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Confronting false discoveries in single-cell
differential expression
Jordan W. Squair 1,2,3, Matthieu Gautier 1,2, Claudia Kathe 1,2, Mark A. Anderson1,2, Nicholas D. James1,2,

Thomas H. Hutson 1,2, Rémi Hudelle1,2, Taha Qaiser 3, Kaya J. E. Matson4, Quentin Barraud 1,2,

Ariel J. Levine 4, Gioele La Manno1, Michael A. Skinnider 1,2,5,6✉ & Grégoire Courtine 1,2,6✉

Differential expression analysis in single-cell transcriptomics enables the dissection of cell-

type-specific responses to perturbations such as disease, trauma, or experimental manip-

ulations. While many statistical methods are available to identify differentially expressed

genes, the principles that distinguish these methods and their performance remain unclear.

Here, we show that the relative performance of these methods is contingent on their ability to

account for variation between biological replicates. Methods that ignore this inevitable var-

iation are biased and prone to false discoveries. Indeed, the most widely used methods can

discover hundreds of differentially expressed genes in the absence of biological differences.

To exemplify these principles, we exposed true and false discoveries of differentially

expressed genes in the injured mouse spinal cord.
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T
he abundance of RNA species informs on the past, present
and future state of cells and tissues. By enabling the
complete quantification of mRNA populations, RNA

sequencing (RNA-seq) has provided unprecedented access to the
molecular processes active in a biological sample1. Diseases,
traumas, and experimental manipulations perturb these pro-
cesses, which leads to changes in the expression of specific
mRNAs. Historically, these altered mRNAs were identified using
bulk RNA-seq in non-perturbed versus perturbed tissues2.
However, biological tissues are composed of multiple cell types,
whose responses to a perturbation can differ dramatically.
Changes in mRNA abundance within multicellular tissues are
confounded by different responses across cell types and changes
in the relative abundance of these cell types3. Consequently, the
resolution of bulk RNA-seq is insufficient to characterize the
multifaceted responses to biological perturbations.

Single-cell RNA-seq (scRNA-seq) enables the quantification of
RNA abundance at the resolution of individual cells4. The
maturation of single-cell technologies now enables large-scale
comparisons of cell states within complex tissues, thus providing
the appropriate resolution to dissect cell-type-specific responses
to perturbation5,6. The sparsity and heterogeneity of single-cell
data initially encouraged the development of specialized statistical
methods to identify differentially expressed mRNAs7,8. The
proliferation of statistical methods for differential expression
analysis prompted investigators to ask which methods produced
the most biologically accurate results. To answer this question,
investigators turned to simulations in an attempt to create a
ground truth against which the various methods could be
benchmarked. However, simulations require specifying a model
from which synthetic patterns of differential expression are
generated. Differences in the specification of this model have led
investigators to contrasting conclusions9,10.

These divergences emphasize the importance of developing a
sound epistemological foundation for differential expression in
single-cell data11. In this work, we reasoned that developing such
a foundation would require quantifying the performance of the
available methods across multiple datasets in which an experi-
mental ground truth is known, and defining the principles that
are responsible for differences in performance. We therefore first
established a methodological framework that enabled us to curate
a resource of ground-truth datasets. Using this resource, we
conduct a definitive comparison of the various available methods
for differential expression analysis. We find that differences in the
performance of these methods reflect the failure of certain
methods to account for intrinsic variation between biological
replicates. Our understanding of this principle led us to discover
that the most frequently used methods can identify differentially
expressed genes even in the absence of biological differences.
These false discoveries are poised to mislead investigators.
However, we show that false discoveries can be avoided using
statistical methodologies that account for between-replicate var-
iation. In summary, we expose the principles that underlie valid
differential expression analysis in single-cell data, and provide a
toolbox to implement relevant statistical methods for single-
cell users.

Results
A ground-truth resource to benchmark single-cell differential
expression. We aimed to compare available statistical methods
for differential expression (DE) analysis based on their ability to
generate biologically accurate results. We reasoned that per-
forming this comparison in real datasets where the experimental
ground truth is known would faithfully reflect differences in the
performance of these methods, while avoiding the shortcomings

of simulated data. We posited that the closest possible approx-
imation to this ground truth could be obtained from matched
bulk and scRNA-seq performed on the same population of pur-
ified cells, exposed to the same perturbations, and sequenced in
the same laboratories. An extensive survey of the literature
identified a total of eighteen ‘gold standard’ datasets that met
these criteria (Fig. 1a)12–15. This compendium allowed us to carry
out a large-scale comparison of DE methods in experimental
settings where the ground truth is known.

Pseudobulk methods outperform generic and specialized
single-cell DE methods. We selected a total of fourteen DE
methods, representing the most widely used statistical approaches
for single-cell transcriptomics, to compare (Methods, “Differ-
ential expression analysis methods”). Together, these methods
have been used by almost 90% of recent studies (Fig. 1b). We
evaluated the relative performance of each method based on the
concordance between DE results in bulk versus scRNA-seq
datasets. To quantify this concordance, we calculated the area
under the concordance curve (AUCC) between the results of bulk
versus scRNA-seq datasets16,17.

We compared the performance of the fourteen methods across
the entire compendium of the eighteen gold standard datasets.
This analysis immediately revealed that all six of the top-
performing methods shared a common analytical property. These
methods aggregated cells within a biological replicate, to form so-
called ‘pseudobulks’, before applying a statistical test (Fig. 1c)18.
In comparison, methods that compared individual cells per-
formed poorly. The differences between pseudobulk and single-
cell methods were highly significant (Fig. 1d), and robust to the
methodology used to quantify concordance (Supplementary
Fig. 1a-d). Moreover, comparisons to matching proteomics data13

revealed that pseudobulk methods also more accurately predicted
changes in protein abundance (Supplementary Fig. 1e-f).

We asked whether the differences between DE methods could
also impact the functional interpretation of transcriptomic
experiments. For this purpose, we compared Gene Ontology
(GO) term enrichment analyses in bulk versus scRNA-seq DE.
We found that pseudobulk methods again more faithfully
reflected the ground truth, as captured in the bulk RNA-seq
(Fig. 1e and Supplementary Fig. 1g). For example, single-cell
methods failed to identify the relevant GO term when comparing
mouse phagocytes stimulated with poly(I:C)12, a synthetic
double-stranded RNA (Fig. 1f).

Single-cell DE methods are biased towards highly expressed
genes. The unexpected superiority of pseudobulk methods com-
pelled us to study the mechanisms that are responsible for their
ability to recapitulate biological ground truth. To investigate these
mechanisms, we formulated and tested several hypotheses that
could potentially explain these differences in performance.

Previous studies demonstrated that inferences about DE are
generally more accurate for highly expressed genes19,20. Measure-
ments of gene expression in single cells are inherently sparse. By
aggregating cells within each replicate, pseudobulk methods
dramatically reduce the number of zeros in the data, especially for
lowly expressed genes (Fig. 2a). Consequently, we initially
hypothesized that the difference in accuracy between pseudobulk
and single-cell methods could be explained by superior
performance of pseudobulk methods among lowly expressed
genes.

To test this hypothesis, we allocated genes into three equally
sized bins, comprising lowly, moderately, and highly expressed
genes. We then re-calculated the concordance between bulk and
scRNA-seq DE within each bin. Contrary to our prediction, we
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observed minimal differences between pseudobulk and single-cell
methods for lowly expressed genes (Fig. 2b and Supplementary
Fig. 2a). Instead, the most pronounced differences between
pseudobulk and single-cell methods emerged among highly
expressed genes.

This unexpected result led us to ask whether single-cell DE
methods produce systematic errors for highly expressed genes. To
explore this possibility, we scrutinized the bulk datasets to
identify genes falsely called as DE by each method within scRNA-
seq data. We found that false positives identified by single-cell DE
methods were more highly expressed than those identified by
pseudobulk methods (Fig. 2c and Supplementary Fig. 2b).
Conversely, false-negatives overlooked by single-cell DE methods
tended to be lowly expressed (Supplementary Fig. 2c-d).
Together, these findings implied a systematic tendency for
single-cell methods to identify highly expressed genes as DE,
even when their expression remained unchanged.

To validate this conclusion experimentally, we analyzed a
dataset in which a population of synthetic mRNAs were spiked
into each well containing a single cell12,21. Each of these single-
cell libraries therefore contained equal concentrations of each
synthetic mRNA. We found that single-cell methods incorrectly

identified many abundant spike-ins as DE (Fig. 2d-e and
Supplementary Fig. 2e-f). In contrast, pseudobulk methods
avoided this bias.

We then asked whether this bias was universal in single-cell
transcriptomics. We assembled a compendium of 46 scRNA-seq
datasets that encompassed disparate species, cell types, technol-
ogies, and biological perturbations (Supplementary Fig. 3). We
found that single-cell DE methods displayed a systematic
preference for highly expressed genes across the entire compen-
dium (Fig. 2f).

Together, these experiments suggest that the inferior perfor-
mance of single-cell methods can be attributed to their bias
towards highly expressed genes.

DE analysis of single-cell data must account for biological
replicates. These findings implied that pseudobulk methods
possess a common analytical property that allows them to avoid
this bias. We conducted a series of experiments to identify this
mechanism.

The statistical tools applied to identify DE genes in pseudobulk
data (i.e., edgeR, DESeq2, and limma) have been refined over
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many years of development. We therefore asked whether these
methods incorporate inherent advantages that are independent
from the procedure of aggregating gene expression across cells.
To test this possibility, we disabled the aggregation procedure and
applied the pseudobulk methods to individual cells (Fig. 3a).
Strikingly, this procedure abolished the superiority of the
pseudobulk methods (Fig. 3b and Supplementary Fig. 4a).
The emergence of a bias towards highly expressed genes
paralleled this decrease in performance (Fig. 3b and Supplemen-
tary Fig. 4b-c).

This result raised the possibility that the aggregation procedure
itself was directly responsible for the superiority of pseudobulk
methods. To evaluate this notion, we applied the aggregation
procedure to random groups of cells, which produced a
pseudobulk matrix composed of ‘pseudo-replicates’ (Fig. 3c).
This experiment induced a similar decrease in the performance of
pseudobulk methods, combined with the re-emergence of a bias
towards highly expressed genes (Fig. 3d and Supplementary
Fig. 4d–f).

We sought to understand the common factors that could explain
the decreased performance of pseudobulk methods in these two
experiments. We recognized that both experiments entailed a loss of
information about biological replicates. Aggregating random groups
of cells to form pseudo-replicates, or ignoring replicates altogether in
comparisons of single cells, both introduced a bias towards highly
expressed genes and a corresponding loss of performance.

Within the same experimental condition, replicates exhibit
inherent differences in gene expression, which reflect both
biological and technical factors22. We reasoned that failing to
account for these differences could lead methods to misattribute
the inherent variability between replicates to the effect of the
perturbation. To study this potential mechanism, we compared
the variance in the expression of each gene in pseudobulks and
pseudo-replicates. Initially, we performed this comparison in a

dataset of bone marrow mononuclear cells stimulated with poly-
I:C12. We found that shuffling the replicates produced a
systematic decrease in the variance of gene expression, affecting
98.2% of genes (Fig. 3e). We next tested whether this decrease in
variance occurred systematically across our compendium of 46
datasets. Every comparison displayed the same decrease in the
variance of gene expression (Fig. 3f).

The decrease in the variance of gene expression led statistical
tests to attribute small changes in gene expression to the effect of
the perturbation. For instance, in the poly-I:C dataset, failing to
account for the variable expression of Txnrd3 across replicates led
to the spurious identification of this gene as differentially
expressed (Fig. 3g). Moreover, we found that highly expressed
genes exhibited the largest decrease in variance in pseudo-
replicates, thus explaining the bias of single-cell methods towards
highly expressed genes (Supplementary Fig. 4g-k).

Together, this series of experiments exposed the principle
underlying the unexpected superiority of pseudobulk methods.
Statistical methods for differential expression must account for
the intrinsic variability of biological replicates to generate
biologically accurate results in single-cell data. Accounting for
this variability allows pseudobulk methods to correctly identify
changes in gene expression caused by a biological perturbation. In
contrast, failing to account for biological replicates causes single-
cell methods to systematically underestimate the variance of gene
expression. This underestimation of the variance biases single-cell
methods towards highly expressed genes, compromising their
ability to generate biologically accurate results.

False discoveries in single-cell DE. We realized that if failing to
account for the variation between biological replicates could
produce false discoveries in the presence of a real biological
perturbation, then false discoveries might also arise in the absence
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of any biological difference. To test this possibility, we simulated
single-cell data with different degrees of heterogeneity between
replicates in the absence of any difference between groups
(Fig. 4a). We randomly assigned each replicate to an artificial
‘control’ or ‘treatment’ group, and tested for DE between the two
conditions. Strikingly, single-cell methods identified hundreds of
DE genes in the absence of any perturbation (Fig. 4b and Sup-
plementary Fig. 4a). Moreover, in line with our understanding of
the mechanisms underlying the failure of single-cell DE methods,
the genes that were falsely called as DE were those whose
expression was most variable between replicates (Fig. 4c and
Supplementary Fig. 4b). Pseudobulk methods abolished the false
detection of DE genes. However, creating pseudo-replicates led to
the reappearance of spurious DE genes (Fig. 4b-c and Supple-
mentary Fig. 4a-b), further corroborating the requirements for

accurate DE analyses. The number of false discoveries was
reduced when additional replicates were introduced to the dataset
(Supplementary Fig. 4c). In contrast, introducing additional cells
to the simulated data only exacerbated the underlying problem
(Supplementary Fig. 4d).

These findings compelled us to investigate whether similar false
discoveries could arise in real single-cell data. To explore this
possibility, we initially analyzed a dataset of human peripheral
blood mononuclear cells (PBMCs) exposed to interferon5. We
extracted the control samples that had not been exposed to
interferon, and split them randomly into two groups. We then
performed DE analysis. Failing to account for the intrinsic
variability of biological replicates produced hundreds of DE genes
between randomly assigned replicates (Fig. 4d and Supplemen-
tary Fig. 6a, b).
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Unsettled by this appearance of false discoveries, we asked
whether this observation reflected a universal pitfall. To address
this concern comprehensively, we identified a total of fourteen
datasets that included at least six replicates in the control
condition. As in the previous experiment, we split these
unperturbed samples randomly into synthetic control and
treatment groups, before conducting DE analyses between these
two groups. This systematic analysis confirmed that single-cell
methods produced a systematic excess of false positives compared
to pseudobulk methods (Fig. 4e). The resulting DE genes were
enriched for hundreds of Gene Ontology (GO) terms, despite a
complete absence of biological perturbation (Supplementary
Fig. 6c). Moreover, we again confirmed that the genes falsely
identified as DE corresponded to those with the highest variability
between replicates (Supplementary Fig. 6d).

Together, these experiments exposed a fundamental pitfall for
DE analysis in single-cell transcriptomics. We intuited, however,
that this pitfall could afflict any technology in which many
observations are obtained from each biological replicate. For
example, we anticipated that false discoveries would also emerge
in spatial transcriptomics data23. To test this prediction, we

analyzed a spatial transcriptomics dataset that profiled spinal
cords from a model of amyotrophic lateral sclerosis (ALS)24. We
randomly partitioned data from control mice into two groups,
and performed DE within each region of the spinal cord.
Statistical methods that failed to account for variability between
biological replicates identified thousands of DE genes within each
region (Fig. 4f and Supplementary Fig. 6e). In contrast,
pseudobulk methods abolished these false discoveries.

These experiments demonstrated that the variability between
biological replicates can confound the identification of genes
affected by a biological perturbation. Many of the factors that
produce this variability between replicates can be minimized in
animal models, including the genetic background, environment,
intensity and timing of the biological perturbation, and sample
processing. In contrast, these sources of variation are inherently
more difficult to control in experiments involving human
subjects. This distinction raised the possibility that single-cell
studies of human tissue would exhibit greater variability between
biological replicates, and consequently, would be more vulnerable
to false discoveries. To evaluate this possibility systematically, we
calculated the variability between replicates within 41 human and
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mouse scRNA-seq datasets. In agreement with our hypothesis, we
detected significantly more variability between replicates in the
human datasets (Fig. 4g). While we show that accounting for
biological replicates is critical for any DE analysis, this result
stresses the paramount importance of addressing this issue in
single-cell studies of human tissue.

True and false discoveries in the injured mouse spinal cord. We
finally sought to demonstrate the extent to which DE analyses can
produce true and false discoveries in previously unexplored bio-
logical tissues. For this purpose, we characterized the impact of a
spinal cord injury (SCI) on gene expression in cells located below

the injury. We specifically focused on the lumbar spinal cord,
since this region undergoes multifaceted changes that lead to the
irreversible degradation of neuronal function25,26.

We performed experiments in mice that received a severe
contusion of the mid-thoracic spinal cord (Fig. 5a-c). Multi-
factorial quantification of whole-body kinematics revealed
profound impairments in the ability of the mice to produce
locomotion (Fig. 5b and Supplementary Fig. 8a). We found that
the injury triggered the aberrant growth of new synapses
throughout lumbar segments, combined with the emergence of
abnormal segmental reflexes (Fig. 5a and Supplementary Fig. 8a).
This chaotic reorganization of circuits below the SCI has been
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linked to spasticity and neuronal dysfunction (Fig. 5b and
Supplementary Fig. 8b-c)25,26.

We then harvested the lumbar spinal cords of mice with
chronic SCI and uninjured controls, and performed single-
nucleus RNA-seq (snRNA-seq) of these tissues27. We sequenced a
total of 19,237 cells that encompassed all the major cell types of
the lumbar spinal cord (Fig. 5d).

We initially aimed to identify the cell types in which
transcription was most perturbed by the injury. To answer this
question, we performed cell type prioritization using Augur27,28.
This unbiased analysis indicated that endothelial cells underwent
the most profound transcriptional changes in the spinal cord
below the injury (Fig. 5e).

This unexpected finding spurred us to investigate the specific
transcriptional changes underlying this prioritization, and the
capacity of different statistical methods to reveal these changes.
For this purpose, we performed DE analyses between injured and
uninjured endothelial cells using representative single-cell and
pseudobulk methods. We selected the Wilcoxon rank-sum test as
a single-cell method, since this test has been the most widely used
approach in the field of single-cell transcriptomics (Fig. 1b), and
edgeR-LRT29 as a pseudobulk method due to its high level of
performance (Fig. 1c). These methods identified largely distinct
sets of DE genes, with only four genes overlapping between the
two methods. Conversely, the Wilcoxon rank-sum test and
edgeR-LRT each nominated an additional 44 and 12 genes as DE,
respectively (Supplementary Fig. 9a).

Our results thus far have demonstrated that failing to account for
variation between replicates can lead single-cell DE methods to
produce false discoveries. We therefore suspected that some of the
additional genes identified by the Wilcoxon rank-sum test in this
dataset could represent false positives. To clarify the ground truth
expression of these genes in the injured spinal cord, we carried out a
systematic in vivo screen. We obtained RNAscope probes for
nineteen putatively DE genes identified by only one of the two
methods, and quantified the expression of these genes in endothelial
cells from injured and uninjured mice30 (Supplementary Fig. 9b).
RNAscope validated five of the six genes called as DE by edgeR-
LRT. In marked contrast, only three of thirteen genes called as DE
by the Wilcoxon rank-sum test could be corroborated (p < 0.05, χ2

test; Fig. 5f-h). Several of the validated edgeR-LRT genes, including
Slc7a11 and Igfbp6, are involved in the response to hypoxia within
endothelial cells, supporting the establishment of a chronically
hypoxic state in the lumbar spinal cord31–33. In line with the
expected consequences of chronic hypoxia, we detected the presence
of numerous atrophic blood vessels below the level of injury (Fig. 5i).

Together, these observations illustrate the potential for single-
cell DE methods to produce false discoveries. Conversely, valid
single-cell DE analysis that accounted for variation between
biological replicates yielded reproducible conclusions that could
be validated in vivo.

DE analysis with mixed models. Our experiments established
that accounting for variation between biological replicates dic-
tated the performance of single-cell DE methods. We were
therefore puzzled by the unsatisfying performance of a linear
mixed model. By explicitly modeling variation both within and
between biological replicates, mixed models should benefit from
increased statistical power compared to pseudobulk methods9. To
clarify this discrepancy, we evaluated eight additional Poisson or
negative binomial generalized linear mixed models (GLMMs;
Supplementary Fig. 10a-b). In datasets of 25-50 cells, GLMMs
could produce accurate results under very specific parameter
combinations. However, in datasets comprising 500 or more cells,
their performance converged to that of pseudobulk DE methods.

Moreover, the computational resources required to fit the best-
performing GLMMs were enormous. Even in downsampled
datasets, DE analysis of a single cell type took an average of 13.5 h
(Supplementary Fig. 10c-d). In contrast, pseudobulk methods
required only minutes per cell type in our compendium of 46
datasets (Supplementary Fig. 10e-f). These observations suggest
that, in practice, pseudobulk approaches provide an excellent
trade-off between speed and accuracy for single-cell DE analysis.

Discussion
Accurate DE analysis in single-cell transcriptomics is required to
dissect the transcriptional programs underlying the multifaceted
responses to disease, trauma, and experimental manipulations.
Despite the importance of statistical methods for DE analyses, the
principles that determine their performance have remained elu-
sive. Here, we demonstrate that the central principle underlying
valid DE analysis is the ability of statistical methods to account
for the intrinsic variability of biological replicates. Accounting for
this variability dictates the biological accuracy of statistical
methods. Conversely, methods that fail to account for the
variability of biological replicates can produce hundreds of false
discoveries in the absence of any biological difference.

Investigators study single cells to understand more general
principles underlying the response to a biological perturbation.
Clarifying these principles requires statistical inferences that
generalize beyond the individual cells that constitute any parti-
cular dataset. Our results demonstrate that by performing a sta-
tistical inference at the level of individual cells, single-cell DE
methods conflate variability between biological replicates with the
effect of a biological perturbation. The presence of variability
between replicates is unavoidable, and can be attributed to both
technical factors and intrinsic biological differences22. The pos-
sibility that conflating variability between replicates with the
biological effect of interest can lead to spurious findings has
previously been recognized18,34. However, these studies relied
almost entirely on synthetic data, supplemented by a few illus-
trative case studies. Consequently, the pervasiveness of false dis-
coveries in published analyses of single-cell data and the
propensity for these false discoveries to affect the biological
conclusions of a study have remained unclear.

Here, we show that the appearance of false discoveries is a
universal phenomenon. Leveraging a collection of 18 single-cell
datasets with an experimental ground truth, we demonstrate that
the use of inappropriate statistical methodology can produce false
discoveries that compromise the biological interpretation of a
single-cell experiment. These false discoveries have the potential
to squander time, effort, and financial resources in pursuit of
misleading hypotheses. For example, we show through a sys-
tematic in vivo screen of the injured mouse spinal cord that most
DE genes identified by the most commonly used statistical
method are false discoveries. Moreover, we elucidate the pro-
gression of mechanisms by which failing to account for biological
and technical variability makes certain genes disproportionately
likely to be spuriously identified as DE. We demonstrate the
universality of these mechanisms in multifaceted datasets from an
additional 46 single-cell RNA-seq studies. Understanding these
mechanisms led us to discover that the same fundamental issues
affect other high-dimensional assays, including spatial tran-
scriptomics, and are most likely to manifest in studies of human
tissue, suggesting that inference at the level of biological replicates
is critical to understand the cellular and molecular basis for
human disease.

Our results demonstrate that single-cell DE methods are poised
to produce false discoveries. This understanding uncovers an
enormous risk for the field. Our findings suggest that many
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published findings may be false. Moreover, if left unresolved,
substantial research funding may be allocated to follow up on
these false discoveries, to the detriment of science. However, this
concerning possibility is straightforward to correct with the use of
DE methods that account for variability between replicates.
Among these, we found that pseudobulk methods achieve the
highest fidelity to the experimental ground truth at the levels of
the transcriptome, proteome, and functional interpretation.
Consequently, we contend that there is an urgent need for a
paradigm shift in the statistical methods that are used for DE
analysis of single-cell data. The need for such a shift is under-
scored by our observation that most studies published in the past
two years have used inappropriate statistical methods for DE
analysis. Moreover, the most widely used analysis packages in the
field currently employ DE methods prone to false discoveries by
default35,36. The increasing prevalence of multi-condition datasets
stresses the importance of employing appropriate statistical
methodologies to prevent a proliferation of false discoveries. To
catalyze this transition, we implement all of the methods tested
here in an R package (Supplementary Software 1).

Methods
Literature review. To identify which statistical methods for DE analysis have been
most commonly used within the field, we conducted an extensive literature review.
We annotated the statistical method used to perform DE analysis across experi-
mental conditions within cell types for each publication included in a large, curated
database of scRNA-seq studies37. The database was accessed on November 4, 2020.
Because the single-cell studies catalogued in this database span a long period of
time, and we aimed to establish which methods for DE analysis are currently in
wide use, we limited our analysis to the 500 most recently published studies.
Accordingly, the inclusion criteria for our review were (i) studies present in the
curated database as of November 4, 2020, and (i) studies within the 500 most
recent entries in this database at the time it was accessed. Each of these 500 studies
were then manually reviewed to determine the statistical methodology used to
compare cells of the same type between experimental conditions. We did not
annotate methods used to identify genes differentially expressed between cell types
(i.e., marker gene identification), as this problem presents a distinct set of statistical
challenges10,38. In total, 205 of the 500 studies conducted DE analysis between
biological conditions. The complete list of all 500 studies is provided as
Source Data.

Ground-truth datasets. Previous benchmarks of DE analysis methods for single-
cell transcriptomics have relied heavily on simulated data, or else have compared
the results of different methods in scenarios where no ground truth was
available10,17. We reasoned that the best possible approximation to the biological
ground truth in a scRNA-seq experiment would consist of a matched bulk RNA-
seq dataset in the same purified cell type, exposed to the same perturbation under
identical experimental conditions, and sequenced in the same laboratory. We
surveyed the literature to identify such matching single-cell and bulk RNA-seq
datasets, which led us to compile a resource of eighteen ground truth datasets from
four publications12–15. Datasets of mouse, rat, pig, and rabbit bone marrow-derived
mononuclear phagocytes stimulated with either lipopolysaccharide or poly-I:C for
4 h were obtained from Hagai et al.12 Datasets of naive or memory T cells sti-
mulated for 5 d with anti-CD3/anti-CD28 coated beads in the presence or absence
of various combinations of cytokines (Th0: anti-CD3/anti-CD28 alone; Th2: IL-4,
anti-IFNγ; Th17: TGFβ, IL6, IL23, IL1β, anti-IFNγ, anti-IL4; iTreg: TGFβ, IL2)
were obtained from Cano-Gamez et al.13 We additionally obtained label-free
quantitative proteomics data for the same comparisons from this study. Datasets of
alveolar macrophages and type II pneumocytes from young (3 m) and old (24 m)
mice were obtained from Angelidis et al.14 Datasets of alveolar macrophages and
type II pneumocytes from patients with pulmonary fibrosis and control individuals
were obtained from Reyfman et al.15

Differential expression analysis methods. We compared fourteen statistical
methods for DE analysis of single-cell transcriptomics data on their ability to
recover ground-truth patterns of DE, as established through bulk RNA-seq analysis
of matching cell populations. These fourteen methods comprised seven statistical
tests that compared gene expression in individual cells (“single-cell methods”); six
tests that aggregated cells within a biological replicate to form pseudobulks before
performing statistical analysis (“pseudobulk methods”); and a linear mixed model.

The seven single-cell methods analyzed here included a t-test, a Wilcoxon rank-
sum test, logistic regression39, negative binomial and Poisson generalized linear
models, a likelihood ratio test40, and the two-part hurdle model implemented by
MAST7. The implementation provided in the Seurat function ‘FindMarkers’ was
used for all seven tests, with all filters (‘min.pct’, ‘min.cells.feature’, and

‘logfc.threshold’) disabled. In addition, we implemented a linear mixed model
within Seurat, using the ‘lmerTest’ R package to optimize the restricted maximum
likelihood and obtain p-values from the Satterthwaite approximation for degrees of
freedom. We observed that some statistical tests returned a large number of
p-values below the double precision limit in R (approximately 2 × 10–308),
potentially confounding the calculation of the concordance metrics described
below. To avoid this pitfall, we modified the Seurat implementation to also return
the value of the test statistic from which the p-value was derived. The modified
version of Seurat 3.1.5 used to perform all single-cell DE analyses reported in this
study is available from http://github.com/jordansquair/Seurat.

The pseudobulk methods employed the DESeq241, edgeR29, and limma42

packages for analysis of aggregated read counts. Briefly, for cells of a given type, we
first aggregated reads across biological replicates, transforming a genes-by-cells
matrix to a genes-by-replicates matrix using matrix multiplication. For DESeq2, we
used both a Wald test of the negative binomial model coefficients (DESeq2-Wald)
as well as a likelihood ratio test compared to a reduced model (DESeq2-LRT) to
compute the statistical significance. For edgeR, we used both the likelihood ratio
test (edgeR-LRT)43 as well as the quasi-likelihood F-test approach (edgeR-QLF)44.
For limma, we compared two modes: limma-trend, which incorporates the mean-
variance trend into the empirical Bayes procedure at the gene level, and voom
(limma-voom), which incorporates the mean-variance trend by assigning a weight
to each individual observation45. Log-transformed counts per million values
computed by edgeR were provided as input to limma-trend.

DE analysis of bulk RNA-seq datasets was performed with six methods
(DESeq2-LRT, DESeq2-Wald, edgeR-LRT, edgeR-QLF, limma-trend, and limma-
voom), except for the two pulmonary fibrosis datasets15; for these datasets, the raw
bulk RNA-seq data from sorted cells could not be obtained, so only the results of
the bulk DE analysis performed by the authors of the original publication were
used. The AUCC and rank correlation were calculated for each bulk DE analysis
method separately, and subsequently averaged over all six methods. DE analysis of
normalized bulk proteomics data was performed using the moderated t-test
implemented within limma, as in the original publication.

Measuring concordance between single-cell and bulk RNA-seq. To evaluate the
concordance between DE analyses of matched single-cell and bulk RNA-seq data,
we computed two metrics, designed to evaluate the concordance between only the
most highly ranked subset of DE genes and across the entire transcriptome,
respectively. To calculate the first of these metrics, the area under the concordance
curve (AUCC)16,17, we ranked genes in both the single-cell and bulk datasets in
descending order by the statistical significance of their differential expression.
Then, we created lists of the top-ranked genes in each dataset of matching size, up
to some maximum size k. For each of these lists (that is, for the top-1 genes, top-2
genes, top-3 genes, and so on), we computed the size of the intersection between
the single-cell and bulk DE genes. This procedure yielded a curve relating the
number of shared genes between datasets to the number of top-ranked genes
considered. The area under this curve was computed by summing the size of all
intersections, and normalized to the range [0, 1] by dividing it by its maximum
possible value, k × (k+ 1) / 2. To evaluate the concordance of DE analysis, we used
k= 500 except where otherwise noted, but found our results were insensitive to the
precise value of k. To compute the second metric, the transcriptome-wide rank
correlation, we multiplied the absolute value of the test statistic for each gene by the
sign of its log-fold change between conditions, and then computed the Spearman
correlation over genes between the single-cell and bulk datasets.

In addition to evaluating the consistency of DE analyses at the gene level, we
also asked whether each DE method yielded broader patterns of functional
enrichment that were similar between the single-cell and bulk datasets, allowing for
some divergence in the rankings of individual genes. To address this question, we
performed gene set enrichment analysis46 using the ‘fgsea’ R package47. GO term
annotations for human and mouse (2019-12-09 release) were obtained from the
Gene Ontology Consortium website. GO terms annotated to less than 10 genes or
more than 1,000 genes within each dataset were excluded in order to mitigate the
influence of very specific or very broad terms. Genes were ranked in descending
order by the absolute value of the test statistic, and 106 permutations were
performed. To evaluate the concordance of GO term enrichment, we used k= 100,
on the basis that fewer top-ranked GO terms are generally of interest than are top-
ranked genes.

Impact of mean expression. We initially hypothesized that differences between
single-cell DE analysis methods could be attributed to their differing sensitivities
towards lowly expressed genes. To explore this hypothesis, we performed the fol-
lowing analyses. First, we divided genes from the eighteen gold standard datasets
into three equally sized bins on the basis of their mean expression, then re-
calculated the AUCC as described above within each bin separately. Second, we
inspected the properties of genes falsely called as DE in the single-cell data (false
positives) or incorrectly inferred to be unchanging in the single-cell data (false
negatives). To identify false positive genes, we used the bulk DE analysis to exclude
genes called as DE at a false discovery rate of 10% from the matched single-cell
results, then retained the 100 top-ranked remaining genes in the single-cell data. To
identify false negative genes, we used the bulk DE analysis to identify genes called
as DE at a false discovery rate of 10%, but with a false discovery rate exceeding 10%
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in the matched single-cell results, again retaining the 100 top-ranked such genes.
For each of these genes, we computed both the mean expression level and the
proportion of zero gene expression measurements. Third, we analyzed a Smart-
seq2 dataset of human dermal fibroblasts stimulated with interferon-β, in which a
mixture of synthetic RNAs was spiked into each individual cell12. We performed
DE analysis on the synthetic spike-ins, then calculated the Spearman correlation
between the mean expression level of each spike-in and the statistical significance
of differential expression, as assigned by each single-cell DE method. Fourth, we
assembled a compendium of 46 published scRNA-seq datasets, and asked whether
the genes called as DE by each method tended to be more or less highly expressed
across the entire compendium. Complete details on the preprocessing of these 46
datasets are provided below. Because each of these datasets were sequenced to
different depths, and captured different total numbers of genes (depending on both
the sequencing depth and the biological system under study), mean expression
values were not directly comparable across datasets. To enable such a comparison,
we first calculated the mean expression for each gene, then converted this value
into the quantile of mean expression using the empirical cumulative distribution
function. We then calculated the mean expression quantile of the 200 top-ranked
genes from each method in each of the 46 datasets.

Dissecting pseudobulk DE methods. To understand the principles underlying the
improved performance of the six pseudobulk DE methods, we performed the
following analyses. First, we disabled the aggregation procedure that led to the
creation of pseudobulks (that is, we treated each individual cell as its own repli-
cate), then performed an identical DE analysis of individual cells. For each DE
method, we then re-calculated both the AUCC and the bias towards highly
expressed genes, as quantified by (i) the rank correlation to mean-spike in
expression, and (ii) the expression quantile across 46 scRNA-seq datasets. Second,
we aggregated random groups of cells into ‘pseudo-replicates’ by randomizing the
replicate associated with each cell. We then again re-calculated both the AUCC and
the bias towards highly expressed genes.

These experiments led us to suspect that discarding information about the
inherent variability of biological replicates caused both the bias towards highly
expressed genes and the attendant decrease in performance. To test this hypothesis,
we compared the variance of gene expression in pseudobulks and pseudo-
replicates. For each gene, we calculated the difference in variance (∆-variance)
between pseudobulks and pseudo-replicates. We initially visualized the ∆-variance
in an exemplary dataset, consisting of mouse bone marrow mononuclear cells
stimulated with poly-I:C12. Subsequently, we calculated the mean ∆-variance
across all genes in each of the 46 datasets in our scRNA-seq compendium,
observing a decrease in the variance in all 46 cases. To clarify the relationship
between the ∆-variance and mean gene expression, we computed the correlation
between ∆-variance and mean expression, first in the poly-I:C dataset and then
across all 46 datasets in the compendium. We observed a significant negative
correlation, confirming that the variance of highly expressed genes is
disproportionately underestimated when discarding information about biological
replicates. We performed a similar analysis correlating the original variance of gene
expression to the ∆-variance, demonstrating that the variance of the most variable
genes is disproportionately underestimated when discarding information about
biological replicates. However, in partial correlation analyses, only gene expression
variance remained correlated with ∆-variance, implying that failing to account for
biological replicates induces a bias towards highly expressed genes because these
genes are also more variably expressed. Supplementary Fig. 4h-i employ the signed
pseudo-logarithm transformation from the ‘ggallin’ R package to visualize the
∆-variance.

Simulation studies. Our understanding of the importance of accounting for
variability between biological replicates led us to ask whether failing to account for
biological replication could lead to the appearance of false discoveries in the
absence of a perturbation. To test this hypothesis, we simulated scRNA-seq data
with no biological effect, in which we systematically varied the degree of hetero-
geneity between replicates. Simulations were performed using the ‘Splatter’ R
package48, with simulation parameters estimated from the Kang et al. dataset5

using the ‘splatEstimate’ function. Populations of between 100 and 2,000 cells were
simulated, with between 3 and 20 replicates per condition. DE of varying magni-
tudes was simulated between replicates by varying the location parameter of the DE
factor log-normal distribution (‘de.facLoc’) between 0 and 1, treating each replicate
as its own group, and the total proportion of DE genes (‘de.prob’) set to 0.5. Then,
half of the replicates were randomly assigned to an artificial ‘treatment’ condition
and the remaining half to a ‘control’ condition, and DE analysis was performed
between the treatment and control groups. Except where otherwise noted, plots
show results from a simulated population of 500 cells, with three replicates per
condition.

Analysis of published scRNA-seq control groups. To confirm that the trends
observed in simulation studies were reflective of experimental datasets, we per-
formed a similar analysis using published scRNA-seq data. Within our compen-
dium, we identified a total of fourteen studies with control groups that included six
or more samples5,6,15,49–59. Details on the preprocessing of each of these datasets

are provided below. For each of these studies, we split the control group randomly
into artificial ‘control’ and ‘treatment’ groups, and performed DE analysis. In
addition to computing the total number of DE genes, we identified GO terms
enriched among DE genes using a hypergeometric test. We also performed a
similar analysis for one spatial transcriptomics dataset24, identifying DE genes
between random groups of control mice with barcodes grouped by spinal cord
region rather than cell type. Spatial transcriptomics data was downloaded from the
supporting website at https://als-st.nygenome.org. Only data from wild-type mice
was retained for the analysis. Last, we hypothesized that scRNA-seq studies of
human tissues would display more heterogeneity between replicates than studies of
animal models, where factors such as genotype, environment, and perturbation can
be precisely controlled. To test this hypothesis, we computed the mean ∆-variance
across all genes in the 38 human or mouse scRNA-seq datasets in our compendium
(n= 18 human datasets and 20 mouse datasets).

Application to spinal cord injury. To demonstrate the relevance of our findings to
the discovery of new biological mechanisms, we collected scRNA-seq data of the
mouse lumbar spinal cord after SCI, and performed DE analysis.

Animal model. Experiments were conducted on adult male or female C57BL/6 mice
(15-35 g body weight, 12-30 weeks of age). Vglut2:Cre (Jackson Laboratory 016963)
transgenic mice were used and maintained on a mixed genetic background (129/
C57BL/6). Housing, surgery, behavioral experiments and euthanasia were per-
formed in compliance with the Swiss Veterinary Law guidelines. Animal care,
including manual bladder voiding, was performed twice daily for the first 3 weeks
after injury and once daily for the remaining post-injury period. All procedures and
surgeries were approved by the Veterinary Office of the Canton of Geneva
(Switzerland; GE/57/20 A).

Surgical procedures and post-surgical care. Surgical procedures were performed as
previously described25,60–62. Briefly, a laminectomy was made at the mid-thoracic
level (T9 vertebra). We performed a contusion injury using a force-controlled
spinal cord impactor (IH-0400 Impactor, Precision Systems and Instrumentation
LLC, USA63), as previously described60,64. The applied force was set to 90 kdyn.
Analgesia (buprenorphine, Essex Chemie AG, Switzerland, 0.01–0.05 mg per kg,
s.c.) was provided for three days after surgery.

Kinematic recordings. Kinematic recordings were performed as previously
described25,60,61,65–67. Bilateral leg kinematics were captured using a 12-camera
infrared (200 Hz) Vicon high-speed motion capture system (Vicon Motion Sys-
tems, UK). We attached reflective markers bilaterally at the iliac crest, the greater
trochanter (hip joint), the lateral condyle (knee joint), the lateral malleolus (ankle),
and the distal end of the fifth metatarsophalangeal joint.

Kinematic analysis. For each leg, 15 step cycles were extracted for each mouse. A
total of 75 parameters quantifying kinematic and kinetic features were computed
for each gait cycle accordingly. To evaluate differences between conditions we
implemented a multistep statistical procedure based on principal component
analysis, as previously described25,60,61,65–67.

Electrophysiology. Mice were anaesthetised using a ketamine/xylazine anesthesia
mixture. Stainless steel needle electrodes (30 G) were inserted through the posterior
surface of the ankle for nerve stimulation and into the lateral, plantar surface of the
foot for digital electromyographic recordings. Responses were recorded at a sti-
mulation intensity of 2 x threshold for evoking an H-wave. Signals were amplified
and filtered (1000x and 300 Hz–5 kHz, AM Systems differential amplifier) then
digitised (PowerLab, AD instruments) for acquisition. Twenty recordings were
made at each of 5 different stimulation frequencies (0.1, 0.5, 1, 2, and 5 Hz) with a
one minute break between each frequency setting. Peak to peak amplitudes for at
least three responses were measured for both M and H waves at each frequency, for
each animal. Response amplitudes were first normalized to the amplitude of the M
wave at each frequency, and then normalized to the H/M ratio at 0.1 Hz for
comparisons across animals.

Single-nucleus RNA sequencing. Single-nucleus dissociation of the mouse spinal
cord was performed as previously described27,51. Animals were first euthanized by
isoflurane inhalation and cervical dislocation. The lumbar spinal cord site was
rapidly dissected and frozen on dry ice. Spinal cords were dounced in 500 µl
sucrose buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2, 3 mM Mg
acetate, 0.1 mM EDTA, 1 mM DTT) and 0.1% Triton X-100 with the Kontes
Dounce Tissue Grinder. 2 mL of sucrose buffer was added and filtered through a
µm cell strainer. The lysate was centrifuged at 3200 g for 10 min at 4 °C. The
supernatant was decanted, and 3 mL of sucrose buffer added to the pellet and
incubated for 1 min. The pellet was homogenized using an Ultra-Turrax and
12.5 mL of density buffer (1M sucrose, 10 mM HEPES [pH 8.0], 3 mM Mg acetate,
1 mM DTT) was added below the nuclei layer. The tube was centrifuged at 3200 g
at 4 °C and supernatant poured off. Nuclei on the bottom half of the tube wall were
collected with 100 µl PBS with 0.04% BSA and 0.2 U/µl RNase inhibitor.
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Resuspended nuclei were filtered through a 30 µm strainer, and adjusted to 1000
nuclei/µl.

Library preparation. Library preparation was carried out using the 10x Genomics
Chromium Single Cell Kit Version 2. The nuclei suspension was added to the
Chromium RT mix to achieve loading numbers of 5,000. For downstream cDNA
synthesis (13 PCR cycles), library preparation and sequencing, the manufacturer’s
instructions were followed.

Read alignment. Reads were aligned to the most recent Ensembl release
(GRCm38.93) using Cell Ranger, and a matrix of unique molecular identifier
(UMI) counts, including both intronic and exonic reads, was obtained using
velocyto68. Seurat35 was then used to calculate quality control metrics for each cell
barcode, including the number of genes detected, number of UMIs, and proportion
of reads aligned to mitochondrial genes. Low-quality cells were filtered by
removing cells expressing less than 200 genes or with more than 5% mitochondrial
reads. Genes expressed in less than 3 cells were likewise removed, yielding a count
matrix consisting of 22,806 genes and 19,237 cells.

Clustering and integration. Prior to clustering analysis, we first performed batch
effect correction and data integration across the two different experimental con-
ditions as previously described27. Gene expression data were normalized using
regularized negative binomial models69, then integrated across batches using the
data integration workflow within Seurat. The normalized and integrated gene
expression matrices were then subjected to clustering to identify cell types in the
integrated dataset, again using the default Seurat workflow. Cell types were
manually annotated on the basis of marker gene expression, guided by previous
studies of the mouse spinal cord27,51,70.

Viral tract tracing. All surgeries on mice were performed at EPFL under general
anaesthesia with isoflurane in oxygen-enriched air using an operating microscope,
and rodent stereotaxic apparatus (David Kopf). We identified plasticity of excita-
tory neurons in the lumbar spinal cord after SCI using AAV-DJ-hSyn Flex mGFP
2 A synaptophysin mRuby (Stanford Vector Core Facility, reference AAV DJ
GVVC-AAV-100, titer 1.15E12 genome copies per ml71) injections on each side of
the cord of Vglut2:Cre mice at the L6 spinal level, 0.25 μl 0.6 mm below the surface
at 0.1 μl per minute using glass micropipettes (ground to 50 to 100 μm tips)
connected via high-pressure tubing (Kopf) to 10-μl syringes under the control of
microinfusion pumps.

Immunohistochemistry. After terminal anaesthesia by barbiturate overdose, mice
were perfused transcardially with 4% paraformaldehyde and spinal cords processed
for immunofluorescence as previously described60,72. Primary antibodies were: rat
anti-Pecam1 (BD Biosciences 550274, 1:200). Secondary antibodies were: Alexa
Fluor 555 Goat Anti Rat (1:200, Life Technologies, A21434). Immunofluorescence
was imaged digitally on a slide scanner [Olympus VS-120 Slide scanner] or con-
focal microscope [Zeiss LSM880+Airy fast module with ZEN 2 Black software
(Zeiss, Oberkochen, Germany)]. Images were processed using ImageJ (NIH) or
Imaris (Bitplane, version 9.0.0).

Tissue clearing. Mouse spinal cords were cleared using CLARITY73 four weeks after
injection of AAV-DJ-hSyn-flex-mGFP-2A-Synaptophysin-mRuby71. Mice were
perfused transcardially first with 0.1 M PBS followed by 4% PFA (in 0.1 M PBS, pH
7.4) at 4 °C. The spinal cords were dissected and post-fixed in 4% PFA (in 0.1 M
PBS) for 24 h at 4 °C. The dura was removed from the samples prior to clearing.
Samples were incubated in A4P0 hydrogel solution (4% acrylamide in 0.001M PBS
with 0.25% of the photoinitiator 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihy-
drochloride (Wako Pure Chemical, Osaka, Japan)) for 24 h at 4 °C with gentle
nutation. Samples were degassed by bubbling nitrogen gas through the tube for
3 m. Hydrogel polymerization was initiated by incubating the sample in a 37 °C
water bath for 2 h. Tissue was washed in 0.001 M PBS for 5 m at room temperature.
Samples were then placed in the X-CLARITY Tissue Clearing System I (Logos
Biosystems Inc., South Korea) set to 1.2 A, 100 RPM, 37 °C. Clearing solution was
made in-house from 40 g of sodium dodecyl sulfate (SDS), 200 mM boric acid, and
filled to a total volume of 1 L with dH2O (pH adjusted to 8.5). Samples cleared after
~10–15 h. The sample was then washed for at least 24 h at room temperature with
shaking in 1x PBS and 0.1% Triton-X (with 0.02% sodium azide) to remove excess
SDS. The sample was then incubated in RIMS (40 g of Histodenz dissolved in
30 mL of 0.02 M PB, pH 7.5, 0.01% sodium azide, refractive index 1.465) for at least
24 h at room temperature with gentle shaking prior to imaging. Imaging was
performed using a custom-built MesoSPIM74 and CLARITY-optimized light-sheet
microscope (COLM) as described73. A customized sample holder was used to
secure the spinal cords in a chamber filled with RIMS. Samples were imaged using
a 2.5× objective at the MesoSPIM and a 4x objective at the COLM with two
lightsheets illuminating the sample from the left and the right sides. The pixel
resolution was 2.6 μm× 2.6 μm× 3 μm for the 2,5x acquisition; and 1.4 μm by
1.4 μm by 5 μm for the 4x acquisition in the x-, y-, and z-directions. Images were
acquired as 16-bit TIFF files. 3D reconstructions of the raw images were produced
using Arivis (v3.4) and Imaris softwares (Bitplane, v.9.0.0).

RNAscope. To corroborate the results suggested by DE analysis of scRNA-seq data,
we analyzed the in situ co-localization of putatively DE genes and cell type marker
genes using RNAscope (Advanced Cell Diagnostics)30. Lists of putatively DE genes
were obtained for representative single-cell and pseudobulk DE methods (the
Wilcoxon rank-sum test and edgeR-LRT, respectively), and cross-referenced
against a list of validated probes designed and provided by Advanced Cell Diag-
nostics, Inc. In total, probes were obtained for 13 genes identified as DE by the
Wilcoxon rank-sum test (Sgms1, catalog no. 538561; Pcdh9, catalog no. 524921;
Epas1, catalog no. 314371; Tcaf1, catalog no. 466921; Gspt1, catalog no. 530471;
Prex2, catalog no. 432481; Sema7a, catalog no. 437261; Zfp366, catalog no. 443301;
Cpe, catalog no. 454091; Afap1l2, catalog no. 556251; Nedd4l, catalog no. 491981;
Adipor2, catalog no. 452861; Ptpn14, catalog no. 493181) and 7 genes identified by
edgeR-LRT (Slc7a11, catalog no. 422511; Gjb2, catalog no. 518881; Pi16, catalog
no. 451311; Rbp4, catalog no. 508501; Col1a1, catalog no. 319371; Igfbp6, catalog
no. 425721). In addition, we obtained probes for Pecam1 (catalog no. 316721), a
classic endothelial cell marker gene. We then obtained 16 μm cryosections from
fixed-frozen spinal cords as previously described27 and performed staining for each
probe according to the manufacturer’s instructions, using the RNAscope Fluor-
escent Multiplex Reagent Kit (cat. no. 323133). For each biological replicate (n= 4
per condition for both injured and uninjured mice), we analyzed ten cells
positive for Pecam1 and tallied the number of speckles for each gene of interest.
The mean expression of each gene was then calculated for each biological replicate,
and a one-tailed t-test was conducted based on the directional change in the
snRNA-seq data.

Mixed models. Having established that the performance of DE methods is con-
tingent on their ability to account for biological replicates, we asked why mixed
models failed to match the performance of pseudobulk methods. In addition to the
linear mixed model described above, we implemented generalized linear mixed
models (GLMMs) based on the negative binomial or Poisson distributions,
adapting implementations provided in the ‘muscat’ R package10. For each of these
models, we evaluated the impact of incorporating the library size factors as an
offset term, and compared the Wald test of model coefficients to a likelihood ratio
test against a reduced model, yielding a total of four GLMMs from each dis-
tribution. The enormous computational requirements of the GLMMs prevented us
from evaluating these models in the full ground truth datasets; instead, we analyzed
a series of downsampled datasets, each containing between 25 and 1,000 cells. To
quantify the computational resources required by each DE method, we monitored
peak memory usage using the ‘peakRAM’ R package, and the base R function
‘system.time’ to record wall time.

Preprocessing and analysis of published single-cell datasets. We assembled a
compendium of 46 published single-cell or single-nucleus RNA-seq studies (Sup-
plementary Fig. 3), and performed DE analyses across this compendium to
establish the generality of our conclusions. For publications containing more than
one comparison, only a single comparison was retained, as described in detail
below. We retained the comparison involving the greatest number of cells, and
used the most fine-grained cell type annotations provided by the authors of the
original studies. When count matrices did not use gene symbols, the provided
identifiers were mapped to gene symbols, and counts summed across genes
mapping to identical symbols. Only cell types with at least three cells in each
condition were subjected to DE analysis, and genes detected in less than three cells
were removed.

Angelidis et al., 201914. scRNA-seq data from young and aged mouse lung (3 m
and 24 m, respectively), as well as matching bulk data from two purified cell types,
was obtained from GEO (GSE124872). Metadata was obtained from GitHub
(https://github.com/theislab/2018_Angelidis). Cells with missing cell type
annotations were removed from the single-cell data. DE analysis was performed by
comparing cells from young and old mice.

Arneson et al., 201875. scRNA-seq data from the hippocampus of mice after a
mild traumatic brain injury (mTBI), delivered using a mild fluid percussion injury
model, and matched controls was obtained from GEO (GSE101901). Metadata,
including cell type annotations, were provided by the authors. DE analysis was
performed by comparing cells from mTBI and control mice.

Avey et al., 201876. scRNA-seq data from the nucleus accumbens of mice treated
with morphine for 4 h and saline-treated controls was obtained from GEO
(GSE118918). Cells identified as doublets and non-unique barcodes were removed.
Metadata, including cell type annotations, were provided by the authors. DE
analysis was performed by comparing cells from morphine- and saline-
treated mice.

Aztekin et al., 201977. scRNA-seq data from regeneration-competent (NF stage
40-41) Xenopus laevis tadpoles was obtained from ArrayExpress (E-MTAB-7716).
DE analysis was performed by comparing cells from tadpoles at 1 d post-
amputation to control tadpoles.

Bhattacherjee et al., 201978. scRNA-seq data from the prefrontal cortex of mice
exposed to a cocaine withdrawal paradigm was obtained from GEO (GSE124952).
DE analysis was performed by comparing cells at the 15 d post-withdrawal
timepoint from cocaine- or saline-treated mice.
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Brenner et al., 202079. snRNA-seq data from the prefrontal cortex of alcoholic
and control individuals was obtained from GEO (GSE141552). Metadata, including
cell type annotations, were provided by the authors. DE analysis was performed by
comparing nuclei from alcoholic and control individuals.

Cano-Gamez et al., 202013. scRNA-seq data from naive and memory T cells,
stimulated with anti-CD3/anti-CD28 coated beads in the presence or absence of
various combinations of cytokines, was obtained from the supporting website
(https://www.opentargets.org/projects/effectorness). Matching bulk RNA-seq and
proteomics data was obtained from the same source. For the analyses presented as
part of the compendium of 46 datasets, DE analysis was performed by comparing
iTreg and control cells.

Cheng et al., 201980. scRNA-seq data from intestinal crypt cells in wild-type and
Hmgcs2 knockout mice was obtained directly from the authors of the original
publication. DE analysis was performed by comparing wild type and KO mice.

Co et al., 202081. scRNA-seq data of sorted cells from Drd1a-tdTomato+
control and Foxp2 KO mice was obtained from GEO (GSE130653). Cell type
annotations were provided by the authors. Cell types annotated as ‘Low quality’
were removed prior to further analysis. DE analysis was performed by comparing
WT and Foxp2 KO mice.

Crowell et al., 202010. snRNA-seq data from the prefrontal cortex of mice
peripherally stimulated with lipopolysaccharide (LPS) and control mice was
obtained from the Bioconductor package ‘muscData’, using the ‘Crowell19_4vs4’
function. DE analysis was performed by comparing nuclei from LPS-treated and
control mice.

Davie et al., 201882. scRNA-seq data from the brains of flies of varying ages,
sexes, and genotypes was obtained from the supporting website (http://
scope.aertslab.org, file ‘Aerts_Fly_AdultBrain_Filtered_57k.loom’). Cells marked as
‘Unannotated’ were removed. DE analysis was performed by comparing cells from
DGRP-551 and W1118 flies.

Denisenko et al., 202083. scRNA-seq data from human kidneys subjected to
varying dissociation methods and cell fixation techniques was obtained from GEO
(GSE141115). Metadata, including cell type annotations, was obtained from the
supporting information files accompanying the published manuscript. DE analysis
was performed by comparing cells fixed with methanol and freshly dissociated
cells, both at –20 °C.

Der et al., 201984. scRNA-seq data of skin samples from patients with lupus
nephritis (LN) and healthy controls was obtained from ImmGen (SDY997,
EXP15077). Cell type annotations were obtained from the authors of the
original manuscript. Other metadata, including biological replicate and
experimental condition annotations for each individual cell, was obtained from
the supporting information files accompanying the published manuscript. DE
analysis was performed by comparing cells from patients with LN and healthy
controls.

Goldfarbmuren et al., 202056. scRNA-seq data of tracheal epithelial cells from
smokers and non-smokers was obtained from GEO (GSE134174). Patients
designated as ‘excluded’ were removed prior to downstream analysis. DE analysis
was performed by comparing cells from smokers and non-smokers.

Grubman et al., 201952. snRNA-seq data from the entorhinal cortex of patients
with Alzheimer’s disease and matched controls was obtained from the supporting
website (http://adsn.ddnetbio.com). Nuclei annotated as ‘undetermined’ or
‘doublet’ were removed. DE analysis was performed by comparing nuclei from
patients with Alzheimer’s disease and controls.

Gunner et al., 201985. scRNA-seq data from the mouse barrel cortex before or
after whisker lesioning was obtained from GEO (GSE129150). Cell types not
included in Supplementary Fig. 10 of the original publication were removed. DE
analysis was performed by comparing cells from lesioned and control mice.

Haber et al., 201786. scRNA-seq data from epithelial cells of the mouse small
intestine in healthy mice and after ten days of infection with the parasitic helminth
Heligmosomoides polygyrus was obtained from GEO (GSE92332), using the Drop-
seq data collected by the original publication. DE analysis was performed by
comparing cells from infected and uninfected mice.

Hagai et al., 201812. scRNA-seq data of bone marrow-derived mononuclear
phagocytes from four different species (mouse, rat, pig, and rabbit) exposed to
lipopolysaccharide (LPS) or poly-I:C for two, four, or six h was obtained from
ArrayExpress (E-MTAB-6754). Matching bulk RNA-seq data was also obtained
from ArrayExpress (E-MTAB-6773). Finally, scRNA-seq data from human dermal
fibroblasts stimulated with interferon-β for two or six h, in which the ERCC
mixture of synthetic mRNAs was spiked in alongside every cell, was obtained from
ArrayExpress (E-MTAB-7051). Counts were summed across technical replicates of
the same biological samples. For the analyses presented as part of the compendium
of 46 datasets, DE analysis was performed by comparing rabbit cells stimulated
with LPS for 2 h and control cells. DE analysis of the spike-in dataset was
performed by comparing cells stimulated for 2 h and 6 h.

Hashimoto et al., 201987. scRNA-seq data of peripheral blood mononuclear cells
from human supercentenarians and younger controls was obtained from the
supporting website (http://gerg.gsc.riken.jp/SC2018). Metadata, including cell type
annotations, were provided by the authors. DE analysis was performed by
comparing cells from supercentenarians and younger controls.

Hrvatin et al., 201850. scRNA-seq data from the visual cortex of mice housed in
darkness, then exposed to light for 0 h, 1 h, or 4 h was obtained from GEO

(GSE102827). Cell types labeled as ‘NA’ were removed from downstream analyses.
DE analysis was performed by comparing cells from mice stimulated with light for
4 h to control mice.

Hu et al., 201788. snRNA-seq data from the cerebral cortex of mice after
pentylenetetrazole (PTZ)-induced seizure and saline-treated controls was obtained
from the Google Drive folder accompanying the original publication (https://
github.com/wulabupenn/Hu_MolCell_2017). DE analysis was performed by
comparing cells from PTZ- and saline-treated mice.

Huang et al., 201958. scRNA-seq data from the colon of pediatric patients with
colitis and inflammatory bowel disease and matched controls was obtained from
the supporting website (https://zhanglaboratory.com/research-data/). DE analysis
was performed by comparing cells from patients with colitis and healthy controls.

Jaitin et al., 201989. scRNA-seq data from white adipose tissue of mice fed either
a high-fat diet or normal chow for six weeks were obtained from the Bitbucket
repository accompanying the original publication (https://bitbucket.org/account/
user/amitlab/projects/ATIC). Metadata, including cell type annotations, were
provided by the authors. DE analysis was performed by comparing cells from high-
fat diet and normal chow-fed mice.

Jakel et al., 201990. snRNA-seq data of oligodendrocytes from patients with
multiple sclerosis and matched controls was obtained from GEO (GSE118257). DE
analysis was performed by comparing nuclei from individuals with multiple
sclerosis versus matched controls.

Kang et al., 20185. scRNA-seq data from peripheral blood mononuclear cells
(PBMCs) stimulated with recombinant IFN-β for 6 h and unstimulated PBMCs
was obtained from GEO (GSE96583). Doublets and unclassified cells were
removed. DE analysis was performed by comparing IFN-stimulated and
unstimulated cells.

Kim et al., 201991. scRNA-seq data from the ventromedial hypothalamus of
mice exposed to a range of behavioral stimuli and control mice was obtained from
the Mendeley repository accompanying the original publication. Cell type
annotations were provided directly by the authors. DE analysis was performed by
comparing cells from animals engaging in aggressive behaviour to the common
population of control animals.

Kotliarov et al., 202092. scRNA-seq data of peripheral blood mononuclear cells
from subjects who were subsequently given an influenza vaccination were obtained
from Figshare (https://doi.org/10.35092/yhjc.c.4753772). DE analysis was
performed by comparing cells from high and low responders to the influenza
vaccination, as categorized by the authors.

Madissoon et al., 202093. scRNA-seq data from esophagus, lung, and spleen
samples after varying durations of cold storage was obtained from the study
website (https://cellgeni.cog.sanger.ac.uk/tissue-stability/). DE analysis was
performed by comparing cells from samples preserved for 12 h and fresh samples.

Mathys et al., 20196. snRNA-seq data from the prefrontal cortex of patients with
Alzheimer’s disease and matched controls was obtained from Synapse
(syn18681734). Patient data and additional metadata were also obtained from
Synapse (syn3191087 and syn18642926, respectively). DE analysis was performed
by comparing nuclei from patients with Alzheimer’s disease and controls.

Nagy et al., 202057. snRNA-seq data from the dorsolateral prefrontal cortex of
patients with major depressive disorder (MDD) and matched controls was
obtained from GEO (GSE144136). DE analysis was performed by comparing nuclei
from patients with MDD and controls.

Nault et al., 202194. snRNA-seq data from the livers of mice gavaged with
2,3,7,8-tetrachlorodibenzo-p-dioxin or sesame oil vehicle was obtained from GEO
(GSE148339). DE analysis was performed by comparing nuclei from treated and
vehicle livers.

Ordovas-Montanes et al., 201895. scRNA-seq data from ethmoid sinus cells of
patients with chronic rhinosinusitis (CRS), with and without nasal polyps, from
Supplementary Table 2 of the original publication. DE analysis was performed by
comparing cells from patients with polyposis and non-polyposis CRS.

Reyes et al., 202096. scRNA-seq data of peripheral blood mononuclear cells from
patients with sepsis and healthy controls was obtained from the Broad Institute’s
Single Cell Portal (SCP548). DE analysis was performed by comparing cells from
individuals with bacterial sepsis and controls.

Reyfman et al., 201915. scRNA-seq data from the lungs of patients with
pulmonary fibrosis and healthy controls was obtained from GEO (GSE122960).
Metadata, including cell type annotations, was provided by the authors. One
sample (“Cryobiopsy_01”) was removed as it was sequenced separately from the
rest of the experiment. The results of DE analysis of bulk RNA-seq data, comparing
purified AT2 cells or alveolar macrophages from patients with pulmonary fibrosis
and healthy controls, were obtained from the supporting information
accompanying the original publication. DE analysis was performed by comparing
cells from patients with pulmonary fibrosis and controls.

Rossi et al., 201953. scRNA-seq data from the hypothalamus of mice fed either a
high-fat diet or normal chow for between 9-16 weeks was obtained directly from
the authors, in the form of a processed Seurat object. Cells annotated as
‘unclassified’ were removed. DE analysis was performed by comparing cells from
high-fat diet and normal chow-fed mice.

Sathyamurthy et al., 201851. snRNA-seq data from the spinal cord parenchyma
of adult mice exposed to formalin or matched controls was obtained from GEO
(GSE103892). Cell types with blank annotations, or annotated as ‘discarded’, were
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removed. DE analysis was performed by comparing cells from mice exposed to
formalin and control animals.

Schafflick et al., 202097. scRNA-seq data of peripheral blood mononuclear cells
from individuals with multiple sclerosis and matched controls was obtained from
GEO (GSE138266). Metadata, including cell type annotations, was obtained from
Github (https://github.com/chenlingantelope/MSscRNAseq2019). DE analysis was
performed by comparing cells from individuals with multiple sclerosis and
controls.

Schirmer et al., 201998. snRNA-seq data from cortical and subcortical areas
from the brains of patients with multiple sclerosis and control tissue from
unaffected individuals was obtained from the web browser accompanying the
original publication (https://cells.ucsc.edu/ms). DE analysis was performed by
comparing cells from multiple sclerosis and control patients.

Skinnider et al., 202127. snRNA-seq data from the spinal cords of mice with a
spinal cord injury, some of which were exposed to epidural electrical stimulation to
restore locomotion after paralysis, was obtained from GEO (GSE142245).
DE analysis was performed by comparing nuclei from paralyzed and walking mice.

Tran et al., 201955. scRNA-seq data from the retinal ganglion of mice at various
timepoints after an optic nerve crush injury, as well as uninjured controls, was
obtained from GEO “GSE137398 ”. Metadata, including cell type annotations,
was obtained from the Broad Institute’s Single-Cell Portal (SCP509). DE analysis
was performed by comparing cells from mice at 12 h post-injury and
uninjured mice.

Wagner et al., 201899. scRNA-seq data from zebrafish embryos between 14-16 h
post-fertilization, with either the chordin locus or a control locus (tyrosinase)
disrupted by CRISPR-Cas9 knock- out, was obtained from GEO (GSE112294). DE
analysis was performed by comparing cells from chordin- or tyrosinase-targeted
embryos.

Wang et al., 2020100. scRNA-seq data from the ovaries of young and old
cynomolgus monkeys was obtained from GEO (GSE130664). Metadata, including
cell type annotations, was obtained from the supporting information
accompanying the original publication. Spike-ins were removed. DE analysis was
performed by comparing cells from young and old primates.

Wilk et al., 202059. scRNA-seq data of peripheral blood mononuclear cells from
patients with COVID-19 and healthy controls was obtained from the supporting
website (https://www.covid19cellatlas.org/). DE analysis was performed by
comparing patients with COVID-19 and controls.

Wirka et al., 2019101. scRNA-seq data from the aortic root of mice fed a high-fat
diet or normal chow for eight weeks from GEO (GSE131776). Metadata, including
cell type annotations, was provided by the authors, and unannotated cells were
removed. DE analysis was performed by comparing cells from high-fat diet and
normal chow-fed mice.

Wu et al., 201749. scRNA-seq data from the amygdala of mice subjected to
45 min of immobilization stress and control mice was obtained from GEO
(GSE103976). DE analysis was performed by comparing cells from stressed and
control mice.

Ximerakis et al., 2019102. scRNA-seq data from whole brains of young (2–3 mo)
and old (21–23 mo) mice from the Broad Institute’s Single Cell Portal (SCP263).
DE analysis was performed by comparing cells from young and old mice.

Visualization. Throughout the manuscript, box plots show the median (horizontal
line), interquartile range (hinges) and smallest and largest values no more than 1.5
times the interquartile range (whiskers), and the error bars show the standard
deviation.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Raw sequencing data and count matrices have been deposited to the Gene Expression

Omnibus under accession code GSE165003. The 18 ‘ground truth’ datasets, including

single-cell RNA-seq, bulk RNA-seq and proteomics data, are available from Zenodo at

https://doi.org/10.5281/zenodo.5048449. All other relevant data supporting the key

findings of this study are available within the article and its Supplementary Information

files or from the corresponding author upon reasonable request. The complete list of all

500 studies is provided as Source Data. Source data are provided with this paper.

Code availability
We provide an R package, Libra, implementing all methods for DE analysis discussed in

this study within a consistent interface. The Libra package is available from GitHub

(https://github.com/neurorestore/Libra) and as Supplementary Software 1. In addition,

the R source code used to perform data analysis is available from GitHub at https://

github.com/neurorestore/DE-analysis.
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