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Abstract

Epidemiologic studies are increasingly used to investigate the safety and effectiveness of medical

products and interventions. Appropriate adjustment for confounding in such studies is challenging

because exposure is determined by a complex interaction of patient, physician, and healthcare

system factors. The challenges of confounding control are particularly acute in studies using

healthcare utilization databases where information on many potential confounding factors is

lacking and the meaning of variables is often unclear. We discuss advantages and disadvantages of

different approaches to confounder control in healthcare databases. In settings where considerable

uncertainty surrounds the data or the causal mechanisms underlying the treatment assignment and

outcome process, we suggest that researchers report a panel of results under various specifications

of statistical models. Such reporting allows the reader to assess the sensitivity of the results to

model assumptions that are often not supported by strong subject-matter knowledge.
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Introduction

Epidemiologic studies are increasingly used to investigate the safety and effectiveness of

medical products and procedures as they are used in routine care in unselected patient

populations. One of the principal problems of such studies is confounding—a systematic

difference between a group of patients exposed to an intervention and a chosen comparator

group. Confounding in studies of medical treatments often arises when the factors that

influence physician treatment decisions and patient medication use are also independent

determinants of health outcomes. Statistical approaches such as multivariable outcome

models and propensity score methods can be used to remove the confounding effects of such

factors if they are captured in the data. These approaches require that all confounding factors

are accurately measured and their effects on the exposure or outcome are correctly modeled.

However, because the processes that determine treatment choices and outcomes are often

complex and poorly understood, it may be difficult to correctly specify the necessary
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statistical models. Furthermore, in studies based on healthcare utilization databases, many

potential confounding factors are missing or poorly measured and the meaning of measured

variables may be unclear.1

We describe some potential sources of confounding in studies of medication use and

outcomes. We then review some features of healthcare databases that complicate

confounding control. Finally, we consider some theoretical aspects of confounding from the

perspective of causal graph theory2, 3 and describe how statistical control for a variable can

either increase or decrease bias in the presence or absence of a true treatment-outcome

association. In light of these theoretical issues and the limitations of healthcare databases,

we consider the strengths and limitations of two different approaches to confounder control

in healthcare databases.

Sources of Confounding in Studies of Medications and Healthcare Services

The use of a medical intervention by patients is determined by system-, physician- and

patient-level variables that may often interact in complex and poorly understood ways. For

example, physicians’ treatment decisions may be based on an evaluation of the patient's

health status and prognosis, the physician's past experience with the medication, or an

assessment of the patient's ability and willingness to take a medication as prescribed.

Patients may initiate and remain adherent to a new therapeutic regimen because of their

health beliefs, preferences about treatment, their trust in the physician, out-of-pocket cost of

the medication, or perceptions of their disease risk and the benefits of treatment. Treatment

initiation and adherence may also depend on a patient's physical and cognitive abilities.

Patient and physician variables that determine use of a treatment may directly affect health

outcomes, or be related to them through indirect pathways. From this process, several

sources of bias can result.

Confounding by indication/disease severity—A common and often intractable form

of confounding arises from good medical practice: physicians' tendency to prescribe

medications to and perform procedures on patients who are most likely to benefit. Because it

is often difficult to assess medical indications and underlying disease severity and prognosis,

confounding by indication often makes medications appear to cause outcomes they are

meant to prevent.4, 5 For example, statins, lipid-lowering drugs, reduce risk of

cardiovascular events in patients with cardiovascular risk factors. Thus these drugs tend to

be prescribed to patients perceived to be at increased cardiovascular risk. Incomplete control

of cardiovascular risk factors can make statins appear to cause rather than prevent

cardiovascular events.

Confounding by functional status and cognitive impairment—Patients who are

functionally impaired (defined as having difficulty performing daily activities of living) may

be less able to visit a physician or pharmacy and therefore may be less likely to collect

prescriptions and receive preventive healthcare services. This phenomenon could exaggerate

the benefit of prescription medications, vaccines, and screening tests. For example,

functional status appeared to be a strong confounder in studies of both the effect of NSAIDs
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and the influenza vaccine on all-cause mortality in the elderly.6-8 A similar form of

confounding could result from differences in cognitive functioning among elderly patients.

Selective prescribing and treatment discontinuation of preventive
medications in frail and very sick patients—Patients who are perceived by a

physician to be close to death or who face serious medical problems may be less likely to be

prescribed preventive medications. Similarly, patients may decide to discontinue preventive

medications when their health deteriorates. These phenomena arise through different

processes but have the same effect: decreased exposure to preventive medication in patients

close to death. One or both of these mechanisms may be responsible for the substantially

decreased mortality risk observed among elderly users of statins and other preventive

medications compared with apparently similar non-users.9, 10 Patients with certain chronic

diseases or patients who take many medications may also be less likely to be prescribed a

potentially beneficial medication over concern about drug-drug interactions or metabolic

problems. For example, patients with end-stage renal disease are less likely to receive

medications for secondary prevention after myocardial infarction.11

The healthy user/ adherer bias—Patients who initiate a preventive medication may be

more likely than other patients to engage in other healthy, prevention-oriented behaviors.

For example, patients who start a preventive medication may be more likely to seek out

preventive healthcare services, exercise regularly, moderate their alcohol consumption, and

avoid unsafe and unhealthy activities. Incomplete adjustment for such behaviors can make

use of preventive medications spuriously associated with reduced risk of a wide range of

adverse health outcomes. Similarly, patients who adhere to treatment also may be more

likely to engage in other healthy behaviors.12, 13 Strong evidence of this “healthy adherer”

effect comes from a meta analysis of randomized controlled trials where adherence to

placebo was been found to be associated with reduced mortality risk.14 This is clearly not an

effect of the placebo but is rather due to characteristics of patients who take a medication as

prescribed. The healthy adherer bias is also evident in studies that reported associations

between statin adherence and an increased use of preventive healthcare services and a

decreased risk of accidents.15,16

Access to healthcare—Patients may vary substantially in their ability to access

healthcare. For example, patients who live in rural areas may have to drive long distances to

receive specialized care. Other obstacles to accessing healthcare include cultural factors

(e.g., trust in medical system), economic factors (e.g., ability to pay), immigration status,

and institutional factors (e.g., prior authorization programs, restrictive formularies), all of

which may have some direct or indirect effects on study outcomes.

The limitations of healthcare utilization databases

The data commonly used for epidemiologic studies of medical products and procedures in

routine care typically come from existing healthcare utilization data (e.g., claims data from

Medicare or private insurance companies) or electronic medical records databases. Such

databases often contain information on large, heterogeneous populations of patients that are

geographically dispersed. However, because the data were not collected as part of designed
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study, many variables that the researcher might wish to have access to remain unrecorded.1

Furthermore, the meaning of the data elements that are available is often unclear. In

healthcare claims data, inpatient and outpatient diagnosis codes can be difficult to interpret.

Although principal discharge diagnosis codes for certain medical conditions such as hip

fracture, myocardial infarction, major surgical procedures, and most cancers are reliably

recorded,17 codes for many other medical conditions are coded with limited accuracy.17

Furthermore, a single diagnosis code depends not only on the presence of a particular

condition but also on a provider's use of the codes. For example, psychiatric diagnosis codes

may be used routinely by mental healthcare providers, but omitted by other medical

providers. The absence of a diagnosis code may not indicate the absence of a particular

condition, but rather the presence of a more serious condition that pushes the milder

condition off the diagnosis list or discharge abstract. For example, a diagnosis of depression

would be expected to be associated with decreased mortality risk among elderly patients

because it would be less likely to be coded in patients with other serious medical conditions.

Studies of hospital discharge abstract data have found that secondary diagnoses such as

diabetes, angina, and history of myocardial infarction are paradoxically associated with

improved in-hospital mortality.18 This appears to reflect an under-coding of chronic

comorbidities in patients who die in the hospital.

Information may also be missing in informative ways. For example, data on erythropoiesis

stimulating agent (ESA) use by end-stage renal disease patients with anemia is reported to

Medicare by outpatient dialysis clinics, but not by hospitals. This can create spurious

associations between ESA exposure and morbidity and mortality because hospitalized

patients will appear to be getting smaller ESA doses.19, 20 In these same patients, hematocrit

laboratory values must be reported to Medicare to justify reimbursement for ESA claims.

Therefore, ESRD patients with high hematocrit who do not need ESAs as well as critically

ill patients who are having treatment withdrawn have missing hemaotcrit lab values. This

creates informative patterns of missingness that may be problematic if hematocrit level is

being used as a confounder, subgroup identifier, or outcome variable.

Data from electronic medical records may contain clinical measurements and some lifestyle

variables, but these are also selectively recorded and often inaccurate. For example, history

of smoking in the General Practice Research Database has only a 60% sensitivity.15

This discussion is not exhaustive and is only meant to represent some of the known issues

with healthcare databases.

Causal graphs: a theoretical approach to confounder control

For confounding control, the researcher wishes to select a set of adjustment variables that,

appropriately included in a statistical model, will yield an unbiased and efficient estimate of

a causal effect of interest. Unfortunately, the property of being a confounder is an issue of

causality and is not statistically identifiable (testable) in data.21-23 Because a confounder

cannot be identified using statistical criteria, no model selection approach can guarantee

unbiased estimates, even in very large studies.
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The theory of causal directed acyclic graphs provides a theoretical framework for using

subject-matter knowledge to identify minimal sets of variables that must be included in a

statistical model to eliminate confounding bias.2, 3 These graphs require that the analyst

specify the causal relations between every relevant variable for a given problem; only the

exposure-outcome relation can be in doubt. Causal graph theory has been helpful in

understanding and describing potential bias in many empirical studies. For example, these

approaches have helped to reveal source of bias in studies of infant birth weight.24

Unfortunately, in many studies of medical interventions, the available subject-matter

knowledge is inadequate to specify with any degree of certainty the causal connections

between variables that determine exposure or outcome. This problem is worsened in the

setting of healthcare database research where many variables are not directly measured and

the meaning of diagnosis codes is not always clear.

Variable selection: over-adjustment versus under-adjustment

In the absence of a causal graph that determines the set of variables that one should include

in a statistical model, researchers must consider each variable individually using some

combination of subject-matter knowledge and statistical criteria to decide whether to include

the variable in the model. It is well known that the failure to adjust for an important

confounder (or its correlates) will result in a biased estimate of an exposure effect. Therefore

“under-adjustment” is a clear threat to the validity of studies using healthcare databases.

However, it is less appreciated that certain variables can introduce or increase bias when

included in a statistical model. We review the types of variables that can lead to “over-

adjustment” bias.

Intermediate variables—Adjustment for variables that are affected by treatment can

introduce bias in an estimate of the total effect of treatment.25-27 This bias can be avoided by

selecting appropriate study designs, such as the new user design in which the covariates are

measured prior to the start of exposure.28 Prevalent user studies and case-control studies

may be more subject to this bias as there is often not a clear temporal ordering of covariates

and exposure. When adjustments need to be made for time-varying covariates, for example

in the setting of outcome-related treatment changes, appropriate statistical models, such as

marginal structural models, are needed.2930

Bias resulting from statistical control of an instrumental variable (Z-bias)—
Inclusion of variables that are strongly related to the exposure, but unrelated to the outcome

(i.e., instrumental variables), can increase the variance and bias of an estimated exposure

effect when added to a statistical model. The increase in bias happens when there exists

residual bias due to uncontrolled confounding. We term these variables “Z-variables” as Z is

often used to denote an instrumental variable. We term the bias induced by the inclusion of

such variables “Z-bias.” The bias increases as the amount of uncontrolled confounding

increases and the strength of the association between the Z-variable and exposure

increases.31

Z-bias has been evident in simulation studies,32 has been discussed theoretically,22 and has

been demonstrated analytically.31 It may seem counterintuitive that a variable that only
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affects exposure could increase bias when included in a statistical model. However, consider

that within strata of the exposure a Z-variable will be related to the outcome via a pathway

through the unmeasured confounder (Figure 1). Any plausible instrumental variable could

potentially introduce Z-bias in the presence of uncontrolled confounding. For example, if

there are large differences in medical practice between physicians, hospitals, or geographic

regions – three variables used in prior studies as instruments33-38 -- including variables

representing these differences could plausibly introduce Z-bias. Similarly, if there are strong

secular trends in medication use and time is not related to any uncontrolled confounding

variables,39-42 adjustment for calendar time could increase bias. Because some unmeasured

confounding is likely in studies based on healthcare utilization data, Z-bias may be common.

Collider-stratification bias (M-bias)—In Figure 2, we depict a situation in which

adjustment for a non-confounding variable can increase bias even in the absence of

uncontrolled confounding. Here, adjustment for C, which is a common effect of X1 and X2,

but not independently related to exposure or outcome, creates bias if both X1 and X2 are

excluded from the statistical model. Such a variable is called a “collider” as pathways from

X1 and X2 collide at C. Adjustment for C creates an association between X1 and X2 and

opens a path from the exposure to the outcome and therefore could create a spurious

association between the exposure and outcome.43, 44 From the shape of the causal graph, this

bias has also been termed M-bias.43 For example, in an observational study of the effect of

anti-depressant use and lung cancer, let X1 be depression, C be cardiovascular disease, and

X2 be smoking status. Here no adjustment is necessary to obtain unbiased estimates, but

adjustment for cardiovascular disease without adjustment for smoking status or depression

could introduce bias in the estimated effect of anti-depressant use on lung cancer. M-bias has

been shown to be generally smaller than confounding bias.43

When included in a statistical model, any of these bias-increasing variables may be

predictive of the outcome and shift the estimated exposure effect and therefore be identified

as a possible confounders by most variable selection strategies.

Practical strategies for variable definition and selection

Given the complex determinants of treatment use, the limitations of the available data, and

theoretical issues of confounder control, we now consider some approaches to controlling

confounding in studies based on healthcare databases.

A priori defined covariates—The usual approach to confounding control in healthcare

database research is to define an a priori set of covariates. Variable selection strategies may

then be used to select which of these to include in a statistical model or recently proposed

shrinkage estimators could be used to model their effect.45 These covariates typically

include demographic characteristics, history of major medical comorbidities, measures of

overall comorbidity (such as the Charlson46 and Romano scores47), history of medication

use, history of acute care hospitalizations, and measures of health care system use, such as

numbers of physician visits.

The advantage of an a priori approach is that covariate definitions are typically based on

subject matter knowledge such that the analyst can attempt to adjust for all relevant medical

Brookhart et al. Page 6

Med Care. Author manuscript; available in PMC 2014 May 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



conditions that might affect the outcome or the use of treatment. Also, given the relatively

limited set of covariates included, the analyst can assess each one for its potential to

introduce Z-bias or M-bias by drawing causal diagrams. The major limitation of this

approach is that the typical set of covariates will not include many of the potentially

important confounding factors discussed previously that are not directly observable in

healthcare claims data. Another practical problem is the possibility of missing or mis-

defining a medical condition as a result of changes in the use of diagnostic codes.

Non-parsimonious or “proxy” adjustment—Seeger et al suggested that medical

claims may serve as proxies for important unmeasured variables in hard-to-predict ways.48

In a study of statin use and cardiovascular outcomes, they found that certain healthcare

utilization variables, such as frequency of lipid tests ordered and physician visits, were

strong predictors of statin initiation and appeared also to be strong confounders. In their

analysis, a simple propensity score model that omitted these covariates appeared to yield a

more biased estimate of the exposure effect than a larger propensity score model.48

Although frequency of lipid testing does not directly affect cardiovascular risk, it could be

viewed as a proxy for concern about disease risk. Therefore, frequency of testing may be

associated with other risk-modifying behaviors or to underlying risk. Other healthcare

claims may serve as proxies for other important unmeasured confounders. For example, the

use of oxygen canisters could be a proxy for failing health and functional impairment, and

adherence to preventive medications may be a proxy for important health-related behaviors,

such as regular exercise.

This idea has motivated the construction of very large propensity score models,49, 50 that

provide a way to statistically control for large numbers of covariates when exposure is

common but the outcomes is rare.51 For example, Johannes et al constructed a propensity

score model from healthcare claims that considered as candidate variables the 100 most

frequently occurring procedures, diagnoses, and outpatient medications.52 In a recent paper,

Schneeweiss et al proposed an algorithm to create a very large set of covariates defined from

healthcare utilization data. The algorithm prioritizes covariates for inclusion in a propensity

score model based on their association with both the exposure and outcome.53 In several

example analyses where the true effect of an exposure was approximately known, the

algorithm appeared to perform as well as or better than approaches based on a priori defined

covariates.53

The approach of defining covariates prior to exposure, will not “over-adjust” by including

intermediate variables. However, the procedure could introduce bias by identifying variables

that could lead to M-bias or variables that behave like instrumental variables and lead to Z-

bias. Therefore, the analyst should attempt to remove such variables from the set of

identified variables. For example, variables that are strong predictors of exposure but have

no obvious relation to the outcome should be considered potential sources of Z-bias.

Combined Approaches—The empirically-driven covariate definition algorithm just

described and the a priori-defined covariate selection represent poles on a continuum.

Certainly some combination of the two approaches could be helpful. For example, the

automated procedure could be used to identify a set of potentially important confounders
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that are then manually examined and selected for inclusion in the model. The resulting set of

potentially important confounders could then be added to a model that included a set of a

priori defined covariates. This more limited use of empirically-derived covariates may

reduce confounding while simultaneously reducing the risk of including variables that could

increase bias. One downside of this approach is that one may end up with a large number of

covariates that need to be evaluated, leading to investigator exhaustion if multiple exposures

and outcomes need to be studied.54 However, such an approach could also be used to

identify important potential confounders, such as frequency of lipid testing, that could be

used in future studies.

The particular approach that one adopts for healthcare database research will depend on the

researchers’ substantive knowledge and whether one is more concerned about missing a

potentially important confounder and thus under-adjusting versus including a harmful

covariate and thus over-adjusting. In healthcare database research under-adjustment may

often be the greater concern.

Uncontrolled confounding

Regardless of the approach that one adopts to control confounding in healthcare database

research, there usually exists the possibility of some bias due to unmeasured confounders.

Often researchers assess the sensitivity of analyses to assumptions about hypothetical

unmeasured confounders.55-58 When information is available on a single potential

unmeasured confounder, for example from a sub-sample or from external data, it is possible

to remove residual confounding attributable to the unmeasured confounder from the effect

estimates.59, 60 When external data are available on multiple unmeasured confounders, the

method of propensity score calibration may be used to adjust estimates.6, 61 Instrumental

variable methods may also be used to estimate causal treatment effects in the presence of

unmeasured confounders, provided a valid instrumental variable is available.62

Conclusion: Providing transparency through sensitivity analyses

Given the complexity of the underlying medical, sociological, and behavioral processes that

determine exposure to medical products and interventions as well as the limitations of

typical healthcare databases, there will often exist substantial uncertainty about how one

should specify necessary statistical models to control confounding. We will typically not

know with certainty whether a variable is a confounder, an instrumental variable, a potential

source of M-bias, or simply irrelevant. Therefore, we suggest that researchers report results

under different specifications of the statistical models. This allows the reader to evaluate the

robustness of the findings to arbitrary modeling decisions made by the analyst.

We suggest that a primary analytic approach be chosen before data are examined and then

variations of that analysis performed and described in the paper or reported in an appendix.

For example, in secondary analyses one could consider a high-dimensional specification or

one could remove variables that might plausibly lead to over-adjustment bias. If a researcher

is agnostic about which variables to put in the model, it would be reasonable to pool results

from different model specifications using meta-analysis or Bayesian methods. Such

approaches would enable confidence intervals to represent more faithfully uncertainty about
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effects of interest. This would allow clinicians, patients, regulators, and policy makers to

make the most appropriate decisions regarding the use of medical products and procedures

in light of the available evidence.
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Figure 1.
Z-bias
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Figure 2.
M-bias

Brookhart et al. Page 14

Med Care. Author manuscript; available in PMC 2014 May 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


