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Complexity is conventionally defined as the level of detail or intricacy contained within a picture. The study
of complexity has received relatively little attention—in part, because of the absence of an acceptable metric.
Traditionally, normative ratings of complexity have been based on human judgments. However, this study dem-
onstrates that published norms for visual complexity are biased. Familiarity and learning influence the subjective
complexity scores for nonsense shapes, with a significant training X familiarity interaction [F(1,52) = 17.53,
p < .05]. Several image-processing techniques were explored as alternative measures of picture and image
complexity. A perimeter detection measure correlates strongly with human judgments of the complexity of line
drawings of real-world objects and nonsense shapes and captures some of the processes important in judgments
of subjective complexity, while removing the bias due to familiarity effects.

Pictorial complexity refers to the degree of detail or
intricacy in a picture (Snodgrass & Vanderwart [S&V],
1980). Complexity is one of several subjective image
characteristics frequently collected by researchers in nor-
malization studies. Subjective ratings have long been used
to provide normative data for the characteristics of visual
stimuli for use in studies of object recognition, memory,
naming, and semantic priming in normal populations and
in those suffering neurological deficits. Proctor and Vu
(1999) have indexed some 142 normative studies pub-
lished by the Psychonomic Society since 1960, covering
picture categories such as imagery, concreteness, familiar-
ity, age of acquisition, naming times, and complexity. The
origin of this approach lies in the work of Paivio, Yuille, &
Madigan (1968), who published normative ratings of the
concreteness, imagery, and meaningfulness of words. Prior
research had sometimes relied on "unspecified judgments
by the experimenter alone" (Paivio et al., 1968, p. 2). When
S&V produced a set of norms for pictures, their motivation
was similar to that of Paivio et al. Of particular concern
was the extent to which picture sets created by research-
ers represented the intended picture characteristics and the
degree to which it was possible to generalize the fmdings
of experiments, using unstandardized pictures.

Since Proctor and Vu (1999) published their index of
studies, others have developed and continue to develop
new population norms—for example, in English (Barry,
Morrison, & Ellis, 1997; Vitkovitch & Tyrrell, 1995), Ice-

landic (Pind, Jonsdottir, Trggvadottir, & Jonsson, 2000),
or Italian (Dell 'Acqua, Lotto, & Job, 2000)—and new
sets of pictures for concepts not previously represented
(Bonin, Peereman, Malardier, Meot, & Chalard, 2003).

Complexity and Its Influence on Reaction Time
S&V felt it likely that increased complexity would in-

fluence the speed at which pictures are categorized. An-
thropogenic objects (simpler) would be categorized most
quickly, and naturalistic complex images, such as insects
more slowly. S&V suggested how, in episodic memory
tasks, complexity is likely to influence stimulus recogni-
tion: The extra detail depicted in an object may give an
image added novelty, and this novelty may slow the recog-
nition process. In support of this idea, Rossion and Pour-
tois (R&P; 2005) reported some categorical reaction time
advantage—that is, some categories tend to be responded
to more quickly than others—although this seemed to be
mainly a function of diagnostic color in categories, such as
fruits/vegetables versus animals, rather than a function of
complexity. Bonin et al. (2003) also found no significant
relationship between visual complexity (VC) and nam-
ing times. In the icon/symbol literature, complexity does
seem to influence response latency (rather than naming la-
tency); whereas concreteness or how real world an image
appeared determined accuracy, VC determined the speed
at which users could search and respond (McDougall, de
Bruijn, & Curry, 2000).
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Measures of Complexity Affected by Familiarity:
Studies With Adults

Close examination of the published norms pertaining to
complexity points to the presence of a possible confound
that was not taken into account in the original analysis and
interpretation of the data. This is the relationship between
familiarity and VC. S&V (1980) asked raters to consider
familiarity as "how unusual the object is in your realm of
experience"; this was defined as "the degree to which you
come into contact with or think about the concept."

S&V (1980) reported a complexity—familiarity correla-
tion of r, = —.46, p < .01; likewise, when standardizing
the S&V pictures in French, Alario and Ferrand (1999) re-
port a correlation of r = — .39,p < .01. Alario and Ferrand
argued that this correlation arises because visually com-
plex pictures tend to be unfamiliar and more novel. Close
inspection of their data does not support this explanation.
In their study, pictures were scored on a 5-point scale. If 2.5
is taken as the midpoint on the scale, one can identify 63
pictures that are both unfamiliar and complex (i.e., famil-
iarity < 2.5 and complexity > 2.5). There are 111 pictures
that are both familiar and complex (i.e., familiar > 2.5 and
complex > 2.5). The S&V picture set contains proportion-
ally more complex familiar pictures than complex unfa-
miliar ones, and, as such, Mario and Ferrand's explanation
for the inverse correlation does not hold.

To extend the number of standardized pictures available
for testing, Bonin et al. (2003) developed a new set of
pictures representing concepts not already available. The
authors reported one of the smallest correlations between
VC and familiarity in the picture-naming literature (r =
—.22,p < .01). In the icon/symbol literature, McDougall,
Curry, and de Bruijn (199b) published a relatively small
correlation of r, = — .30, j < .01.

One of the largest correlations in the literature (r =
—.50) can be found through an analysis of data reported
by R&P (2005). The authors were particularly interested
in the differences between picture types, such as color,
grayscale, and line drawings. They developed three sets of
S&V-like drawings in line, gray shading, and color. R&P
found reaction times to be shorter for responses to color-
ized drawings than for those to line or grayscale drawings.
R&P also collected ratings on their S&V-style pictures for
naming time, familiarity, complexity, mental image agree-
ment, and color diagnosticity, but correlations among the
different ratings were not examined. Subsequent analysis
of the raw data (available at www.perceptionweb.com/misc/
p5117) indicates the presence of a significant inverse as-
sociation between complexity and familiarity for line draw-
ings (r = —.50, p < .01), grayscale drawings (r = —.41,
p < .01), and colorized drawings (r = —.50,p < .01). The
probable cause of these significant correlations is that when
judgments of images are elicited against several constructs
(e.g., complexity, familiarity, name agreement, etc.), it is
normal practice for different groups to be assigned to dif-
ferent image constructs (Bonin et al., 2003; McDougall
et al., 1999; S&V, 1980). Participants should not be tested
on more than one image construct, for fear that their judg-
ments on one construct will influence the assessments on
another. R&P departed from convention and asked the

same participants to make judgments of familiarity and of
complexity. Different groups of people scored items for fa-
miliarity and complexity, thereby increasing the likelihood
that judgments of familiarity and complexity would be con-
founded. This is problematic, because the authors reported
no significant correlations between picture reaction times
and complexity or between reaction times and familiarity.

In general, there were few differences between the three
sets of pictures (line, gray, and color) rated by R&P (2005).
As might be expected, there was little difference in famil-
iarity scores and complexity scores for line drawings, as
compared with similar scores for grayscale or color draw-
ings. Adding color or shading did not necessarily increase
familiarity or perceived detail and intricacy. Simple corre-
lational analysis of the R&P data by the authors suggests,
however, that the relationship between complexity and fa-
miliarity is more substantial than was originally reported.
There are moderate, negative correlations between reac-
tion time and familiarity for line drawings (r, = — .50,p <
.01), for grayscale drawings (rs = —.45, p < .01), and for
color drawings (r, = —.46, p < .01). Furthermore, there
are small but significant correlations between complexity
and reaction time for line drawings (r, = .22, p < .01)
and color drawings (r, = .23, p < .01), suggesting that
familiarity may be a stronger mediating factor for reaction
times than for complexity.

Measures of Complexity Affected by Familiarity:
Studies With Children

When gathering ratings from children, Cycowicz, Fried-
man, and Rothstein (1997) also tested each child on sev-
eral picture constructs (name, familiarity, and VC). How-
ever, their data seem less problematic, because there was
a smaller albeit significant inverse correlation between
complexity and familiarity (r = —.22, p < .01). A pos-
sible explanation for this smaller correlation is that rather
than using a standard instruction for grading complexity
(e.g., "the amount of detail or intricacy of line in the pic-
ture") Cycowicz et al. asked the children "how difficult
is it to draw or trace this picture." Although the children
might have been puzzled by the standard instruction, it is
possible that the alternative encouraged them to take into
account their own drawing skill and that this partly influ-
enced their judgments of complexity.

Measures of Complexity Unaffected
by Familiarity

All of the major studies of picture norms have pointed
to the presence of a moderate, statistically significant
inverse correlation between complexity and familiarity.
None have considered the important implication that the
reported norms for picture complexity may be systemati-
cally flawed. An unbiased measure would be one in which
a judgment of complexity is unaffected by the familiarity
of the content. One approach to devising such a measure
entails removing human observers and replacing them
with an objective, automated metric.

The study of complexity has received relatively little
attention—in part, because of the absence of an acceptable
metric (Johnson, Paivio, & Clark, 1996). There have been
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several attempts to develop rule-based metrics, with vary-
ing degrees of success. Geiselman, Landee, and Christen
(1982) developed an index of discriminability and identi-
fied nine primitive attributes—for example, numbers of
straight lines, arcs, quasiangles, and blackened-in elements.
This metric was applied in an embedded search-and-select
task. Participants were required to select symbols from a
larger corpus of symbols in which three alternative repre-
sentations of each concept were present. Using this metric,
they found that stimuli with a high discriminability score
were selected more quickly than those with low scores.

Garcia, Badre, and Stasko (1994) developed a metric
based on a calculation of several image features, includ-
ing the number of closed and open figures, and horizontal
and vertical lines. For example, Figure 1 has a complexity
score of 6 (two vertical lines, two horizontal lines, two ar-
rowheads, and one closed figure). Garcia et al. originally
intended this metric to be an objective measure of concrete-
ness or how real world something appears. They reported
that images that are pictorially similar to their real-world
counterparts are more likely to be judged as complex. How-
ever, McDougall et al. (1999; McDougall et al., 2000) found
that this metric was not, in fact, a good measure of icon con-
creteness but that it was useful for interpreting complexity
norms gathered from human observers (McDougall et al.,
1999). McDougall et al. (1999) found that the Garcia et al.
concreteness metric was not correlated with human judg-
ments of concreteness but that it was strongly correlated
(r8 = .73,p < .01) with their judgments of complexity.

Hochberg and Brooks (1960) developed a semiauto-
mated measure of image complexity. They argued that re-
lying solely on human judgments would mean that there
would be no way of predicting how complex a novel image
might be judged to be. Hochberg and Brooks's calculations
demonstrated that it was possible to predict how viewers
would "see" an image; the more interior angles, different
angles, and lines in an image, the more likely it was that
it would be perceived in three dimensions. The number of
interior angles, the average number of different angles, and
the average number of continuous lines can be combined to
provide a measure of complexity.

Figure 1. Complexity metric from Garcia, Badre, and Stasko
(1994).

However, Attneave and Arnoult (1956) had argued that
knowing how many dimensions are needed to explain a
shape is not sufficient to judge its complexity, since some
dimensions (e.g., reference axis or spaces) are more mean-
ingful than others. In other words, the calculation of a
metric based on increasing tridimensionality tells us very
little about either the complexity of unfamiliar images or
the learning processes that can influence the perception of
form. Attneave and Arnoult wanted to understand the de-
gree to which size, contrast, method, and familiarization in-
fluence the perception of form. They developed a system of
calculations that could be used to generate nonsense shapes,
the idea being that if testing using such a metric worked for
images that had no meaningful relationship with real-world
counterparts, it could be generalized to other stimuli.

Observers were given no advance information about
the correct pattern but were required to make judgments
regarding what the preceding element would look like. A
simple image could be predicted from a limited amount of
prior information. The observers made considerably more
errors when predicating the structure of unpredictable
shapes. Bartram (1973) applied the Attneave and Arnoult
(1956) measure to generate nonsense shapes that differed
from each other and had both the same mean association
value and the same complexity value. People respond
to familiar pictures more quickly than to novel pictures;
however, with practice, even the speed of response to non-
sense shapes can be improved, demonstrating that there is
a familiarity component in the perception of complexity.

There are several practical reasons why researchers do
not find this particular metric particularly attractive. The
degree of detailed measurement involved in the identi-
fication, calculation, and documentation of primitive
image components is time consuming. Moreover, should
research teams change, it could be difficult to replicate the
results of such meticulous measurement, because of the
constant removal and addition of individual differences.

Symmetry and Higher Order Regularities
There are other geometrical components that interact

with how complexity is judged by humans. Good symme-
try is as likely to reduce perceived complexity as much as
vertexes, objects, and holes are to increase it. For example,
Attneave and Arnoult (1956) found that the most important
stimulus property for predicting perceived complexity was
the number of turns in a shape (i.e., changes in direction or
corners; accounting for 78% of the variance), a finding that
has been replicated by others. Chipman (1977) found that
turns were important in the measurement of complexity and
that turns interacted with judgments of symmetry. An image
with horizontal symmetry would reduce perceived complex-
ity at a rate equal to a 50% reduction in the number of turns,
further indicating that humans are not particularly good at
jilting the "physical" complexity of a 2-D shape. Chipman
also found that the amount of contour was a determinant of
pattern complexity; however, turns were still the most sig-
nificant contributor to perceived complexity. For example,
an image with a fixed number of turns but a large perimeter
area would be perceived as less complex than an image with
a smaller perimeter area but more turns. In other words, small
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jagged objects would be perceived as more complex than
lager, less jagged objects. There has been some attempt to
apply this metric to the measurement of architectural com-
plexity; however, symmetry was reported as having a much
smaller effect (Stamps, 2000), with a complexity trade-off
between symmetry and turns of 25%. In that study, vertexes
(extreme points) were the most important predictor of per-
ceived complexity (f = 53.9,p < .001,11/2 = 42.8%).

Measuring Complexity: Why Should
Automated Measurement Be Possible?

Some ofthe most successful theories of image processing
(Biederman, 1987; Marr, 1982; Treisman & Gelade, 1980)
consider measurable characteristics, such as the degree of
detail within an image, as fundamental. Following this line
of argument, Forsythe, Sheehy, and Sawey (2003b) have
pursued one implication—namely, that a computer-based
system capable of processing visual primitives might offer
a valid measure of complexity for all 2-D stimuli.

For example, it is often argued that adding additional
elements (e.g., primitive components, objects, or shading)
to an object will increase its concreteness (Horton, 1994;
Nielsen, 1993). Depicting both an object and an operation
usually involves the inclusion of more elements to clearly
communicate the intended meaning. Additional atten-
tional processes are involved in building a cognitive rep-
resentation, and as such, there is the need to integrate an
increased number of constituent elements. Simple image
properties are extracted from an image in parallel, and
these properties are then combined to form objects of a
particular shape, color, and size (see, e.g., Treisman, 1986;
Treisman & Gelade, 1980; Treisman & Souther, 1985).

Forsythe et al. (2003b) tested the proposition that the
number of discrete objects miithin a picture and the number
of holes within those objects can be used as a measure of
visual complexity. It was considered that a picture rated
as complex would contain more elements than an abstract
picture and that these elements would themselves be com-
plex in nature, having more local detail (i.e., holes). The
analysis was based on the connectedness between pixels,
so that discrete objects were detected only when there were
breaks between pixels. The holes within those objects were
counted by calculating the Euler number of the image.

Although correlations between objects counts and subjec-
tive complexity were high, there was little evidence that they
were psychologically plausible. For example, Figure 2 was
rated by observers as containing two objects; the computer
metric also rated the object as having two objects. We can
see, however, that one object is the bug and the spray can and
the second object is the droplet of spray (shown as a rogue
gray pixel). Local detail (holes) presented similar anomalies;
the sensitivity of the system enabled the detection of spaces
between pixels that were not visible to the human eye.

Zhang and Lu (2004) identified several characteris-
tics that an effective shape representation and description
technique should have. The system should be robust and
should be able to determine shapes in much the same way
as a human observer, it should be stable, and there should
be clarity about the ways in which measurement, identi-
fication, and description are attained. Although some of

Figure 2. Debug (Forsythe, Sheehy, & Sawey, 2003b).

the measures reported by Forsythe et al. (2003b) failed on
these criteria, automated measures based on psychophysi-
cal evidence proved more stable.

These measures were informed by arguments that
changes in intensity, such as course and fme lines, are criti-
cal in providing information about a stimulus. The brain
registers variations in an image as changes in intensity, and
it is these coarse and fme changes that provide detail and
local information about a stimulus (Beck, Graham, & Sut-
ter, 1991; Harwerth & Levi, 1978; Sutter, Beck, & Graham,
1989; Vassilev & Mitov, 1976). Coarse scales are thought
to be treated by the brain as low-frequency components
obtained from local information. This difference in pro-
cessing speed would seem to be a function of image com-
plexity: When an object is of a detailed nature, its global
attributes are processed much more quickly than its local
ones (Hoeger, 1997; Parker, Lishman, & Hughes, 1997).

Forsythe et al. (2003b) showed that these basic percep-
tual components (i.e., edges) are important in the measure-
ment of complexity. Two edge detection techniques were
tested: the Canny edge detection algorithm and perimeter
detection. Both techniques measure the changes in inten-
sity that occur at the edges of an image element. The Canny
technique is particularly useful in the detection of fine
lines or gray shading. It works by using two thresholds to
detect strong and weak edges and includes the weak edges
in the output only if they are connected to strong edges.
This means that truly weak edges will be detected in the
analysis, but noise—such as shadow or shading—will be
ignored. Perimeter detection measures (outlined in detail in
the Method section of Experiment 1) more rapid changes
in image intensity and performs well for images with sharp
changes in contrast, such as line drawings. The extent to
which an image is measured as having edges correlated
highly with subjective judgments of image complexity.
For example, the perimeter detection metric correlated
(r. = .64,p < .001) with a random set (n = 68) of the Mc-
Dougall et al. icons and symbols and also correlated (r =
.66, p < .001) with measures in Garcia et al. (1994). This
perimeter metric has reasonably good predictive validity
when applied to other pictorial images (Forsythe, Sheehy,
& Sawey, 2003a). For example, it produces complexity
scores that approximate human judgments when icons
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are systematically manipulated; a simple contrast (black–
white) inversion of the entire picture produces complexity
scores that approximate users' judgments of complexity
(n = 239, rs = .46, p < .001). It is thought that these mea-
sures are effective because the algorithm underpinning
perimeter detection takes into consideration the extent to
which a pictorial image has edges; edges combine to form
small shapes and add detail, and these are perhaps what
make an image to be perceived as complex.

Perimeter measures have been described by Zhang and
Lu (2004) as contour-based, global measures of shape. Pe-
rimeter measures do not divide a shape into parts; rather,
the whole shape contour is used to describe the shape. This
makes this type of measure very straightforward for users
to implement and, as such, it tends to be a popular method
of image measurement. An alternative automated measure
of picture complexity that is also very straightforward to
implement is based on the size of the compressed image
file (Bates et al., 2003; Donderi, 2006a, 2006b; Vitevitch,
Annbhister, & Chu, 2004). Bates et al. used JPEG com-
pression on black-and-white line drawings, and Vitevitch
et al. applied JPEG compression to the standardization of
visual stimuli consisting of words. JPEG compression is
often a lossy type of data compression. This type of com-
pression does not allow the exact reconstruction of an
original image, and although the image tends to be "good
enough," the process of removing small details and fine
edges makes it particularly unsuitable for line drawings and
textual or pictorial graphics (Taubman & Marcellin, 2001).
Furthermore, the system also adds additional information,
known as compression artifacts, that were not contained
in the original image. Figure 3 shows the original Bitmap
image and the resulting artifacts following JPEG compres-
sion (enhanced for visibility). Compression file size is also
influenced by a number of factors other than image com-
plexity (e.g., luminance and chrominance). These problems
suggest a lack of clarity and stability (Zhang & Lu, 2004)
in the application of JPEG as a measure of complexity.

Where the application of JPEG compression techniques
is perhaps more justified is in the measurement of images
such as electronic charts and radar screens (Donderi, 2006a,
2006b; Donderi & McFadden, 2003). In these highly de-
tailed and colorized environments, JPEG compression file
sizes can correlate highly with subjective measures of image
complexity (between 25% and 85% of the variance).

Donderi (2006a, 2006b) has revisited information theory
(Shannon & Weaver, 1949) as a possible framework that
could explain the success of compression size as a deter-
minant of complexity. Information theory treats a message
as a series of components to be communicated, and this
framework was adopted both by Attneave (1959) and by
Hochberg and McAlister (1953) to explain the informa-
tion content of visual images. The message components in
a visual image are small image elements, such as angles
and lines. As the number of different elements increases,
so does the unpredictability of the message. This predict-
ability improves when other image components can be used
to determine meaning—that is, symmetry. Donderi (2006a,
2006b) argued that when a picture is compressed, the string
of numbers that represent the organization of that picture is

Figure 3. Line nonsense shapes showing compression artifacts.

a measure of its information content. When the image con-
tains few elements or is more homogenous in design, there
are few message alternatives, and, as such, the file string
contains mostly numbers to be repeated. A more complex
picture will have more image elements, and these elements
will be less predictable. The file string will be longer and
will contain an increasing number of alternatives.

All computational measures have some way to go before
they will be able to account for and measure all the pro-
cesses involved in the perception and cognition of images.
Nevertheless, the current move toward the development of
a quick approximation of human judgments of complexity
suggests that further exploration of these types of auto-
mated measures is warranted. Computer-based measures
also offer the potential to remove the familiarity effect in
judgments of complexity present in all of the major stud-
ies of picture norms, thereby avoiding the need to conduct
supplementary normalization studies.

Four image measurement techniques (Perimeter, Canny,
JPEG, and GIF) were applied here to four sets of published
data: R&P (2005), Bonin et al. (2003), and the classic set
of adult ratings (S&V, 1980) and ratings for the S&V pic-
tures collected from children (Cycowicz et al., 1997). The
first experiment tested two propositions: first, that the au-
tomated metrics are a good approximation of how humans
judge complexity in a picture, and second, that it accounts
for the familiarity/complexity bias because, as was argued
by Alario and Ferrand (1999), visually complex pictures
tend to be unfamiliar and more novel.

EXPERIMENT 1

Method
The S&V (1980; including ratings for children, Cycowicz et al.,

1997) and R&P (2005) picture sets (n = 260 pictures per WO and
the data in Bonin et al. (2003; n = 290 pictures) were analyzed using
four measures: perimeter, Canny, JPEG, and GIF.

Edge detection: Perimeter and Canny. MATLAB (Math-
Works, 2001) is an integrated commercial package with pOwerful
mathematical algorithms and visualization utilities for the acquisi-
tion, analysis of, and exploration of data. When preparing picture
sets for processing, MATLAB treats a binary (black-and-white)
image as an array of is and Os. On white paper, black normally
(but not always) represents the foreground, and white represents the
background. MATLAB, on the other hand, considers white to be an
on pixel, giving it the value of 1, and black to be an off pixel, giv-
ing it the value of O. Thus, before any analysis was carried out, the
representation of all the pictures in MATLAB was reversed, with 1 s
becoming Os and vice versa.
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The perimeter detection metric examines the changes in inten-
sity occurring at the edges of an image. Edges are located with two
criteria that are used to examine areas in the pictorial image where
there is a rapid change in image intensity. Either a change in inten-
sity must be larger than a predetermined threshold (edge detection
provides a number of estimators that can used to specify sensitivity),
or an edge will be detected where the intensity derivative has a zero
crossing. Zero crossings are considered to occur at the places where
negative and positive pixels are adjacent. For a pixel to be considered
an edge pixel, it must be activated (on), and it must be connected to
at least one nonactivated (oft) pixel. This is a simplified version of
more general detectors, such as Canny, which calculate the gradi-
ent of intensity values for close-by pixels in color or grayscale im-
ages. A limitation of the perimeter measure is that thicker lines are
awarded higher scores than are thinner lines, because this measure
rates a thick line as having two edges, rather than one. The selection
of a four-connected neighborhood (rather than an eight-connected
neighborhood) compensates for this problem to some degree, since
it produces a finer image (see Forsythe et al., 2003b, for a fuller
treatment).

Edges that are blurred or difficult to detect may, however, be in-
cluded superfluously in a MATLAB perimeter detection calculation.
To allow for these considerations, the Canny perimeter detection cal-
culation was included. The advantage of the Canny method is that it
works by using two thresholds to detect strong and weak edges and
includes the weak edges in the output only if they are connected to
strong edges. This means that truly weak edges will be detected in the
analysis but noise-such as shadow or shading-will be ignored.

Compression: JPEG and GIF. Lossy compression using
JPEG is contrasted here with a lossless compression, a technique
that permits a reconstruction of the exact original image from the
compressed data. Off compression works better on pictures with
limited colorization (<245) and performs particularly well on sharp
transitions, such as diagrams or text (or in this study of line draw-
ings). GIF compression can reduce a file size only to about half of
its original size. To control for this difficulty, JPEG compression was
also calculated to a 50% compression size.

Results
Table 1 shows the means, standard deviations, kurtosis,

skew, and minimum and maximum automated counts for
the automated measures for each of the three picture sets.
For the S&V (1980) and R&P (2005) picture sets, the dis-
tribution for several of the measures was skewed at more
than twice the standard error, similarly, Table 1 shows evi-
dence of kurtosis in the distribution. A log io transforma-
tion was considered in order to correct the distribution of
these measures, but this made virtually no difference to the
subsequent nonparametric correlational analysis. Similarly,
scores were standardized into a 5-point scale to permit di-
rect comparisons with published ratings. This adjustment
tended to inflate the positive results slightly, but this in-
crease caused slightly reduced variance within the data.

The reduction of scores was larger for the Bonin et al.
(2003) picture set. Although this picture set presents a nor-
mal distribution for human judgments of complexity, the
automated measures indicate a distribution that is signifi-
cantly leptokurtic. Skew and kurtosis are commonly caused
by sampling bias, nonnormal distribution of the character-
istics of the items being measured, or the sensitivity of the
measurement tool. Analysis using the automated measures
raised two issues with this set. First, several pictures in
the set were calculated as being extremely complex; these
pictures attracted scores more than two standard devia-
tions above the mean (thus forming the tail). Although hu-
mans also identified these images as highly complex, the
range of scores available (1-5) did not adequately reflect
the range of scores awarded by the automated measure
(293-10,866); moreover, there were insufficient pictures
available in this range of scores to correct the distribution

Table 1
Descriptive Statistics for Automated Measures of Complexity

Data Set

Complexity Skew Kurtosis

Min. Max.M SD M SE M SE

Snodgrass & Vanderwart (1980)
Perimeter	 2,583.34 1,197.72 0.76 0.153 0.128 0.305 461 8,107
GIF 1,468.16 452.01 0.66 0.153 -0.065 0.305 646 3,172
JPEG 7,042.45 2,311.64 0.59 0.153 0.101 0.305 2,091 13,633
Canny 2,240.87 1,030.85 0.79 0.153 0.151 0.405 338 5,954

Bonin, Peereman, Malardier, Meot, & Chalard (2003)
Perimeter 2,343.35 1,599.522 1.754 0.141 4.589 0.281 293 10,866
GIF 4,245.88 2,143.839 1.971 0.141 5.384 0.281 1,708 16,821
JPEG 6,838.12 2,425.858 0.963 0.141 0.915 0.281 3,211 17,140
Canny 2,315.03 1,437.954 1.534 0.141 4.122 0.281 264 10,448

Rossion & Pourtois (2005)
Line drawings

Perimeter 1,970.08 894.10 0.70 0.153 -0.01 0.305 381 6,144
GIF 3,099.93 902.49 0.53 0.153 -0.16 0.305 999 7,285
JPEG 2,689.36 571.26 0.39 0.153 0.00 0.305 1,560 4,690
Canny 2,188.29 931.03 0.54 0.153 -0.26 0.305 600 6,242

Gray-shaded drawings
Perimeter 649.89 350.77 1.09 0.153 1.23 0.305 64 3,553
GIF 4,721.55 1,388.44 0.19 0.153 -0.49 0.305 1,698 33,056
JPEG 2,472.28 490.91 0.68 0.153 0.80 0.305 1,533 9,519
Canny 784.38 264.48 0.19 0.153 -0.11 0.305 210 5,827

Colorized drawings
Perimeter 653.41 347.68 1.51 0.153 4.46 0.305 125 4,955
GIF 4,757.18 1,387.85 0.17 0.153 -0.60 0.305 1,811 29,895
JPEG 2,647.59 524.28 0.75 0.153 1.00 0.305 1,689 11,470
Canny 766.56 263.83 0.19 0.153 -0.21 0.305 207 5,671
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(n = 7). This problem can be resolved to some degree by
removing these pictures as outliers, but this only reduces
the leptokurtic distribution; it does not dissolve it.

Relative to the other picture sets reported here, Bonin
et al.'s (2003) is larger (n = 299). The additional pictures
are not distributed within the expected range of complexity
(as determined by the automated measures). The picture
set contains more pictures rated very simple than pictures
toward the midpoint of the distribution. In the first quintile,
this amounted to more than double the number of simple
pictures contained in the R&P (2005) and S&V (1980)
picture sets. This possibly explains why Bonin et al. re-
ported one of the smallest correlations between complexity
and familiarity (r = —.22, p < .01). A larger number of
pictures varying in VC at all levels would perhaps present
correlations closer to other published ratings.

Logic, transformation and histogram equalization made no
discernable difference to the subsequent correlations; there-
fore, correlations with the Bonin et al. (2003) means are re-
ported here. Given the difference in distributions, one would
expect smaller correlations with the automated measures.

Outliers were removed from all the picture sets (Bonin
et al. [2003], n = 7; S&V [1980], n = 7; R&P [2005],
n = 5), reducing the picture set sample sizes to 252 (R&P
and S&V) and 292 (Bonin et al.). Given the large data
sets and the four different measures of JPEG, GIF, Canny,
and perimeter, a Bonferroni adjustment was set at .0002.
A caveat to this adjustment is that it greatly increases the
likelihood of Type II error.

Validity of the perimeter detection metric. One
would predict that for line drawings, techniques such as pe-
rimeter detection and GIF compression will show stronger
correlations with human judgments of complexity than tech-
niques such as JPEG. The relationship should be strongest
in data sets that show less evidence of a familiarity bias (i.e.,
Cycowicz et al., 1997; S&V, 1980) and a strong but reduced
relationship with the data sets containing a different range
of complex to simple pictures (Bonin et al., 2003). For the
S&V data set, correlations between the different automated
measures are strong and broadly comparable. There is only
a slight advantage in using GIF or perimeter detection over
JPEG, and similar results can be observed (Table 2) for the
data relating to children's judgments (Cycowicz et al., 1997).
The data published by Bonin et al. also correlates well with
the automated measures. The largest correlate is with perim-
eter detection, although the correlations are smaller because
of the larger number of simple pictures (Table 3).

The stronger familiarity/complexity bias found in the
R&P (2005) data set accounts for the smaller correlations
(Table 4). Despite this problem, some slight variations be-
tween different methods of image measurement are detect-
able: JPEG compression, for example, is the strongest cor-
relate of complexity in the colorized picture set (r, = .53,
p < .0002) and in the grayscale set (r, = .60,p < .0002). For
line drawing, GIF compression shows some advantage (r, =
.65, p < .0002). These differences are small, but they are
predictable from the recommendations regarding the correct
application of different image compression techniques.

Tables 2-4 also show the correlations between subjec-
tive complexity and familiarity. This pattern is less appar-

ent in the automated measures. There are only two signifi-
cant but small correlations between familiarity and JPEG
or GIF compression techniques for the S&V (1980) data
set, (r, = — .24 and r, = — .26, respectively). Although
comparable in size, similar correlations between familiar-
ity and the automated measures did not reach statistical
significance (as determined by the Bonferroni adjust-
ment) for the R&P (2005) data set. No relationship be-
tween automated complexity and familiarity was detected
in the Bonin et al. (2003) picture set.

Judgments of complexity as a function of famil-
iarity. The following analyses explore the argument that
visually complex pictures tend to be unfamiliar (Alario
& Fen-and, 1999). If we consider perimeter detection as
an unbiased measure of VC, it is possible to investigate
the extent to which human judgments of familiarity vary
across stimuli of varying complexity. Very complex pic-
tures should be less familiar than more simple stimuli.

Human judgments of complexity fall within the range
of 1-5, whereas perimeter detection and other automated
measures have a much larger range (see Table 1). To per-
mit direct comparisons, all the scores were standardized
on a 5-point scale (reflecting the human judgments ob-
tained using 5-point rating scales). The standardization
was calculated, through histogram equalization, into five
intervals (or quintiles). Although standardizing the scores
was unnecessary for the previous correlational analysis,
the adjustment was necessary here to examine differences
between perimeter detection and human judgments at the
high and low ends of the rating scales.

It was predicted that relative to pictures falling in the
middle of the 5-point scale (Quintiles 2-4), very complex
pictures (falling in the fifth quintile) would attract sig-
nificantly lower familiarity scores, whereas the simplest
pictures (falling in the first quintile) would be rated as
more familiar.

Human complexity with human familiarity. A one-
way ANOVA was performed on human judgments of famil-
iarity, with perimeter quintiles as a factor. Although there
is a trend for familiar objects to be judged as less complex
(Figure 4), there is very little supporting statistical evidence.
For the S&V (1980) picture set, a significant effect was

Table 2
Spearman Correlations: Snodgrass and Vanderwart (1980)

and Cycowicz, Friedman, and Rothstein (1997)

Complexity Familiarity Perimeter Canny PEG

Snodgrass & Vanderwart (1980)

Familiarity —.46' 1.00
Perimeter .73' —.19	1.00
Canny .68' —.16	.99' 1.00
JPEG .72' —.24'	.96' .96' 1.00
GIF .75' —.26'	.94' .93' .97'

Cycowicz et al. (1997)

Familiarity —.21' 1.00
Perimeter .65' —.06
Canny .61' —.05
JPEG .65' —.07
GIF .65' —.10

Note—For Cycowicz et al., perimeter, Canny, and ]PEG, see Snodgrass
& Vanderwart.	< .0002.
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Table 3

Spearman Correlations: Bonin, Peereman,

Malardier, Meot, and amlard (2003)

Complexity Familiarity Perimeter Canny JPEG

Familiarity -.23' 1.00

Perimeter .45' -.13 1.00
Canny .39' -.10 .93' 1.00
JPEG .41' -.12 .92' .95' 1.00
GIF .39' -.11 .81' .85' .84'

< .0002.

found for adult ratings of familiarity [F(4,255) = 3.05,p <
.01; M2 = 4.39, ,,2= .05], but post hoc comparisons (Tukey
HSD) determined this to occur only between Quintiles 1
and 4 (p < .05). No difference was found in children's rat-
ings for familiarity (Cycowicz et al:, 1997) as a function of
VC. Bonin et al. (2003) presented a comparable trend, but
again, this pattern was not statistically significant.

Figure 4 can be used to determine the extent to which
this effect is a function of unfamiliar pictures being more
complex. Although there is a trend toward complex images
being less familiar, the statistical evidence is not clear.

R&P (2005) presented stronger evidence that complexity
may be related to familiarity [F(4,255) = 24.98, p < .01;
M2 = 36.33,12 = .28], with Quintiles 1 and 5 being signifi-
cantly different from all complexity quintiles (Tukey HSD).
One reason why it is possible to detect this trend in the R&P
data set is that each quintile contains a similar number of
stimuli (between 50 and 55 pictures per quintile). Other
data sets contain much greater variation across the perime-
ter quintiles, with Quintile 5 being most problematic (S&V,
n = 7; Bonin et al., n = 9). Tliis makes statistical analysis of
this quintile set problematiciMoreover, given that R&P ad-
opted the unusual procedure of asking their participants to
score for both VC and familiarity, it is conceivable that the
ratings of perceived familiarity used in this analysis could
be confounded by judgments of VC.

Discussion
Automated measures of complexity. Four image-

processing measures were used to examine the relation-
ship between subjective visual complexity and the ability
of a computer to closely approximate those judgments.
Several metrics were applied to four published sets of
standardized norms for pictures. The perimeter and Canny
measures correlated moderately well with human judg-
ments of complexity for all four data sets: S&V (1980),
r, = .73, p < .0002 (Perimeter) and r, = .68, p < .0002
(Canny); Cycowicz et al. (1997), r, = .65 and r, = .61,
p < .0002, respectively; Bonin et al. (2003), rs = .45,p <
.0002, and r, = .39,p < .0002; and R&P (2005), r = .57,
p < .0002, and r = .60, p < .0002 (line drawings).

Compression techniques also performed comparably
well as measures of complexity (cf. Tables 2-4): for ex-
ample, S&V (1980), r,= .72,p < .0002 (JPEG), r, = .75,
p < .0002 (GIF); Cycowicz et al. (1997), rs = .65, p <
.0002 (JPEG and GIF); and Bonin et al. (2003), r, = .41,
p < .0002, and r, = .31, p < .0002, respectively. Results
are broadly comparable for the R&P (2005) data set. The
correlations are slightly smaller, but the larger familiarity

bias in the original data would account for the reduction
in coefficient size.

Despite concerns that compression (particularly JPEG)
is not suitable for the treatment of simple images, research-
ers have applied such measures in the standardization of
such pictures (Bates et al., 2003; Vitevitch et al., 2004).
The correlations reported here suggest that complexity
could be reasonably approximated through a compression
metric, but there are some subtle differences in the results,
depending on which automated metric is applied. With
these limitations in mind, compression can be used to
make quick approximations of human judgments of VC.

Children's judgments of picture complexity. Chil-
dren's judgments of complexity are broadly similar to
those of adults, but the effect is smaller for children than
for adults. This may partly be due to the nonstandard in-
structions used by Cycowicz et al. (1997), and it may also
be explained by the fact that children's semantic networks
are at an earlier stage of development (Wright & Wanley,
2003) and, as such, their judgments of complexity may be
less influenced by their familiarity with a picture.

Unfamiliar pictures being more complex. Evidence
that complex pictures tend to be perceived as less familiar
is equivocal. Data sets that present a systematic relation-
ship between complexity and familiarity are known to be
flawed (e.g., R&P, 2005), and a fundamental assumption of
the analysis reported here is that although human VC can be
confounded by familiarity, familiarity is not confounded by
VC. An analysis of less biased data sets (Bonin et al., 2003;
Cycowicz et al., 1997; S&V, 1980) presents weaker evi-
dence in support of the complexity-familiarity relationship,
but very large differences in the number of shapes falling
across the range from simple to complex images (S&V had
just seven images falling into the simplest category; Bonin
et al. had nine images) makes interpretation of the statistical
analysis problematic. Further research is required, based
on equivalent numbers of images falling across the range
of visual complexity; such an analysis will help determine
whether complex images are actually less familiar.

Table 4
Spearman Correlations: Rossion and Pourtois (2005) 

Complexity Familiarity Perimeter Canny JPEG

Line drawings
Familiarity -.50' 1.00
Perimeter .57' -.22 1.00
Canny .60' -.20 .94' 1.00
JPEG .59' -.27 .90' .89' 1.00
GIF .65' -.30 .92' .93' .93'

Gray drawings
Familiarity -.41' 1.00
Perimeter .52' -.28 1.00
Canny .46' -.08 .70' 1.00
JPEG .60' -.27 .79' .81' 1.00
GIF .45' -.14 .67' .86' .80'

Colorized drawings
Familiarity -.50' 1.00
Perimeter .47' -.18 1.00
Canny .43' -.07 .71' 1.00
JPEG .53' -.26 .78' .81' 1.00
GIF .40' -.11 .56' .85' .77'

< .0002.
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Figure 4. Familiarity judgments of adults (Snodgrass & Vander-
wart, 1980) and children (Cycowic7, Friedman, & Rothstein, 1997)
as a function of objective visual complexity (perimeter detection).

EXPERIMENT 2

Explaining the Complexity-Familiarity Bias
Attneave (1954, 1971) and Hochberg (1968) suspected

that humans are not particularly good at making objective
judgments of image complexity, and the data reported here
support their suspicion. The strong negative correlations
between VC and familiarity (cf. Tables 2-4) add to evi-
dence that human observers cannot process the structure
of an image independently of its familiarity. When ob-
servers are asked to consider the complexity of an image,
they also process task-irrelevant information, such as its
familiarity and meaningfulness (Boucart & Humphreys,
1992; Carmichael, Hogan, & Walter, 1932).

A stronger test of the familiarity bias would be to exam-
ine the responses to unfamiliar nonsense shapes. For these
unfamiliar stimuli, there should be a higher correlation
between perceived complexity and an objective metric,
such as a compression technique. Moreover, training on a
subset of these images should show that as familiarity in-
creases, the biasing influence of familiarity on perceived
complexity becomes stronger. Specifically, if there is a
tendency for human raters to inflate the complexity rat-
ings of familiar objects, raters who are familiar with a

subset of nonsense shapes will rate those shapes as being
less complex than will naive raters.

Method
The stimuli consisted of 100 nonsense shapes collected from sev-

eral Internet data bases and used in discrimination studies-for ex-
ample, Gauthier, James, and Curby (2003); Shatzman and McQueen
(2006). Wenty of these shapes were geometric nonsense shapes. Geo-
metric nonsense shapes have more regularity in their structure and
are easier to learn and recall, and this warrants limiting their number
(Appendixes A and B). Twenty geometric nonsense shapes and 80
random nonsense shapes were presented to 76 participants for rating.
The participants were randomly placed in one of three groups.

Group 1 (n = 23). A subset of 22 nonsense shapes was selected
from the larger corpus of 100 images. All the images were of ran-
dom design, since it was considered that geometric shapes, being
more regular, could be easier to learn. The selection of 22 shapes
was based on their automated complexity scores, using perimeter
detection. The shapes represented a relatively normal complexity
distribution range.

The participants in Group 1 were asked to familiarize themselves
with these shapes over 7 days. The participants did not receive specific
instructions as to how they should become familiar with the shapes,
but only that they should not spend any more than 5-10 min per day
learning the shapes. Follow-up interviews confirmed that the partici-
pants had limited their time to only 5-6 min per day. The participants
reported using strategies to memorize the shapes. For example, some
tried to make links between the random shape and something in the
real world, whereas others gave names to the shapes.

Group 2 (n = 32). The participants received training on 22 shapes
that would not reappear later in testing.

After 7 days, Group I and Group 2 participants were presented
with the entire corpus of 100 shapes. They were instructed to use
a 10-point scale to indicate how complex they perceived the shape
to be. Complexity was defined as the amount of detail or intricacy

(S&V, 1980). A score of 1 was an extremely complex shape; a score of
10 was an extremely simple shape. The 10-point rating scale was used
in this instance to permit greater differentiation between the shapes.

Group 3 (n = 21). There is a human tendency, termed pareidolia,

to recognize shapes, see patterns, and establish order in otherwise
vague and random stimuli-for example, seeing faces in clouds or
the "man in the moon." Similarly, gestalt grouping processes can put
order and stability into a random shape. Group 3 participants con-
sidered the extent to which shapes resembled something. They were
asked to rate the shapes for "how like something" they were. A score
of 1 indicated a shape that was "extremely like something"; a score
of 10 represented a shape that was extremely like nothing.

Results
Perceiving complexity in familiar shapes. The

means, standard deviations, kurtosis, and the skew for rat-
ings for the trained and naive groups are shown in Table 5.
Group 1 tended to rate the 22 images on which they were
trained as less complex than did Group 2, the untrained
naive group (as per inverted scoring, larger mean scores
equate with less complexity). A two-way ANOVA with

Table 5
Summary Statistics per Group Over All Image Types 

Complexity	Skew	Kurtosis 

Image Type	Group M SD M SE	M	SE
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Familiar Pictures	Unfamiliar Pictures

Picture Group

Figure 5. Interaction between training and familiarity on judg-

ments of complexity. Larger scores equate with less complexity.

group and familiarity as factors detected a significant
group X familiarity interaction [F(1,52) = 17.53, p <

.05; M2 = 5.74; see Figure 5].
Measuring complexity in unfamiliar shapes. Com-

pression scores (GIF and JPEG) were obtained using the
methods outlined in Experiment 1. The extent to which
compression techniques and the perimeter detection mea-
sure are able to predict human judgments of perceived
complexity was determined through correlational analy-
sis (Table 6). Perimeter scores were standardized onto a
10-point scale using histogram normalization. This ad-
justment made no difference to the correlation coefficient.
As such, the raw scores retaining all of the variance were
used in the following analysis.

Bonferroni adjustment was computed on the basis of
the 100 stimuli, with separate analyses for 80 nonsense
shapes and 20 geometric nonsense shapes. This placed
the significance level at .0006 for the nonsense shapes and
.0002 for the geometric shapes.

Correlations between the automated measures and
human judgments from the untrained group were com-
pared (scores inverted for ease of understanding). Pe-
rimeter correlated moderately well (r, = .64, p < .0006)
with human judgments of complexity and with JPEG to
a lesser degree (r, = .50, p < .0006). The correlation
between human judgments and GIF compression was
not significant using the Bonferroni-adjusted criterion.
There was no relationship between human judgments of
complexity and the tendency for random pictures to be
considered to "look like something" (Group 3 pareidolia
scores), suggesting that the images were truly random. For
the geometric shapes, the strongest correlation was be-
tween human judgments and the perimeter measure (r, =
.76, p < .0002).

Discussion
Familiarity bias. Training users even for a short time

(1 week) on a set of nonsense shapes introduced a famil-
iarity bias into ratings of subjective complexity. In prac-
tical terms, this means that asking observers to rate an
image only for "detail and intricacy" or "complexity" is
not possible, because they cannot prevent their familiarity
with the content of the image from biasing their judgment.
Computer-based measures could eliminate this confound,
because they are unaffected by the familiarity of an image.
For example, the influence of familiarity on perceived
complexity sometimes led to extreme divergence in the
complexity ratings obtained from humans and those pro-
duced by an objective metric. In Experiment 1, human
judgments for the highly familiar picture sun (score = 4.9)
attracted a very low VC rating (score = 1.20). The perim-
eter detection metric identified sun as considerably more
complex than was judged by human observers. The dif-
ference in rank orders between the two measures of com-
plexity are considerable: Humans put sun 7th out of 260,

Table 6
Spearman Correlations Between Nonsense Shapes and Subjective Complexity

Complexity	Pareidolia
(Group 2)	(Group 3) Perimeter Canny GIF

Human complexity (Group 2)

Random

1.00
Pareidolia (Group 3) .02 1.00
Perimeter .64* .12 1.00

Canny .50* .01 .76' 1.00

GIF .35 .18 .33' .46' 1.00

JPEG .50' .05 .85' .88' .44'

Geometric

Human complexity (Group 2) 1.00
Pareidolia (Group 3) .17 1.00
Perimeter .76' .14 1.00

Canny .55 .08 .79' 1.00

GIF .23 .03 .04 .05 1.00

JPEG .66 .00 .89' .80' .12

'Random shapes,p < .0006; geometric shapes,p < .0002.
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whereas perimeter detection placed sun 131st out of 260.
Conversely, the complexity of the somewhat less familiar
picture flute was ranked 232nd out of 260 by humans, but
only 13th out of 260 by the automated measure.

Choosing between metrics. The Bonferroni adjust-
ment was developed to aid decision making, and not to as-
sess evidence in the data. This makes its application con-
troversial, and there seems to be little consensus among
statisticians regarding its use (Perneger, 1998). It is also
important to consider that just because a finding achieves
significance against a Bonferroni-adjusted criterion does
not mean that it is "more significant" (Cohen, 1990, 1994).
That being said, its application here supports the logic that
when repeated decisions are made over many trials, error
rates will be reduced (Neyman & Pearson, 1928).

The perimeter measure correlated moderately strongly
with subjective complexity on both sets of pictures (random
shapes, r,= .64,p < .0006; geometric shapes, rs = .'76,p <
.0002). Canny correlated moderately well with perceived
complexity on the random shapes (rs = .50, p < .0006),
and JPEG also presented moderately strong correlations;
however, GIF compression failed to correlate strongly with
perceived complexity on any of the picture sets.

The Canny edge detection measure is better suited to
the detection of fine or blurred edges in a picture; this
perhaps explains why the correlations tended to be lower.
GIF compression, however, is intended for use with pic-
tures with sharp transitions and should have produced a
stronger association with human judgments. One explana-
tion for the reduction in correlations with both the JPEG
and the GIF compression measures is that the random-
ness of these objects precluded a reduction in the number
of bits required to store the object. Most of these objects
would be rated as complex by a compression system be-
cause there would have been fewer commonly occurring
sequences of pixels that could be replaced with shorter
codes. Perimeter, however, simply measures the existing
object; it does not remove or add information. Given that
this was a large corpus of stimuli (n = 100), it seems that
perimeter is a more robust and stable measure of complex-
ity (Zhang & Lu, 2004). There is also clarity in relation to
the ways in which the image is measured: Coding rules
are explicit, and there are no issues in relation to the ad-
dition of artifacts or the removal of pieces of information.
Although the perimeter measure is unable to capture an
object in the way a human does, it can determine an edge
in much the same way as a human can. These edges com-
bine to form small shapes and add detail, and these factors
perhaps contribute to human judgments of complexity.

GENERAL DISCUSSION

Several studies have reported a significant inverse cor-
relation between human judgments of familiarity and com-
plexity (Alario & Ferrand, 1999; Bonin et al., 2003; Cy-
cowicz et al., 1997; S&V, 1980), and others have failed to
document its existence (R&P, 2005). None have considered
the important implication that the reported norms for picture
complexity are systematically flawed by the presence of an
underlying familiarity interference effect. A valid measure

of image complexity would be one in which ratings of com-
plexity are unaffected by judgments of familiarity.

There have been several attempts to develop valid and
reliable measures of image complexity. Attneave (1954)
and Hochberg and Brooks (1960) acknowledged that
shape is a multidimensional variable that varies with the
complexity of an image and that relying solely on human
judgments means that there is no way of predicting how
complex an image might be judged to be. Forsythe et al.
(2003b) argued that an objective measure of visual primi-
tives (i.e., edges) may provide a valid index of complexity
for all 2-D stimuli. Their perimeter measure is based on an
approach originally articulated by Attneave (1954, 1971)
and has overcome the practical difficulties that thwarted
its earlier adoption. Basic perceptual components (i.e.,
edges) are important in the measurement of complexity
because edges combine to form small shapes and add de-
tail. These are perhaps what lead an image to be perceived
as complex (Beck et al., 1991; Harwerth & Levi, 1978;
Sutter et al., 1989; Vassilev & Mitov, 1976). The perim-
eter detection metric locates edges by examining sudden
changes in intensity that occur at image boundaries and
then counts the number of such changes.

These results point to a measure of complexity for 2-D
stimuli that is more valid because it is unaffected by judg-
ments of familiarity. It is suggested that when researchers
are seeking to select images on the basis of their com-
plexity, they should treat the perimeter criterion as supe-
rior to human judgments.

Although correlations between nonsense shapes and the
perimeter detection measure were larger in Experiment 2,
the earlier analysis (Experiment 1) demonstrated that GIF
(lossless) and JPEG (lossy) compression measures are able
to approximate human judgments of complexity, particu-
larly in colorized or grayscale pictures. Information theory
(Shannon & Weaver, 1949) is a useful framework through
which to further evaluate the effectiveness of compression.
Difficulties are, however, likely to arise concerning the im-
portance of the data (or information) that are "thrown away"
and the addition of erroneous artifacts. JPEG operates in
such a way that the file size is reduced and disk space and
transmission time are reduced; it was never intended as
a measure of visual complexity. The extent to which hu-
mans and compression techniques manage information in
a similar way requires further exploration. Any shape rep-
resentation and description technique should have clarity,
be stable, and determine shapes in much the same way as
a human observer (Zhang & Lu, 2004). Notwithstanding
problems relating to image artifacts and the exactness of
the compression scores awarded, availability and usability
may make compression an efficient choice for complexity
measurement in colorized and grayscale pictures.

Further Examination of the Effect
of Familiarity on Complexity

Automated metrics provide a measure of complexity
that is unaffected by the familiarity of the content of a
picture. Their success in predicting how human observ-
ers will judge the complexity of an image is mitigated by
the fact that image familiarity is not taken into account.
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As has been shown by Bartram (1973), even if research-
ers perfect a metric that will generate 2-D complex and
simple shapes that represent no meaningful stimuli, ob-
servers will overcome any complexity effects—such as a
reduction in response latency—as familiarity increases.

These predictable changes have been demonstrated
throughout the literature and seem to be related largely to
redundant information content. For example, when Gamer
(1970) asked participants to retrace from memory geometric
shapes that had gaps in their structure, the spaces would be
omitted. Garner suggested that these gaps were not needed
to recover the shape information; this detail was, effectively,
redundant information. Similarly, when relevant detail is ex-
aggerated in a picture, it becomes even larger on recall (Don-
deri, 1973). As was argued by Fodor and Pylyshyn (1981),
"What you see when you see a thing depends on what the
thing you see is. But what you see the thing as depends on
what you know about what you are seeing" (p. 189).

Familiarity can help reduce the amount of information
required to communicate a message, because small redun-
dancies can be overlooked. When something is less likely,
it will require more pieces of information to determine
its meaning, and the overlooking of small pieces of infor-
mation becomes less desirable. This possibly explains the
drop in correction coefficients for the nonsense objects
for the GIF and JPEG compression techniques. Compres-
sion techniques operate to remove as much information
as possible, whereas small visual elements become highly
valuable to the human viewer because they enable dis-
crimination between subtle degrees of complexity.

Conclusions
Human judgments of Complexity are influenced by fa-

miliaity; since this reflqcts the reality of the user, famil-
iarity with a complex object is something that researchers
should take into consideration before testing for complex-
ity effects. The Forsythe et al. (2003b) perimeter detection
metric is a measurement of complexity based on the ex-
tent to which a picture has edges. This measure correlated
moderately well with human judgments of complexity
for four standardized sets of picture ratings (Bonin et al.,
2003; Cycowicz et al., 1997; R&P, 2005; S&V, 1980). Pub-
lished ratings of complexity correlate significantly with
judgments of familiarity, whereas the perimeter detection
metric does not. Humans are influenced proportionately
by the degree to which they have previously encountered
a picture, with familiar nonsense shapes receiving judg-
ments of complexity that are lower than those indicated by
the objective metric. The Forsythe et al. (2003b) perimeter
detection metric is a measure of the level of complexity
for 2-D stimuli that is unaffected by task-irrelevant in-
formation, such as the meaningfulness or familiarity of a
picture; the metric is a pure measure of geometric primi-
tives (edges). Compression techniques also present a good
approximation of subjective image complexity; however,
the ways in which the techniques operate on particular sets
of pictures require further exploration. Although there is
a trend for visually complex pictures to be rated as less
familiar, further research is required to determine whether
visually complex pictures are actually more unfamiliar.
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