estimate the effect of mean fine particulate matter
(PM5) in the first trimester of pregnancy on birth weight in Mecklenburg County, North Carolina,
while accounting for several potential confounders related to the mother’s socioeconomic status,
medical history, seasonality, and other weather variables. PM, 5 air pollution has been associated
with various adverse pregnancy outcomes (Bosetti et al., 2010; Sram et al., 2005). We study the
effect of PM2.5 on birth weight using data similar to Chang et al. (2012). PM; 5 levels were
obtained from the U.S. Environmental Protection Agency’s Fused Air Quality Predictions Using
Downscaling (http://www.epa.gov/esd/land-sci/lcb/Icb_fagsd.html). From these data we computed
average PMs 5 over the first trimester for each birth. We used birth and covariate data from the
North Carolina Vital Statistics — Births 2003 through 2007 (State Center for Health Statistics,
2008) from the State Center for Health Statistics (SCHS) and the Howard W. Odum Institute for
Research in Social Science at University of North Carolina at Chapel Hill. Temperature and dew
point data were obtained from National Oceanic and Atmospheric Administration Climate Data
Online (NOAA-CDO:; http://www.ncdc.noaa.gov/cdo-web/).

We looked at the group of at risk women age 40 and over and limited the sample to single
births that reached at least 37 weeks of gestation who were self-reported non-hispanic white, non-
hispanic black, or hispanic. The exposure variable of interest is first trimester mean PM, 5. In addi-
tion, following Warren et al. (2012), we include as potential confounders other variables observed
during pregnancy, including: principal components (PC) of mean daily temperature throughout
the pregnancy, PCs of mean daily dew point throughout the pregnancy, PCs for interaction of
temperature and dew point, indicators for a birth in spring, summer, or fall. The PCs that explained
0.99 percent of the week-to-week variation in co-exposures were included. These covariates are
correlated with PM, 5 and potentially impact birth weight. In addition we included variables relat-

ing to the birth and mother’s medical history. These variables are listed in the Web Appendix. All
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observations with missing data were excluded. The final sample contains 1399 women of which
902 are non-hispanic white, 308 are non-hispanic black, and 171 are hispanic. There are p = 65
covariates in total. Within each subgroup the race/ethnicity covariates were removed as well as any
other covariates that were not observed in the subgroup, resulting in 58, 61, and 63 covariates in
the hispanic, non-hispanic black, and non-hispanic white models, respectively.

We used the credible region method with fully Bayesian priors. The resulting analysis shows that
the credible regions method results in a similar point estimate for the PM, 5 exposure effect as the
full model but has smaller variance. This is appealing because the full model includes all observed
confounding variables; hence, a point estimate that substantially differs from the full model implies
that important confounding variables in the data are omitted from the model.

Figure 3 shows the solution paths for each subgroup analysis. Figure 3a shows that for the
hispanic subgroup the model with only PMs 5 included (step 0) indicates that PMs 5 is associated
with increased birth weight. However, as additional confounding variables correlated with both
PM, 5 and birth weight are added to the model the point estimate becomes negative. Starting at
step 20, the exposure effect is unchanged by including additional covariates, indicating that all
important confounding variables have been included.

Figure 4a shows that the credible region approach results in similar estimates to the full model
overall and for each subgroup, but the standard errors of the effect estimate are 10% to 20% smaller
with the credible regions approach (see Figure 4b). On the other hand, BMA and adaptive LASSO
have smaller variances, but very different point estimates compared to the full model. This stems
from selecting smaller models and omitting important confounders, particularly in the smaller
subgroups. As a result, adaptive LASSO and the exposure only model find a statistically significant
positive association between PM, 5 and birth weight among hispanics, a result that contradicts
previous findings (Savitz et al., 2014; Pearce et al., 2012). This result mirrors that of the simulation

study which showed these methods can be biased at small sample sizes.

15
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[Figure 3 about here.]

[Figure 4 about here.]

7. Discussion

This paper presents a new method for confounder selection and effect estimation using a decision-
theoretic approach. The proposed estimator is the Bayes rule estimate associated with the confounder-
specific loss function and allows the practitioner freedom to select an appropriate prior. Given the
posterior mean and covariance for the coefficients of any generalized linear model the credible
region confounder method can easily be applied and, in most cases, existing software to be used.

The proposed method outperformed alternative Bayesian confounder or variable selection ap-
proaches that utilize zero-inflates priors (BMA and BAC) in a simulation study. In addition to
good finite sample performance, the credible region confounder method is consistent in variable
selection and asymptotically normal under general conditions.

With flat priors on the regression coefficients, the proposed method is an adaptive LASSO-
type estimator with data-driven weights tailored to confounder selection. The simulation study
demonstrated that the confounder-specific weights in the penalty improved performance at small
sample sizes (i.e. comparing adaptive LASSO to the credible region method with flat priors). While
an alternative approach might be to skip the Bayesian motivation for the estimators, adding even a
vague normal prior made a noticeable improvement in confounder selection at small sample sizes.
In addition, the adaptive LASSO solution is identical to that of Bondell and Reich (2012) with flat
priors, thus, demonstrating the advantage of the confounder-specific loss function in this similar

Bayesian framework.



Confounder Selection via Penalized Credible Regions 17

8. Supplementary Material

The Web Appendix referenced in Section 3, 4, and 6 is available at Biometrics website on Wiley

Online Library. The R package BayesPen is available on CRAN.
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Figure 1: Probability of including covariates for simulation design one with n = 100 for the

credible region method (@), BAC (O), BMA (A), and adaptive LASSO (+). Left: the proportion
of simulated data sets for which each variable is selected. For BMA and BAC a variable is counted
as included if its inclusion probability is greater than 0.5. Right: the average inclusion probability
for BMA and BAC. Covariates in the first section (1 to 7) are confounders, in the second section
(8 to 14) are other explanatory variables, and the far right dot is the average of the non-important
covariates (15 to 57).
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Table 1: Simulation results for design 1. Bias, MSE, and coverage are for the effect of interest Bx
Coverage is 95% confidence or credible interval coverage. CPU Time is reported in seconds on
a MacBook Pro with OS X, 8 GB RAM, and 2 GHz Intel Core i7. SEs for the AUC range from
0.002 to 0.004, and for CPU time from less than 0.001 to 0.498.

n = 60 Bias MSE Coverage AUC CPU Time
True 0.005 (0.011) 0.060 (0.004) 0.93 NA 0.003
Full 0.007 (0.073) 2.624 (0.392) 0.95 NA 0.003
Cred. Reg. (Flat Priors) 0.181 (0.008) 0.065 (0.003) 0.69 0.530 0.084
Cred. Reg. (Empirical Bayes) 0.145 (0.009) 0.062 (0.003) 0.73 0.547 0.089
Cred. Reg. (Gamma Priors) 0.060 (0.010) 0.050 (0.003) 0.82 0.593 2.971
BMA 0.090 (0.009) 0.045 (0.003) 0.86 0.577 1.615
BAC (w = o0) 0.080 (0.014) 0.110 (0.008) 0.76 0.633 6.166
Adaptive LASSO 0.076 (0.049) 1.214 (0.200) 0.58 0.521 0.049
n = 100 Bias MSE Coverage AUC CPU Time
True -0.005 (0.008) 0.032 (0.002) 095 NA 0.003
Full -0.013 (0.011) 0.065 (0.004) 0.95 NA 0.004
Cred. Reg. (Flat Priors) 0.051 (0.009) 0.044 (0.003) 0.76 0.624 0.108
Cred. Reg. (Empirical Bayes) 0.001 (0.007) 0.028 (0.002) 0.93 0.680 0.127
Cred. Reg. (Gamma Priors) 0.006 (0.007) 0.028 (0.002) 0.91 0.670 3.001
BMA 0.100 (0.006) 0.030 (0.002) 0.80 0.627 1.671
BAC (w = o0) 0.050 (0.008) 0.033 (0.002) 0.91 0.701 7.874
Adaptive LASSO 0.071 (0.009) 0.043 (0.003) 0.71 0.571 0.041
n = 200 Bias MSE Coverage AUC CPU Time
True 0.004 (0.005) 0.015 (0.001) 0.95 NA 0.003
Full 0.004 (0.006) 0.018 (0.001) 095 NA 0.005
Cred. Reg. (Flat Priors) 0.012 (0.006) 0.017 (0.001) 0.90 0.748 0.165
Cred. Reg. (Empirical Bayes) 0.003 (0.005) 0.014 (0.001) 0.95 0.787 0.184
Cred. Reg. (Gamma Priors) 0.008 (0.005) 0.014 (0.001) 0.94 0.776 3.093
BMA 0.114 (0.005) 0.024 (0.001) 0.73 0.718 1.832
BAC (w = o0) 0.044 (0.006) 0.017 (0.001) 0.93 0.779 40.779
Adaptive LASSO 0.048 (0.006) 0.020 (0.001) 0.78 0.687 0.051
n = 500 Bias MSE Coverage AUC CPU Time
True 0.000 (0.003) 0.005 (0.000) 0.95 NA 0.004
Full 0.000 (0.003) 0.006 (0.000) 095 NA 0.010
Cred. Reg. (Flat Priors) 0.001 (0.003) 0.006 (0.000) 0.94 0.906 0.268
Cred. Reg. (Empirical Bayes) 0.000 (0.003) 0.006 (0.000) 095 0.917 0.367
Cred. Reg. (Gamma Priors) 0.001 (0.003) 0.006 (0.000) 0.95 0914 3.313
BMA 0.101 (0.003) 0.016 (0.001) 0.64 0.868 2.198
BAC (w = o0) 0.024 (0.003) 0.006 (0.000) 0.95 0.896 499.235

Adaptive LASSO 0.022 (0.004) 0.008 (0.000) 0.80 0.861 0.098
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Table 2: Simulation results for design 2. Bias, MSE, and coverage are for the effect of interest B\x
Coverage is 95% confidence or credible interval coverage. CPU Time is reported in seconds on a
MacBook Pro with OS X, 8 GB RAM, and 2 GHz Intel Core i7. SEs for the AUC range from less
than 0.001 to 0.006, and for CPU time from less than 0.001 to 0.003.

n = 60 Bias MSE Coverage AUC CPU Time
True -0.029 (0.015) 0.119 (0.008) 0.96 NA 0.003
Full 0.020 (0.040) 0.815 (0.062) 0.97 NA 0.003
Cred. Reg. (Flat Priors) 0.113 (0.013) 0.095 (0.006) 0.86 0.713 0.842
Cred. Reg. (Empirical Bayes) 0.114 (0.013) 0.093 (0.005) 0.87 0.718 0.836
Cred. Reg. (Gamma Priors) 0.132 (0.012) 0.095 (0.006) 0.88 0.718 1.855
BMA 0.115 (0.012) 0.080 (0.005) 0.91 0.736 1.143
Adaptive LASSO 0.151 (0.022) 0.260 (0.022) 0.61 0.532 0.035
n = 100 Bias MSE Coverage AUC CPU Time
True -0.008 (0.012) 0.069 (0.004) 0.95 NA 0.003
Full -0.005 (0.016) 0.124 (0.008) 0.97 NA 0.004
Cred. Reg. (Flat Priors) 0.029 (0.011) 0.059 (0.004) 0.93 0.883 1.342
Cred. Reg. (Empirical Bayes) 0.025 (0.011) 0.060 (0.004) 0.94 0.896 1.346
Cred. Reg. (Gamma Priors) 0.034 (0.011) 0.059 (0.004) 0.94 0.887 2.363
BMA 0.155 (0.009) 0.062 (0.003) 0.87 0.760 1.186
Adaptive LASSO 0.133 (0.012) 0.091 (0.005) 0.65 0.545 0.036
n = 200 Bias MSE Coverage AUC CPU Time
True 0.003 (0.009) 0.038 (0.003) 0.94 NA 0.003
Full 0.007 (0.010) 0.049 (0.003) 0.93 NA 0.005
Cred. Reg. (Flat Priors) 0.003 (0.009) 0.037 (0.002) 0.92 0.965 2.599
Cred. Reg. (Empirical Bayes) 0.001 (0.009) 0.037 (0.002) 0.94 0.975 2.603
Cred. Reg. (Gamma Priors) 0.002 (0.008) 0.036 (0.002) 0.94 0.971 3.637
BMA 0.174 (0.007) 0.055 (0.003) 0.75 0.812 1.267
Adaptive LASSO 0.115 (0.010) 0.058 (0.003) 0.66 0.621 0.043
n = 500 Bias MSE Coverage AUC CPU Time
True -0.002 (0.005) 0.013 (0.001) 0.95 NA 0.003
Full -0.001 (0.005) 0.014 (0.001) 0.96 NA 0.011
Cred. Reg. (Flat Priors) -0.001 (0.005) 0.013 (0.001) 095 0.995 6.379
Cred. Reg. (Empirical Bayes) 0.000 (0.005) 0.013 (0.001) 0.96 0.998 6.433
Cred. Reg. (Gamma Priors) 0.000 (0.005) 0.013 (0.001) 0.96 0.996 7.460
BMA 0.164 (0.005) 0.039 (0.002) 0.64 0.878 1.635

Adaptive LASSO 0.065 (0.006) 0.023 (0.001) 0.74 0.731 0.077




