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Abstract Many ecological- and individual-level analyses of voting behaviour use multiple

regressions with a considerable number of independent variables but few discussions of

their results pay any attention to the potential impact of inter-relationships among those

independent variables—do they confound the regression parameters and hence their

interpretation? Three empirical examples are deployed to address that question, with

results which suggest considerable problems. Inter-relationships between variables, even if

not approaching high collinearity, can have a substantial impact on regression model

results and how they are interpreted in the light of prior expectations. Confounded rela-

tionships could be the norm and interpretations open to doubt, unless considerable care is

applied in the analyses and an extended principal components method for doing that is

introduced and exemplified.

Keywords Regression analysis � Confounding � Collinearity � Voting

behaviour

1 Introduction

Quantitative analyses of voting behaviour are heavily dependent on regression modelling

of data at both individual and ecological scales. The goal in most cases is to identify the

influences on decisions whether to vote or abstain and, if the former, which party to

support. The independent variables are selected to represent the expected influences based

on theory (often relatively weak), prior investigations, and the local (time and space)

context. In the interpretation of those regressions—usually either ordinary least squares or

binomial/multinomial logistic—emphasis is placed on the sign, magnitude and statistical

significance of the coefficients for the independent variables.

& Ron Johnston
R.Johnston@bristol.ac.uk

1 School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK

123

Qual Quant (2018) 52:1957–1976
https://doi.org/10.1007/s11135-017-0584-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11135-017-0584-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11135-017-0584-6&amp;domain=pdf
https://doi.org/10.1007/s11135-017-0584-6


Such regression analyses can produce substantial insights but also have their disad-

vantages, some of which may be acknowledged in discussions of the output, but frequently

their full import is not realised, with implications—often serious but unacknowledged—for

the interpretation of the results. Many of these implications reflect the need for care not

only in specifying models but also in assessing the results. This paper focuses on one issue

only in that context—confounding associated with collinearity; without careful assess-

ments of a regression outcome, misleading interpretations can result.

Collinearity (sometimes termed multicollinearity) is usually defined as when two or

more independent variables included in the model are highly correlated so that the values

of one can be accurately predicted by that of another. This has clear implications for the

size, perhaps the sign, and also the standard error of the regression coefficients associated

with those collinear variables, and hence for their interpretation. The result is frequently

termed confounding, the situation when the relationship between two variables is distorted

because of the strength of the relationships between either one or both of them and a third

variable included in the analysis (see, for example, Kish 1959; Morabia 2011; Van-

derWheele and Shpitser 2013).1 Thus the relationship between age and abstention at an

election may be confounded by the inclusion of income in the statistical modelling, if, for

example, affluent young males are more likely than comparable older males to abstain but

affluent young females are more likely to vote than affluent older females.

The epidemiological (Moon et al. 2000) and survey analysis (Rosenberg 1968) litera-

tures have developed a useful classification of types of outcome relating to what happens to

the relationship between the ‘exposure’ (the main predictor of interest) and the response

when a third variable is introduced.

• No confounding occurs when the inclusion of a third variable does not change the

empirical relationship between the outcome and the predictor;

• Spurious inflation involves an apparent relationship either disappearing or at least being

attenuated when the third or ‘extraneous’ variable is controlled by inclusion;

• Masking or suppression is the case when the apparent absence of a relationship

between predictor and outcome is spurious, so that the true strong relationship has been

either reduced or cancelled because the suppressor variable has not been taken into

account; and

• Reverse interpretation occurs if a distorter third variable is not controlled for, so that

the correct interpretation is exactly the reverse of that suggested by the original

bivariate relationship—observed positives are really negatives and vice versa.

Given that one or more of these three potential changes (reduction, increase, change of

sign) can occur when variables are either introduced or removed from a model, analysts

need to be alert to these possibilities in their statistical practice. An important influence on

what will happen is the extent of the interrelationships between included predictor vari-

ables. The degree of collinearity can readily be, though frequently is not, assessed by

analysts using the Variance Inflation Factor (VIF) statistic (Allison 1999). The VIF for

each independent variable can be obtained by regressing it against all others in the set

being analysed, and then calculating (1/[1 - R2]). A VIF of 1.8 tells us that the variance of

that predictor variable (i.e. its standard error) is 80% greater than would be the case with no

collinearity effect: VIFs of 2.5 or greater are generally considered indicative of consid-

erable collinearity suggesting that there will be difficulty in separating out the independent

1 Neither collinearity nor confounding was included in King’s (1986) discussion of the more common
conceptual statistical mistakes in quantitative political science research.
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contribution of variables with such large VIFs—although some authors (e.g. Allison 1999,

p. 142) put the cut-off much higher with a VIF at 10 or greater, a strategy not favoured in

the context of the analyses reported here. (It should be stressed than this argument applies

to situations where the independent variables are assumed to have parallel causal influ-

ences on the dependent, and that some do not come prior to others in a causal sequence, as

is the case in analyses deploying the concept of mediating variables—for example, of age

and social class being influences on attitudes, which in turn influence voting behaviour: the

prior variables may have both a direct and an indirect, through the mediating variable, on

the dependent: see Baron and Kenny (1986); Imai et al. (2010, 2011). In such cases,

alternative analytical strategies—such as path analysis (Shipley 2009)—should be

deployed). Alternatively, VanderWheele and Ding (2017) have suggested a procedure that

estimates how strongly an unmeasured confounder would have to be related to both the

dependent and the independent variable in order for that relationship to become

insignificant/irrelevant—a somewhat different approach to the procedure suggested here

which aims to identify those confounders.

Does it matter? In a discussion of ‘When can you safely ignore multicollinearity’

Allison (2012; see also O’Brien 2016) identified three situations when collinearity can be

ignored:

• When the variables concerned are control variables in a regression model, whose

coefficients are not to be interpreted, but the variables of interest do not display

collinearity, either among themselves or with the control variables;

• One or more of the variables is a power of another variable included in the regression—

for example, some regressions include both age and age2 as variables, and these are

almost certain to be collinear; or

• The variables concerned are dummy variables representing variables with three or more

categories.

But these do not apply in many cases. In much electoral analysis, even though control

variables are included (age, social class, sex etc.) their coefficients are nevertheless often

interpreted. Hence the need for care interpreting regression coefficients when collinearity

may be present—and, as demonstrated here, even when that collinearity is relatively small

there can be substantial impacts indicative of confounding although two independent

variables are only relatively weakly correlated.

For clarity, the nature of the partial regression coefficients (the word ‘partial’ is almost

invariably omitted in presentations) in any multiple regression equation needs to be fully

appreciated. They indicate the relationship between the relevant independent variable and

the dependent—holding constant the impact of all other independents. Thus, for example,

if Y is being regressed against X1 and X2, then the partial regression coefficient between

Y and X1 involves, in effect, the regression of the residuals of the regression of Y on X2 on

the residuals of the regression of X1 on X2. What is frequently not recognised when such

regression results are reported is that the greater the correlation between X1 and X2 the

greater the likelihood that the relationship between Y and X1 is, in effect, modelling little

more than random noise (i.e. in the residuals). The results may be—and often are—

expressed as regressing Y on X1, holding constant the effect of X2, but if X1 and X2 are

closely inter-related there is little left to analyse separately.

But how closely? The conventional wisdom—when it is applied—regarding collinearity

in voting analyses suggests that it should only be addressed when the VIF values are

relatively large; in other circumstances it is assumed, without any detailed investigation,

that any relationships among two or more of the independent variables do not substantially
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influence the outcome of statistical modelling and hence the interpretation of the regression

coefficients. Even where collinearity is neither ‘perfect’ nor ‘almost perfect’—as Bagu-

ley’s (2013) web tutorial describes it—correlations among the independent variables may

create problems of confounding, as illustrated here. Care is thus needed in how model

output is interpreted, and many results may require reconsideration of the model’s struc-

ture—as suggested by Kennedy (2008, pp. 196–202); a procedure—introduced several

decades ago but rarely used, including in voting studies—is introduced that assists with

such interpretation.

To illustrate those arguments, three examples are presented of analyses in which one or

more of the impacts of confounding—spurious inflation; masking or suppression; reverse

interpretation—occurs in standard analyses of voting behaviour. The first two—an eco-

logical, ordinary least squares, analysis of voting for a political party in England and

Wales,2 and a binary logistic regression analysis of party choice at an election to the Welsh

National Assembly—illustrate that apparently relatively insubstantial inter-relationships

among the independent variables can have a substantial confounding effect on a regression

outcome. The final example uses a simulated data set, of a type widely used in some voting

analyses, to illustrate how in some situations confounding can generate what can only be

described as nonsense results. Throughout, the paper’s focus is on the one issue—con-

founding; it is assumed that the models are correctly specified and meet the other

assumptions of the general linear model (such as an absence of autocorrelation in the

residuals). Much attention is now paid to the use of diagnostics in the application of

regression models (e.g. Fox 1991): this paper illustrates the importance of one such

diagnostic tactic, whose application should remove a problem of mis-interpretation of

regression outcomes.

2 An ecological example: UKIP voting in England and Wales, 2015

The United Kingdom Independence Party’s (UKIP) success at recent British elections—

notably for the European Parliament in 2014 and in the 2015 general election—is generally

linked to the attractiveness of its right-wing populist appeal to those who have gained least

from globalisation over recent decades in particular among: older people (especially

males); those with few, if any, formal educational qualifications; and those living in areas

with high levels of economic and social deprivation (see Goodwin and Milazzo 2015;

Goodwin and Heath 2016; Clarke et al. 2017). To evaluate whether this was the case, the

percentage of the votes cast for UKIP in each English and Welsh constituency at the 2015

general election was regressed against four variables derived from the 2011 census:3 the

percentage of the adult population with either no or few (Level 1 only) educational

qualifications;4 the percentage of the population aged 65 and over; the percentage of

2 Despite the increasing availability of survey data ecological analyses remain popular for the insights they
provide into patterns of voting behaviour.
3 Scotland is omitted because UKIP was not strong and did not campaign intensively there, at an election
that focused almost entirely on the Scottish National Party and its claims for both independence and retained
membership of the European Union (which latter UKIP strongly opposed).
4 Educational qualifications in the UK are placed on a nine-point scale by the UK government: those of
level-5 and above (i.e. degree and above) are combined here. See https://www.gov.uk/what-different-
qualification-levels-mean/list-of-qualification-levels—accessed 18 July 2017.
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households with two or more deprivation characteristics;5 and the percentage of the adult

population who were full-time students. (We are mindful of the need to avoid committing

an ecological fallacy, because the relationships sought are between places not people.) The

expectation was that each of the first three variables would be positively related to UKIP’s

performance, whereas the fourth would be negatively linked. According to conventional

analyses there is only a collinearity issue with two of those four variables, with VIF values

of 3.8, 1.9, 3.7 and 1.7 respectively. The analyses reported here, however, show how the

inter-relationships among all four have a confounding impact on the regression equation

outcomes.

As a first stage, UKIP’s vote share was regressed against each of the four independent

variables separately. Each was significantly related to the dependent variable, and with the

expected sign (Table 1: Model 1 a–d): by far the strongest relationship—as shown by the r2

value—was with the qualifications variable. But did adding one of the other variables to a

multiple regression also including qualifications substantially increase the model’s good-

ness of fit?

At the second stage (the second block of three equations in Table 1: Models 2a–c),

therefore, each of the three other variables was added to a model that also included the

qualifications variable—that with by far the highest correlation in the simple regressions.

Compared to an r2 value of 0.52 when qualifications was the only independent variable

included (Model 1a), the three R2 values all show an increase, by as much as 0.11 when

household deprivation is the additional variable (in Model 2b). But two features of that last

regression equation raise immediate concerns regarding confounding. First, the regression

coefficient for qualifications increases from 0.52 (the first block in Table 1) to 0.79; and

second—and very importantly—the (highly significant) coefficient for deprivation is

positive (0.23) when that is the only variable regressed against UKIP performance but

negative (- 0.41), and again highly significant statistically, when both variables are

included. The correlation between the two independent variables is not especially large (r2

is 0.49 and the VIF involving those two variables alone is 1.96), but it is clearly sufficient

to suggest that UKIP performed less well on average in the more deprived areas when

qualifications are taken into account, whereas the regression with deprivation as the only

independent variable indicated the opposite conclusion. Which is correct?

Of the other two-independent-variable regressions in that second block of Table 1, that

including both qualifications and age (Model 2a) has a much smaller coefficient for the

latter variable than in the single-variable model for age alone in the first block. That

incorporating both student numbers and qualifications (Model 2c) also has a much smaller

regression coefficient for the former variable than in the previous analysis (- 0.27 as

against - 0.64 in Model 1d). (The separate r2 values between those two variables and that

for qualifications were only 0.04 and 0.10 respectively; the VIFs were small—1.04 and

1.11 respectively—but the size of the regression coefficients changes substantially,

although they are not statistically significant). Confounding with substantial changes in the

estimated coefficient is thus common in these two-independent-variable regressions,

despite the relatively weak collinearity.

At the third stage, two of the other three variables were added to that for qualifications

in three three-independent-variable models (the third block in Table 1). The first of these—

5 The Office of National Statistics takes four measures of household deprivation—on employment, edu-
cation, health and disability, and household overcrowding—and groups households as to the number of
those four on which they are classified as deprived (for more information see Office for National Statistics
2014).
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Table 1 Ordinary least squares regressions of the percentage voting UKIP by constituency in England and
Wales at the 2015 UK general election

a b1Qual b2Age b3Deprive b4Students r2/R2

Simple regressions using single independent variables

Model 1a - 5.53 0.55 0.52

(0.81) (0.02)

Model 1b 6.00 0.49 0.14

(0.89) (0.05)

Model 1c 8.48 0.23 0.07

(0.93) (0.04)

Model 1d 17.88 - 0.64 0.17

(0.39) (0.06)

Multiple regressions using pairs of independent variables (including Qual)

Model 2a - 9.29 0.51 0.30 0.57

(0.90) (0.04) (0.02)

Model 2b - 4.08 0.79 - 0.41 0.63

(0.72) (0.03) (0.03)

Model 2c - 2.26 0.50 - 0.27 0.55

(0.97) (0.02) (0.05)

Multiple regressions using three independent variables (including Qual)

Model 3a - 7.40 0.50 0.26 - 0.11 0.57

(1.27) (0.02) (0.04) (0.05)

Model 3b - 4.37 0.78 0.02 - 0.40 0.63

(0.97) (0.3) (0.05) (0.04)

Model 3c - 5.48 0.85 - 0.48 0.14 0.63

(0.91) (0.04) (0.04) (0.06)

Multiple regression using all four independent variables

Model 4 - 6.14 0.84 0.04 - 0.46 0.14 0.63

(1.19) (0.40) (0.05) (0.05) (0.06)

A b1F1 b2F2 r2/R2

Multiple regression using scores on the two factors identified in Table 2 as independent variables

Model 5 14.29 2.67 2.89 0.50

(0.17) (0.17) (0.17)

Figures in brackets are the standard errors of the regression coefficients

Table 2 Loadings on the prin-
cipal components factor analyses
of the four independent variables
deployed in the regressions in
Table 1

Factor Varimax rotated

Variable/Factor 1 2 1 2

Qualifications 0.65 - 0.60 0.87 - 0.10

Age 0.82 0.53 0.34 0.91

Deprivation 0.31 0.92 - 0.30 0.93

Students - 0.77 0.43 - 0.87 - 0.10
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using qualifications, age and students (Model 3a)—suggests that the size of an area’s

student population had much less impact on UKIP’s performance (albeit still negative)

than the single-variable model (1d) for that variable showed. In the second—using qual-

ifications, age and deprivation (Model 3b)—age is now statistically insignificant as an

influence on UKIP’s vote share, and UKIP again apparently performed better the less

deprived the area’s households. And when deprivation and students are the additional

variables (Model 3c), the coefficient for each is the opposite of the expected.

When all four of the independent variables are included in a single equation (Model 4 in

Table 1), three of the four are significantly related to UKIP’s performance, but two of them

have an opposite sign to that expected. In many analyses, this would be the only model

fitted—the four variables are ‘theoretically’ expected to be linked to UKIP’s vote share—

and the interpretation would be that: UKIP’s performance increased the more adults in a

constituency with no or minimal qualifications and the more students there were living

there, but decreased the greater the proportion of households living in social-economic

deprivation.

A change in the sign of the partial regression coefficient for an independent variable

when a further independent variable is added to the regression model is not necessarily an

indication of a problem. It may be the case that in areas with many old people students are

more likely to vote for UKIP than is the case in areas with few old people, but if a model

produces such a conclusion it should be explored further—as we illustrate here. We need to

consider not just the change but also the potential reasons for that change.

2.1 Refining the analysis

Is that interpretation a function not of the ‘true’ relationships between the four independent

variables and UKIP’s vote share but rather a confounding consequence of the interrela-

tionships among the four? If that is the case, one way forward—briefly identified by

Kennedy (2008, pp. 197–198)—is to restructure the independent variables to remove the

collinearity, using either principal components or factor analysis to replace the original

variables by a new set of grouped, related variables. A principal components analysis of the

four independent variables was thus undertaken, and the resulting two-component solution

derived (varimax-rotated to obtain simple structure; i.e. each variable maximally-related to

one of the two components). The resulting component loadings are shown in Table 2. With

varimax rotation two clear pairs of interrelated variables emerge: qualifications and stu-

dents on the first component (the more students in a constituency the fewer adults with no-

or-minimal qualifications and vice versa); and age and deprivation on the second (the

larger the percentage of old people in a constituency the more deprived households there

are).

The component scores for each of those constructs for each constituency were calcu-

lated and used as the two independent variables in a fifth regression (Model 5 in Table 1).

The highly significant regression coefficients show—as expected—that UKIP performed

better in constituencies with more old people and deprived households (i.e. the second

component), and also in those with more adults with no-or-minimal qualifications; it

performed less well, the more students there were living in a constituency. The hypothe-

sised patterns emerged—but they didn’t in the type of modelling normally deployed, where

all four variables are entered in a single regression.

What is the relative strength of the four independent variables as influences on the

dependent, taking the interrelationships into account? Kennedy (2008) does not address

this issue, instead focusing on the interpretability of the components. However, the relative
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strength of the individual variables can be assessed using a procedure introduced separately

by Riddell (1970) and by Sanint (1982; see also Massy 1965), but little used since (see

Johnston et al. 2004),6 in which a reconstituted standardised regression coefficient for each

independent variable can be derived by summing the product of its loading on each

component and the regression coefficient for that component across all components (in this

case two). The resulting standardised coefficients are:

Qualifications 2.03 Age 3.53

Deprivation 1.89 Students - 2.61

In relative terms, therefore, UKIP’s vote share increased most as the percentage of the

constituency population aged 65 and over increased, then as the percentage of students

decreased, then as the percentage of adults with no-or-minimal qualifications increased,

and finally as the percentage of deprived households increased: the expected patterns with

the relative importance of each isolated. (This conclusion may appear partly counter-

intuitive, given the much higher correlation between UKIP’s vote share and the qualifi-

cations variable than with the age variable in the first block of Table 1. But there is more

variation in the latter variable across the constituencies; the coefficient of variability [the

standard deviation as a percentage of the mean] is 25% for the age variable, but only 20%

for qualifications).

An alternative strategy might be to deploy all four independent variables but enter them

in a stepwise model. If this is done, however, at the first stage the qualifications variable

enters; at the second, deprivation is added, but with an unexpected negative regression

coefficient; and the other two variables would be excluded as insignificantly related to the

dependent. A further alternative might be to include all four variables in the one model but

also to add the three interactions involving each of the other three with qualifications. Only

one of the three interaction relationships is statistically significant—the more old people

and poorly-qualified people in a constituency, the better UKIP’s performance. The message

is that multiple models are needed to appreciate what is going on, stepwise modelling is not

an automatic solution, and combining variables in meaningful ways can be helpful in

teasing out the underlying relations.

Usual practice in the statistical analysis of voting patterns would involve selection of the

four independent variables and fitting a regression model incorporating all four—with the

result shown in the fourth block of Table 1. This would then be interpreted as indicating

not only that, as anticipated, UKIP support increased as the percentage of poorly-qualified

individuals in a constituency increased but also that: UKIP support unexpectedly decreased

the more deprived households there were in a constituency; UKIP support unexpectedly

increased the more students there were in a constituency; and there was no significant

relationship between UKIP support and the percentage of a constituency’s population who

were old—three of those findings being contrary to expectations. This is because of the

confounding impact of inter-relationships among those four independent variables, even

though the VIF values do not suggest major issues relating to collinearity; low VIF values

are not indicators of the absence of confounding effects. If the procedure introduced here

6 Sanint’s paper has only been cited on six occasions according to Google Scholar; Riddell’s has been cited
40 times, but few of those citations relate to the methodological issue; Massy’s paper has 738 citations,
however. The paper by Johnston et al. (2004) has 51 citations, but again very few refer to the methodological
issue addressed here. Apart from that latter paper, no example has been identified where the Riddell/Sanint
procedure has been applied in studies of voting behaviour, either ecological or individual. (The citation data
have been obtained from Google Scholar—http://scholar.google.co.uk/—accessed 19 July 2017).
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involving the use of principal components analysis to take those inter-relationships into

account is deployed, however, then the four hypotheses underpinning the selection of

independent variables are confirmed—which is almost certainly the ‘true’ situation as

against that reached using standard practices set out in Table 1.

3 Analysing survey data using logistic regression: voting for the National
Assembly of Wales, 2011

Many electoral studies are based on survey data exploring, for example, the determinants

of party choice through either binomial or multinomial logistic regressions. To illustrate

the impact of independent variable interrelationships in such investigations, we use data

from the 2011 Welsh Electoral Study (with 1963 respondents7) to explore determinants of

voting for Labour, the country’s largest party and the dominant member of a Welsh

National Assembly coalition government (with Plaid Cymru) in the years preceding the

election. The dependent variable—Y—is thus a binary coded 1 if the respondent voted

Labour and 0 otherwise in the 2011 constituency contests.

In many such studies, instead of including a substantial number of socio-economic and/

or demographic variables as potential influences on party choice a variable such as either

how the respondent voted at the last election or party identification is included to assimilate

all such influences (i.e. as a composite control variable). Further variables then look at the

proximate influences on the vote—what led some who voted for the party last time to

desert it at the subsequent election, for example, or, for some of those who voted otherwise

at the first election of the pair, what stimulated them to switch their allegiance at the next

contest. Thus, the first independent variable in this analysis—X1—is coded 1 if the

respondent voted Labour at the Welsh Assembly election in 2007 and 0 otherwise, so we

are modelling change. The result—the odds ratio in the first regression in Table 3 (Model

1a)—shows the expected strong positive relationship; those who voted Labour in 2007

rather than vote in any other way then were 21.858 times more likely to vote Labour in

2011 than in any other way (i.e. for either another party or to abstain).

Other variables commonly included in such analyses ask respondents how well they like

either or both of the party itself and its leader in the legislature—with the latter often

presented as a short-cut heuristic deployed by voters (Clarke et al. 2010). The X2 and X3 in

these analyses are coded, respectively, 1 if the respondent strongly liked the party (a score

of 8 or greater on an 11-point scale from 0–10) and 1 if the respondent strongly liked the

party’s leader (Carwyn Jones)—and 0 otherwise. The results of the two regressions

deploying those variables separately (Model 1b, c) again show the expected positive

relationships—much stronger for liking the party than for liking its leader (Table 3). The

two are not strongly interrelated, with a VIF (using the Nagelkerke r2 value) of only 1.27:

nevertheless, the partial regression coefficient for X3 in Model 2a is substantially smaller at

0.703 than the 1.149 recorded in the regression of X3 alone on Y—which would be

interpreted as saying that the impact of the Labour party leader’s image on whether

respondents voted Labour in 2011 was substantially reduced once the impact of his party’s

image was taken into account.

Those variables could be related to the control variable, however, with whether

respondents voted Labour in 2007; previous Labour voters are more likely than those who

did not vote Labour at the previous election to like both the party and its leader subsequent

7 We are grateful to Roger Scully for making these data available to us.
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to the election (an endogeneity point discussed in detail by Evans and Chzhen 2016). The

VIFs for the three variables are only 1.19, 1.28 and 1.20 respectively; nevertheless, the two

regressions including either X2 or X3 along with X1 in Table 3 bear out this expectation.

The coefficients and exponents for both X2 and X3 are substantially smaller in their

respective two-independent-variable multiple regressions than in the simple regressions of

either X2 or X3 with Y; holding previous vote constant, party and leader images have

substantially smaller influence on voter choice at the next election than when that is not

taken into account. Finally, when all three variables are included—Model 3 in Table 3—

Table 3 Logistic regressions of
voting labour at the 2011 con-
stituency-level elections to the
National Assembly of Wales

The independent variables are X1

voted Labour in 2007, X2

strongly likes the labour party X3

strongly likes the Labour party
leader, Carwyn Jones

a X1 X2 X3

Model 1a

Coefficient - 0.089 3.085

SE (0.065) (0.129)

Exponent 0.915 21.858

r2 0.437

Model 1b

Coefficient - 0.350 1.754

SE (0.053) (0.106)

Exponent 0.705 5.780

r2 0.191

Model 1c

Coefficient - 0.356 1.149

SE (0.054) (0.107)

Exponent 0.701 3.154

r2 0.079

Model 2a

Coefficient - 0.217 1.574 0.703

SE (0.059) (0.110) (0.118)

Exponent 0.805 4.824 2.020

R2 0.212

Model 2b

Coefficient 0.098 2.889 1.399

SE (0.069) (0.134) (0.129)

Exponent 1.998 17.974 4.051

R2 0.492

Model 2c

Coefficient 0.081 2.990 0.809

SE (0.072) (0.130) (0.135)

Exponent 1.084 19.882 2.246

R2 0.454

Model 3

Coefficient 0.173 2.848 1.285 0.444

SE (0.074) (0.134) (0.134) (0.143)

Exponent 1.189 17.262 3.616 1.559

R2 0.496
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Table 4 Further logistic regressions of voting labour at the 2011 constituency-level elections to the
National Assembly of Wales

a X4 X5 X6 X7 X8 X9

Model 1a

Coefficient - 0.471 2.035

SE (0.053) (0.106)

Exponent 0.625 7.649

r2 0.258

Model 1b

Coefficient - 0.538 1.371

SE (0.050) (0.100)

Exponent 0.584 3.941

r2 0.132

Model 1c

Coefficient - 0.361 1.220

SE (0.053) (0.106)

Exponent 0.697 3.387

r2 0.092

Model 1d

Coefficient - 0.630 1.326

SE (0.050) (0.100)

Exponent 0.532 3.768

r2 0.125

Model 1e

Coefficient - 0.372 1.189

SE (0.053) (0.105)

Exponent 0.698 3.284

r2 0.088

Model 1f

Coefficient - 0.599 1.244

SE (0.049) (0.099)

Exponent 0.549 3.470

r2 0.111

Model 2a

Coefficient - 0.499 0.633 0.224 0.671 0.191 0.353

Model 3b

SE (0.060) (0.135) (0.141) (0.124) (0.141) (0.136)

Exponent 0.607 1.884 1.251 1.955 1.211 1.423

R2 0.179

Model 2b

Coefficient - 0.497 1.663 0.258 0.088 0.538 - 0.140 0.111

SE (0.063) (0.129) (0.148) (0.150) (0.132) (0.153) (0.146)
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those coefficients are further reduced, especially that for X3; it remains significantly linked

to Y, but with an exponent only half of its size when X3 is regressed against Y alone.

Apart from general evaluations of parties and their leaders, many studies also ask

respondents to assess the governing party’s (or parties’) performance on particular issues.

The 2011 Welsh Election Study included six such assessments, of running Wales gener-

ally, and of handling the major issues of the previous 4 years—the NHS, schools,

University tuition fees, the economy, and Welsh interests. These are introduced as binary

variables X4–X9, each coded 1 for a good performance and 0 otherwise. There are inter-

relationships among these variables—not surprisingly those who rated the government’s

performance positively on one policy issue were more likely to do so on the others—but

only one of the VIF values exceeds the ‘standard’ 2.50 threshold (for X4–X9 respectively

they are 1.83, 2.58, 2.30, 1.91, 2.42 and 2.45)

The first six binary logistic regressions in Table 4 (Models 1a–f) show that individually

all six variables were both positively and statistically significantly related to voting Labour

in 2011, with five of the exponents averaging c.3.57 and the other (for running Wales well)

twice that size. But interrelationships clearly have an impact, as shown by the next two

regressions (Models 2a–b). The first includes all of the policy-specific areas—X5–X9; all of

their regression coefficients are substantially smaller than those in their single-variable

regressions above and two of them, for the school and economy policy areas (X6 and X8),

are statistically insignificant. When the general variable X4 is added (Model 2b), not only

do the coefficients for X5–X9 reduce further, with four of them statistically insignificant,

but in one case—variable X8, handling of the economy—the insignificant coefficient is

also negative.

Finally, a full regression including all nine independent variables (Table 4, Model 3)

further exemplifies the confounding impact of interrelationships on the interpretation of the

links between the independent variables and voting for the Labour party’s candidates. Five

of the nine regression coefficients are statistically insignificantly larger or smaller than

Table 4 continued

a X4 X5 X6 X7 X8 X9

Exponent 0.609 5.273 1.294 1.092 1.712 0.869 1.117

R2 0.280

a X1 X2 X3

Model 3

Coefficient 0.031 2.597 1.056 0.045

SE (0.086) (0.139) (0.138) (0.151)

Exponent 1.031 13.424 2.876 1.046

X4 X5 X6 X7 X8 X9

Coefficient 0.940 0.159 0.070 0.558 - 0.209 0.113

SE (0.160) (0.181) (0.179) (0.160) (0.184) (0.176)

Exponent 2.561 1.172 1.073 1.747 0.812 1.120

R2 0.540

The independent variables: are X1 voted Labour in 2007, X2 strongly likes the Labour party, X3 strongly likes
the Labour party leader, Carwyn Jones, X4 Labour at good running Wales, X5 Welsh government handled
NHS well, X6 Welsh government handled schools well, X7 Welsh government handled University tuition
fees well, X8 Welsh government handled economy well, X9 Welsh government handled Welsh interests well
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zero, including that for the respondents’ evaluations of the party’s leader (and one of them

is again negative). Additionally, all of the exponents in that multiple regression are sub-

stantially smaller than that for the particular variable in the relevant simple regressions—

by more than one-half in all cases except that for variable X1, whether the respondent voted

for a Labour candidate in 2007.

There are clearly sufficiently strong interrelationships in this data set, despite the low

VIF values, to influence the regression outcomes and thus the interpretation of how the

various factors influenced voter choice at the 2011 National Assembly of Wales election;

there is substantial confounding. This is further illustrated by again deploying principal

components factor analyses. Three were undertaken (Table 5): the first two (for variables

X1–X3 and X4–X9 respectively) each resulted in single-component solutions, accounting

for 53 and 60% of the variation respectively. For the first, all three variables had a loading

of 0.70 or greater on that component, and the scores related to it (FIa) were positively

related to whether respondents voted Labour in 2011 (the first regression reported in

Table 5). All six variables had loadings of 0.73 or greater in the second analysis, and the

scores (FIb) were also positively related to Y. When both sets of scores were included in a

regression, each was positively and significantly related to the probability of a Labour vote

in 2011, with variation on FIa having more than twice the impact than variation on FIb.

When all nine variables were included in a single principal components analysis, two

components, together accounting for 59% of the variation, were extracted and simple

structure was obtained using a direct oblimin rotation. The first component has its heaviest

loadings for variables X4–X9, and the second for X1–X3 although there were some sub-

stantial cross-loadings on both components—notably for X4. Regressing the two sets of

component scores on Y (the final regression in Table 5), shows both to have a positive

impact; variation in Labour voting was greater relative to (standardised) variation in

Table 5 Loadings from the principal components factor analyses of the data analysed in Table 4, and the
results of logistic regression analyses using the related factor scores as independent variables to predict
voting labour at the 2011 constituency-level election to the National Assembly of Wales

Variable FIa FIb FIab FIIab

X1 0.702 0.231 0.787

X2 0.775 0.315 0.673

X3 0.703 0.332 0.683

X4 0.734 0.690 0.617

X5 0.819 0.815 0.381

X6 0.771 0.787 0.250

X7 0.737 0.734 0.352

X8 0.784 0.798 0.260

X9 0.803 0.805 0.341

Y = - 0.763 ? 1.429FIa r2 = 0.403

(0.058) (0.066)

Y = - 0.707 ? 0.892FIb r2 = 0.211

(0.053) (0.052)

Y = - 0.820 ? 1.244FIa ? 0.518FIb R2 = 0.438

(0.061) (0.068) (0.061)

Y = - 0.833 ? 0.464FIab ? 1.328FIIab R2 = 0.449

(0.062) (0.060) (0.069)
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previous vote and party/leader image (FIIab) than it was to variations in evaluations of

government performance (FIab).

As was concluded from the ecological regression example, therefore, substantial con-

founding effects—some involving spurious inflation, some masking or suppression, and

some reverse interpretation—appear in this set of multinomial regression analyses, despite

the low levels of collinearity among the variables. Care is needed when running such

analyses, therefore: confounding can mask the true relationships unless it is taken into

account in the model structure.

4 A further logistic regression example: towards nonsense results

To exemplify further confounding and its impact on the nature of regression outcomes—

some difficult to interpret, others nonsensical—we use a simulated data set comprising

1500 observations.8 (This comprises 20 separate observations—shown in the ‘‘Appendix’’

table—repeated 75 times.)

The dependent variable in this data set—Y—is voting for Labour (coded 1 if voted

Labour and 0 otherwise). There are two independent variables: X1—whether the respon-

dent is a member of the Working Class (coded 1 if Working Class and 0 otherwise); and

X2—whether the respondent considers Labour is the best party to tackle the problems of

the economy (coded 1 if Labour is best and 0 otherwise). The latter of those independent

variables appears in four different scenarios—X21, …, X24—each of which has a closer

correlation with X1 than the previous version. (The distribution of those considering

Labour best placed to handle the problems of the economy across the 1500 respondents to

the hypothetical survey has been varied to alter the correlation of that variable with X1.)

The correlations (Nagelkerke r2) between X1 and each of those four, derived from binary

logistic regressions, are:

X1;X21 0:020; X1;X22 0:149; X1;X23 0:375; X1;X24 0:662

There is virtually no correlation between the two variables in the first example,

therefore, and only a slight one in the second; correlation is more substantial in the third

example, and even more so in the fourth. The VIF values are thus:

X1;X21 1:02; X1;X22 1:18; X1;X23 1:60; X1;X24 2:95

which suggest that collinearity and confounding should only be a problem when Y is

regressed against X1 and X24.

The first binomial regression in Table 6 (Model 1) shows a positive, significant rela-

tionship between class membership and voting Labour, and for the next four regressions

(Economic Competence and Vote: Models 2a–d) each shows a similar relationship (though

with varying intensity) between opinions on Labour’s ability to manage the economy and

voting Labour; all of those relationships are positive and statistically significant (i.e. the

regression coefficient is at least twice the size of its standard error).

The final block of four regressions in Table 6 (Models 3a–d) reports multiple regres-

sions between voting Labour and whether the respondent is a member of the Working

Class plus one of the four versions of X2, which are increasingly correlated with X1, as

8 Although the problem illustrated here has been identified in ‘real’ data sets, its nature is more readily
appreciated through a simulated set.
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Table 6 Logistic regressions of the data in ‘‘Appendix’’

a X1 X21 X22 X23 X24

Class and Vote

Model 1

Coefficient - 0.458 1.492

SE (0.058) (0.116)

Exponent 0.632 4.444

Nagelkerke r2 0.149 .

Economic Competence and Vote

Model 2a

Coefficient - 0.549 0.523

SE (0.056) (0.112)

Exponent 0.577 1.687

Nagelkerke r2 0.020

Model 2b

Coefficient - 0.347 4.277

SE (0.087) (0.173)

Exponent 0.707 72.000

Nagelkerke r2 0.662

Model 2c

Coefficient - 0.347 4.277

SE (0.087) (0.173)

Exponent 0.707 72.000

Nagelkerke r2 0.662

Model 2d

Coefficient - 0.394 2.621

SE (0.066) (0.131)

Exponent 0.674 13.750

Nagelkerke r2 0.375

Class, Economic Competence and Vote

Model 3a

Coefficient - 0.409 1.456 0.392

SE (0.060) (0.117) (0.119)

Exponent 0.664 4.288 1.480

Nagelkerke R2 0.158

Model 3b

Coefficient - 0.261 0.846 4.110

SE (0.089) (0.179) (0.175)

Exponent 0.771 2.330 60.957

Nagelkerke R2 0.672

Model 3c

Coefficient - 0.458 - 19.433 23.122

SE (0.089) (2289.293) (2289.293)

Exponent (0.632) 0.000 0.000

Nagelkerke R2 0.700

Confounding and collinearity in regression analysis: a cautionary tale… 1971

123



shown above. In the first case—X21, with virtual nil correlation between the two (0.020)—

the two independent variables clearly make additive contributions to a statistical expla-

nation of variation in the values of Y; the coefficient, standard error and exponent for X1 are

virtually unchanged from those in the first regression in Table 6, and the R2 value is

(slightly) increased.

The next regression—Model 3b—replaces X21 by X22, which has a higher correlation

with X1—though not large (0.149: VIF 1.18). Nevertheless, the coefficient for X1 is

reduced by about 40% compared to the regression with X21 and the associated exponent is

almost halved; there is an extremely large coefficient, and associated exponent, for X22.

The final two regressions (Models 3c–d), involving X23 and X24, produce results that can

only be considered nonsensical, although the VIFs suggest that problems should only

appear for that with X24. There are very large (though statistically insignificant) coefficients

for X1 and comparable large (again statistically insignificant) coefficients (with meaning-

lessly large exponents) for X23 and X24. The correlations between X1 and each of the other

two variables mean that only residual noise is being regressed against X1 once the common

variance shared by the two collinear variables is held constant—and the result is very

substantial spurious inflation, producing nonsense results.

5 Conclusions

Many ecological- and individual-level analyses of voting behaviour use multiple regres-

sions with a considerable number of independent variables but few discussions of their

results pay any attention to the impact of collinearity among those independent variables,

let alone report VIF values. Very few indeed explore various combinations of independent

variables in their data to reveal the impact of collinearity and identify the likely impact of

any one independent variable on the dependent; whether the relationships between the

individual independent variables and the dependent are affected by confounding, and

therefore difficult to interpret, is very rarely addressed. More importantly, as the examples

in this paper have illustrated, even where collinearity is low substantial confounding can

nevertheless occur as a result of interrelationships among the variables included in a

model. Because most analysts only report the final model (and may have done no prior

explorations of those interrelationships of the type reported here) it is rarely clear whether

the results incorporate any substantial confounding that substantially impacts upon inter-

pretations of the size and sign of partial regression coefficients and their statistical sig-

nificance—and hence on the substantive and theoretical appreciation of the empirical tests.

Three examples have been used here to indicate the potential pitfalls of such practice.

With little or only mild collinearity the impact on the interpretation should be slight,

according to ‘standard practice’; regression coefficients may change in their size reflecting

Table 6 continued

a X1 X21 X22 X23 X24

Model 3d

Coefficient - 0.458 - 20.121 22.423

SE (0.067) (3229.065) (3229.065)

Exponent 0.632 0.000 5,474,103,965.0

Nagelkerke R2 0.428
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the results of partialling out the effect of other variables, but the standard errors are not

inflated and considerable confidence can be expressed in the interpretations; there is little

or no confounding. But as the links between independent variables strengthen (even though

statistical tests suggest minimal collinearity) unexpected results appear: change in the

direction of the regression coefficients, for example; increase in the standard errors; and, in

logistic regressions, inflation in the values of the exponents associated with the regression

coefficients, in some cases to nonsense levels.

All of this suggests care is needed in conducting such analyses. One regression model

incorporating all of the selected independent variables should not be run and then reported

without careful exploration, involving not only calculation of the VIF values but also running

regressions with only some of the variables included. This could lead to decisions to eliminate

some of the independent variables from the final version (one of Kennedy’s—2008—‘What

to do’ suggestions) but if it is considered necessary to include them all to assess their joint

impact an approach such as that deployed here using principal components analysis might be

used. This approach, rarely used in the behavioural social sciences, offers a clear way forward

in the analysis of voting patterns that avoids any confounding impacts of inter-relationships

among the independent variables and provides a much clearer test of the strength of the

impact of each independent variable on the dependent (as in Johnston et al. 2017)—rather

than the analysis of residual noise that can characterise partial regression equations.

This paper has delivered a clear warning to electoral analysts (and other social scientists

conducting observational research) using quantitative methods, notably regression. Con-

founding can have a substantial impact on the nature of model results and how they are

interpreted in the light of prior expectations; indeed, confounded relationships could be the

norm and interpretations open to doubt.9 Exploration of data by running several separate

regressions with different variable combinations might be informative and make conclu-

sions more insightful. Just because a coefficient is negative might not indicate the ‘true’

relationship between one variable and another—ceteris paribus!

While we have concentrated on the scale of the changes that come about as variables are

either introduced to or removed from a model, it is also important to see this in a wider context.

There is a large literature (e.g. Baron and Kenny 1986; MacKinnon 2008; Hayes 2013; Van-

derWeele 2015) that distinguishes between the conceptual status of the introduced variable in

terms of confounders, mediators and modifiers. Changes involving one or more of reduction,

increase, and reversal of sign in the original relation do not necessarily mean that the introduced

variable is a confounder. Confounders are a nuisance and need to be nullified to prevent

distortion of results; their impact occurs when the third variable is associated with both the

exposure—the main predictor of interest—and the outcome but conceptually does not lie on the

‘causal’ pathway from the exposure to the outcome. Mediator variables, like confounders,

show associations with both the exposure and the outcome, but are seen as lying on the causal

pathway between exposure and outcome—a mediator variable is one that explains the rela-

tionship between the two other variables. Mediators are seen as intervening variables that

produce the outcome; changes in the exposure lead to changes in the mediator which in turn

result in changes in the outcome. The general statistical procedure for evaluating mediation is

that the relation between exposure and outcome should be reduced after including the mediator

variable. This reduction of original association when the third variable is included is not

9 As one web dictionary argues—in the context of drug trials: http://stattrek.com/statistics/dic-
tionary.aspx?definition = confounding (accessed 15 February 2017)—‘Confounding occurs when the
experimental controls do not allow the experimenter to reasonably eliminate plausible alternative expla-
nations for an observed relationship between independent and dependent variables’.
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spurious, rather we have the development of an explanation. Finally, with effect modification,

the third variable is interacting with exposure to modify the effect so that an exposure has a

different effect among different subgroups. Effect modification is associated with the outcome

but not the exposure. The results are not spurious but of real interest as the nature of the effect

differs according to the presence of a third factor. In practice, in statistical analysis moderators

are simply interaction terms that change the nature of the effect of the exposure on outcome.

The importance of this concluding discussion is that it is not just a technical matter of including

variables and their interactions in a multiple regression-like model when exploring the multi-

variate relationships between variables but the nature of the ‘web of causation’ and the conceptual

status of variables in the modelling should be carefully considered. To take two examples:

including behavioural variables between class and voting and the apparent disappearance of the

class effect should not be seen as confounding but rather that both class and behaviours are

causally related, with the latter mediating the underlying relationship. Much analysis has been

concerned with just the main effects when interactions are key to understanding: gender may

make little difference but gender in interaction with age may (Jones et al. 2016). In sum, models

should be carefully conceived and when they are fitted the results of the empirical analyses should

be rigorously assessed to ensure that the ‘true’ patterns are appreciated: simply either fitting

models with all of the model variables included or only modifying them when VIF values indicate

substantial collinearity is not sufficient—validity is an argument not a statistic.

The message from this cautionary tale, therefore, is that in multiple regression analy-

ses—as illustrated here with studies of voting behaviour—exploratory procedures should

be deployed when empirically testing models in which the outcome is believed to be

influenced by a number of contributory factors (independent variables) that are not

structured in a causal path. Those procedures should:

• Check whether there is substantial collinearity among the independent variables;

• Explore whether there are confounding effects created by the inter-relationships among

the independent variables that either apparently spuriously inflate or mask/suppress

(even alter the direction of the relationship with) the apparent influence of one of more

of the variables by conducting separate regressions using subsets of the independent

variables only; and if those explorations indicate considerable confounding effects

• Adopt an alternative analytical procedure, such as that introduced here using principal

components factor analysis, to circumvent those confounding effects and thereby

identify the ‘true’ relationships.

Following these steps is in line with the general strategy set out by Franzosi (1994,

p. 21) of preliminary analysis (getting to know the data), followed by confirmatory analysis

(model testing) and then interior analysis (model checking). In particular, his final step

provides ‘the necessary assurances about the basic soundness of the model’; the examples

presented here have illustrated the importance of doing this and avoiding mis-interpreta-

tions of model outcomes.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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