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Abstract In the atmosphere, microphysics refers to the microscale processes that affect cloud and

precipitation particles and is a key linkage among the various components of Earth's atmospheric water

and energy cycles. The representation of microphysical processes in models continues to pose a major

challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the

problem of treating microphysics in models is divided into two parts: (i) how to represent the population of

cloud and precipitation particles, given the impossibility of simulating all particles individually within a

cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of

cloud physics. The recently developed Lagrangian particle‐based method is advocated as a way to address

several conceptual and practical challenges of representing particle populations using traditional bulk and

bin microphysics parameterization schemes. For addressing critical gaps in cloud physics knowledge,

sustained investment for observational advances from laboratory experiments, new probe development, and

next‐generation instruments in space is needed. Greater emphasis on laboratory work, which has apparently

declined over the past several decades relative to other areas of cloud physics research, is argued to be an

essential ingredient for improving process‐level understanding. More systematic use of natural cloud and

precipitation observations to constrain microphysics schemes is also advocated. Because it is generally

difficult to quantify individual microphysical process rates from these observations directly, this presents an

inverse problem that can be viewed from the standpoint of Bayesian statistics. Following this idea, a

probabilistic framework is proposed that combines elements from statistical and physical modeling. Besides

providing rigorous constraint of schemes, there is an added benefit of quantifying uncertainty systematically.

Finally, a broader hierarchical approach is proposed to accelerate improvements in microphysics

schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian

particle‐based schemes), laboratory experimentation, cloud and precipitation observations, and statistical

methods.

Plain Language Summary In the atmosphere, microphysics—the small‐scale processes affecting

cloud and precipitation particles such as their growth by condensation, evaporation, and melting—is a

critical part of Earth's weather and climate. Because it is impossible to simulate every cloud particle

individually owing to their sheer number within even a small cloud, atmospheric models have to represent

the evolution of particle populations statistically. There are critical gaps in knowledge of the microphysical

processes that act on particles, especially for atmospheric ice particles because of their wide variety and

intricacy of their shapes. The difficulty of representing cloud and precipitation particle populations and

knowledge gaps in cloud processes both introduce important uncertainties into models that translate into

uncertainty in weather forecasts and climate simulations, including climate change assessments. We discuss

several specific challenges related to these problems. To improve how cloud and precipitation particle
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populations are represented, we advocate a “particle‐based” approach that addresses several limitations of

traditional approaches and has recently gained traction as a tool for cloud modeling. Advances in

observations, including laboratory studies, are argued to be essential for addressing gaps in knowledge of

microphysical processes. We also advocate using statistical modeling tools to improve how these

observations are used to constrain model microphysics. Finally, we discuss a hierarchical approach that

combines the various pieces discussed in this article, providing a possible blueprint for accelerating progress

in how microphysics is represented in cloud, weather, and climate models.

In the atmosphere, microphysics refers to the small‐scale (from sub‐micron to cm) processes driving the

formation and evolution of cloud and precipitation particles. These processes include nucleation, conden-

sation growth by vapor diffusion, collision and coalescence, freezing, and melting, among others

(Figure 1). Microphysics is extremely complicated because of the huge number of particles present in

clouds, the wide variety of ice particle shapes, and the complex, nonlinear interactions among specific

processes. Microphysics parameterization schemes in atmospheric models attempt to represent the beha-

vior of cloud and precipitation particle populations and their effects on weather and climate.

Microphysics schemes strongly influence forecasts of high impact weather events from localized severe

convective storms to tropical cyclones and snow storms. Microphysics schemes also have a critical impact

on how simulated clouds interact with incoming solar radiation and Earth's outgoing longwave radiation,

and thus on simulated climate. For example, a recent paper (Hofer et al., 2019) showed that the phase of

cloud particles (liquid vs. ice) had a strong influence on simulations of future Greenland ice sheet melt-

ing. One of the key ways in which microphysics affects climate is through the influence of pollution aero-

sols on the size and number of cloud particles, and this is one of the largest uncertainties in assessments of

climate change (IPCC, 2013).

Microphysics schemes face two major challenges: (i) how to represent the population of cloud and preci-

pitation particles, given the impossibility of simulating all particles individually even within a small

cloud, and (ii) uncertainties in microphysical process rates owing to critical gaps in cloud physics knowl-

edge. These uncertainties are especially large for ice‐phase processes such as vapor diffusional growth,

melting, and aggregation (sticking and collection of ice particles) owing to the complicated and intricate

shapes of atmospheric ice particles.

The traditional approach for representing particle populations within a grid volume, extending back to

the earliest development of microphysics schemes in the 1950s and 1960s, relies on predicting

continuous‐medium, Eulerian cloud and precipitation variables. Bulk microphysics schemes predict

one or a few variables that describe bulk properties of cloud within a grid volume, such as the cloud mass.

Bin schemes represent particle distributions explicitly and predict variables such as the cloudmass within

a model volume over some size interval of the distribution. Bin schemes have many more predicted vari-

ables to evolve the microphysical properties than bulk schemes, providing much more flexibility and

degrees of freedom, but are computationally costly. The approach of using continuous‐medium,

Eulerian variables in both bulk and bin schemes leads to several conceptual and practical challenges.

A much different parameterization approach has gained traction within the past 10 years—the

Lagrangian particle‐based method. In Lagrangian particle‐based schemes, the particle population is

represented by a discrete sampling of cloud and precipitation particles (called “super‐particles”), each

representing some multitude of real particles that follow trajectories in the modeled flow. Besides addres-

sing several practical challenges of bulk and bin schemes, particle‐based schemes have a fundamental

conceptual advantage: as the number of super‐particles approaches the number of actual particles, and

the model grid resolution decreases to resolve all scales of atmospheric motion and turbulence (down

to ~1 mm scale), particle‐based schemes converge to detailed turbulence models that represent all parti-

cles individually. In principle, this provides a rigorous path toward numerical convergence for cloudmod-

eling, which is not possible using traditional bulk and bin schemes that fundamentally cannot represent

discrete particles moving in a fluid, as occurs in real clouds.

For addressing critical gaps in cloud physics knowledge, which lead to major uncertainties in all models

including those using the Lagrangian particle‐based approach, we advocate sustained investment for

observational advances from laboratory experiments, new probe development, and next‐generation
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instruments in space. Because laboratory experimentation provides a direct way to quantify individual

microphysical process rates in a controlled setting, they are a critical part of advancing cloud physics

knowledge. Nonetheless, there has been an apparent decline in laboratory work over the past several

decades relative to other research areas in cloud physics. We advocate increased support for laboratory

work to address major gaps in cloud physics knowledge and to provide data for developing physically

based parameterizations for models. We also advocate sustained support for new airborne and

ground‐based instrument development and next‐generation instruments in space to provide field data

needed to evaluate and constrain microphysics schemes in regional and global models.

A major challenge using the wealth of natural cloud and precipitation observations to constrain

Figure 1. Schematic illustration of microphysical processes within a typical cumulonimbus cloud, highlighting the
complexity of microphysics in the atmosphere. Specific microphysical processes are listed in red (involving only liquid
drops) and purple (involving ice particles only or both liquid and ice). Cloud droplet activation occurs on aerosol particles
serving as cloud condensation nuclei (CCN) in supersaturation conditions; cloud droplets then grow by condensation.
Further growth by collision‐coalescence produces raindrops. Above the 0°C level, there is heterogeneous ice nucleation on
aerosols serving as ice nucleating particles (INP). Ice particles grow by vapor deposition and riming (i.e., accretion and
freezing of supercooled drops). If riming is especially heavy, not all of the collected liquid water freezes onto the ice
particles and some is shed, representing wet growth. Above approximately the −40°C level, homogeneous ice nucleation

can generate additional ice particles. Sublimation of ice particles detrained from the cloud occurs in subsaturated
conditions. Ice crystals can grow by aggregation when they collide and stick together. Secondary ice production, not
associated with heterogeneous or homogeneous ice nucleation, can generate more ice particles. Below the 0°C level, ice
particle melting generates raindrops, and shedding of meltwater occurs for some ice particles. Raindrop
collision‐coalescence produces larger drops, while raindrop breakup produces smaller ones. Below cloud base,
evaporation of falling raindrops occurs in subsaturated air.
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microphysics schemes is that it is generally very difficult to obtain individual microphysical process rates

directly from these observations; essentially, they provide snapshots of cloud and precipitation properties

that result from various processes acting over time. This presents an inverse problem: microphysical pro-

cess rates in schemes can generally be constrained only indirectly by comparing model output with obser-

vations. We propose that this inverse problem can be viewed probabilistically through Bayesian statistics.

Centered on this idea, we propose a statistical‐physical approach for parameterizing microphysics that

uses Bayesian inference to constrain scheme parameters and model structure using cloud and precipita-

tion observations rigorously and systematically. This contrasts with the traditional approach for micro-

physics scheme development based on a purely “physical” approach combined with heuristics and

often ad hoc “tuning” of parameter values. Besides providing rigorous observational constraint, a major

advantage of Bayesian methods is that uncertainty is quantified systematically. While such methods have

had little use in microphysical modeling, they have been widely incorporated into land surface and

hydrological modeling, which face similar challenges to microphysics owing to extreme complexity

and poorly understood chemical‐physical‐biological processes. Finally, we propose a broader hierarchical

approach to accelerate improvements in microphysics schemes, leveraging the advances described in this

paper related to process modeling using Lagrangian particle‐based schemes, laboratory experimentation,

cloud and precipitation observations, and statistical methods.

General references for further reading:
*Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber (2019), Cloud microphysics and circulation

anomalies in future Greenland melt, Nature Clim. Change, 9, 523‑528.

Houze, R. A., Jr. (2014), Cloud dynamics, 2nd edition, Elsevier Inc., 431 pp.
*Khain, A. P., and Coauthors (2015), Representation of microphysical processes in cloud‐resolving mod-

els: Spectral (bin) microphysics versus bulk parameterization, Rev. Geophys., 53, 247‑322.
*Khain, A. P., and M. Pinsky (2018), Physical processes in clouds and cloud modeling, Cambridge

University Press, 626 pp.

Kreidenweis, S. M., M. Petters, and U. Lohmann (2019), 100 years of progress in cloud physics, aerosols,

and aerosol chemistry, Meteor. Monog. (in press), doi:/10.1175/AMSMONOGRAPHS‐D‐18‐0024.1.
*IPCC (2013), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.‐K. Plattner,

M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/

CBO9781107415324.

Tao, W.‐K. and Coauthors (2019), Microphysics in Goddard multi‐scale modeling systems: A review, in

Current trends in the representation of physical processes in weather and climate models, Springer, 253‐316.
*Also referenced in the main text.

1. The Problem of Representing Cloud and Precipitation Microphysics
in Models

In the atmosphere,microphysics refers to the physical and chemical processes occurring at the scale of indi-

vidual cloud and precipitation particles, or hydrometeors (sub‐micron to several centimeters). Such pro-

cesses include the nucleation of cloud particles, their diffusional growth from water vapor, collision and

coalescence, freezing, melting, and evaporation. These processes determine the characteristics of cloud par-

ticle populations and drive the formation of precipitation; these effects have to be accounted for in cloud,

weather, and climate models. Changes in thermal energy from water phase changes, for example, from con-

densation and melting, affect the buoyancy of air parcels and are therefore key drivers of cloud dynamics.

Microphysical properties (e.g., shape, size, and phase of particles) are critical to radiative transfer in clouds,

which is crucial for climate. The representation of microphysical processes can strongly influence

cloud‐climate feedbacks in global climate models (e.g., Bodas‐Salcedo et al., 2019). Cloud‐radiative interac-

tion is also modulated by aerosols via cloud microphysics, which is one of the major uncertainties in anthro-

pogenic climate change (IPCC, 2013).

A hallmark of microphysics is its extreme complexity. Microphysics is characterized by a large number of indi-

vidual processes and pathways by which hydrometeors interact, a huge range of hydrometeor sizes and array

of ice particle shapes, and complicated feedbacks between hydrometeor populations and their
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thermodynamic and dynamic environments over a multitude of scales (Figure 1). Cloudy air is also generally

turbulent. The most complete model representation of a turbulent cloud is direct numerical simulation

(DNS), considering all particles within a volume and their hydrodynamic interactions (e.g., L.‐P. Wang

et al., 2009), which we will call “particle‐by‐particle DNS.” Individual hydrometeors and turbulent flow

are modeled explicitly, but extremely fine resolution is required, down to at least the Kolmogorov scale

(~1 mm in Earth's atmosphere). Together with the huge number of hydrometeors present in even small

cloudy volumes, typically ~108 in 1 m3, particle‐by‐particle DNS is currently limited to volumes of at most

~1 m3 owing to computational cost. In all other models, individual hydrometeors cannot be represented

explicitly. Instead, the hydrometeor population within a grid volume must be parameterized, from large

eddy simulation models (LES) with horizontal grid scale, Δx, of order 10 m all the way to large‐scale

models with Δx of ~100 km or more (Figure 2). In these models, microphysical parameterization schemes

(hereafter simply “schemes”) attempt to represent unresolved microphysical processes and hydrometeor

populations statistically. This is a manifestation of the classical parameterization problem, in which

models must represent the effects of unresolved features on the resolved‐scale model variables.

Microphysics represents one part of the broader cloud parameterization problem in weather and climate

models, which has been called “a problem that refuses to die” (Randall et al., 2003). Framed within this

wider context, the nature of the parameterization problem for microphysics varies widely across model types

(Figure 2). Cloud‐scale motions are explicitly resolved in LES but are almost entirely unresolved in

large‐scale models. In these coarse‐resolution models, parameterized microphysics must be coupled with

parameterization(s) for the unresolved cloud structure and cloud dynamics—a “parameterization squared”

problem. Here we lump together parameterizations for subgrid‐scale cloud structure and dynamics under

the umbrella of “macrophysics,” broadly defining the term to include schemes for the cloudy fraction within

a grid volume, turbulence, andmoist convection (keeping inmind that as spatial scales become very fine, the

distinction between microphysics and macrophysics loses meaning). Macrophysics may also include repre-

sentations of subgrid‐scale distributions of cloud and precipitation water (e.g., Cheng & Xu, 2009; Larson

& Griffin, 2013; Morrison & Gettelman, 2008; Zhang et al., 2002). This is important for coupling with the

microphysics because grid‐averaged microphysical process rates (and cloud‐radiative effects) generally have

a nonlinear dependence on cloud and precipitation properties like bulk water content (e.g., Larson

et al., 2005; Pincus & Klein, 2000), but this is not a focus of the paper.

Figure 2. Hierarchy of atmospheric models and the scales of atmospheric motion they represent (colored boxes),
inspired by Krueger (2000). The hydrometeor population is explicitly represented in particle‐by‐particle DNS but must
be parameterized in all other models (the “traditional parameterization problem”). Individual clouds and their
dynamical motions are increasingly unresolved moving from left to right in the diagram and are almost entirely
unresolved in traditional global climate models (the “parameterization squared” problem).
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A conceptually straightforward way to address themacrophysics part of the cloud parameterization problem

is to increase model resolution. In this way, the physical equations are solved more directly, with less influ-

ence from parameterization. Indeed, there has been a broad trend toward increased resolution in both

research and operational models. With recent increases in computing power, storm‐scale models with Δx

of a few kilometers (often referred to as “convection‐permitting” models) are now routine at many opera-

tional weather forecast centers around the world (e.g., Benjamin et al., 2016; Clark et al., 2012; Lean

et al., 2008; Milbrandt et al., 2016; Seity et al., 2010). Regional climate modeling at similar resolutions is

becoming widespread (e.g., Hohenegger et al., 2008; Kendon et al., 2012; Prein et al., 2015; Rasmussen

et al., 2011, 2017; Wakazuki et al., 2008). Further increases in model resolution are expected moving forward

as computing power continues to increase. Thus, although the “macrophysics” part of the cloud parameter-

ization problem is not yet dead and remains a major challenge, there is at least a path toward its demise.

Unfortunately, this is not the case for microphysics, for two reasons. First, the sheer number of particles is

simply too large to model explicitly every hydrometeor within a cloud, even with massive advances in com-

puting power. Even in a fairly small cloud with a volume of 1 km3, the total number of particles can easily

exceed 1017. Thus, particle‐by‐particle DNS will remain confined to domains much smaller than most indi-

vidual clouds, and the hydrometeor population will need to be parameterized in almost all models into the

foreseeable future. Second, and perhaps even more troubling, even at the scale of individual cloud and pre-

cipitation particles, many microphysical processes are poorly understood. This is notably different from

other subgrid‐scale components of atmospheric models, such as turbulence and radiation, for which com-

plete governing equations or benchmark models are available, for example, the Navier‐Stokes equations

for turbulence and line‐by‐line models for radiation. Moreover, there is no well‐defined physical scale at

which microphysical processes are fully “resolved”; unlike the Kolmogorov scale for turbulence, scales all

the way down to the molecular are potentially important for determining nucleation and growth of hydro-

meteors, especially for ice particles (see section 3.2). It follows that there are important uncertainties even in

particle‐by‐particle DNS, despite these models representing all hydrometeors individually within a volume.

In this respect, microphysics is arguablymore similar to the parameterization of land surface or biogeochem-

ical processes, which also suffer from inherent uncertainties associated with complex, poorly understood

molecular‐scale chemical and biological processes. A paramount challenge for scheme developers is some-

how to represent the extremely complicated and poorly understood web of interacting microscale

chemical‐thermodynamic‐dynamic processes occurring in real clouds and precipitation that comprises

microphysics. In practice, the most sophisticated microphysics scheme in any atmospheric model, even in

particle‐by‐particle DNS, can only attempt to represent a small subset of these processes.

Even though allmicrophysics schemes are highly simplified representations of reality, they have traditionally

varied widely in detail and complexity depending on the application. Here we distinguish between two basic

types of applications: (1) cloudmodelingwith the purpose of studying cloud processes to improve understand-

ing of cloud physics, nowadays almost always usingmodels at DNS, LES, or convection‐permitting scales and

typically with sophisticated microphysics schemes; and (2) weather and climate modeling, focusing not on

details of the microphysical processes per se but rather the weather or climate metrics used to assess

forecasts or simulations. Many aspects of cloud, weather, and climate modeling are sensitive to the

representation of these microphysical processes (e.g., Clark et al., 2012; Gettelman et al., 2013; Posselt &

Lohmann, 2009; Stein et al., 2015; Weisman et al., 2008; among many others; see also Khain et al., 2015

and references therein).

Microphysics schemes are built around a set of parameterized rate equations that attempt to represent the

microscale processes acting on cloud and precipitation particles. These rate equations usually correspond

to specific microphysical processes such as drop evaporation or ice particle melting. While there is some the-

oretical guidance, many of the rate equations are poorly constrained, especially for ice processes. This is a

problem faced by microphysics schemes in all models, even particle‐by‐particle DNS. A key challenge is that

individual microphysical process rates themselves are generally difficult to observe directly in natural clouds

and precipitation. Although hydrometeor fluxes can be directly obtained in situ from disdrometer and remo-

tely from Doppler radar and lidar, we emphasize the general difficulty of quantifying rates for individual

microphysical processes directly from cloud and precipitation observations in natural clouds; multiple pro-

cesses are often active under uncontrolled conditions, and measurements needed to obtain these rates are

usually incomplete. Even in the controlled setting of a laboratory, what can be measured is often
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different from what is needed by schemes and sometimes the fundamental measurement itself is not yet

possible. This means it has been difficult or even impossible to constrain many individual process rates

in schemes directly from observations. Schemes have also become more complicated over time by

including additional process complexity. This has likely been driven by increasing knowledge that many

process details are important for simulation outcomes and also perhaps reflects a perceived necessity to

incorporate more detail in order to model a highly complicated, nonlinear system such as microphysics

(made possible by increasing computing power). This has exacerbated the problem of constraining

schemes; in general, increasing the number of parameters that needs to be calibrated or “tuned” leads

to increased uncertainty in model predicted variables. In part, this reflects the idea that many different

combinations of parameter values in complex schemes may provide acceptable simulation results com-

pared to available observations, which echoes previous concerns regarding land surface and hydrology

models (e.g., Beven, 1993; Franks & Beven, 1997). Thus, one of our central arguments is that microphy-

sics scheme complexity is “running ahead” of current cloud physics knowledge and the ability to con-

strain schemes observationally. Fundamentally, this calls into question not only the realism of these

schemes at their core but whether or not in principle they are even verifiable in any kind of rigorous

way. This presents a troubling picture moving forward. Quoting from Sir Karl Popper, preeminent phi-

losopher of science in the 20th century (Popper, 1959): “In so far as a scientific statement speaks about

reality, it must be falsifiable: and in so far as it is not falsifiable, it does not speak about reality” (this

generalizes a well‐known statement from Einstein, 1921). Furthermore, while it is clear that microphy-

sics schemes are largely uncertain, the degree to which they are uncertain remains mostly unquantified.

Indeed, the design of most schemes has made it very difficult to quantify uncertainty systematically.

This has been a critical limitation; rigorous characterization of uncertainty could provide a roadmap

to guide future scheme development, as well as help motivate and focus efforts to improve knowledge

of particular processes that represent the weakest link in models.

Given limited direct observational guidance, lack of a benchmark model, and the sensitivity of simulated

weather and climate to microphysics, its representation in models has arguably become an impediment to

reducing overall model uncertainty. For modeling that involves clouds or precipitation, the implication is

that microphysics is, or will soon become, a dominant source of uncertainty even as other aspects are steadily

improved, such as increasing model resolution. This also limits the utility of LES and other high‐resolution

models for developing moist boundary layer and convection parameterizations for coarser resolution

weather and climate models. Overall, we argue that to continue advancing models into the future will

require confronting this problem head on. To do so, we must recognize specific aspects of the problem,

which are detailed in section 3. We divide the problem into two main parts: (1) how to represent the hydro-

meteor population given the impossibility of modeling all hydrometeors individually in a cloud and (2) lim-

ited cloud physics knowledge at the scale of individual hydrometeors that contributes to process rate

uncertainty. This article is intended to be forward looking; we therefore seek not only to clarify the main

challenges but also to offer a roadmap to possible solutions in section 4. These ideas are centered on recent

parameterization advances that address some of the practical challenges specific to microphysics, including

the development of Lagrangian particle‐based schemes and improving basic cloud physics knowledge

through observational advances. We also propose a more general hierarchical framework to try and deal

with a core problem of parameterizing microphysics: How can we develop robust schemes with limited

knowledge of the underlying physics and no benchmark model or complete set of governing equations?

This task may seem very difficult, but we argue that progress can be made with recent advances in cloud

models and statistical modeling tools, in conjunction with the large data sets of cloud and precipitation

observations now available. A summary and broader outlook is discussed in section 5. The next section

briefly discusses the history of microphysics scheme development with the goal of addressing a basic ques-

tion: How did the community arrive at the current state of microphysics parameterization framed by the

challenges discussed above?

2. A Brief History of Microphysics Scheme Developments

Early developments of microphysics schemes in the 1950s and 1960s were broadly motivated by a desire to

improve understanding of cloud processes and, at least initially, were not targeted for improving weather

and climate models. At the time, operational weather forecast models and climate models had only very
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simple methods to calculate surface precipitation, latent heating and cooling from water phase changes, and

coupling with radiation; they generally did not include any explicit representation of microphysical

processes. For example, the first weather model at the US National Meteorological Center used a single

moisture variable and simply removed vapor instantaneously as surface precipitation when precipitable

water in the column exceeded some threshold related to the column‐mean saturation (Shuman &

Hovermale, 1968). Early microphysics scheme developments followed two distinct tracks with

substantially differing philosophies. One involved using simple means to portray cloud and precipitation

processes and their interactions with the thermodynamics and dynamics, without attempting to include

details of the microphysical processes—the “bulk” approach (left column in Figure 3). This work was

pioneered by Edwin Kessler. The basic idea is well encapsulated by the following quotation published in a

retrospective paper (Kessler, 1995):

“I worked with a strong sense for interactions among processes as discussed here, and in expectation that

their study would be facilitated by simple means to portray microphysical processes. The first process to

be considered was conversion of cloud to precipitation. How to portray it? I did little more than observe

in the literature and with my own eyes that thin water clouds seem to be persistent, and that rain falls from

dense clouds.”

To capture this behavior, Kessler et al. (1963) separated condensed water into two modes: cloud water repre-

senting small drops with negligible gravitational fall speed and assumed to follow the air motion and rain

water representing larger drops that had appreciable fall speed and could reach the surface as precipitation.

They formulated continuity equations for the bulk mass mixing ratios of cloud and rain water in addition to

water vapor. Conversion of water mass between vapor and cloud occurred through evaporation and

condensation, between vapor and rain through evaporation, and between cloud and rain through “autocon-

version” and “accretion.” Autoconversion represented the formation of new embryo raindrops from

collision‐coalescence growth of cloud droplets and depended only on the mass mixing ratio of cloud.

Accretion represented the growth of existing raindrops by their collection of cloud water, formulated follow-

ing the continuous collection equation and depending on both cloud and rain mass mixing ratios. The size

distribution of cloud droplets within a grid volume was not explicitly considered, while the size distribution

of raindrops was assumed to be inverse exponential following the well‐known observations of Marshall and

Palmer (1948). This work was summarized later in an oft‐cited report (Kessler, 1969).

Although the early development of microphysics schemes in the 1950s–1970s was motivated from the stand-

point of process modeling, bulk schemes were soon after adopted into mesoscale models. This drove further

development, especially from the standpoint of predicting surface precipitation amount and type. The signif-

icant increase in scheme complexity over time is illustrated in Figure 4, which shows diagrams of the origi-

nal Kessler scheme (Figure 4a) and a typical current state‐of‐the‐art bulk scheme (Figure 4b). A major

development in the 1970s and 1980s was the inclusion of ice microphysics (e.g., Cotton et al., 1982;

Koenig &Murray, 1976; Lin et al., 1983; Rutledge &Hobbs, 1984). This had important effects on simulations

owing to large impacts on sedimentation fluxes (for a given particle mass, low density snowflakes fall much

Figure 3. Representation of cloud and precipitation particle distributions in the three main types of microphysics
schemes: Bulk (left), bin (center), and particle‐based Lagrangian (right). The horizontal axes show particle
diameter or mass, and the vertical axes show the number density distribution for the bulk and bin diagrams and
“multiplicity” for the Lagrangian particle‐based diagram, which is the actual number of particles that each super‐particle
represents. The size of the blue super‐particles in this diagram represents the size or mass of a super‐particle. Note that
almost all current bulk schemes represent particle distributions using analytic functions, although some earlier
schemes did not make any assumptions about the cloud particle distribution and only considered bulk cloud water
content.
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slower than raindrops) and dynamics through the effects of latent heating from freezing and cooling from

melting (e.g., Fovell & Ogura, 1988; Gao et al., 2006; Liu, Kogan, et al., 1997; Lord et al., 1984; McCumber

et al., 1991; and many others). Including ice microphysics in a realistic way was a major challenge

because of the wide variety of ice particle shapes and types in the atmosphere. To represent different ice

particle characteristics, these bulk schemes typically followed an approach analogous to the separation of

cloud and rain by Kessler, with most schemes including a small ice mode (cloud ice), low‐density

precipitating ice (snow), and also often rimed ice (graupel or hail). These category‐based approaches

addressed the practical challenges of representing ice—representing particles with different fall speeds,

dominant growth processes, and so forth—and could produce reasonable results when compared to

observations. However, this also introduced some conceptual problems. Separating ice into predefined

categories corresponding to specific ice types necessitated conversion processes between categories—for

example, the conversion of snow to graupel due to riming—and this has typically been treated in ad hoc

ways. Smaller ice particles can grow to precipitating ice particles by a variety of processes (vapor

deposition, aggregation, and riming), in contrast to the fairly clean separation of cloud droplets that grow

mainly by vapor diffusion and rain drops that grow mainly by collision‐coalescence (in nature and in

microphysics schemes). Conversion from one category to another also results in large, discrete changes in

bulk particle properties such as density and fall speed, in contrast with the continuous evolution of real

ice particles. Correspondingly, many studies have shown large sensitivity of simulations to how ice is

partitioned among categories and to the bulk properties assumed for a given category (e.g., Adams‐Selin

et al., 2013; Bryan & Morrison, 2012; McCumber et al., 1991; Morrison & Milbrandt, 2011; van den

Heever & Cotton, 2004; van Weverberg et al., 2012; and many others).

A few early bulk schemes eschewed the approach of having predefined categories corresponding to particu-

lar ice types in favor of predicting crystal axis growth rates and effective crystal densities derived from growth

measurements (Cotton, 1972; Hindman & Johnson, 1970, 1972; Koenig, 1971). This approach has been

further expanded in the last decade by developing bulk schemes that smoothly evolve particle properties

such as particle aspect ratio, rime mass fraction, liquid fraction, and density without using predefined ice

categories (Cholette et al., 2019; Harrington et al., 2013; Jensen et al., 2017; Lin & Colle, 2011; Milbrandt

& Morrison, 2016; Morrison & Grabowski, 2008; Morrison & Milbrandt, 2015). Two such schemes (Jensen

et al., 2017; Morrison & Milbrandt, 2015) are now available in the widely used Weather Research and

Forecasting (WRF) model (Skamarock et al., 2008), one of which is now (as of fall 2018) used operationally

in the Canadian 2.5‐km numerical weather prediction (NWP) system (Milbrandt et al., 2016). An example of

the evolution of ice particle properties for a squall line simulation using this type of scheme is shown in

Figure 5. Despite using only a single category of ice, a wide variety of ice particle properties in different loca-

tions within the storm are simulated as seen in the figure.

Figure 4. Schematic diagrams of (a) the original Kessler bulk liquid microphysics scheme, (b) a typical state‐of‐the‐art two‐moment bulk microphysics scheme.
Boxes represent different hydrometeor categories (liquid and ice) and water vapor. Q and N are the mass and number mixing ratios of a category. Arrows
represent microphysical processes that convert Q and/or N between categories, as well as sedimentation (fallout from gravity). Red, yellow, and blue lines
represent liquid, mixed‐phase, and ice‐phase processes. Adapted from Randall et al. (2019) (©American Meteorological Society, used with permission).
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Another major development of bulk schemes starting in the 1970s was the prediction of two quantities for

each hydrometeor category, typically number and mass mixing ratios (e.g., Chen & Liu, 2004; Cohard &

Pinty, 2000; Ferrier, 1994; Koenig & Murray, 1976; Lim & Hong, 2010; Meyers et al., 1997; Milbrandt &

Yau, 2005a; Morrison et al., 2005; Seifert & Beheng, 2001, 2006; Thompson & Eidhammer, 2014;

Ziegler, 1985). Such schemes are called two‐moment, reflecting the fact that predicted microphysical quan-

tities in bulk schemes are typically moments of the particle size distribution (SD), or proportional to SD

moments, where “moment” refers to a weighted integral of the SD (this follows from the standard definition

of a distribution moment; see section 3). The prediction of both number and mass mixing ratios, in contrast

to bulk one‐moment schemes predicting only mass mixing ratios, allowed for more flexibility and realism in

representing and evolving the particle SDs. More recently, this idea was extended to three‐moment bulk

schemes that predict three quantities, typically number, mass, and radar reflectivity factor (e.g., Loftus

et al., 2014; Milbrandt & Yau, 2005b; Naumann & Seifert, 2016; Paukert et al., 2018; Shipway &

Hill, 2012). Kogan and Belochitski (2012) developed a bulk liquid scheme that predicts five bulk quantities

for the drop SD and does not have separate categories for cloud and rain.

Although process modeling was a primary driver of scheme development in the 1960s to the early 1980s, a

shift toward scheme development for operational weather and climate models occurred during the

1980s–1990s and has continued to the present. This shift was seen, for example, in the evolving development

and use of two‐moment bulk schemes. The earliest two‐moment bulk schemes were designed to study gla-

ciogenic cloud seeding and predicted the number concentration of all ice species but not liquid species

(e.g., Koenig & Murray, 1976). Later, two‐moment schemes with linkages to modeled aerosols were devel-

oped and widely adopted in climate models to represent the inadvertent impacts of anthropogenic aerosols

on clouds or “cloud aerosol interaction” (e.g., Ghan et al., 1997; Lohmann et al., 1999; Ming et al., 2007;

Figure 5. Results from a three‐dimensional simulation of an idealized squall line using the WRF model (with a 1‐km horizontal grid spacing) with the single‐ice
category version of the predicted particle properties (P3) microphysics scheme (Morrison & Milbrandt, 2015). The top panel shows a horizontal cross section of
simulated radar reflectivity at 1.1 km height. The four panels in the lower right show vertical cross sections of various predicted bulk ice particle properties
(taken along the black line in the top panel): Rime mass fraction (Fr), and mass‐weighted mean ice particle density (ρp), fallspeed (Vm), and diameter (Dm).
Diagnosed ice particle types corresponding to the predicted bulk particle properties are shown in the gray boxes to the left at the locations indicated by the symbols
in the cross‐section plots (red circle, open blue circle, and open black triangle). All results are shown 6 hr into the simulations. Figure adapted from Morrison
et al. (2015) (©American Meteorological Society, used with permission).
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Morrison & Gettelman, 2008). These schemes, especially in the 1990s into the early 2000s, included the

number concentrations of cloud liquid but often not ice species (e.g., Ghan et al., 1997) and were cor-

respondingly focused on the effects of hygroscopic rather than ice‐nucleating aerosol. On a historical

note, this shift in focus from intentional to inadvertent modification of clouds and precipitation reflected

changes in funding over the past several decades. Interested readers are referred to the National

Academies report Critical Issues in Weather Modification Research (2003) for a concise description of

the multiple factors that led to a period of cessation of federal funding for weather modification

research. In brief, the initial promise of glaciogenic cloud seeding first identified in the late 1940s led

to rapid commercialization and claims of positive results that were ultimately deemed

unsupportable by the late 1970s. The 2003 National Academies report reached the same conclusion that

a precursor such report reached nearly 30 years prior: More research is both needed and warranted.

Unfortunately, the government funding gap can be viewed as a regrettable setback insofar as the long

list of outstanding scientific questions relevant for weather modification identified in the 2003 report

can be read nearly verbatim as those that also remain outstanding regarding aerosol‐cloud interactions

relevant for climate.

Over the past 10 years, more sophisticated bulk schemes, in particular detailed two‐moment (or partial two‐

moment) schemes, have also been implemented in operational high‐resolution (kilometer‐scale horizontal

grid spacing) NWP systems (e.g., Benjamin et al., 2016; Milbrandt et al., 2016; Vié et al., 2016). At this scale,

models begin to partially resolve convective updrafts. Thus, since microphysics schemes directly influence

convective and cloud scale motions in these models through latent heating/cooling and the weight of con-

densate, it becomes conceptually appropriate to use relatively detailed schemes in this context and may be

desirable despite increased computational cost. In addition to potential improvements in representing the

feedback to the model dynamics, more degrees of freedom in these sophisticated schemes allows hydrome-

teor SDs to be modeled more flexibly and realistically. This, in principle, improves the computation of var-

ious forecast fields whose values depend on hydrometeor SDs, such as model reflectivity, mean particle

diameter, and visibility. Improvements using multimoment compared to one‐moment schemes have been

noted for observationally based case studies of various cloud regimes (e.g., Dawson et al., 2015; Milbrandt

et al., 2010; Reisner et al., 1998; see also the discussion in Igel et al., 2015). However, despite the potential

for added value, it has not been conclusively demonstrated that there is better forecast skill when

using detailed rather than simpler microphysics schemes. This is likely due in part to the fact that

high‐resolution NWP continues to be notoriously difficult to evaluate systematically using conventional per-

formance metrics (e.g, Mittermaier et al., 2013). Furthermore, specialized forecast fields related directly to

the microphysics scheme are typically not part of standard model evaluations, resulting in aspects of poten-

tial added value from detailed schemes to be overlooked.

Convection‐permitting model configurations have also been used recently for regional climate modeling

(e.g.,Hohenegger et al., 2008; Kendon et al., 2012; Prein et al., 2015; Rasmussen et al., 2011, 2017; Wakazuki

et al., 2008), and it is anticipated that global convection‐permittingweather and climate predictionmodels will

soon come into wider use (Satoh et al., 2019; Stevens et al., 2019). The use of high‐resolution models for both

weather and climate, both using the same model within a “unified” framework, has meant that the design of

schemes for weather and climate models has been converging. This trend has accelerated recently with an

increasing focus on “seamless prediction” across time and space scales for weather and climate (e.g., Palmer

et al., 2008). This is despite the fact thatfields of interest andmetrics to assess schemes are often rather different

for weather and climate (e.g., cloud radiative forcing for climate and surface precipitation for weather).

The second major track of scheme development, also starting in the 1950s to 1960s but largely independent

of the work of Kessler and others who developed bulk schemes, sought to evolve cloud and raindrop

populations explicitly ‐ the “bin” (also referred to as “spectral” or “sectional”) approach (middle column

in Figure 3). This was done by numerically solving equations describing cloud and raindrop evolution that

were as close to first principles as possible, keeping in mind that even at present, many microphysical pro-

cesses remain poorly understood. In this approach, the drop SD (or mass distribution) was

approximated by means of a discretized distribution function. The earliest efforts (e.g., Hardy, 1963;

Mason & Ramanadham, 1954; Srivastava, 1967) focused on studying the evolution of a population of falling

raindrops. Later, in the 1960s to the 1970s, studies used bin schemes to model drop SDs over a wide range of
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drop sizes, from small cloud droplets of a few microns to large rain drops (e.g., Berry, 1967; Berry &

Reinhardt, 1974a, 1974b, 1974c; Kovetz & Olund, 1969; Twomey, 1964). The particular numerical methods

employed varied among these studies, and reducing errors associated with numerically calculating SD evo-

lution has been a major challenge since the inception of bin schemes. Several studies since the 1970s focused

on improving numerical approaches for solving condensation and collision‐coalescence growth. For

example, Egan and Mahoney (1972) developed an accurate, but expensive, method that conserved multiple

moments of the drop SD during growth processes. Young (1974), Tzivion et al. (1987), and Stevens

et al. (1996) proposed methods that solve separate equations for the drop mass and number mixing ratios

to reduce artificial SD broadening from numerical diffusion during growth calculations. Liu, Moncrieff,

et al. (1997) proposed a variational method that predicted only a single variable in each bin but conserved

any number of SDmoments as needed. Khain et al. (2008) used a remapping technique that conserved three

moments of the SD (those corresponding to number, mass, and radar reflectivity factors).

Because bin schemes predict one or more variables in each bin, they are computationally expensive—typi-

cally at least one to two orders of magnitude more costly than bulk schemes. This has limited bin schemes

to research modeling, while bulk schemes have remained the mainstay of operational weather and climate

models. This substantial cost limited the use of bin schemes in earlier studies to idealized frameworks for

modeling the evolution of drop SDs. With increasing computer power, process studies since the 1980s have

used liquid bin schemes coupled to two‐ and three‐dimensional dynamical cloud models. These studies

investigated, for example, detailed aspects of microphysics‐cloud dynamics coupling (e.g., Ackerman

et al., 2004; Kogan, 1991; Stevens et al., 1996; Wyszogrodzki et al., 2013) and aerosol impacts on clouds

(e.g., Feingold et al., 1996, 1999). Other work since the 1980s has incorporated ice microphysics into bin

schemes (e.g., Hall, 1980), often following a category‐based approach similar to bulk schemes

(e.g., Geresdi, 1998; Khain et al., 2004; Lebo & Seinfeld, 2011; Reisin et al., 1996). Bin schemes with separate

ice‐phase categories suffer from similar conceptual and practical problems from using predefined ice cate-

gories as bulk schemes, though a fewbin schemes have adopted the ice particle property‐type approach by pre-

dicting particle shape and density (Chen&Lamb, 1999;Hashino&Tripoli, 2007). State‐of‐the‐artmixed‐phase

bin schemes representing both liquid and ice hydrometeors are now commonly used in three‐dimensional

research models to simulate a variety of cloud regimes (see Khain et al., 2015 and references therein).

Bin schemes remain limited to research modeling owing to their computational cost but have been used

to develop and test bulk schemes for weather and climate models (e.g., Berry & Reinhardt, 1974d; Chen

& Liu, 2004; Fan et al., 2012; Feingold et al., 1998; Khairoutdinov & Kogan, 2000; Kogan, 2013; Kogan &

Belochitski, 2012; Lebo et al., 2012; Morrison & Grabowski, 2007; Shipway & Hill, 2012; Seifert, 2008;

among many). Several studies have formulated process rates for bulk schemes directly from bin scheme

results using regression or other fitting techniques (e.g., Berry & Reinhardt, 1974d; Chen & Liu, 2004;

Khairoutdinov & Kogan, 2000; Kogan, 2013; Kogan & Belochitski, 2012; Seifert, 2008). This hierarchical

approach to scheme development is rooted in the idea that bin schemes provide a better representation

of cloud physics than bulk schemes, with the implicit assumption that they should provide a better match

to observations if other sources of model error (initial conditions or dynamics) can be minimized. Another

bin‐informed approach for bulk schemes calculates the process rates by discretizing the particle SD and

numerically integrating (e.g., regional atmospheric modeling system microphysics; e.g., van den Heever

et al., 2006 and Saleeby & Cotton, 2008; see also Morrison & Milbrandt, 2015), which has been called

the “bin‐emulating” bulk approach. Because of the computational cost, calculations are made offline

and stored in lookup tables. This approach can improve accuracy of process rate calculations but is not

fundamentally different from traditional bulk schemes because only a few bulk‐predicted quantities are

used to evolve the particle SDs. Moreover, it is only appropriate for process rate calculations that do

not have closed‐form analytic solutions.

Bin schemes certainly provide more sophistication in representing microphysical process rates, and they

have many more degrees of freedom to evolve cloud and precipitation properties; however, evidence that

they actually give consistently better results when compared to available observations is lacking. Given that

predictability is inherently limited at cloud and convective scales and there is large case‐to‐case variability in

simulation quality, a large number of individual real cases and/or ensembles may be needed to

evaluate microphysics schemes rigorously through comparison with observations (Flack et al., 2019;

Stanford et al., 2019). In situ observations, commonly viewed as the “gold standard” for evaluation of bin
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microphysics scheme SDs, are also lacking in terms of the number of cases, sufficient coverage spatiotempo-

rally for any individual case, and adequate characterization of sample volumes (e.g., for drizzle‐sized drops).

The fact that we lack rigorous assessments of whether or not bin schemes can consistently outperform bulk

schemes can be viewed as a prime example of complexity outrunning the knowledge base. As we argue

throughout this work, observations must remain the final arbiter.

There are important and unanswered questions about many cloud processes and their interactions that

influence weather and climate. Some processes are known or suspected to be important in clouds, and they

are currently neglected or treated very crudely. This has motivated an increase in complexity and sophistica-

tion in process models, but observations are often inadequate to provide the details necessary to characterize

these processes quantitatively. Schemes in operational models, on the other hand, are strongly constrained

by their computational cost. Greater flexibility in representing cloud microphysics using detailed bulk

schemes therefore has to be balanced by the increased computational cost. As computing power has

increased dramatically over time, schemes in operational weather and climate models have generally

becomemore sophisticated, with increasingly detailed process formulations and additional predicted micro-

physical variables (e.g., going from one‐moment to two‐moment bulk schemes). Moreover, as noted above,

the use of more sophisticated schemes becomes more appropriate conceptually as model resolution is

increased. With the expectation of further advances in computing power, the trend of ever more detailed

and complicated schemes is expected to continue—a “march toward complexity” so to speak. This is

expected for both research and operational models, even though the basic motivation for developing more

sophisticated schemes differs between the two.

Overall, this underscores one of our main arguments: Even though schemes are growing increasingly com-

plicated, there has not been a commensurate increase in fundamental knowledge of cloud physics and

microphysical processes. As we discuss in section 3.2, many basic aspects of cloud physics remain highly

uncertain, particularly for those related to ice‐phase microphysics. This has led to a situation in which

schemes have become more and more complex over time but uncertainty has arguably not correspondingly

decreased. This is supported by recent model intercomparison studies showing a lack of convergence as

schemes have become more complicated. For instance, vanZanten et al. (2011) compared large eddy simula-

tions of a precipitating shallow convection case using different bin and bulk schemes of varying complexity.

They found large differences in precipitation flux and liquid water path among the bulk simulations, but—

perhaps surprisingly—the spread among the bin scheme simulations was similar. Although they used differ-

ent dynamical models for the simulations, vanZanten et al. (2011) attributed simulation differences primar-

ily to the microphysics. Another example is from Xue et al. (2017), who simulated a midlatitude squall line

using three different state‐of‐the‐art bin schemes in WRF. Here, we have expanded the Xue et al. (2017)

study by including additional simulations using the same model setup but with four different

two‐moment (or partial two‐moment) bulk microphysics schemes. We emphasize that all aspects of the

setup are identical other than the microphysics scheme in all simulations, except for an additional ensemble

using one of the bulk schemes but with different seeds to generate small (up to ± 0.1 K) random grid‐scale

perturbations to the initial low‐level potential temperature field. This ensemble allows us to assess the

robustness of impacts from using different microphysics schemes. See Xue et al. (2017) for other details of

the model setup. Results are illustrated in Figure 6. There are large differences within the bulk (middle

panels) and bin (left lower three panels) groupings in simulated storm structure. For example, some bulk

and bin simulations produce little stratiform precipitation and others extensive stratiform precipitation,

and there are large differences in the width and intensity of heavy convective precipitation. The location

of the leading storm edge differs by about 40–60 km within both the bulk and bin groupings. These

differences are robust and are much larger than differences within the ensemble using the same

microphysics scheme but different random number seeds for perturbations to the initial potential tempera-

ture (seen by the four simulations in the right panels). Xue et al. (2017) attributed large differences among

the bin simulations mainly to the various representations of ice particle properties and processes, ultimately

tracing back to uncertainty in knowledge of ice microphysics. Differences in the representation of ice micro-

physics also likely contribute substantially to the differences among the bulk simulations in Figure 6.

A much different approach for parameterizing microphysical processes in dynamical models compared to

traditional bulk and bin schemes has emerged since the mid‐2000s: the Lagrangian particle‐based

approach (right column in Figure 3). Lagrangian particle‐based schemes within two‐dimensional and
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three‐dimensional models were initially used to study ice clouds including contrails and gravity

wave‐generated cirrus (Jensen & Pfister, 2004; Paoli et al., 2004; Shirgaonkar & Lele, 2006). Independent

of these studies, Andrejczuk et al. (2008, 2010), Shima et al. (2009), and Riechelmann et al. (2012)

developed schemes for condensation and collision‐coalescence growth of drops in warm liquid clouds,

while Sölch and Kärcher (2010) developed a scheme for cirrus clouds. Particle‐based schemes have a

similar level of complexity in representing the hydrometeor population as bin schemes, and they also

predict the evolution of particle SD (or mass distributions) explicitly. The essential difference between the

two methods is in how particles are represented. In bin schemes, an Eulerian approach is used, and the

particle distribution functions are predicted using continuous‐medium, density‐like microphysical

variables (most commonly mixing ratios). In particle‐based schemes, the population of real particles

is approximated by a sampling of point particles that move in the model‐predicted flow based on

Lagrangian trajectories; these sampled particles are referred to as “super‐droplets” or “super‐particles.”

Each super‐particle represents some multitude of actual particles, which is predicted using a

Figure 6. Horizontal cross sections of radar reflectivity at a height of 2 km above ground level from simulations using the
WRF model of a squall line case observed in the Central United States on 20 May, 2011 during the Mid‐latitude
Continental Convective Cloud Experiment (Jensen et al., 2016). The observed reflectivity is shown in the upper‐left‐most
panel. Simulations using three different bin schemes are shown in the lower three left panels and four different
two‐moment (or partially two‐moment) bulk schemes in the middle panels. The right panels present simulations using
the “Bulk 1” scheme with small differences in the initial potential temperature field (applying different seeds for
small random perturbations). Otherwise the setup is identical for all simulations and is based on a quasi‐idealized
configuration with initial thermodynamic conditions from observed soundings and convection initiated by forcing
low‐level horizontal convergence over the first hour. Results are shown at 6 hr (see Xue et al., 2017 for additional details
of the model setup).
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“multiplicity” that is tracked with each super‐particle. In addition to position in physical space and multipli-

city, other attributes that are tracked with each super‐particle represent the internal state of the particle,

including wet and dry radii. Additional predicted attributes have included properties related to dissolved

solute such as hygroscopicity factor to treat aerosol processing and aqueous chemistry (Jaruga &

Pawlowska, 2018) and rime mass, number of monomers (primary ice crystals), and particle aspect ratio

and/or density for ice particle Lagrangian schemes (Brdar & Seifert, 2018; Shima et al., 2019). The computa-

tional cost has thus far limited particle‐based schemes to fairly small‐domain cloud modeling studies,

but with increasing computer power, it is anticipated that they will be used more widely in the

future. Further discussion of prospects and potential applications for particle‐based schemes is given in

section 4.1.

3. Challenges in Parameterizing Cloud Microphysics

Before going into more detail on the specific challenges of representing microphysics in models, we provide

some additional background on exactly what microphysics schemes do and how they work. First, we con-

sider the most general form of the kinetic microphysics equation that describes the evolution of a hydrome-

teor population through various microphysical processes and transport via air motion and gravitational

fallout. This is expressed mathematically as

∂f

∂t
þ u · ∇f −

1

ρ

∂ ρVfð Þ

∂z
¼

∂f

∂t

� �

diff

þ P1 þ P2 þ …PN ; (1)

where f ≡ f(x, t, q) is a distribution function that describes the hydrometeor population and depends on

location in physical space x, time t, and a vector q representing one or dimensions associated with particle

attributes or measures; in schemes, most commonly particle radius (thus, representing the size distribution

or SD) or mass but potentially including additional dimensions for attributes such as ice particle aspect

ratio or dissolved solute mass. In Equation 1, ∂f
∂t

� �

diff
is diffusion in physical space, u is the wind vector,

ρ is air density, V is the particle fallspeed, and P1, P2, …, PN are the N individual microphysical process

rates affecting f (condensation, freezing, etc.). Processes involving water phase changes consequently affect

temperature via latent heating or cooling.

The basic task of a microphysics scheme together with its parent model is to solve Equation 1 numerically. In

the standard Eulerian bin and bulk approaches, Equation 1 is solved by predicting a set ofmicrophysical state

variables related to f. In bin schemes, f is discretized over x, t, and q, where the space of q is usually repre-

sented by a single dimension of particle radius or mass, or rarely as a two‐dimensional (or more) space,

for example, drop mass and dissolved solute mass (e.g., Lebo & Seinfeld, 2011) or, for ice, the particle aspect

ratio (Chen & Lamb, 1999; Misumi et al., 2010). The microphysical state variables are the mass and/or num-

ber mixing ratios over the intervals of the size or mass grid.

In bulk schemes, the state variables are bulk hydrometeor properties that depend only on x and t, such as the

mass mixing ratio, for one or more hydrometeor categories. These state variables can usually be expressed as

weighted integrals, or moments, of f over the vector q, that is,Mk¼∫
qmax

qmin
qkf qð Þdq for the kth order moment of

f for a single dimension in q (qmin and qmax define the bounds of the distribution function in q). Bulk

schemes must therefore describe the evolution of the SD using a limited number of predicted variables

and have relatively few degrees of freedom. Because the rate of change of a predicted moment of a given

order from a microphysical process generally depends on moments of other orders, bulk microphysics

represents a closure problem conceptually similar to the problem of subgrid‐scale turbulence closure

(Kogan & Belochitski, 2012). Closure is typically, but not always, provided in bulk schemes by assuming

an analytic functional form for f, most commonly gamma or lognormal.

In contrast to bulk and bin schemes, Lagrangian particle‐based schemes replace the partial differential equa-

tion in Equation 1 with a set of ordinary differential equations that evolve a collection of super‐particles.

These schemes solve the Lagrangian derivative
d

dt
¼

∂

∂t
þ uþ Vbk
� �

·∇ following individual

super‐particle trajectories on the left hand side (see section 2 in Shima et al., 2009 for a discussion of the
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governing equations). Each super‐particle represents a multitude of actual hydrometeors based on the

“multiplicity” tracked with each super‐particle. Mathematically, the other attributes tracked with each

super‐particle, such as size, mass, and aspect ratio (see section 2), correspond to the dimensions in the

space of q.

The kinetic microphysical equation expressed by Equation 1 is very similar to the Boltzmann transport equa-

tion that describes gas dynamics, which has been noted previously (e.g., Berry, 1969). As such, there are com-

mon features of the methods used to solve these equations, as well as important differences, which are

summarized in Figure 7. Lagrangian particle‐based schemes are a close analogy to the direct Monte Carlo

simulation approach, primarily used to simulate rarefied gas flow, which uses simulation “molecules” that

each represent a multitude of real molecules to model the flow probabilistically (Bird, 1963). Similarly, bin

microphysics schemes are analogous to methods that directly solve the Boltzmann equation, again primarily

used for modeling rarefied gas flows, by discretizing the distribution function in velocity and physical space

(e.g., Aristov et al., 2019). However, moving downward in Figure 7, the analogy with gas dynamics ends with

further simplification of the equations. The Navier‐Stokes equations, which very accurately describe fluid

flow in the continuum regime (valid for Earth's atmosphere at heights up to roughly 500 km), can be derived

from the Boltzmann equation through reductive perturbation expansion (e.g., Chapman & Cowling, 1970)

or the renormalization group method (Kunihiro & Tsumura, 2006). These equations are closed in the lower

moments of the distribution function (density, momentum, and energy) by assuming local equilibrium is

satisfied and hence the distribution function is Gaussian. Unfortunately, there is no bulk microphysics ana-

log of the Navier‐Stokes equations because, unlike the Boltzmann equation, no analytic distribution func-

tion has been derived theoretically that can well describe SDs universally. There has been work on

theoretically deriving analytic functional forms for SDs based on the principle of maximum entropy

(Liu et al., 1995; Wu &McFarquhar, 2018; Yano, Heymsfield, et al., 2016; Zhang & Zheng, 1994) or by treat-

ing the SD as an open system at steady state with a throughput of condensed mass in a “cascade” through

class sizes (Garrett, 2019). However, it remains to be seen how well these generally describe observed or

Figure 7. Diagram illustrating similarities and differences between methods for modeling microphysical evolution and
gas dynamics. There is a close correspondence of methods for microphysics and gas dynamics in the blue and red
boxes. However, even though the bulk microphysics approach and Navier‐Stokes equations are both simplified forms of
the continuous kinetic microphysical and Boltzmann equations closed in the distribution moments, this closure is
empirical and not universally accurate for bulk microphysics schemes whereas it is theoretical and universally very
accurate (in the continuum flow regime) for the Navier‐Stokes equations.
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numerically simulated SDs. Thus, bulkmicrophysics schemes must rely on simplified assumptions about the

SD form to derive the closed form of Equation 1 that they solve, contributing to uncertainty in these schemes.

In the remainder of this section, we discuss particular challenges related to the parameterization of micro-

physics. In doing so, we distinguish between challenges arising from poor understanding of many of the

individual microphysical processes acting on hydrometeors and those related to the classical parameteriza-

tion problem, the inability of all models (including those with bulk, bin, or Lagrangian particle‐based

schemes), except particle‐by‐particle DNS, to simulate all hydrometeors individually within a cloud. This

distinction follows from the discussion in the introduction and is also clear mathematically in the context

of Equation 1: challenges related to process uncertainty center on limited knowledge of the process rates

P1, P2, …, PN in Equation 1, whereas those associated with the classical parameterization problem arise from

how the distribution function f in Equation 1 is represented numerically.

3.1. Numerical Challenges of Bulk and Bin Schemes

The development of methods to solve Equation 1 has been a major effort since the inception of microphysics

schemes. All methods, other than particle‐by‐particle DNS, are faced with the challenge of parameterizing

the hydrometeor population within a grid volume using a limited number of predicted quantities and thus

vastly fewer degrees of freedom than if one were to model all hydrometeors individually. Essentially, the cri-

tical question is how to best solve Equation 1, accurately and in a way that is computationally tractable, for a

given application?

There is limited theoretical guidance on the general form of SDs. Thus, traditional Eulerian methods to solve

Equation 1 use either the bin approach, discretizing the particle distribution function in size (or mass) and

physical space, or the bulk approach, which solves a simplified form of Equation 1 closed with a limited

number of predicted variables and typically assuming an analytic SD functional form (note that a few bulk

schemes use empirically derived relationships between SDmoments rather than analytic SD forms; see, e.g.,

Szyrmer et al., 2005). For a detailed review of bulk and bin methods, see Khain et al. (2015). Part of the rea-

son for limited theoretical guidance on SDs is because even under idealized conditions, neglecting all pro-

cesses other than collision‐coalescence, with this simplified form of Equation 1 referred to as the

Smoluchowski coagulation equation (Smoluchowski, 1916) or kinetic collection equation, analytic solutions

are possible only for very simple collision kernels (e.g., Drake, 1972; Long, 1974; Scott, 1968) (collision ker-

nels are mathematical functions that describe the rate of particle collisions, defined by the ratio of collision

rate to the concentration of particle pairs). These solutions do not reflect SD behavior under more realistic

conditions. In the remainder of this subsection, we focus on numerical challenges using traditional bin

and bulk approaches. Many of these numerical challenges fall under the purview of “physics‐dynamics cou-

pling,” which broadly encompasses the conceptual and numerical problems arising from coupling model

dynamics with physics parameterizations (see Gross et al., 2018 and references therein). Most of these pro-

blems are resolved, or at least limited, by Lagrangian particle‐based schemes, which are discussed further in

section 4.1.

In general, the set of model dynamic/thermodynamic and parameterized microphysical equations exhibits

stiffness; that is, sometimes processes with very short time scales are dominant (such as condensation

growth of water drops), leading to rapid evolution of hydrometeor populations, while other times, slowly

varying processes are dominant (e.g., generation of supersaturation by slow ascent). This problem is usually

addressed by using short time steps for the time integration within schemes. This is generally not proble-

matic in cloud or mesoscale models that use short time steps for the model dynamics anyway but becomes

a major challenge in large‐scale models, especially global climate models, that have time steps of several

minutes to even tens of minutes. This has sometimes been addressed by substepping the microphysics

and calling schemes multiple times within the full model time step (e.g., Gettelman & Morrison, 2015;

Thayer‐Calder et al., 2015). There have also been efforts to employ implicit numerical methods to evolve pre-

dicted microphysical variables for some processes (e.g., Forbes et al., 2011; Lou et al., 2012).

There are many problems related to scheme numerics and consistency with transport of microphysical vari-

ables in physical space, from both advection by air motion and sedimentation, that are beyond the scope of

this paper. Nonetheless, we mention this aspect of “physics‐dynamics coupling” to point out a practical chal-

lenge; scheme developers need to be reasonably well‐versed with details of model numerics and advection
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schemes to minimize problems with scheme implementation. We highlight a few examples. For multimo-

ment bulk schemes, SDs are determined by two or more predicted microphysical variables (e.g., mass and

number mixing ratios). Inconsistencies between these variables can arise from advection or diffusion

calculations, producing unrealistic SD properties such as mean particle size. This is one example of a broader

problem in models related to inconsistencies in advecting interrelated tracer quantities (e.g., Lauritzen &

Thuburn, 2012; McGraw, 2007). To our knowledge, in all multimoment microphysics schemes, this problem

is dealt with by artificially adjusting the predicted variables (usually number mixing ratio) to keep SD

properties within physically reasonable ranges. The nature of this problem depends on model details, such

as the particular numerical method used by the advection scheme, and hence is rather complicated. In gen-

eral, using a monotonic (nonoscillatory) advection scheme helps to limit these inconsistencies (H. Wang

et al., 2009). Careful consideration ofwhichmicrophysical variables to predict and advect can also limit errors

in important SD properties, such as the spectral shape in three‐moment bulk schemes, derived from these

predicted variables (Morrison et al., 2016; Paukert et al., 2018). With many more predicted variables describ-

ing the SD in bin schemes, problems related to inconsistencies among the predicted microphysical variables

are even more complicated. For example, advection of individual bin microphysical variables will generally

not produce consistent evolution of the bulk mass mixing ratio; that is, summing the bins to calculate the

bulk mass mixing ratio first within a time step and then advecting this quantity separately will generally pro-

duce different results than summing the individually advected bin variables (Ovtchinnikov & Easter, 2009).

There are several other problems related to numerical diffusion of advected quantities in bulk and bin

schemes. Along cloud edges, this leads to enhanced dilution from mixing with dry air, with attendant con-

sequences for both the microphysics and cloud dynamics (the latter, e.g., from latent cooling associated with

enhanced cloud evaporation; see Grabowski, 2007). Microphysical transformations through evaporation

during entrainment and turbulent mixing with dry air can lead to reductions of either droplet number or

size, or both, depending on time scales of mixing and droplet evaporation (inhomogeneous vs. homogeneous

mixing) (e.g., Baker et al., 1980; Lehmann et al., 2009). Such entrainment and mixing events generally occur

at subgrid scales even in high‐resolution LES and are strongly influenced by numerical diffusion in addition

to parameterized subgrid‐scale mixing (e.g., Jarecka et al., 2013). One mitigating approach for LES studies of

shallow cloud systems is to advect the domain with the mean horizontal wind to reduce unnecessary

repeated advection calculations with respect to the grid (e.g., Fridlind et al., 2012), but this only partially ad-

dresses cloud lateral edges and does not address unresolved processes near cloud top (e.g., Mellado, 2010).

The role of numerical diffusion makes it challenging to develop consistent representations of microphysical

transformations during mixing, though recent progress has been made in this area that is rooted in scaling

up results from DNS (e.g., Andrejczuk et al., 2009; Jarecka et al., 2013).

Another important aspect of mixing concerns its impact on the evolution of modeled SDs, particularly for

bin microphysics schemes that explicitly evolve the SD shape and width. It is well known that observed

SDs are generally much broader than what would occur from droplet diffusional growth alone in an ascend-

ing air parcel without mixing (e.g., Jensen et al., 1985), and the specific mechanisms governing this broad-

ening remain a key topic in cloud physics research. It is unclear how well bin schemes are able to capture

these mechanisms or distinguish them from numerical broadening. Modeling evidence (Cooper, 1989;

Grabowski & Abade, 2017; Lasher‐Trapp et al., 2005) has suggested the role of mixing of different droplet

populations that have undergone different growth histories on SD broadening, which has been referred to

as “eddy hopping.” Isobaric mixing (in essence, associated with horizontal mixing) of microphysical vari-

ables in bin schemes from numerical diffusion and parameterized subgrid‐scale mixing may represent some

aspects of eddy hopping, but this remains an open question and is being actively studied. Several other phy-

sical broadening mechanisms have also been proposed, and these mechanisms have been a subject of debate

in cloud physics for the past several decades. Work since the 1950s has focused on the role of giant CCN lead-

ing to production of large drops and rain initiation (e.g., Feingold et al., 1999; Jensen & Nugent, 2017;

Ludlam, 1951; Woodcock et al., 1971). Drop SD's can also broaden from Ostwaldt ripening, which is the pre-

ferential condensational growth of large drops compared to small ones owing to differences in

saturation vapor pressure over drop surfaces from curvature and solute effects (e.g., Korolev, 1995; Wood

et al., 2002). Accelerated drop growth and SD broadening can also occur from drop clustering (e.g.,

Shaw, 2000; Vaillancourt et al., 2002) and turbulent impacts on collision‐coalescence of similar size drops

(Chandrakar, Cantrell, Kostinski, et al., 2018; Chandrakar, Cantrell, & Shaw, 2018; Chen, Yau, & Bartello,
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2018; Chen, Yau, Bartello, & Xue, 2018; Chen et al., 2016). Other mechanisms involve drop dilution from

entrainment followed by accelerated growth owing to reduced competition from water vapor during

subsequent ascent (e.g., Telford & Chai, 1980), and asymmetry in drop SD evolution during adiabatic

ascent and descent, broadening cloud SDs upon isobaric mixing (Korolev et al., 2013; Pinsky et al., 2014).

Some of these mechanisms are included in some bin schemes, such as activation of giant CCN and

turbulence‐enhanced collision‐coalescence, but many others are not. In particular, mechanisms centered

around subgrid‐scale fluctuations of supersaturation and droplet clustering and their impacts on droplet

growth have not been explicitly incorporated into bin schemes, to our knowledge.

Though isobaric mixing of bin microphysical variables from numerical diffusion and parameterized

subgrid‐scale mixingmay reflect a physical eddy hopping mechanism, this is clearly not the case for noniso-

baric mixing associated with vertical transport. Because vertical transport from mixing in bin microphysics

schemes implemented into Eulerian dynamical models is decoupled from and inconsistent with the

growth/shrinkage of drops from adiabatic ascent/descent, this inherently leads to numerical broadening

of SDs in bin schemes. In contrast, SDs become narrower for purely adiabatic condensational growth in

ascending air. This artificial broadening of SDs is a direct consequence of numerical diffusion in

radius/mass space from condensational growth calculations as well as numerical diffusion from vertical

advection in physical space (Clark, 1974; Morrison et al., 2018). Even if condensational growth calculations

are well‐resolved (e.g., by increasing the bin resolution), vertical advection can still result in numerical

broadening. Conversely, when the SDs are well resolved in physical space (e.g., by increasing vertical resolu-

tion), the ability to represent SD evolution can be limited by bin resolution. It is therefore important to con-

sider both bin resolution and spatial resolution together to minimize numerical broadening of SDs.

Practically, this also depends on the type of bin scheme used; one‐moment bin schemes can readily use

an arbitrary grid structure, making it easy to increase bin resolution. In contrast, modifying the bin structure

in two‐moment bin schemes is generally very cumbersome when they include collision‐coalescence.

Relatedly, the ability of one‐moment bin schemes to use an arbitrary bin structure means that numerical

convergence for collision‐coalescence can be tested using realistic collision kernels in a straightforward

way by increasing bin resolution, in contrast to two‐moment bin schemes (Lee et al., 2019). Numerical

broadening of SDs may limit the ability of bin schemes to study physical SD broadening mechanisms,

although its practical role in fully dynamical three‐dimensional cloud simulations has not yet been estab-

lished (as opposed to idealized one‐dimensional studies). This problem is specific to bin schemes; it is fun-

damentally related to the fact that, in essence, they must solve a four‐dimensional advection problem for

the microphysical variables: transport in three dimensions of physical space and growth/shrinkage of parti-

cles in radius or mass space (Morrison et al., 2018).

We discuss two additional problems pertinent to bin microphysics schemes (see also Grabowski et al., 2019).

The first concerns a fundamental problem with the nature of the Smoluchowski (collision‐coalescence)

equation, which is the equation that bin microphysics schemes solve numerically. If particles are always

well‐mixed by turbulence, then collision‐coalescence can be regarded as a Markovian stochastic process.

Moreover, if fluctuations in the number density of different‐sized drops are locally uncorrelated, then

collision‐coalescence is well described by the Smoluchowski equation, which is a mean field equation

(Gillepsie, 1972). However, if these assumptions are violated and small‐scale statistical fluctuations of the

SD are important, then the Smoluchowski equation (and by extension, bin schemes that solve this equation)

cannot represent the true evolution of SDs (see Dziekan & Pawlowska, 2017 and references therein).

Whether or not these assumptions are valid depends on conditions such as turbulence intensity and the

collision‐coalescence time scale, which determine the well‐mixed volume (Grabowski et al., 2019). It follows

that bin schemes solving the Smoluchowski equation cannot represent the impact of “lucky” drops on pre-

cipitation formation—those drops that happen to collect more mass than other drops of the same initial size

—which could be critical for rapid precipitation onset in warm liquid clouds (e.g., Kostinski & Shaw, 2005;

Wilkinson, 2016). Indeed, the inability of bin schemes to represent stochastic fluctuations around the mean

has limited the ability of researchers to investigate the role of lucky drops from a modeling perspective.

The second problem is the “curse of dimensionality.” Most bin schemes are one dimensional, in that they

predict evolution of the particle distribution based on a single measure, typically drop size or mass.

However, to describe cloud properties in a more complete way often requires prediction of multiple attri-

butes of the hydrometeor population, with each attribute needing an additional dimension. This is
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particularly true for ice particles, which can take on a variety of shapes and characteristics such as density.

Even for liquid microphysics, modeling aerosol processing by clouds in a rigorous way requires at least two

dimensions: one for the mass of dissolved solute in drops and one for drop size/mass. Each attribute and

corresponding dimension adds considerably to the computational cost of bin schemes; for N bins and d

attributes, the cost scales approximately as N2d. This becomes computationally intractable for d > 2 for

bin schemes that typically have N of at least 30.

In short, numerically solving the set of parameterized microphysical equations is a far‐from‐trivial problem

beset by a number of challenges. The Eulerian‐based approaches used by traditional bulk and bin schemes

face several problems difficult to overcome, including problems related to inconsistent evolution of micro-

physical variables and the coupling of schemes with advection in physical space. In section 4.1, we discuss

how Lagrangian particle‐based schemes can limit or resolve many of these numerical challenges.

3.2. Gaps in Basic Cloud Physics Knowledge

Cloud physics research has a long and storied history reaching back to the Age of Enlightenment. It became

a more quantitative, rigorous discipline starting in the mid to late 19th century with the seminal work of

scientists such as John Aitken and William Thomson (later known as Lord Kelvin) and rapidly accelerated

after World War II with advances in technology and increased funding. Understanding gained from this

research has been at the core of developing microphysics schemes since their inception in the 1950s–

1960s (see section 2). However, despite major advances over the past 100+ years, knowledge gaps remain

in several key areas of cloud physics that contribute to large uncertainty in microphysics schemes.

At a basic level, understanding in cloud physics has been achieved through a combination of laboratory

experimentation, observations of natural clouds and precipitation, and theory (left‐most box in Figure 8).

This knowledge base has in turn served as the foundation for developing physically based process rate para-

meterizations in schemes. However, from the standpoint of fundamental cloud physics knowledge, all

microphysical processes are uncertain to at least some degree. This is closely related to the point made in

the introduction about there being no benchmark model or complete governing equation set for microphy-

sics. In a strict sense, for microphysics, only integral constraints—essentially, water and energy conservation

—are known with complete certainty. There is theoretical guidance for some individual microphysical pro-

cesses but little in the way of theory for many other processes. For instance, the initial stage of cloud droplet

formation on cloud condensation nuclei (CCN) is well understood based on equilibrium thermodynamics

from the principle of Köhler theory. There are larger uncertainties in drop condensation after drops become

large enough to have a significant fall velocity, which alters their growth by ventilation. The effects of ven-

tilation have been characterized by laboratory studies and are represented by simple alterations to the basic

diffusional growth equation (Beard & Pruppacher, 1971; Pruppacher & Rasmussen, 1979), and the para-

meters associated with these altered formulations are somewhat uncertain. At the other end of poor under-

standing are most processes related to ice‐phase microphysics, including nucleation, vapor diffusional

growth, aggregation, and riming. Much of this difficulty arises because of the complicated shape and wide

Figure 8. Flowchart of the traditional approach for developing microphysics schemes. Advances in cloud physics
knowledge are rooted in a combination of laboratory experimentation, observations of natural clouds and
precipitation, and theory. This cloud physics knowledge directly informs physically based parameterizations for
microphysics scheme development. Because fundamental knowledge for many individual process rates is limited,
particularly those for ice particles, heuristics play an important part in formulating many process rates. Scheme
parameters are adjusted or “tuned” through comparisons of model output with cloud and precipitation observations,
often in an ad hoc way.
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variety of ice particle types occurring in the atmosphere. As a result, inherently, there is more uncertainty

modeling clouds containing ice than liquid‐only clouds.

In this subsection, we primarily focus on limited knowledge of microscale processes acting at the scale of

individual hydrometeors. The impact of knowledge gaps in small‐scale microphysical‐dynamical interac-

tions such as cloud entrainment and turbulent mixing was briefly discussed in section 3.1, highlighting a

keymodeling challenge. For completeness, we also mention another uncertain yet important aspect of cloud

physics: electrification. This is an important topic for obvious reasons as a critical hazard in thunderstorms,

but there is also evidence for process‐level microphysical impacts, for example, on collection efficiencies of

colliding ice particles (e.g., Connolly et al., 2005; Latham & Saunders, 1970; Saunders & Wahab, 1975; Stith

et al., 2014). Moreover, electrification is relevant for weather models that assimilate lightning observations.

However, in the interest of brevity we will not discuss cloud electrification further.

In the following, we discuss specific gaps in cloud physics knowledge and how they contribute to scheme

uncertainty. This is not meant to be a comprehensive account of all sources of microphysical process rate

uncertainty in schemes but rather to highlight a few examples. These particular processes were chosen

both because there is considerable uncertainty in the underlying physics and because model simulations

have been shown to be sensitive to how that process is represented. Nonetheless, there are several other

processes we do not discuss below but which are uncertain and can notably influence model simulations.

These include warm rain initiation from cloud droplets through collision‐coalescence (including impacts

of cloud turbulence), melting, collision and aggregation of ice particles, and riming growth of ice. For a

more comprehensive discussion of process uncertainty, see Pruppacher and Klett (1997) and Khain and

Pinsky (2018).

3.2.1. Collision‐Coalescence and Breakup of Raindrops

Collision‐coalescence and breakup are key processes driving the behavior of a population of falling rain

drops (e.g., Feingold et al., 1988; Hu & Srivastava, 1995; List et al., 1987; McFarquhar, 2004; Prat et al., 2012;

Straub et al., 2010; Srivastava, 1967; Valdez & Young, 1985; and many others). For bin and Lagrangian

particle‐based microphysics schemes, collision and breakup kernels and coalescence efficiencies are needed

to represent these processes numerically. In bulk schemes, these processes are formulated by fitting rates to

bin model data (e.g., Seifert, 2008) or from heuristics (e.g., Verlinde & Cotton, 1993). Model simulations have

been shown to be sensitive to the representation of collision‐coalescence and breakup for some cases, via its

influence on mean raindrop size (e.g., Stevens & Seifert, 2008) and hence bulk evaporation rates and cold

pool characteristics (Morrison et al., 2012; Morrison & Milbrandt, 2011; Planche et al., 2019).

Overall, deriving a general parameterization for drop coalescence and breakup has proven to be very diffi-

cult, and drop breakup arguably remains the most uncertain and theoretically challenging liquid microphy-

sical process to quantify. Figure 9 illustrates the influence of different collision‐coalescence‐breakup

parameterizations on vertical profiles of drop SD properties. Results are from simulations using a

one‐dimensional rain shaft model with the bin microphysics scheme of Prat et al. (2012) coupled with var-

ious collision‐coalescence‐breakup parameterizations; no other microphysical processes are included. The

nominal rain rate is constant throughout the column once steady state is achieved (not shown). The integral

properties of the drop SD (number concentration, radar reflectivity, and mean drop size) are similar in the

early transient stage at 3 min (Figure 9a) but much larger at 60 min (Figure 9b) after steady state is achieved.

For example, the steady‐state mean drop size near the surface ranges from about 1.7 to 2.1 mm, and the drop

number concentration varies by more than a factor of 2 (Figure 9b).

Reproducing collisional (drop‐drop) breakup in a laboratory environment presents a technical challenge.

Earlier work by McTaggart‐Cowan and List (1975) and Low and List (1982a, 1982b) performed collision

experiments between two drops and identified three types of breakup (disc, filament, and sheet). From a

limited number (10) of colliding drop pairs, Low and List (1982b) proposed a breakup parameterization

(ratio for each type of breakup and number of resulting fragments). From these laboratory experiments, they

also refined expressions for coalescence efficiencies that are widely used in bin schemes (e.g.,

Brown, 1986, 1993; Feingold et al., 1988; Hu & Srivastava, 1995; Jacobson, 2011; List et al., 1987; List &

McFarquhar, 1990; McFarquhar, 2004; Prat & Barros, 2007, 2009; Prat et al., 2012; Tzivion et al., 1989;

Valdez & Young, 1985). McFarquhar (2004) used a modified Monte Carlo method with bootstrap to ran-

domly choose the result of the collision of arbitrary pairs of drops and proposed general expressions for
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the parameters of the fragment distribution functions for each type of breakup. This parameterization has a

more consistent physical basis than Low and List (1982b).

More recently, a large data set of binary raindrop collisions under free‐falling conditions was collected using

high‐speed imaging technology (Testik et al., 2006). These experiments presented a similar fragment distri-

bution to the original Low and List (1982a, 1982b) experiments but showed significant differences in the

number of fragments produced in the smallest diameter range (D < 0.2 mm) when small drops

(D ≤ 1 mm) and large drops (D ≥ 3 mm) collided (Barros et al., 2008). For coalescence, Seifert et al. (2005)

proposed an expression that combined the Low and List (1982a) formulation for larger drops (D > 0.6 cm)

and the Beard and Ochs (1995) expression for smaller drops (D < 0.3 mm), with a composite kernel for

the intermediate range of diameters. In an attempt to further generalize the result of colliding raindrops,

Testik (2009) proposed a theoretical delineation of the physical conditions for the occurrence of drop‐drop

interaction outcomes (bounce, coalescence, and breakup) in the form of a regime diagram in the We – Rd

plane (i.e., Weber number We vs. diameter ratio of the two interacting raindrops Rd, where We is a dimen-

sionless number relevant to the dynamics at the interface of two fluids that expresses the relative importance

of fluid inertia to surface tension) that was further refined using the aforementioned laboratory experiments

(Testik et al., 2011). Using the regime delineations in theWe− Rd plane, a refinement of the coalescence effi-

ciency was proposed by Prat et al. (2012).

To overcome the limitations associated with a small number of laboratory experiments, Beheng et al. (2006)

used direct numerical simulation (DNS) to predict the resulting fragment size distribution of collisions

among 32 drop pairs with diameters ranging from 0.35 to 4.6 mm (Schlottke et al., 2010). The new parame-

terization developed from these numerical experiments (Straub et al., 2010) was found to be in close agree-

ment with other formulations derived from laboratory work (Low & List, 1982a, 1982b; McFarquhar, 2004).

From the same numerical experiments, these studies derived simpler expressions for the coalescence effi-

ciency as an exponential function of We. However, bounce was not predicted by the DNS experiments

(Schlottke et al., 2010), most probably because only a handful of the drop pairs simulated were located near

the boundary of the bounce, coalescence, and breakup regimes. Overall, further work is needed to better

quantify the outcome of drop‐drop collisions across these regimes for developing physically based parame-

terizations of collision‐coalescence and breakup.

3.2.2. Heterogeneous Ice Nucleation

Cloud model simulations are sensitive in many cases to how ice nucleation is parameterized (e.g., Fridlind

et al., 2012; Kulkarni et al., 2012; Paukert et al., 2017; Zhang et al., 2014). In several different climate models,

Figure 9. Comparison of vertical profiles of the drop number concentration (M0 in cm−3), radar reflectivity (Z in dBz), and mass‐weighted mean drop diameter
(Dm in mm) for one‐dimensional rainshaft simulations using the bin scheme of Prat et al. (2012) with various combinations of coalescence and breakup kernel
formulations (with collision‐coalescence, collisional breakup, and sedimentation as the only processes included). The formulations include (1) LL82, MF04
(black), (2) St10, MF04 (green), (3) Se05, MF04 (blue), and (4) Se05, MF04, PBT12 (red). Here LL82 (Low & List, 1982b), MF04 (McFarquhar, 2004), St10 (Straub
et al., 2010), Se05 (Seifert et al., 2005), and PBT12 (Prat et al., 2012) are the formulations tested. Results are presented for a total simulated time of (a) 3 min
(i.e., transient situation) and (b) 1 hr (i.e., steady state situation). The idealized simulations use an exponential drop SD with a nominal rain rate of 50 mm hr−1

imposed at the top of the model column.
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the simulated global‐mean liquid water path, cloud forcing, cloud feedback, and for some even the climate

sensitivity were found to depend strongly on the choice of the ice nucleation scheme (e.g., Barahona

et al., 2010; DeMott et al., 2010; Garimella et al., 2018; Gettelman et al., 2012; Liu et al., 2012; Storelvmo

et al., 2011). Atmospheric ice can nucleate homogeneously at temperatures approximately below −40°C

and at higher temperatures through various heterogeneous modes. It was already recognized by the 1930s

that aerosol particles heterogeneously initiating ice from the vapor phase or the crystallization of super-

cooled droplets (ice nucleating particles, INP) before the onset of homogeneous freezing must have special

properties and that their number concentration is small but increases strongly with decreasing temperature

(e.g., Bergeron, 1935). This idea was supported by the first quantitative measurements of INP concentrations

in the laboratory and in the field (e.g., Schaefer, 1949). Although it was recognized that INP concentrations

vary regionally and temporally, and that different aerosol types have different efficiencies in nucleating ice,

earlier parameterizations used widely in models depended only on temperature or on supersaturation with

respect to ice and did not distinguish between homogeneous and heterogeneous nucleation (Figure 10a,

upper left). More recent parameterizations for heterogeneous ice nucleation included more detailed func-

tional dependencies on aerosol properties (lower part of Figure 10a). Some parameterizations have also

incorporated elements from classical nucleation theory (CNT, right part of Figure 10a), but this theory con-

tainsmany unknown parameters related to the chemical and physical properties of INP (e.g., see Pruppacher

& Klett, 1997). This description is only usable in models when these parameters are constrained based on

laboratory measurements. However, experiments with different types of aerosols as INP yielded an enor-

mous spread in ice nucleation onset conditions (Hoose & Möhler, 2012), even within a single aerosol type

(e.g., mineral dust). This is due to variability in the aerosol size or surface area, surface characteristics such

as roughness or pores, coatings, and detailed aspects of chemical composition such as the specific mineral

type. Normalizing by aerosol surface area leads to some degree of convergence in the measured ice nuclea-

tion efficiency (Figure 10b), particularly using recent advances in INP measurement technology (DeMott

et al., 2018). However, parameterizations based on these observations still require input parameters such

as dust SD and dust mineralogical composition that are often not available and are difficult to generalize.

Thus, although ice nucleation parameterizations have becomemore sophisticated and physically based, they

remain subject to considerable uncertainty.

3.2.3. Diffusional Growth of Ice

Understanding and quantifying the growth of ice from vapor diffusion is important for modeling the evolu-

tion of ice‐containing cloud layers. Unlike cloud droplets, ice crystals can attain relatively large sizes through

vapor growth alone and can therefore directly and indirectly (through subsequent aggregation and riming)

affect precipitation formation. Cloud model simulations show particular sensitivity to vapor diffusional

growth because of its influence on the evolution of crystal habit (shape) in mixed‐phase clouds (e.g., Sulia

et al., 2014; Woods et al., 2007). Models have also shown sensitivity of simulated cirrus properties to surface

kinetic processes that influence vapor diffusional growth (Gierens et al., 2003; Zhang & Harrington, 2015).

Moreover, climate simulations are known to be sensitive to crystal fall speed (e.g., Heymsfield &

Donner, 1990; Sanderson et al., 2008), which is strongly influenced by vapor growth and crystal habit

assumptions.

The key challenge in estimating the vapor growth of ice particles lies in the intimate connection between

gas‐phase vapor and thermal energy diffusion and the surface attachment kinetic processes that ultimately

determine the mass and shape evolution of crystals. Attachment kinetics include, in aggregate, all of the sur-

face processes that contribute to mass and crystal axis growth (see Nelson, 2001 for a review). While the

importance of attachment kinetics for crystal growth has long been acknowledged, including this in ice par-

ticle growth models has remained a significant challenge. Indeed, one of the primary limitations of the capa-

citance model for ice particle growth, which is ubiquitously used in modern microphysics schemes, is that

the vapor density is assumed constant over the crystal. This implies that no surface processes occur, and

because of this, the crystal shape cannot change in time (Ham, 1959; Nelson, 1994). This latter limitation

is often overcome by supplementing themodel with auxiliary equations to account for shape, such as empiri-

cal particle mass‐size relationships. Attachment kinetics are usually not included in applications of the capa-

citance model, though Koenig (1971) reduced the mass growth rates by a constant factor to account for

attachment kinetics based on the measurements of Fukuta (1969). Axis‐dependent approaches (Hindman

& Johnson, 1972; Todd, 1964) have used laboratory‐measured growth rates for the crystal axes, thus
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avoiding the capacitance model entirely. Although these models implicitly include the effects of attachment

kinetics, they were developed for single crystalline ice at liquid saturation and therefore were not general

enough for broad cloud modeling applications. Coupled with the challenge of including surface

attachment kinetics into growth models is understanding how crystal shape evolves. Though some

progress has been made on modeling single crystals, major uncertainties exist for the growth of ice with

more complex shapes and at low temperatures (below −20°C). It has long been known that ice crystal

habits can become complex, with “peculiar” or “irregular” forms appearing especially at low temperatures

in surface (e.g., Kikuchi, 1969) and airborne (Lawson et al., 2019; Nousiainen et al., 2011; Stoelinga

et al., 2007) in situ observations, and in laboratory experiments (Bailey & Hallett, 2002; Magono, 1970;

Nelson & Swanson, 2019). The mass growth rates of these sorts of faceted crystals have not been

measured; in fact, even the primary surface growth mechanism of atmospheric ice crystals is not presently

known (Nelson, 2005). These problems ultimately lead to large uncertainty in the vapor deposition

growth rates in all schemes that include ice‐phase microphysics.

Figure 10. (a) Schematic of various heterogeneous ice nucleation parameterizations with different complexities.
References are given as examples. Figure inlay adapted from Niedermeier et al. (2011) (under the creative commons
attribution 4.0 license). “CNT” refers to classical nucleation theory (e.g., Pruppacher & Klett, 1997). (b) Recent empirical
INP parameterizations as a function of temperature normalized by aerosol surface area (ice nucleation active site
density ns) for different types of minerals, desert dust, and soil dust.
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3.2.4. Secondary Ice Initiation

Secondary ice production (SIP), which is the generation of new ice particles through mechanisms other than

primary ice nucleation on aerosol INP (or homogeneous ice nucleation), is a fundamental microphysical

process. Through the modulation of ice particle number concentration, SIP can impact precipitation forma-

tion, glaciation of mixed phase clouds, longevity of ice clouds, cloud electrification, and cloud radiative prop-

erties (e.g., Connolly et al., 2006; Field et al., 2017; Jensen et al., 2018; Mansell & Ziegler, 2013). Some studies

have shown large impacts of SIP on precipitation and latent heating simulated by cloud and NWP models

(e.g., Clark et al., 2005; Connolly et al., 2006; Jensen et al., 2018; Qu et al., 2018), though others have shown

much less sensitivity (Dearden et al., 2016). Understanding the mechanisms of SIP is needed for developing

physically based parameterizations in weather prediction and climatemodels, but these mechanisms remain

uncertain.

Even though SIP was observed in cloud chambers in early laboratory experiments (e.g., Bigg, 1957; Brewer &

Palmer, 1949; Findeisen, 1940; Findeisen & Findeisen, 1943; Malkina & Zak, 1952; Puzanov &

Accuratov, 1952), the geophysical significance of SIP was recognized only after the beginning of regular air-

borne studies of cloud microstructure in different geographical regions (e.g., Beard, 1992; Hallett et al., 1978;

Hobbs & Rangno, 1985, 1989; Hobbs, 1969; Koenig, 1963, 1965; Mossop, 1970, 1985; Mossop et al., 1972;

Ono, 1972; andmany others). A systematically observed difference of up to five orders of magnitude between

concentrations of INP and measured ice concentrations indicated a need to explain the physical processes

underlying this discrepancy and thus a focus on SIP.

The first proposed mechanism to explain SIP was droplet fragmentation during freezing (e.g., Kachurin &

Bekryaev, 1960; Langham&Mason, 1958; Mason &Maybank, 1960). During freezing of a cloud droplet, iso-

lated pockets of liquid water may become trapped inside an ice shell. The expansion of water during subse-

quent freezing results in an increase of pressure inside the ice shell. If the pressure exceeds a critical value,

then the ice shell may break into fragments. A review of the laboratory studies on droplet freezing shows a

large diversity of reported results. Depending on the experimental setup, the number of fragments formed

for the same size drop during its freezing may vary from zero (e.g., Johnson &Hallett, 1968; Pena et al., 1969)

to a few hundred (Mason & Maybank, 1960).

Splintering during ice particle riming is another mechanism that can potentially explain SIP.

Macklin (1960) observed splinter production in a small wind tunnel during the collection of droplets

on an ice rod at speed of 2.5 m/s and air temperature −11°C. Latham and Mason (1961) observed freez-

ing of droplets on a hailstone simulator, accompanied by the ejection of ice splinters. Later, Hallett and

Mossop (1974) and Mossop and Hallett (1974) observed splinter formation during riming in a cloud

chamber with liquid water content of ~1 g/m3and droplet concentration 500 cm−3. They found that

splinter production is active in the air temperature range from −3°C to −8°C, and its rate has a pro-

nounced maximum at an air temperature of −5°C and drop impact velocity of 2.5 m/s. In these condi-

tions, one splinter was produced per 250 droplets of diameter > 24 mm. The phenomenon of splinter

production during riming is usually referred to as the Hallett‐Mossop (HM) mechanism. Our review

of the literature indicates that, with the exception of some early studies (Aufdermaur & Jonson, 1972;

Hobbs & Burrows, 1966), most laboratory experiments on the HM process confirmed splinter production

during riming but found different temperature ranges over which it is active. Moreover, despite several

attempts to explain the cause of splintering (Choularton et al., 1978, 1980; Emersic & Connolly, 2017;

Macklin, 1960), its physical mechanism remains poorly understood.

Collision of ice particles may result in their mechanical fragmentation and production of secondary ice

(Langmuir, 1948). This hypothesis was based on observations of ice particle fragments collected during

airborne studies (e.g., Hobbs & Farber, 1972; Takahashi, 1993) or ground based (Juisto & Weikmann,

1973). To our knowledge, there are only two laboratory works dedicated to collisional ice fragmentation

(Takahashi et al., 1995; Vardiman, 1978). Collisional ice fragmentation has also been studied theoretically

(e.g., Hobbs & Farber, 1972; Phillips et al., 2018; Vardiman, 1978; Yano & Phillips, 2010). Ice fragments

observed in situ should be considered cautiously due to potential particle breakup artifacts induced by the

instrument sampling. Overall, the role of the ice‐ice collisional fragmentation in SIP remains uncertain.

When an ice crystal collides with a supercooled drop, it will experience thermal shock due to latent heating

of the freezing drop. This will cause a differential expansion of the ice crystal and may result in its
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fragmentation (Koenig, 1965). During their laboratory studies, Dye andHobbs (1968) observed that when ice

crystals became attached to a freezing drop, they often broke into 5 to 10 pieces as the drop freezes. Hobbs

and Farber (1972) observed in the laboratory shattering of a dendritic crystal into several pieces after contact

with a 2‐mm diameter supercooled drop. This observation is of considerable interest, as it suggests that the

breaking up of ice crystals that collide and nucleate supercooled drops may play an important role in increas-

ing the concentration of ice particles. However, the efficiency of ice particle fragmentation due to thermal

shock caused by rimed freezing drops remains poorly understood, and the role of this effect on SIP remains

inconclusive.

Ice particle fragmentation and formation of secondary ice may occur during sublimation in subsaturated

areas near cloud edges or underneath the cloud base. Oraltay and Hallett (1989), Dong et al. (1994), and

Bacon et al. (1998) performed laboratory studies of sublimating ice particles at different air temperature

and humidity conditions. All three studies concluded that breakup rates depend on temperature and humid-

ity but are largely determined by the initial shape of the ice particle. Based on observations of the metamor-

phosis of sublimating ice particle shapes in natural clouds, Korolev and Isaac (2004) concluded that particle

fragmentation during sublimation does not play an important role in SIP.

Finally, Gagin (1972) proposed a mechanism for SIP due to activation of INP in high transient supersatura-

tion areas around freezing drops. Rosinski et al. (1972) and Gagin and Nozyce (1984) studied nucleation of

INPs around suspended freezing drops with 1‐ to 2‐mmdiameter. However, laboratory study of this mechan-

ism is limited, and it remains insufficiently quantified.

Most observations of an enhanced concentration of ice particles have been attributed to the HM process. The

list of these studies extends over 30 publications, so we name only a few of them here (e.g., Ono, 1971, 1972;

Harris‐Hobbs & Cooper, 1987; Bower et al., 1996; and others). In these studies, the conclusions about the

HM process were obtained based on the observed association with graupel and columnar ice crystals.

Fewer studies attributed observations of high ice concentration to drop shattering (e.g., Braham, 1964;

Koenig, 1963, 1965; Korolev et al., 2020; Lawson et al., 2017; Rangno, 2008). Ice‐ice collisional fragmentation

was identified as a source of SIP in natural clouds by Hobbs and Farber (1972), Takahashi (1993), and

Schwarzenboeck et al. (2009). Based on a detailed review of published studies, it is not clear how the six cur-

rent hypotheses outlined above are related to SIP in natural clouds. Without understanding the roles of these

various mechanisms, physically based representations of SIP in microphysics schemes remain highly

uncertain.

3.3. Challenges in Observing Clouds and Precipitation

Cloud and precipitation observations are an essential component for gaining understanding and addressing

gaps in cloud physics knowledge. They are also needed for the development and subsequent evaluation of

microphysics schemes. These observations can be divided into three main categories: laboratory measure-

ments, in situ observations of natural clouds and precipitation, and remote sensing. Each observational

method has unique strengths and attendant limitations. Thus, the three main observational methods are dis-

tinct and relevant from the standpoint of scheme development and are complementary in the information

they provide.

3.3.1. Laboratory Studies

Laboratory experiments have been an important method for studying cloud and precipitation physics going

back to the early 20th century and for constraining models since the mid‐20th century. For example, labora-

tory observations have been used to develop physically based parameterizations of ice particle growth from

vapor diffusion (Koenig, 1971; Todd, 1964) and riming (Hindman & Johnson, 1972), as well as melting and

shedding of accumulated liquid water (Rasmussen et al., 1984; Rasmussen & Heymsfield, 1987; Rasmussen

& Pruppacher, 1982). Experimentation provides relatively precise control over the environmental conditions

affecting any microphysical process, which is its main strength: an individual process can, to varying

degrees, be isolated and controlled allowing relatively precise process rates to be extracted. This is especially

true for single‐particle studies, in which varying degrees of complexity can be added to successive experi-

ments in a controlled fashion. Such studies are vital for developing and testing theories of single‐particle for-

mation, growth, and ablation. However, the controlled nature of single‐particle experiments is also limiting

and care must be taken when applying these experimental data to an atmospheric setting. For instance, the

growth of individual particles in diffusion chambers or wind tunnels is often made in ultraclean and
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confined conditions, a situation not encountered in the atmosphere where hydrometeors are influenced by

turbulent motion, trace gases that can affect growth rates (Hallett, 1968; Kärcher et al., 2009; Kippenberger

et al., 2019; Schaefer, 1949), radiative effects near cloud edges, and so on.

In contrast to single‐particle experiments, laboratory experiments can also be done with particle populations

in chambers (e.g., Manchester Ice Cloud Chamber, Connolly et al., 2012; PI chamber, Chang et al., 2016;

Aerosol Interactions and Dynamics in the Atmosphere chamber, AIDA, Wagner et al., 2006), thus providing

direct information on population interactions. As in single‐particle experiments, care must be taken when

interpreting laboratory‐derived process rates for particle populations; for example, the residence time of par-

ticles is generally much shorter than in atmospheric clouds because of the limited size of chambers.

Moreover, the boundaries of experimental chambers can influence the results (so‐called “wall effects”),

and although these are usually carefully scrutinized and controlled for, they are a source of uncertainty that

needs to be considered. Another limitation of experiments on particle populations is that it is not possible to

extract information on the microscopic (individual particle) level, so testing fundamental equations is chal-

lenging. Therefore, a combination of single‐particle and particle population laboratory studies is necessary

for testing general theories in cloud microphysics.

It is also often not straightforward to use existing laboratory data to test, develop, and constrainmicrophysics

schemes because of a mismatch in what laboratory data provide and the simplified process equations inmost

schemes. For instance, the measurements of Bailey and Hallett (2004) provide a wealth of data on ice crystal

shapes along with axis and volume growth rates, but it is not clear how these empirical axis‐dependent

growth rates can be used in numerical models that use simplified mass growth equations based on a single

size parameter. Similarly, the scant measurements of melting ice particles indicate how crystal shapes

change during the melting process (Kintea et al., 2015), yet it is not clear how this information can be tied

to the simplified melting schemes used in current models. Furthermore, it is not always possible to measure

the quantities that are required for scheme development. For example, aggregation kernels and sticking effi-

ciencies are difficult to measure, and those measurements that do exist have relatively high uncertainty

(Connolly et al., 2012). Unfortunately, measuring these quantities precisely for particle populations is not

possible with current technology. Nonetheless, despite these challenges, important advances have been

made recently in cloud physics laboratory work and the use of data from experiments to constrain models;

see section 4.2 for further discussion.

Even though technological advances will continue to be made and may help solve some of the measurement

problems mentioned above, laboratory work on a broad range of cloud physics problems has evidently

declined over the past 30–40 years, especially in the United States. Indeed, a perusal of the extended abstracts

from the International Conference on Cloud Physics in 1976 indicates that approximately 60 of the 150 sub-

missions (40%) were on experimental studies. In contrast, the most recent American Meteorological Society

15th Conference on Cloud Physics (2018) did not even contain a separate section on experimentation, and a

count of abstracts revealed only 28 out of 354 total presentations (8%) were related to experimentation based

on a manual review of all abstracts presented at the conference, excluding papers that were withdrawn.

Furthermore, a number of university cloud physics labs have closed upon the retirement of the responsible

faculty members. While there may be some obvious reasons for why this decline has apparently occurred, we

argue that it is worth carefully examining whether this downward trend is in fact real, and if so, how it can be

reversed. Quoting again from Sir Karl Popper (1978): “Verifications are cheap: they are easy to come by if one

is looking for them. The only verifications of significance are serious attempts at falsification that have not

achieved their objective ….” Because they provide the most direct way to quantify individual microphysical

process rates and mechanisms, laboratory studies provide the most direct means to falsify theories in cloud

physics; a reduced scope of laboratory work is therefore detrimental to the cloud physics community as a

whole.

3.3.2. In Situ Observations of Natural Clouds and Precipitation

In situ measurements of cloud and precipitation can provide detailed information on a particle‐by‐particle

basis, and aircraft in particular can deliver some of the most complete observational data sets from the per-

spective of colocated state and microphysical measurements within cloud. Moreover, aircraft in situ mea-

surements remain the primary tool for validating radar retrieval algorithms and satellite products.

However, in situ (and remote sensing) observations generally remain incomplete for directly constraining

individual microphysical process rates in schemes. Thus, many studies have used in situ observations
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directly to constrain parameters that describe microphysical propertieswithin schemes, as opposed to micro-

physical processes. For example, exponential raindrop SD parameters fit to the in situ observations of

Marshall and Palmer (1948) were used in the schemes of Kessler (1969), Liu and Orville (1969), and many

others. Aircraft observations from Houze et al. (1979) were used to characterize inverse exponential snow

particle SD parameters as a function of temperature in the WSM6 scheme (WRF six‐class single moment;

Hong et al., 2004; Hong & Lim, 2006). Parameters fit to the ground‐based measurements of ice particle fall

speed from Locatelli and Hobbs (1974) have been widely used in a number of schemes. However, it is often

difficult to use such observations in this way and to test schemes rigorously through comparisons withmodel

output. Foremost, in situ observations are usually very limited in time and space, from both airborne and

ground‐based platforms. This is inherently problematic when directly comparing in situ observations with

simulations, especially with the growth of model initial condition errors that can lead to rapid divergence

with observed cloud and precipitation features. Even statistical comparisons can be challenging with small

in situ observational data sets, especially under conditions that are heterogeneous and rapidly varying.

Instrument limitations must also be considered over the large dynamic range of cloud and precipitation

SDs. For instance, disdrometers provide direct observations of SDs, but they are inaccurate at small (less

than a few hundred microns) and very large drop sizes (several millimeters) (e.g., Thurai et al., 2011;

Tokay et al., 2001).

An overview of the main airborne in situ instrumentation can be found in Wendisch and Brenguier (2008).

Development of airborne in situ microphysical instrumentation is a great challenge, as the probe optics and

electronics must operate in extremely harsh conditions, targeting measurements of micrometer‐size parti-

cles while traveling at 100–200 m/s. One of the most significant limitations of airborne in situ instrumenta-

tion is the low sampling volumes. Thus, for particle probes, the sampling rate at aircraft speed varies from a

few cubic centimeters per second (i.e. cloud droplet probes) to several hundreds of liters per second (i.e., pre-

cipitation probes). In essence, the particle probes measure a sequence of single particles passing through

their sample areas along the flight track. This imposes limitations on the minimum spatial scale of cloud

measurements (typically ~102–103 m) so that small‐scale variability cannot be observed by conventional

probes. Recent instrument advances based on different physical principles, briefly discussed in section 4.2,

have started to address this problem, but the sample volume remains much smaller than that from remote

sensing or typical model grid volumes. There is currently no method to obtain airborne observations of

in‐cloud supersaturation with respect to liquid, which requires much more accurate methods for measuring

temperature (to within 0.01°C) than possible using conventional airborne temperature sensors

(typically 0.5°C). The lack of such supersaturation observations is an important gap in the area of cloud phy-

sics. Similarly, there is currently no airborne instrumentation to measure particle electric charge.

Among the most basic of all in situ microphysical measurements is simply the droplet or ice particle SD, yet

the size‐dependent uncertainty in such measurements remains difficult to robustly quantify, especially at

the smallest particle sizes (e.g., Korolev, 2007; McFarquhar et al., 2017). This presents a basic obstacle to

investigating key processes such as ice nucleation in cirrus and mixed‐phase clouds. Another fundamental

measurement that remains almost entirely lacking is that of single‐particle mass. Whereas that may be a tri-

vial quantity for water droplets owing to their well‐defined density, ice crystal shape and density vary

widely. Relatively recent deployment of ground‐based multicamera instruments is providing much‐needed

advances in systematically characterizing particle shape (e.g., Garrett et al., 2012; Schönhuber et al., 2008), at

least for ice larger than a couple hundred microns in length that is sedimenting to the surface. However,

colocated measurements of single‐particle mass remain entirely missing, which is surprising and unfortu-

nate given the central role of crystal mass in both modeling and remote‐sensing applications. Finally, we

note there are challenges related to flying airborne instruments in intense weather such as convective

storms. Airworthiness regulations limit operations of research aircrafts for cloud sampling to the pilot's

radar return. This has severely limited in situ measurements within strong electrified storms with vigorous

updrafts that are often associated with the presence of hailstones. To fill this gap, armored aircraft equipped

with protected instrumentation, which can sustain operations in an electrified environment in the presence

of hailstones, are required.

3.3.3. Remote‐Sensing Observations

Over the past decade, polarimetric radars have been increasingly used to characterize bulk hydrometeor

properties and SDs remotely. This is in part aided by the establishment of operational networks of
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polarimetric radars, such as the US network of polarimetric S‐bandWSR‐88D radars, completed in 2013, and

similar networks appearing in Europe, Asia, and South America. Nonspherical particles (both rain and ice)

will tend to become oriented as they fall, allowing for radar polarimetry to provide information related to

their aspect ratio, size, density, and concentration. Quantities such as differential reflectivity, specific differ-

ential phase, copolar correlation coefficient, and linear depolarization ratio each provide somewhat inde-

pendent information related to these quantities (e.g., Bringi & Chandrasekar, 2001; Kumjian, 2018; Zrnic

& Ryzhkov, 1999). Differences in the degree of resonance scattering (i.e., non‐Rayleigh scattering) for

different radar frequencies allows for multifrequency scanning to yield further observational information

(e.g., Bringi et al., 1986; Gaussiat et al., 2003; Kneifel et al., 2011, 2015; Kumjian et al., 2018; Tridon

et al., 2017). Finally, radial velocity and Doppler spectrum width recorded by most modern radars provide

dynamical information on observed storms, allowing for simultaneous microphysical and dynamical infor-

mation gain (e.g., Brandes, 1977). Studies have leveraged these unique observational properties to provide

increasingly accurate polarimetric estimates of rainfall (e.g., Brandes et al., 2001; Bringi et al., 2001; Cifelli

et al., 2011; Giangrande & Ryzhkov, 2008; Illingworth & Caylor, 1989; Matrosov et al., 2002; Ryzhkov

et al., 2005, 2014; Ryzhkov & Zrnic, 1996) and rain drop size properties (Ryzhkov & Zrnic, 2019;

Vivekanandan et al., 2004; Zhang et al., 2006). Likewise, polarimetric radars have been used for qualitative

studies of ice‐ and mixed‐phase processes (Andric et al., 2013; Kumjian & Lombardo, 2017; Moisseev

et al., 2015; Oue et al., 2016; Schrom et al., 2015), often supported by offline theoretical or numerical scatter-

ing simulations. Quantitative retrievals of bulk ice properties have also been developed (e.g., Bukovčić

et al., 2018; Posselt et al., 2015; Ryzhkov et al., 1998) but rely on assumptions of particle habit and properties

that control polarimetric scattering (Schrom & Kumjian, 2018). There is an outstanding need to incorporate

rigorous uncertainty quantification related to ice density, habit, and SD into these retrievals. Polarimetric

rain property retrievals also make strict assumptions about the form of the SD and generally do not quantify

this uncertainty but can be meaningfully compared to disdrometer and rain gauge data and do not suffer

from the single‐particle scattering uncertainties of ice. Ice properties are, coincidentally, rather difficult to

quantify even with in situ observations and are thus likely to remain important sources of uncertainty for

radar‐based ice retrievals for the foreseeable future. While the preponderance of work using polarimetric

radars to extract microphysical information speaks to the richness of these data sources, the lack of rigor-

ously quantified uncertainty limits the utility and generality of these methods. Some approaches simplify

this exercise into the labeling of the “dominant” hydrometeor species in an observed volume—these “hydro-

meteor classification” or “hydrometeor identification” algorithms provide some operational value in com-

parisons to simulations (e.g., Dolan & Rutledge, 2009; Liu & Chandrasekar, 2000; Park et al., 2009; Straka

et al., 2000; Vivekanandan et al., 1999) but impose predefined categories that may have overlapping radar

signatures, do not span the full range of true microphysical variability that occurs in nature, and may be

inconsistent with how hydrometeor categories are defined in models. As such, their utility for evaluating

and improving microphysics schemes is substantially limited. We emphasize that gaps in microphysical

understanding might be better served by considering what information content radar does provide—a task

requiring rigorous estimation of scattering properties and thorough evaluation of related uncertainties

(Kumjian et al., 2019; Schrom & Kumjian, 2018, 2019).

Similar to polarimetric radar observations, vertically pointing radar observations have been used to estimate

SD characteristics, aided by measurements of Doppler spectra that resolve particle size via differences in fall

speed (Firda et al., 1999; Posselt & Mace, 2014; Posselt et al., 2017; Tridon & Battaglia, 2015; Tridon

et al., 2017). Both polarimetric and vertically pointing radars have, again largely qualitatively, identified

microphysical processes occurring in observational data, usually by linking spatial changes in observation-

ally deduced particle properties to specific microphysical processes (e.g., Barrett et al., 2019; Kumjian &

Lombardo, 2017; Kumjian & Prat, 2014; Kumjian & Ryzhkov, 2010, 2012; Leinonen et al., 2016; Moisseev

et al., 2015; Schrom et al., 2015). However, quantifying individual process rates is very difficult. The few

quantitative radar‐based process retrievals that do exist typically make strong a priori assumptions about

the hydrometeor SD and/or the dominant process occuring (Tridon et al., 2017; Williams, 2016) and thus

have unquantified uncertainties related to these assumptions.

Use of satellite remote‐sensing data for evaluating microphysics schemes is attractive because satellite data

are available over remote areas where ground‐based observations are limited and has a long and growing

observational record. However, all satellite measurements are at best indirectly related to the cloud
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properties of interest and as such suffer from the same forward model and retrieval limitations that were dis-

cussed for ground‐based remote sensing above. As a result, relatively few studies have attempted to use satel-

lite observations to tune microphysical processes, with some exceptions such as Li et al. (2010), where ice

aggregation was modified and aggregate particle breakup was added to better match TRMM radar profiles.

Even with the most comprehensive suite of satellite observations, many cloud properties are undercon-

strained; in other words, multiple (sometimes very) different cloud properties may produce the same set

of observations. For example, it is particularly challenging to determine the amount of liquid versus ice in

the interior of clouds and to infer liquid and ice properties in mixed‐phase conditions. Furthermore, there

are fewmeasurements that are sensitive to ice particle shape, especially in the cloud interior. Beyond the dif-

ficulty of accuratelymapping frommeasurements tomicrophysical variables, there are additional challenges

to the effective use of satellite data to evaluate schemes. Satellite remote sensing is constrained by the spatial

and temporal resolution and measurement sampling. This is important in three key respects. First, clouds in

even the most high‐resolution measurements commonly exhibit subpixel variability. This means that satel-

lite retrieval will assign a single value over a pixel, while in reality, the quantity may vary significantly. This

alsomeans that retrievals may bemore robust for spatially homogeneous clouds (e.g., stratocumulus or thick

cirrus) but increasingly biased for broken cloud conditions. Second, especially in the case of passive mea-

surements, satellite retrievals of microphysical values are often constrained to a particular (often ill‐defined)

depth within cloud top (Platnick, 2000; van Diedenhoven, Fridlind, et al., 2012) or pertain to

column‐integrated quantities only. This is particularly a restriction in regions with persistent multilayered

clouds. Third, with the exception of geostationary measurements, all satellite remote‐sensing measurements

are snapshots too widely separated in time to capture the time evolution of cloud processes.

A general challenge when comparing model simulations with remote‐sensing data (ground based, airborne,

and satellite) is that there is often a mismatch between what is measured and the quantities output from

models. For example, nearly all two‐moment bulk microphysics schemes are centered around predicting

bulk mass and particle number mixing ratios, but the latter is very difficult to obtain from remote sensing.

On the other hand, quantities that are directly observed, such as the sixth moment of the particle SD from

radar reflectivity factor (for particles that are small compared to the radar wavelength), or retrieved, such

as cloud‐top effective radius (generally defined as three fourth times the ratio of bulk particle volume divided

by bulk projected area) or column optical thickness (related to the vertically integrated bulk projected area),

usually are not explicitly predicted by schemes. There are two approaches used to mitigate this problem. In

the first, model output is converted to directly observable quantities via instrument simulators, which may or

may not account for instrument noise and measurement errors. The second method is to transform

remote‐sensing observations to microphysical quantities using retrievals, either for direct comparison to

related quantities predicted by models or after applying observation simulators to the model output.

Examples of such instrument or observation simulators are the Cloud Climate Change Initiative

(Cloud_cci) satellite simulator (Eliasson et al., 2019) and CFMIP Observation Simulator Package

(COSP; Bodas‐Salcedo et al., 2011; Ban‐Weiss et al., 2014). However, both instrument simulators and retrie-

vals add uncertainty to model observation comparisons beyond the inherent uncertainties associated with

the model itself, and this uncertainty is rarely well defined or quantified.

3.4. The Difficulty of Using Observations to Constrain Microphysical Process Rates

A fundamental obstacle to using natural cloud and precipitation observations to constrain schemes is the dif-

ficulty of harnessing these observations for quantifying individual microphysical process rates. As we

emphasized earlier, process rate formulations in schemes are often highly uncertain, particularly for ice pro-

cesses. This includes uncertainty in parameters contained within process rate formulations, which we will

refer to as parametric uncertainty, as well as uncertainty in the functional forms of the process rates, which

is a type of structural uncertainty. Given a fundamental mismatch between the need to reduce process rate

uncertainty in schemes (both parametric and structural) and what natural cloud and precipitation measure-

ments actually provide (cloud and precipitation properties that are the net result of various processes inte-

grated over time and/or space), a key question arises: How can these observations be used to constrain

schemes in an effective and rigorous way?

The traditional approach to scheme development uses basic cloud physics knowledge obtained from obser-

vations and theory combined with heuristics to formulate individual microphysical process rates and then
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adjusts or “tunes” the associated rate parameters based on comparison of model output with other observa-

tions (Figure 8). A general strategy for this type of observational constraint involves the following steps: (1)

implement a new scheme or apply some modification to an existing scheme; (2) run simulations and com-

pare output with observationally based metrics; and (3) modify one or more parameters and repeat, with the

idea of reducing the mismatch between model and observations. In global climate models, the choice of

parameters to tune is generally ad hoc or guided by heuristics, though some more systematic efforts have

been undertaken (Hourdin et al., 2017; Schmidt et al., 2017). More systematic tuning efforts have included

statistical extrapolation from limited sampling of jointly perturbed model parameters (Qian et al., 2018) or

ensemble‐based optimization (Ollinaho et al., 2013). Microphysics scheme parameters are a subset of the

wider set of parameters within models that are tuned, often including those in other physics parameteriza-

tion schemes such as for moist convection and the planetary boundary layer. In climate models, such tuning

is driven by a basic need to achieve global energy balance and reasonably realistic regional patterns of cloud

radiative forcing, which are critical for running coupled ocean‐atmosphere climate models. Scheme tuning

is also an important component of NWP models but with an emphasis on different metrics such as surface

precipitation (e.g., McTaggart‐Cowan et al., 2019). It should be noted that such tuning does not specifically

target improvements to microphysics schemes per se but rather to the end results from the model

(or modeling system) for the fields of interest.

In contrast, with an emphasis on process‐level details rather than forecasting, explicit tuning is generally not

employed in cloud models. The implicit assumption is that the schemes in these models employ the best

available knowledge of processes and parameters relevant for the particular problem being addressed.

Indeed, the objective of many such studies is to investigate whether the best available knowledge can reason-

ably reproduce observed conditions (see the discussion of SIP in section 3.2.4 as an example where such

efforts have failed, indicating an important knowledge gap). Nonetheless, parameter modifications are often

made in developing and testing schemes for cloud models, even on a case‐by‐case basis, in order to improve

comparison with observations. In effect, this is similar to tuning in climate and NWP models, even if it is

generally not referred to as such. Given that cloud modeling studies are usually focused on a single case,

or a small handful of cases, more systematic tuning is generally not employed, though it could be.

Several challenges are encountered when using cloud and precipitation observations to constrain schemes

systematically. Perhaps the most important, state‐of‐the‐art microphysics schemes in cloud, weather, and

climate models are very complicated with numerous parameters and interacting processes (as illustrated

in the schematic diagram to the right in Figure 4). Schemes often have 15–20 or more parameters that are

explicitly considered as “parameters,” plus many additional hard‐wired numbers that are inherently uncer-

tain but reflect a particular choice made by the scheme developer. This huge parameter space dimensionality

is a major challenge when using statistical methods to estimate the set of microphysical parameters

(often called “parameter estimation,” which can be thought of as similar to tuning but more rigorous and

systematic). The trend toward increasing scheme complexity in weather and climate models over time—

the “march toward complexity”—hasmade this problem evenmore challenging. Nonetheless, recent studies

have shown some success in constraining multiple microphysical parameters simultaneously using

Bayesian inference to characterize parameter probability distributions (e.g., Posselt, 2016; Posselt &

Vukicevic, 2010; van Lier‐Walqui et al., 2012). While these methodologies have promise, they are limited:

Only a handful of parameters are considered, synthetic rather than real observations are used, and they

are limited to a small number of case studies. Furthermore, there has been little systematic effort to address

structural uncertainty and constrain the structure of process rate formulations using cloud and precipitation

observations. Some approaches have tried to account for structural uncertainty by directly perturbing phy-

sical parameterization tendencies to generate forecast ensembles (the stochastic perturbed parameterization

tendency approach or SPPT; e.g., Berner et al., 2015; Jankov et al., 2017; Palmer et al., 2009) or by applying

multiplicative perturbations to microphysical process tendencies (van Lier‐Walqui et al., 2014). However,

these approaches have little physical basis. Multischeme ensembles have also served as an implicit method

of investigating structural uncertainty, but this is not systematic, and it is not clear if such ensembles indeed

meaningfully quantify any aspect of the true structural uncertainty of schemes.

There are also more practical challenges when comparing model output with cloud and precipitation obser-

vations with the goal of constraining microphysical process rates in schemes. Even if model biases can be

robustly identified through comparison with observations, it can be very hard to pinpoint these biases
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specifically to the microphysics scheme, let alone a particular process within the scheme. There are numer-

ous possible sources of model error, including the dynamics and numerics, initial and boundary conditions,

and other physics parameterizations, as well as the coupling among all of these model components. A par-

ticularly challenging aspect of this problem concerns the rapid growth of initial condition errors for evaluat-

ing simulations of specific weather events, including case studies developed from field project observations.

Data assimilation can be used to limit such errors and keep the model state close to observed, but this can

lead to difficulty when interpreting model biases. Nevertheless, information about biases originating from

specific model components, including the microphysics, may be obtainable within an assimilation frame-

work (e.g., Rodwell & Palmer, 2007; Wong et al., 2019). One possible reason why such efforts have not been

more widespread is simply because there has generally not been close interaction between microphysics

scheme developers and the data assimilation community in the past.

4. Possible Paths Forward

There has been real progress in parameterizing microphysics over the past few decades, particularly for

process‐level modeling. However, several key challenges remain. As we discussed in section 3, these include

challenges in numerical implementation, gaps in fundamental cloud physics knowledge, and difficulty in

using natural cloud and precipitation observations to constrain schemes. Many of these problems are

evidently growing more difficult over time, related in part to the growing complexity of schemes.

Nonetheless, there is a recent convergence of factors—the wealth of cloud and precipitation observations

now available, the availability of computing power to run models with sophisticated schemes, and increas-

ing importance of microphysics as models move toward higher resolution—that suggests an opportunity to

accelerate progress. Confronting the “microphysics problem” is therefore timely and indeed it may even be

necessary if we are to continue making advances and reducing overall uncertainty in models.

The need to accelerate progress calls for new and different strategies for parameterizing microphysics, and

we advocate a few specific ideas and approaches in this section. This is not meant to be a comprehensive

account of all possible ideas to accelerate scheme development but rather a suggestion of a few specific paths

forward that address the challenges outlined in section 3.

4.1. Lagrangian Particle‐Based Schemes

It will be prohibitively difficult to model all hydrometeors within a cloud individually on a particle‐by‐

particle basis into the foreseeable future, even for fairly small cloud volumes. Thus, problems surrounding

the representation of SDs and methods to calculate their evolution in models will remain relevant for a long

time. Several challenges inherent in traditional Eulerian approaches, particularly for bin schemes, were dis-

cussed in section 3.1. Development over the past decade of the Lagrangian particle‐based approach provides

an avenue to address many of these challenges, but there is also a fundamental conceptual advantage to

Lagrangian particle‐based schemes: As the number of super‐particles approaches the number of actual par-

ticles, and themodel resolution approaches DNS, these schemes converge exactly to particle‐by‐particle DNS

calculations that provide the most complete approach currently possible for modeling a turbulent cloud

volume. Thus, in principle, Lagrangian particle‐based schemes provide a rigorous path toward numerical

convergence for cloud modeling. This is not true for traditional Eulerian‐based bin schemes, in which

increasing the number of bins and the number of ice‐phase categories does not converge to particle‐by‐

particle DNS. By their design, bin schemes will always require advection of continuous‐medium variables

in both physical space and particle size/mass space. This is fundamentally different from discrete particles

evolving and moving within a fluid, as occuring in real clouds.

In a more practical sense, Lagrangian particle‐based schemes offer several advantages compared to tradi-

tional approaches (see Grabowski et al., 2019 for more details). These address many of the specific challenges

related to bin schemes discussed in section 3.1. First, by calculating microphysical evolution along

Lagrangian trajectories of super‐particles within Eulerian dynamical models, numerical broadening from

advection in physical space as well as in size/mass space from growth is avoided. Thus, calculations of par-

ticle growth/shrinkage from adiabatic expansion/compression are consistent with the model's vertical

motion, including parameterized subgrid‐scale vertical motion that affects the Lagrangian

trajectories. This means that SD evolution is governed by physical processes, as opposed to model

numerics. Furthermore, Lagrangian particle‐based schemes avoid fundamental structural issues with the
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Smoluchowski equation solved numerically by bin schemes (see section 3.1). Although the super‐particle

method assumes that particles are always well mixed, implying that collision‐coalescence is a Markovian

stochastic process, it relaxes the no‐correlation assumption made in deriving the Smoluchowski equation.

Thus, this method can provide the correct solution even when the well‐mixed volume is small (Dziekan &

Pawlowska, 2017). The Lagrangian particle‐based approach calculates the underlying stochastic process

and is therefore well posed to address a fundamental question concerning warm rain formation in ice‐free

clouds, that is, whether it is more stochastic (e.g., Kostinski & Shaw, 2005; Wilkinson, 2016) or deterministic

(Berry & Reinhardt, 1974a, 1974b, 1974c). Bin microphysics schemes solve the deterministic Smoluchowski

equation and by design can only simulate the deterministic path to rain formation.

The Lagrangian particle‐based approach also allows straightforward incorporation of subgrid‐scale schemes

to represent the multiscale nature of turbulent clouds. Following growth histories of a judiciously selected

ensemble of individual particles provides a natural mechanism to include variations due to unresolved pro-

cesses. These variations in growth histories may come from supersaturation fluctuations driven by unre-

solved vertical velocity variations (and lead to significant spectral broadening; Grabowski & Abade, 2017)

or from entrainment and mixing (Abade et al., 2018; Hoffmann et al., 2019). In contrast, it is unclear how

such effects might be incorporated into bin microphysics schemes in a physically based way.

The Lagrangian particle‐based approach helps to address the “curse of dimensionality” problem related to

the computational challenge of predicting multiple properties in bin schemes, such as ice particle density

andminor and major crystal axis lengths. Predicting how particle populations evolve as a function of various

properties is straightforward in particle‐based schemes by adding more attributes to describe these

properties beyond the standard ones of multiplicity, position in physical space, and wet and dry radius

(see section 2). The particle‐based approach becomes more computationally efficient than the bin approach,

with the latter representing each attribute as a separate dimension, when the number of attributes exceeds a

number estimated to be between 2 and 4 (Shima et al., 2009). Representing ice particle properties in this way

also provides a link to recently developed bulk microphysics schemes that are centered around prediction of

ice particle properties (Harrington et al., 2013; Jensen et al., 2017; Morrison & Grabowski, 2008; Morrison &

Milbrandt, 2015). Brdar and Seifert (2018) and Seifert et al. (2019) developed a particle‐based scheme

(McSnow) with attributes of evolving ice particles that are similar to the predicted particle properties (P3)

bulk scheme (Morrison &Milbrandt, 2015), and Shima et al. (2019) developed a scheme that evolves ice par-

ticles in a manner similar to the bulk scheme of Jensen et al. (2017). An example of results applying the

scheme of Shima et al. (2019) in a deep convective cloud simulation is shown in Figure 11. The development

of particle‐based schemes that include both liquid and ice is in its early stages, but we anticipate much more

work being done in this area in the coming years.

Although Lagrangian particle‐based schemes have several conceptual and practical benefits, there are some

outstanding challenges. Perhaps the most important is the lack of physical understanding of many

microphysical processes, particularly those involving ice, which plagues all microphysics schemes.

Particle‐based schemes are also computationally expensive as a fairly large number of super‐particles are

needed in each grid volume in order to obtain accurate statistics. This problem can be exacerbated

when super‐particles are advected from one grid to another, resulting in large statistical fluctuations

(Grabowski et al., 2018). A rule of thumb is that roughly 50–200 super‐particles per grid box for two‐ or

three‐dimensional cloud simulations are needed, depending in part on the number of predicted attributes

(Andrejczuk et al., 2010; Arabas & Shima, 2013; Dziekan et al., 2019; Grabowski et al., 2018; Hoffmann

et al., 2019; Jaruga & Pawlowska, 2018; Riechelmann et al., 2012; Shima et al., 2019; Sölch &

Kärcher, 2010; Unterstrasser et al., 2017; Unterstrasser & Sölch, 2014). This leads to somewhat greater cost

than typical bin scheme configurations, though the cost becomes comparable to or even less than bin

schemes when they include more details such as the amount of solute dissolved in cloud drops, owing to

the “curse of dimensionality” problem discussed above. The cost of particle‐based schemes can also be

reduced by using simple methods for calculating the activation of cloud droplets from cloud condensation

nuclei so that super‐particles only need to be carried within clouds and not in surrounding clear air

(Grabowski et al., 2018). Even considering only the cloudy volume, for a similar number of super‐particles

and bin variables per grid volume, the cost of a Lagrangian particle‐based scheme was found to only be

25% greater than bin microphysics (Grabowski, 2020).
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In general, particle‐basedmethods are expected to produce larger variability among different realizations than

should occur in nature, simply because microphysical behavior is represented by fewer particles than exist in

real clouds. This leads to typically larger variability and spatial/temporal fluctuations in cloud quantities

compared to simulations using bulk or bin microphysics (e.g., Grabowski, 2020). Relatedly, particle‐based

methods are sensitive to how super‐particles are initialized, as it may be important to sample rare but

important particles that may contribute significantly to precipitation formation (see Grabowski et al., 2019).

For particle‐based schemes, the treatment of the collision‐coalescence process is numerically challenging.

Shima et al. (2009), Andrejczuk et al. (2010), Sölch and Kärcher (2010), and Riechelmann et al. (2012) pro-

posed different numerical algorithms. Among those four schemes, the super‐droplet method (SDM) of

Shima et al. (2009) provides a computationally efficient algorithm, if the super‐droplets are initialized appro-

priately. Unterstrasser et al. (2017) later developed the all‐or‐nothing algorithm (AON), based on the ideas of

Shima et al. (2009) and Sölch and Kärcher (2010), and showed superior performance compared to other algo-

rithms. However, Dziekan and Pawlowska (2017) found that the original SDMwasmore efficient than AON.

Several other algorithms for collision‐coalescence have been proposed for related problems in other fields:

the weighted flow algorithm (DeVille et al., 2011) for aerosol dynamics; the O'Rourke (1981) method and

the no‐time counter method (Schmidt & Rutland, 2000) for spray combustion; and the methods from

Ormel and Spaans (2008) and Johansen et al. (2012) for astrophysics. Li et al. (2017) confirmed that the per-

formance of AON is better than Johansen et al. (2012), but direct comparison with other algorithms remains

to be assessed. Furthermore, efficient particle‐based algorithms for spontaneous or collisional breakup pro-

cesses, including rime splintering, have not yet been established.

Figure 11. Vertical distributions of hydrometeor mass mixing ratios from two‐dimensional simulations of a single deep
convective cloud using the liquid and ice Lagrangian particle‐based scheme of Shima et al. (2019). Results are shown at
times of 2,040, 2,460, 3,000, and 4,200 s. The different hydrometeor categories illustrated are diagnosed by the
attributes of the super‐particles: size, rimed mass fraction, and number of monomers. Adapted from Shima et al. (2019)
(under the creative commons attribution 4.0 license).
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Although Lagrangian particle‐based schemes represent an important advance, the computational cost limits

their use to researchmodeling. For this reason, bulk schemes will continue to be used in operational weather

and climate models for the foreseeable future. Moreover, evolving super‐particles along Lagrangian trajec-

tories only makes sense in models that can explicitly represent cloud‐ and convective‐scale motions and thus

is limited to smaller‐scale models (e.g., LES and convection‐permittingmodels). Thus, hierarchical strategies

that leverage advances in smaller‐scale process models, especially Lagrangian particle‐based schemes given

some of their advantages compared to bin schemes, should be sought to improve bulk schemes. Most

obviously, cloud models employing particle‐based schemes could be used to formulate process rates for bulk

schemes by direct fitting, such as autoconversion and accretion, as well as to improve representation of the

SD. Such an approach was recently employed to develop a bulk scheme from a Lagrangian particle‐based

scheme for liquid clouds (Noh et al., 2018). This is conceptually similar to earlier studies that used bin

scheme results to formulate process rates in bulk schemes by fitting (e.g., Berry & Reinhardt, 1974d; Chen

& Liu, 2004; Khairoutdinov & Kogan, 2000; Kogan, 2013; Kogan & Belochitski, 2012; Seifert, 2008). Less

direct, but still hierarchical, output from particle‐based schemes could be used to inform parameter values

statistically via Bayesian methods. Such an approach could also simultaneously leverage cloud and precipi-

tation observations rigorously, as is described further in section 4.3.

4.2. Advances in Cloud and Precipitation Observations

Much of the uncertainty in current microphysics schemes stems from a lack of understanding of critical

aspects of cloud physics and specific microphysical processes. Therefore, improving these knowledge gaps

is a necessary step toward improving schemes and reducing model uncertainty. Below we highlight key

areas of investment to advance process‐level microphysics knowledge from the standpoint of measurements.

4.2.1. Laboratory Experimentation

Given that laboratory experiments provide the only practical means to quantify many individual microphy-

sical process rates under controlled conditions, an obvious step is to invest more time and resources into

laboratory work on microphysics. Though laboratory work appears to have declined since the 1970s and

1980s relative to other observational and modeling work in cloud physics (see section 3.3.1), recent labora-

tory studies have shown considerable success in advancing our basic knowledge and improving the way

microphysical processes are represented in models. While we do not attempt to provide a comprehensive dis-

cussion of all such studies, we highlight a few examples below.

Work using cloud simulation chambers, like the AIDA chamber at Karlsruhe Institute of Technology, and

with smaller‐scale continuous flow diffusion chambers or single‐droplet experiments, has enhanced our pro-

cess understanding of primary and secondary ice formation (e.g., David et al., 2019; Lauber et al., 2018;

Wagner et al., 2016; Yang et al., 2018) and has provided more reliable quantification of the ice nucleation

efficiency of various aerosols than was previously possible (e.g., DeMott et al., 2018). Recent advances in pro-

cess understanding of heterogeneous ice nucleation have also benefited from methods imported from sur-

face physics, such as nonlinear optical spectroscopy and electron microscopy, and from molecular

dynamics simulations (e.g., Chong et al., 2019; Slater et al., 2016). With these methods, it has been possible

to identify the nature of ice nucleation active sites on feldspar and organic particles (Kiselev et al., 2017;

Sosso et al., 2018) and to observe the first stages of ice growth on solid surfaces (Abdelmonem et al., 2015;

Lovering et al., 2017). The transition from simple proxy materials to more complex atmospherically relevant

surfaces is challenging but such work promises more insight in the coming years.

Research at Michigan Technological University has improved understanding of the influence of turbulence

on droplet growth using the Pi chamber (Chandrakar et al., 2016, 2017; Chandrakar, Cantrell, Kostinski, &

Shaw, 2018; Chandrakar, Cantrell, & Shaw, 2018; Chang et al., 2016; Desai et al., 2018). This work has led to

considerable insight into the fundamental roles of turbulence and small‐scale variability on drop SDs and

spectral broadening, including impacts on cloud‐aerosol interactions (Chandrakar et al., 2016, 2017;

Chandrakar, Cantrell, Kostinski, & Shaw, 2018; Chandrakar, Cantrell, & Shaw, 2018). These researchers

also recently corroborated the conditions suggested by Korolev and Mazin (2003) for the maintenance of

mixed‐phase clouds (Desai et al., 2019). The group has developed a method to scale an LES model to the

dimensions of the Pi chamber, thus providing a way to directly test microphysical models with data from

the chamber (Thomas et al., 2019).
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At the Meteorological Research Institute's cloud simulation chamber in Japan, various natural and artificial

particles have been tested for ability to act as CCN and INP and used for climatological monitoring of back-

ground CCN/INP properties (Kuo et al., 2019). There are many new investments and developments of large

expansion cloud chambers from the China Meteorological Administration branches at province and city

levels in the last 5 years. For example, the Beijing Weather Modification Office as part of the Beijing

Meteorological Services built a cylinder‐shaped expansion chamber in stainless steel with 14‐m height and

2.6‐m diameter in 2018.

Researchers at The Pennsylvania State University (PSU) have developed theories that link data taken from

the vapor diffusion growth of faceted ice to the parameterizations used in cloud models (particularly habit

evolvingmodels such as Jensen et al., 2017). Laboratory measurements in general, and studies at PSU in par-

ticular, provide values for the ice crystal surface parameters needed for these growth models (Harrington

et al., 2019). For example, Figure 12 indicates how laboratory measurements have been used to characterize

the role of surface attachment kinetics on ice vapor depositional growth and the development of the primary

particle habits (see section 3.2.3), which provide the foundation for physically based growth parameteriza-

tions (Harrington et al., 2013; Zhang &Harrington, 2014, 2015). The effects of surface kinetics on the growth

of ice depend fundamentally on characteristic (or critical) ice supersaturations Schar for the basal and prism

facets that strongly depend on temperature (Figure 12a). Curve fits to the measured values of Schar are used

as input for the faceted growth model. Comparison of the growth model solutions to independent laboratory

data indicates that the model can accurately reproduce the measured particle masses (Figure 12b), as well as

Figure 12. (a) Characteristic ice supersaturation Schar (y‐axis) as a function of temperature (x‐axis), obtained from
laboratory measurements of faceted ice particle growth (black points) and approximated from mass growth
measurements (green points). Values of Schar for two different ice growth mechanisms (dislocations, blue, and ledge
nucleation, purple) are derived from diffusion chamber measurements (Pokrifka, 2018). Fits to the Schar data for the
basal and prism facets are shown by the red dashed and solid lines, respectively (see Harrington et al., 2019 for details).
(b) Comparison of modeled and measured single ice particle masses (y‐axis) after 10 min (black) and 15 min (blue) of
diffusional growth at various temperatures (x‐axis). The model uses the fit values of Schar in (a) and assumes ledge
nucleation growth. (c) Measured (dots) and modeled (lines) ice particle aspect ratio variation with pressure. Although it
is possible to model the data with either growth mechanism, only dislocation growth at −7°C and ledge nucleation
growth at −15°C also match independently measured Schar (see Harrington et al., 2019 for details). Figure adapted from
Harrington et al. (2019) (©American Meteorological Society, used with permission).
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aspect ratios and fall speeds (Harrington et al., 2019), after 10 and 15 min of growth over a wide range of

temperatures.

While these laboratory measurements are useful for corroborating the theories used to develop parameter-

izations, they also provide important information on the limitations of current methods. For instance,

Figure 12b indicates that the model can reproduce the mass evolution of larger ice crystals but only if the

crystals grow by the nucleation of ledges on their surface. However, the model can fit pressure‐dependent

data of small ice crystals (Figure 12c) if growth is controlled by either ledge nucleation or by permanent dis-

locations in the crystal lattice. Only growth by dislocations at −7°C and step nucleation at −15°C reproduce

the measured aspect ratios with measured values of Schar, indicating that at −7°C, growth may have been

controlled by dislocations. This latter result is at odds with the results in Figure 12b, which require ledge

nucleation growth. It is therefore likely that some processes are missing from the current model and theory.

Similarly, recent laboratory measurements at PSU provide evidence that the growth rates may be influenced

by the lateral spreading of facets, for which no current model exists (Pokrifka, 2018). Moreover, Pokrifka

(2018) showed that the mass growth rates may depend on the ice nucleation mechanism.

To build on these efforts may require a sustained reinvestment in laboratory experimentation if indeed it has

generally declined over the last 30 years, as we suspect (see section 3.3.1). Because most of the authors of this

paper are not experimentalists, we do not feel particularly qualified to provide specific paths forward on this

aspect. However, we emphasize the need for a discussion within the broader cloud physics community on

whether a broad decline in laboratory research has indeed occurred and, if so, identifying the forces driving

this decline and proposing possible solutions to reverse the trend. We do provide some possible paths for-

ward at the intersection of parameterization development and laboratory work. Better and longer‐term col-

laborations among numerical model developers and laboratory scientists would likely accelerate the

improvement of microphysics schemes. While this point is often stated, these sorts of collaborations are

rarely achieved in practice. Incentivizing long‐term collaborations of this sort is one way that this could

be achieved, though it would require assent from funding agencies. Longer funding cycles for such colla-

borations would also be useful, since a typical 3year grant cycle is generally not long enough for a fruitful

collaboration to develop among laboratory scientists and modelers who speak fundamentally different

languages. It may also be useful to adopt practices that have been successful in some locations. For example,

laboratory cloud research in many European countries has received steady support over the past decades at

nonuniversity research institutions, which often benefit from a relatively stable base funding (e.g., CNRS in

France, Helmholtz Centres, and Leibniz Institutes in Germany). These institutions have been able to main-

tain experimental facilities, such as large simulation chambers, over a long period of time. Keys to this suc-

cess are long‐term commitment by the funders, international collaboration, and joint activities such as the

transnational access to 17 atmospheric simulation chambers within the EU‐funded consortium

EUROCHAMP, the European research infrastructure ACTRIS (both including calibration centers for mea-

surement instruments), and the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment with many inter-

national partners at CERN. Similarly, the Meteorological Research Institute (MRI) as part of the Japan

Meteorological Agency has a cold environment simulator facility including cold rooms and a cloud simula-

tion chamber and a large wind tunnel facility for laboratory experiments. These successes suggest that it may

be worth considering investing in laboratory research at national centers, where it may be more likely to

maintain stable base funding. Other paths forward are possible, of course, and should be part of a broader

discussion in our community regarding the current health and possible future of laboratory research in

cloud physics.

4.2.2. Observations of Natural Clouds and Precipitation

Historically, the development of cloud microphysical instrumentation has been done by small private com-

panies or individual researchers affiliated with universities or government institutions. Despite the support

of these initiatives by funding programs at the national level, instrumentation development has often been

driven by profitability rather than by research needs. This dynamic cuts away at the development of more

complex instrumentation that has a higher cost at the research and development stage. Thus, it is difficult

to support the development of new airborne or ground‐based probes, which requires years of effort and asso-

ciated funding. As a consequence, legacy probes that are many decades old continue to be deployed routinely

despite well‐known limitations of a fundamental nature: for example, saturation of signal prevents measur-

ing the highest droplet number concentrations or mass contents and lack of absolute calibration tools results
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in comparing one uncalibrated probe to another in order to estimate uncertainty (seeMcFarquhar et al., 2017

for a detailed discussion of limitations related to SDmeasurements). In someways this echoes the challenges

of funding and maintaining cloud physics laboratory work. Longer‐term programs with sustained

funding for the development of complex airborne in situ instrumentation, similar to the development of

satellite‐based instrumentation, may be needed to address this problem. Again, this may be suited for non-

university national centers that may be able to better maintain stable base funding.

Despite these challenges, new probes using various technologies are being built; outside of Europe, this is

often from funds that are cobbled together frommultiple limited sources, such as brief support from agencies

concerned with civilian aircraft safety in recent years, one‐time research development funds from national

laboratories, and even personal scientist investment. Recent advances in airborne probes include the

development of holographic probes that quantify droplet clustering and ice crystal optical properties

(e.g., Abdelmonem et al., 2016; Fugal & Shaw, 2009), a phased‐Doppler interferometer for more reliable

measurement of droplet SDs (Chuang et al., 2008), and an isokinetic probe adequate to sample large ice mix-

ing ratios (Davison et al., 2009; Strapp et al., 2016). Notable new ground‐based probes include multicamera

instruments (e.g., the Particle Flux Analytics Multi‐Angle Snowflake Camera or MASC) capable of advan-

cing systematic characterization of frozen hydrometeor shape (e.g., Garrett et al., 2012; Schönhuber

et al., 2008), which is a fundamental aspect of ice microphysics schemes that underlies many process rate

uncertainties (e.g., sedimentation, growth rate, aggregation propensity, etc.). Recent advances in data

processing have also led to significant improvements in the accuracy of in situ measurements

(e.g., Baumgardner et al., 2017; Korolev et al., 2017; McFarquhar et al., 2017). However, measuring

small‐scale variability of a hydrometeor population remains a persistent problem. Particle probes in current

use generally employ a single‐particle method for measuring particle SDs. The development of

single‐particle probes seems to have reached saturation, and further refinement is neither expected to signif-

icantly improve sampling statistics nor reduce the spatial averaging scale required to get robust results. The

introduction of holographic particle probes and their further development may significantly improve assess-

ment of particle SDs on a small scale. However, their sampled volume is still orders of magnitude smaller

than that required for rigorous validation of remote sensing products and comparisons with cloud simula-

tions. Resolution of this problem, as well as challenges in measuring other quantities like electrical charge

of hydrometeors and in‐cloud supersaturation, may require the development instrumentation based on

completely different physical principles. We also point to the use of unmanned aerial vehicles (UAVs) for

cloud microphysical observations (e.g., Woods et al., 2018) related to the need to as a developing area with

considerable potential, but there are several challenges in miniaturize sensors, limited payload, and power

restrictions. Thus, at present, UAVs cannot compete with the quality and completeness of microphysical

data collected from conventional airborne research platforms.

Besides instrument and platform advances, we suggest field campaign and measurement sampling

strategies to obtain observational data sets that are maximally effective for scheme evaluation and con-

straint, especially in view of the significant temporal and spatial variability that occurs in natural clouds

and precipitation. The substantial cost of airborne flight campaigns already places high standards on choice

of region for data collection, flight patterns, and number of sorties in order to address project goals.

Random sampling that was typical for early studies of cloud microphysics in the 1950s–1970s is not

currently used unless specifically required by project goals (e.g., aviation safety campaigns). Modern field

campaigns instead seek to optimize data collection by various means. For instance, a quasi‐Lagrangian

sampling strategy has been used for the objectives of improving schemes for ice vapor growth

(e.g., Field, 1999) and establishing ice initiation mechanisms in wave clouds (e.g., Field et al., 2012).

Another strategy is to focus data collection and model observation comparisons on well‐defined regions

where microphysical properties can be robustly sampled because they are varying only slowly spatiotempo-

rally, as in widespread convective ice outflow over stratiform rain (e.g., Fridlind et al., 2017). In the case of

shallower stratiform cloud systems with significant heterogeneity, sample robustness can be improved by

selecting quasi steady‐state cloud fields that can be repeatedly profiled over more than one flight

(e.g., McFarquhar et al., 2007). When flights sampling similar cloud systems can be aggregated, basic pro-

cess occurrence can be systematically investigated in the greatest detail (e.g., Rangno & Hobbs, 2001),

including individual ice crystal morphologies and hydrometeor SD features that bear direct evidence of

ice formation, vapor growth, riming, and aggregation processes.
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As mentioned in section 3.3.3, ground‐ and aircraft‐based cloud and precipitation radars have been increas-

ingly used to characterize hydrometeor properties and to provide insights into microphysics. These plat-

forms provide substantial spatial coverage (unlike in situ observations) of microphysically relevant

observations, are capable of resolving the full depth of cloud and precipitation features (unlike most satellite

observations), and feature relatively fast temporal resolution (unlike polar‐orbiting satellites). Although

direct constraint of models using these data is challenging, progress can be made by considering specific out-

standing needs of such efforts. For studies of rain, polarimetric radar variables provide information related to

the sixth moment of the SD (via reflectivity), the 4th to 5th moment (specific differential phase), and

higher‐order moments (differential reflectivity). Vertically profiling radars, meanwhile, are sometimes cap-

able of separating cloud and precipitation modes and provide information on hydrometeor fall speed. Both

may be needed to disentangle the combined effects of evaporation, collisional coalescence, and breakup. For

ice hydrometeors, polarimetric quantities give information related to aspect ratio, particle density, and con-

centration, but some particle properties may still remain unconstrained owing to the complexities of

solid‐phase hydrometeor habits and particle orientations. Here, the addition of fall speed information from

vertically pointing radars may reduce some of these uncertainties. While the predominantly qualitative use

thus far of polarimetric radar observations for process‐level microphysical understanding suggests chal-

lenges in how these data can be used to constrain schemes, recent work has suggested that such observations

can be used to extract quantitative process‐level microphysical information; this is discussed in more detail

in section 4.3. Further progress in observational constraint of schemes using polarimetric radar and other

remote‐sensing data may require finding approaches to maximally leverage their information content while

also considering and quantifying the effects of both observational and model uncertainties.

The occurrence of multiple interacting microphysical processes and the additional complexity of ice particle

habit and density strongly argue for the use of both polarimetric and vertically pointing radars in conjunc-

tion with detailed surface or in situ observations to allow for comprehensive constraint of as many uncertain

hydrometeor properties as possible. In some cases, such as for rain in the absence of cloud, lidar backscatter

may provide important and unique constraint of the second moment of the rain SD, and Doppler lidar can

provide the flux of the second moment (e.g., O’Connor et al., 2005; Westbrook et al., 2010). In other cases,

such as shallow liquid clouds, polarimetric radars will provide little benefit beyond quality control of clutter

and biological scatterers, though Doppler spectral information can be useful (Luke & Kollias, 2013;

Rémillard et al., 2017).

Scan strategies should also be tailored to the weather conditions present and the processes that researchers

are interested in constraining. For example, performing quasi‐vertical profiles may be the best way to extract

microphysical information from polarimetric radars for spatially homogeneous features such as broad

regions of stratiform precipitation (Ryzhkov et al., 2016) in conjunction with vertically pointing radars.

Convection, on the other hand, may benefit from detailed scans of rapidly evolving updrafts, ideally from

platforms designed for high spatial and temporal resolution (e.g., Fridlind et al., 2019). Here, profiling radars

may provide long‐term statistics of updrafts (e.g., D. Wang et al., 2019) but are not capable of the spatial cov-

erage needed to capture fully the dynamic, thermodynamic, and microphysical properties of convective fea-

tures. In this context, phased array radars (e.g., Fulton et al., 2017; Zrnic et al., 2007) and imaging radars (e.g.,

Isom et al., 2013) promise to advance understanding microphysics dramatically for convective regimes by

providing an order of magnitude better temporal resolution than traditional radars. For this sort of rapidly

evolving weather, it is unlikely that quantitative process retrievals will be straightforward, for example, there

still exists a fundamental lack of understanding of small‐scale updraft and downdraft dynamical features,

such as entrainment (e.g., de Rooy et al., 2013). Even with improved instrumentation and deployment stra-

tegies, rigorous evaluation and constraint of microphysics schemes should take these dynamical aspects and

uncertainties into account. Though these advanced observing systems have yet to be used in microphysical

studies, and despite the challenges associated with such data sets for microphysical retrievals, these systems

hold considerable promise.

Satellites will remain a critical component for evaluating and constraining microphysics schemes owing to

the global coverage they provide, allowing characterization of cloud and precipitation features that are other-

wise very seldom and sparsely sampled (e.g., over oceans). The difficulty in using these observations directly

to informmicrophysics schemes was remarked on in section 3.3; this begs the question of how future satellite

observations can be designed so as to better serve the needs of scheme development. We emphasize that in
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order to constrainmicrophysics schemes robustly, next‐generationmissionswill need to advance retrievals of

microphysical variables; bulk quantities alone are of much lesser value. Fortunately, some new technologies

can support that. For example, future multiangle polarimetry of sufficient viewing angle resolution (i.e., on

the order of 2 degrees; Miller et al., 2018) can provide pixel‐level retrievals of droplet sizes at cloud top for

small, inhomogeneous or mixed‐phase clouds for which heritage bispectral approaches generally fail

(Alexandrov et al., 2012; Miller et al., 2018). Furthermore, such multiangle polarimetry observations allow

inference of the SD width or general SD shape (Alexandrov et al., 2012). Where satellite measurements gen-

erally struggle to determine robustly the thermodynamic phase of clouds with tops between the homoge-

neous freezing and melting temperatures, polarimetric detection of a cloudbow is a virtually unambiguous

indication of liquid drops at the tops of clouds (Riedi et al., 2010, van Diedenhoven, Cairns, et al., 2012).

For ice‐topped clouds, multiangle polarimetry allows inference of crystal shape (Baum et al., 2011; van

Diedenhoven, Fridlind, et al., 2012; van Diedenhoven, 2018; van Diedenhoven et al., 2020), which may be

especially valuable for evaluation of microphysical models predicting ice shape characteristics

(e.g., Harrington et al., 2013; Hashino & Tripoli, 2007; Jensen et al., 2017). Furthermore, the inferred ice

shape constrains the ice optical model used for retrievals of ice cloud optical thickness and effective radius

from shortwave infrared measurements (van Diedenhoven et al., 2014; van Diedenhoven et al., 2020), redu-

cing uncertainties. Combining such pixel‐level polarimetric retrievals of cloud SDs with cloud‐top extinction

measurements from a lidar with sufficient vertical resolution will allow a physically based retrieval of droplet

number concentrations with accuracies well beyond current capabilities (Grosvenor et al., 2018). Currently,

only airborne polarimeters exist with angular resolution on a pixel level sufficient to resolve variations in the

cloudbow for SD retrievals, but the Hyper Angular Research Polarimeter (HARP‐2) planned on the US

National Aeronautics and Space Administration's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE;

Werdell et al., 2019) satellite mission could provide the first such spaceborne measurements in the near

future. We note, however, that such measurements only provide information on microphysical quantities

at or near cloud top, whereas vertically resolved information throughout the depth of the whole cloud layer

is particularly useful for scheme evaluation. One promising approach is to synergistically combine observa-

tions using active radar, which resolves a greater depth of cloud columns and senses the sixth moment of the

SD, with passive measurements at microwave, infrared, or shortwave wavelengths, which are sensitive to

lower moments of the SD but generally cannot resolve information vertically (e.g., Leinonen et al., 2016;

C. Wang et al., 2019; Saito et al., 2019; Xu et al., 2019).

There is also the promise of new satellite technologies that have the potential to improve the spatial and tem-

poral resolutions of observations and as such to link more directly to rapidly evolving cloud processes. Recent

advances in geostationary satellite instruments with high resolution and extended spectral range, such as the

AdvancedHimawari Imager (Bessho et al., 2016) and theAdvanced Baseline Imager (Schmit et al., 2005), have

unexploited potential to provide insight through their high temporal resolution over the diurnal cycle. Recent

experiments that assimilate such data in convection permitting models show promise for the constraint of

cloud vertical and horizontal extent, along with synoptic and mesoscale dynamics and the thermodynamic

environment (Minamide & Zhang, 2018). Furthermore, geostationary passive microwave sensors could

provide relatively rapid (approximately 10 min) views of precipitation features over a wide swath of

the globe. In addition, miniaturization has enabled the launch of constellations of small satellites, which

potentially enable rapid sampling of cloud features. When coupled with innovations in adaptive sampling

and signal processing, small satellite constellations have the potential to provide measurements of cloud

processes as they evolve in time. For example, convoys of spaceborne small‐sat radars have the potential

to provide unique observations of the time evolution of microphysical variables in the interior of clouds,

as well as the vertical motion of hydrometeors (Haddad et al., 2018; Stephens et al., 2019).

We recommend that design studies of future satellite missions consider the integrated information content

of various combinations of passive and active observations to better constrain uncertainties in microphysics

schemes. Especially well suited for such studies and retrieval algorithms are optimal estimation and related

Bayesian techniques, as these methods are capable of combining the information content of different types

of measurements and provide robust uncertainty estimates. Other popular advanced approaches to infer

microphysical quantities from satellite data such as neural networks (e.g., Di Noia et al., 2019; Holl

et al., 2014) may be less suitable for constraining microphysics schemes as uncertainties of their outcomes

are generally not quantified.
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More generally, there is an outstanding need to quantify robustly the uncertainty of any observation used to

inform microphysics schemes. In the case of Bayesian methods as discussed in section 4.3, observational

uncertainty plays a large role in determining how much information can be gained from observations of

interest. Overestimation of uncertainty can lead to reduced information content of observational data, redu-

cing their effectiveness. Conversely, an underestimation of uncertainty may cause unrealistic noisy fluctua-

tions in observed quantities to be interpreted as meaningful information. Although theoretical estimates of

observational uncertainty are well known for most observing platforms, few studies have attempted to con-

firm these estimates through analyzing the observed quantities themselves. In all cases, field campaigns and

intensive observational experimental design must occur in close collaboration with microphysical modelers

to yield observational data sets targeted to gaps in knowledge and process‐level uncertainties. One promising

avenue to facilitate such collaboration is to combine both retrieval and forward simulation approaches in

close model observation comparisons, with an emphasis on basic cloud structural context (e.g., Fridlind

et al., 2019). Such an approach seeks to build on the past success of the Steiner et al. (1995) algorithm, for

example, wherein the structure of tropical rain systems is analyzed via the horizontal pattern of observed

or simulated reflectivity at some distance below the melting level (where all hydrometeors are liquid phase

in stratiform regions). This would avoid the much greater biases of most microphysics schemes in

forward‐simulating ice‐phase reflectivity for a variety of reasons that pertain to the complexity of ice

particles.

4.3. Leveraging Observations to Advance Microphysics Schemes Systematically

Regardless of the particular scheme or modeling application, the rigorous incorporation of information from

in situ and remote‐sensing observations of natural clouds and precipitation to improve schemes is challen-

ging, particularly because it is generally very difficult to quantify individual microphysical process rates from

these observations. Up to now, natural cloud and precipitation observations have been mainly used to

constrain process rates in schemes via comparison with model output and tuning, often in ad hoc ways

(see section 3.4).

We argue that newmethods are needed to make better use of these observations, especially given the wealth

of cloud and precipitation observations now available. In general, across all model types and for all cloud and

precipitation observations, the goal is to improve uncertain schemes optimally by comparison with

(somewhat) uncertain observations; this presents an inverse problem. Put another way, we wish to update

the probability of a microphysics scheme and its parameters based on new observational information.

This echoes Bayes' theorem from the field of statistics:

P xjy; gð Þ ¼
P yjx; gð ÞP xjgð Þ

P yjgð Þ
; (2)

where g ≡ g(x) is a model that takes in a vector x of parameter values and y is a vector of observational

data. In essence, Bayes' relationship formalizes the concept of updating knowledge using probability dis-

tributions. Starting with a prior distribution that represents the current state of knowledge of parameter

values x, one obtains data (or observations, y) and updates the prior distribution from these data. The

result is the posterior distribution on the left‐hand‐side of Equation 2. Note that the right‐hand‐side of

Equation 2 can be further decomposed to account separately for uncertainties associated with the observa-

tions themselves and the forward operator that converts model output to an observable quantity (Posselt

et al., 2015). The power of Bayes relationship comes from the fact that the posterior distribution becomes

the new current state of knowledge (in essence, the new prior distribution) and can be further updated

with new information (observations) as it is collected. This is similar to traditional data assimilation but

with an important difference: whereas data assimilation combines a model‐based estimate of the state

of a system with observations to produce an optimal estimate of a set of state variables, here we are con-

sidering how observations can be used to constrain uncertainty in the model itself.

If we take the perspective that microphysics schemes have sources of uncertainty that can be expressed as a

probability distribution, then it is natural to constrain microphysics schemes observationally using Bayesian

methods. This provides a framework within which new information naturally builds upon previous results

(e.g., as new observations become available). Another advantage to using Bayesian methods is that they
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return a quantitative estimate of uncertainty, which is a critical aspect but relatively unexplored for micro-

physics schemes.

A Bayesian perspective on the development of microphysics schemes presents a very different philosophy

compared with previous efforts that have taken a purely “physical” approach to parameterizing microphy-

sics. Schemes have incorporated available cloud physics knowledge, but because it is limited, they have also

traditionally relied in large part on heuristics and/or ad hoc tuning to produce results that are consistent

with observations (Figure 8). Though not yet adopted widely for developing physical parameterizations in

atmospheric models, Bayesian methods have been used to estimate parameters and quantify uncertainty

in land surface and hydrology models (e.g., Beven et al., 2007; Franks & Beven, 1997; Kavetski et al., 2006;

Knorr & Kattge, 2005; Raoult et al., 2016; Shi et al., 2015; Smith & Marshall, 2008; Thiemann et al., 2001).

Land surface modeling faces a similar challenge to microphysics—namely, the extreme complexity of inter-

acting, poorly understood chemical, physical, and biological processes—and from this standpoint, it is per-

haps not surprising that a recent land surface model intercomparison study showed superior performance of

purely statistical schemes compared to physically based models in benchmarking tests (Best et al., 2015).

Despite this commonality with land surface modeling, it is evident that microphysics scheme developers

have not yet embraced statistical methods as widely as land surface and hydrology modelers. Nonetheless,

a handful of studies over the past decade have used Bayesian methods to investigate microphysics scheme

uncertainty (e.g., Posselt, 2016; Posselt et al., 2019; Posselt & Vukicevic, 2010; van Lier‐Walqui et al., 2012).

However, this has been done in a post hoc framework by estimating posterior distributions of uncertain

model parameters in existing microphysics schemes using Bayesian inference (specifically Markov chain

Monte Carlo methods or MCMC). These studies demonstrated how rigorous statistical methods can be

applied to estimate parameter values and quantify uncertainty, potentially opening the door to more rigor-

ous observational constraint of schemes. However, there are several challenges as we discussed in section 3.4

, perhaps most notably that it is difficult or practically impossible to quantify structural uncertainty based on

the design of current schemes.

An alternative approach is to develop microphysics schemes following the principle of Bayes' theorem at the

outset. This idea has not yet been adopted into models but was recently explored as a proof of concept by

Morrison et al. (2020) and van Lier‐Walqui et al. (2020). In these studies, the basic approach (called the

Bayesian Observationally Constrained Statistical‐physical Scheme or BOSS) is to center the bulk scheme

on a set of flexibly designed microphysical process rates. No explicit SD functional form is assumed, similar

to some earlier studies (Kogan & Belochitski, 2012; Szyrmer et al., 2005). Instead, relationships among SD

moments are characterized generally following the SD normalization method of Morrison et al. (2019).

Individual microphysical process rates are formulated as a function of the set of predicted bulk moments

via generalized power expressions—essentially, a sum of power law terms—with an adjustable number of

terms and parameter values. Complexity can be increased systematically by adding more terms in the gen-

eralized power expressions or by adding more predicted bulk moments, allowing for a rigorous exploration

of structural as well as parametric uncertainty. Observational constraint is achieved via Bayesian inference

and calculation of posterior distributions of the scheme parameters. A schematic of the approach is shown in

Figure 13.

van Lier‐Walqui et al. (2020) demonstrated this approach using MCMC, with constraint by synthetic “obser-

vations” (output generated by a different model) of rain SD moment profiles for a one‐dimensional steady‐

state rainshaft. Here, we have extended van Lier‐Walqui et al. (2020) by using a bin microphysics scheme to

generate synthetic polarimetric radar “observations” as the constraining data (Figure 14). Consistent with

van Lier‐Walqui et al. (2020), parameters and individual process rates can be reasonably well constrained

with few a priori assumptions. The degree of observational constraint is evident by the narrowness of the

one‐dimensional and two‐dimensional marginal posterior parameter distributions (Figure 14a), as the prior

parameter distributions were specified to be uniform over the range of values shown. The posterior distribu-

tions of rain evaporation rates from BOSS, which were not directly constrained, match well with the eva-

poration rates calculated from the bin scheme used to generate the synthetic observations (Figure 14c).

There are several potential benefits of a Bayesian approach to microphysics scheme development. If the

scheme within the Bayesian framework is physically based, such as BOSS, it could be used to map cloud
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and precipitation observations to physical quantities that cannot be directly measured, process rates in

particular. This is similar to the idea of using remote‐sensing observations to “fingerprint” microphysical

processes (e.g., Kumjian & Prat, 2014) but using Bayesian methods. There are potential advantages

compared to traditional process rate retrievals, particularly the rigorous quantification of uncertainty.

There are also many other potential applications that arise from the ability to account for both structural

and parametric uncertainty in microphysics, particularly in the context of ensemble forecasting and data

assimilation. For example, the posterior parameter PDFs could be sampled to provide a physically based

method of generating ensembles for weather and climate modeling with varying parameter values.

Similarly, these PDFs could be stochastically sampled and varied in time and space to provide a physically

based stochastic parameterization, as opposed to the ad hoc parameter perturbations that are employed

in current stochastic physics parameterization approaches (e.g., Jankov et al., 2017). Moreover,

the systematic development of process rates centered around analytic functions informed by observations

would make deriving adjoints for variational data assimilation trivial.

Before going further, we comment on the philosophical underpinnings of Bayesian inference as a scientific

tool for microphysics scheme development. In the traditional application of Bayesian inference, scientific

progress is achieved by gathering data, using these data to calculate posterior probabilities, and repeating

the process as new data becomes available. This has often been tied to inductive learning—understanding

the general from the particulars. Applied as such, the idea is to use Bayesian inference to arrive at scientific

“truths” through successive Bayesian updating as new data are obtained. This is by nature reductionist;

fewer and fewer options are available to describe the system as increasing amounts of data are gathered.

As a counterpoint, classical statistics based on frequentist inference, for example, the well‐known p test

and other methods of hypothesis testing, do not attempt to converge on “truth” but only to reject hypotheses

that are inconsistent with data. The viewpoint of Bayesian inference as an instrument for inductive learning

has come under criticism (e.g., Gelman & Shaliz, 2013); these critiques are relevant in the context of using

Bayesian inference as a framework for microphysics scheme development. Taking a model blindly as the fra-

mework for arriving at “truth,”with parameters that are estimated from data, can result in overconfidence in

the model. This is probably less of a concern when modeling physical systems, as opposed to social or eco-

nomic ones, but is important to keep in mind, especially for exceedingly complex physical systems like

microphysics. Essentially, the problem is one of structural uncertainty; that is, uncertainty in the underlying

structure of the model, as opposed to uncertainty in the parameters (see section 3.4). Using Bayesian infer-

ence as a tool for inductive learning is based on the assumption, usually not explicitly stated, that uncertainty

Figure 13. Schematic diagram of BOSS. Prior microphysical knowledge in (1) informs the process rate formulations in (2). It may also include information on the
prior parameter distributions (e.g., ranges of possible parameter values). The process rate formulations in (2) are general and flexible with adjustable
number of terms and parameter values. The process rate formulations comprising the model are constrained using Bayesian inference with observations of bulk
cloud and precipitation properties (e.g., radar polarimetric variables) in (3). The output is a set of observationally constrained process rate parameterizations.
Adapted from Morrison et al. (2020) (©American Meteorological Society, used with permission).
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resides entirely within the set of model parameters being estimated. If there is structural uncertainty, then

Bayesian inference may not capture the true uncertainty in the model. One way to address structural

uncertainty is to use multiple competing models and to perform Bayesian model selection or model

averaging (e.g., Hoge et al., 2018; Sambridge et al., 2013). However, this does not fully address the

problem; if the true equation set is unknown, then it is impossible to know if the set of discrete models

being tested actually spans “truth” within a multischeme or multimodel framework.

While there is no avoiding structural uncertainty for systems in which the governing equation set is

unknown, such as for microphysics, there are techniques that can help make the problem more tractable.

Model checking is a valuable tool for verifying the soundness of model formulations (e.g., Box, 1980;

Gelman & Shaliz, 2013; Jaynes, 2003; Morris, 1986). This usually involves verifying the model against data;

for example, checking the quality of model performance against independent data sets not used during the

inference step. In the context of microphysics, this could involve testing the model for cases or cloud regimes

different from those used for learning or against data sets from different types of observations (i.e., different

instruments or platforms). Through the process of inference (learning) and independent testing, Bayesian

methods can find sources of model error that may otherwise be difficult to uncover. Likewise, using

Bayesian inference with different combinations of observational data from various sources, together with

rigorous estimation of information content from these data, could be a guide to help focus observational

efforts. These are not typical uses applying Bayesian statistics to modeling but seem especially relevant for

the problem of observationally constraining microphysics schemes.

The second approach is to tackle structural uncertainty head on, not via Bayesian model selection with ad

hoc multimodel ensembles but through careful construction of models that can rigorously probe structural

uncertainty. This approach falls into the category of model expansion, wherebymodel richness and complex-

ity are added and tested systematically. In this way, changes in model structure are an attempt to span struc-

tural uncertainty. Moreover, by building up and testing scheme complexity systematically, as opposed to the

typical ad hoc addition of complexity in schemes, parsimony can itself be informed by data. In other words,

the model only has to be as complex as needed to achieve consistency with the data and indeed only should

be based on the principle of parsimony (in the absence of theoretical knowledge guiding how complex the

Figure 14. Results from BOSS parameter estimation experiments constrained by synthetic “observations” of polarimetric radar quantities (reflectivity at
horizontal polarization, differential reflectivity, and specific differential phase) generated from a bin microphysics scheme at 16 vertical levels between 0 and
3 km height and surface rain fluxes. (a) Posterior parameter probability density functions (PDFs) of four parameters describing rain evaporation rate in BOSS with
one‐dimensional marginal PDFs along the diagonal and two‐dimensional joint marginal PDFs below the diagonal with shading showing regions of higher
probability. (b) Vertical profiles of radar reflectivity from one example case. (c) Vertical profiles of rain evaporation rate of the third “M3” and sixth “M6” SD
moments (proportional to bulk mass and radar reflectivity factor, respectively) from the same example case. In (b), the blue line shows the reflectivity from
BOSS using the maximum a posteriori parameter values with the moment‐based instrument simulator forward operator from Kumjian et al. (2019); the
constraining reflectivity “observations” directly calculated from the bin scheme are shown in red. In (c), the blue lines show rain evaporation rate profiles
calculated using the BOSS maximum a posteriori parameter values; the red lines show the evaporation rates from the bin scheme used to generate the synthetic
“observations,” which were not used for constraining BOSS. In (b) and (c), black lines indicate individual BOSS simulations calculated by sampling the posterior
parameter PDFs in (a). A total of 40 cases with varying environmental conditions were used to constrain BOSS. Note that all rain microphysical processes
(evaporation, collision‐coalescence, breakup, and sedimentation) were constrained simultaneously, but only parameter distributions and rates for evaporation are
shown for brevity. Other details of the modeling methodology follow van Lier‐Walqui et al. (2020).
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model should be). If the system has certain known conditions such as smoothness and positive definiteness,

then model expansion can be done with mathematical rigor even if the “true” equation set is unknown. The

simplest example is a hypothetical system that is known a priori, say from physical principles, to consist of a

set of smooth functional relationships between a set of independent and dependent variables over a

finite range of the dependent variables. From the Weierstrass approximation theorem, all

functional relationships that are smooth can be approximated over a closed interval as closely as desired

by polynomial functions. Thus, in this example, structural uncertainty can be investigated rigorously

within a Bayesian framework by testing models comprising polynomial functions that have systematically

increasing polynomial orders, fully spanning all possible structural uncertainty by encompassing the

entire set of possible models. This is the basic idea behind the process rate equations in BOSS, which are

formulated via generalized power series that encompass the set of all polynomial functions (Morrison

Figure 15. Illustration of model expansion and parsimony in very simple idealized “known truth” experiments. A model consisting of the sum of an adjustable
number N of power law terms (i.e, the generalized power expression: ∑N

n¼1anM
bn , where M is the independent variable and an and bn are adjustable

parameters) is fit to the “true observations” using MCMC for two different cases, where data for the “true observations” are generated by a two‐term power law

sum. In the left column the “truth” is monotonic and given by 2M0.9 + 1.5 M
0.1 (top left, green line); in the right column it is non‐monotonic and given by

5M0.75 + 1.5 M
‐0.75 (top right, green line). The axes have arbitrary units. For the monotonic case on the left, the single‐term model (N = 1) can reasonably

reproduce the “truth,” while for the non‐monotonic case on the right, two terms (N = 2) are needed in the model for a reasonable fit. In both cases the three‐term
model with N = 3 (bottom panels) does not improve the fit compared with the two‐term model, which is expected as the “truth” consists of two terms. Thus, here
parsimony is achieved by the model using N = 1 for monotonic case and N = 2 for the non‐monotonic case. Adapted from van Lier‐Walqui et al. (2020)
(©American Meteorological Society, used with permission).
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et al., 2020). Note that complexity can also be built up systematically by increasing the number

of independent variables and hence degrees of freedom within the model. Results from a very

simple “known truth” experiment are shown in Figure 15 to illustrate the ideas of model expansion and

parsimony. This type of approach could begin to address the problem of structural uncertainty rigorously,

which up to this point has been more or less ignored, not just for microphysics schemes but for physical

parameterizations in weather and climate models more generally. There may still be philosophical

questions as to whether this is truly inductive learning, but as a practical matter, this is irrelevant; we

seek to obtain a model that describes (well) a set of observed phenomena, whether or not that model is a

correct representation of some ethereal set of “true” physical laws.

Following this logic, we envision a Bayesian approach to scheme development built successively on

“known” physical truths and theory and incorporating the ideas of model checking and model expansion

with complexity added and tested systematically. If additional assumptions can be made, such as smooth-

ness in the relationship between process rates and state variables, mathematical rigor can be applied in

building up scheme complexity. To put it simply, the idea is to meet in the middle ground between purely

physical models and purely statistical models (Figure 16). There are some commonalities with the climate

model parameterization approach proposed by Schneider et al. (2017), who similarly advocated for para-

meter learning within a well‐defined physical framework. More generally, this type of statistical‐physical

approach has emerged recently in other scientific disciplines such as turbulence modeling, materials, and

quantum chemistry and has been referred to as “theory‐guided data science” (Karpatne et al., 2017).

There are some practical challenges for parameterization development within a Bayesian framework. Perhaps

foremost are those related to the use of Bayesianmethodswith full weather and climatemodels.MCMC,while

rigorous, is computationally expensive and requires a huge number of model runs for many problems. This is

not insurmountable for simple models, or even fully 3D models with small domains (Posselt, 2016), but

becomes practically intractable for typical weather or climate model simulation lengths and domain sizes.

Estimation of posterior distributions is also inherently challenging for cloud and weather models in the face

of state uncertainty. This is closely related to the problem of initial condition uncertainty and the rapid growth

of small errors (i.e., inherently limited predictability), which may render the calculation of full posterior para-

meter PDFs or even parameter estimation practically untenable once state errors grow too large. State error

growth can be reduced using data assimilation, but this presents other challenges; moreover, inclusion of an

explicit assimilation component for reducing state errorwould add significant complexity to the infrastructure

of any Bayesian framework for scheme development and parameter estimation. Nonetheless, methods for

simultaneous state and parameter estimation have been recently demonstrated (e.g., Laine et al., 2011) and

could be pursued in the context of microphysics. Alternatively, applying Bayesian inference at climate scales

to estimate posterior parameter distributions, based on longer‐term statistical model output rather than simu-

lation of specific weather events, has some potential to alleviate this problem. However, long model integra-

tions make the problem of computational tractability for Bayesian methods even worse. The challenges of

using Bayesian inference are especially acute for bin and Lagrangian particle‐based schemes because of their

computational expense. To our knowledge, no attempt has yet been made to test bin and Lagrangian

particle‐based microphysics within a Bayesian framework.

One possible solution to the daunting computational challenge inherent in Bayesian model development is

to use emulation, which replaces the full‐complexity physical model with a functional or statistical

Figure 16. Illustration of the continuum of modeling approaches, from purely physical/theoretical approaches on the left
to purely data driven unstructured approaches on the right. In the center are theory‐guided data driven approaches
which combine elements from physical and statistical modeling. Examples across the continuum are provided below
the arrow.
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approximation called a surrogatemodel. This has been applied previously for parameter sensitivity analysis

using Gaussian process emulation (e.g., Carslaw et al., 2013; He et al., 2018; Johnson et al., 2015;

Posselt et al., 2016). Other emulation approaches include polynomial chaos expansion (Iskandarani

et al., 2016; Marzouk & Najm, 2009; Sraj et al., 2016) and multivariate adaptive regression splines (MARS;

Friedman, 1991; Friedman & Roosen, 1995). Recently developed neural network and other unstructured

machine learning approaches (see below) could also be used to more flexibly and generally emulate the

model. Surrogate models and emulators enable a far greater number of computations because they are much

more computationally efficient compared with the full complexity model. However, there are potential lim-

itations that should be kept in mind. First, surrogate models are necessarily trained on a limited number of

full model realizations. This means, in practice, that they are better at interpolation than extrapolation; they

often find realistic solutions within the range of parameters themodel has been trained on but may fail when

asked to extrapolate beyond the training data set. Second, emulation often has built‐in assumptions; for

example, linearity or a smooth functional relationship between themodel input and output. If these assump-

tions are violated, the surrogate model may not be able to realistically reproduce the full‐complexity model

behavior. Even so, well‐trained surrogate models may be the only possible way forward to probe the full mul-

tidimensional parameter space of detailed schemes in modern cloud models, given the large number of

degrees of freedom and computational expense of running such models.

Combining surrogate models, Bayesian inference, and detailed process modeling leads to several paths for

hierarchical microphysics scheme development (Figure 17). This contrasts with the traditional approach

of scheme development, which relies heavily on heuristics and ad hoc tuning (Figure 8). Overall, the basic

idea is to combine statistical and physical tools optimally, in a way that leverages advances in emulation,

machine learning, and Bayesian methods, process modeling such as Lagrangian particle‐based schemes,

and fundamental cloud physics knowledge. One could imagine, for example, developing a surrogate

model (via process emulation, machine learning, etc.) from training data generated using a Lagrangian

particle‐based scheme to emulate the scheme response to changes in parameter values. Bayesian inference

could be used with the surrogate model to calculate posterior parameter PDFs constrained by cloud and pre-

cipitation observations (lower right in Figure 17), providing not only maximum a posteriori (optimal) para-

meter values but also rigorous quantification of uncertainty. The surrogate model could itself serve as a basis

for parameterization. However, to avoid limitations of the surrogate model, namely, the lack of a physically

based framework and hence the danger of extrapolating to conditions outside of the training data, the

full‐complexity particle‐based scheme with the observationally constrained posterior parameter PDFs from

the surrogate model could be used, in addition to fundamental cloud physics knowledge, to inform the phy-

sical framework and prior parameter distributions for bulk scheme development. The bulk scheme, in terms

of both parameters and structure, could in turn be constrained using a wider set of observations via Bayesian

inference in the context of weather and climate simulations (upper right in Figure 17).

4.4. Machine Learning

Another approach that has gained recent traction within the atmospheric science community has been to

develop parameterizations wholly via machine learning (e.g., Brenowitz & Bretherton, 2018; Gentine

et al., 2018; O’Gorman & Dwyer, 2018; Rasp et al., 2018). These approaches replace the entire parameteriza-

tion with a data‐driven neural network or statistical model. This approach has met with some success as a

replacement for traditional cloud and convection parameterizations within global climate models. For

example, Rasp et al. (2018) trained their data‐driven parameterization on data from a multiscale “super‐

parameterized” global model in which convection is treated explicitly and were able to reasonably approx-

imate physical constraints (e.g., energy conservation) that were not explicitly built into the parameterization.

Nonetheless, there are criticisms of using purely data‐driven approaches for parameterization development

(e.g., Karpatne et al., 2017): (i) lack of interpretability owing to the “black box” nature of machine learning,

that is, the difficulty of using machine learning to gain physical insight into the system being modeled; (ii)

often poor performance when extrapolating to conditions outside of the original training data set; (iii) lim-

ited quantification of parameterization uncertainty; and (iv) inconsistency with physical constraints.

Obtaining a sufficient and robust training data set for the development of a purely data‐driven microphysics

scheme is likely to be especially difficult or even impossible because there is no benchmark model with

which to generate a robust training dataset.

10.1029/2019MS001689Journal of Advances in Modeling Earth Systems

MORRISON ET AL. 47 of 68



We note that there are ways to address some of the above criticisms. In particular, physical constraints such

as water and energy conservation can be incorporated directly into a machine learning approach using, for

example, constrained neural networks (e.g., Paganini et al., 2018). Bayesian neural networks (e.g., Auld

et al., 2007; Titterington, 2004) can also provide information about uncertainty. Nonetheless, interpretability

and extrapolation will likely remain difficult problems for any microphysics scheme that is built using a

purely data‐driven machine learning approach, without an underlying physical framework. Though there

are important gaps in cloud physics knowledge, we argue that it is important to include in schemes the

knowledge that is available.

In contrast to a purely data‐driven parameterization approach, using machine learning in conjunction with

a physical model, for example by “learning” parameter values within the model (i.e., parameter estimation),

would help to address both the lack of interpretability and problem of extrapolation. This idea is consistent

with a broader definition of “machine learning” as any data‐driven approach to modeling, as advocated by

Schneider et al. (2017) and Karpatne et al. (2017), rather than referring only to unstructured data‐driven

methods. The Bayesian statistical‐physical approach advocated above falls into this broader paradigm of the-

ory‐guided data science (Karpatne et al., 2017; see Figure 16). That said, we note the potential for unstruc-

tured machine learning as a tool for emulation of bin and Lagrangian particle‐based microphysics

schemes as discussed above, not as a parameterization itself but rather to explore the behavior of these

schemes (see section 4.3 and Figure 17).

5. Conclusions and Broader Outlook

Microphysics is a key component of cloud, weather, and climate models. It has arguably taken on an even

more important role as these models have steadily increased in resolution and as the coupling of

microphysics and cloud dynamics has become more direct. A characteristic feature of microphysics is its

extreme complexity, involving myriad interacting microscale processes and complicated feedbacks between

hydrometeors and their environment over a wide range of scales. Owing to this, the representation of micro-

physics in atmospheric models is beset by a number of challenges. In this paper, we divided these challenges

into two distinct categories: (i) how to parameterize the population of hydrometeors in a model grid volume

given that it is computationally impossible to represent all hydrometeors individually, even for small cloud

volumes; and (ii) how to address fundamental process uncertainties at the scale of individual hydrometeors.

The first aspect—a manifestation of the classical parameterization problem of representing unresolved,

subgrid‐scale model features—is centered on developing improvedmethods to represent hydrometeor popu-

lations that cannot be modeled on an individual particle‐by‐particle basis. Traditional Eulerian bulk and bin

approaches have been used since the mid‐20th century and remain the workhorses of nearly all models. Bin

schemes provide many degrees of freedom to represent hydrometeor populations and can simulate micro-

physical evolution in detail, but face a number of challenges that are difficult to overcome. Bulk schemes

are computationally efficient and will remain the mainstay of operational weather and climate modeling,

Figure 17. Conceptual diagram of the proposed hierarchical statistical‐physical approach for microphysics scheme development. In the proposed approach,
laboratory experiments, natural cloud and precipitation observations, and theory improve cloud physics knowledge (left box). This directly informs physically
based parameterizations for bulk and detailed (bin or Lagrangian particle‐based) schemes. Emulation is used to develop a surrogate model of the response
to parameter changes within the detailed scheme. The surrogate model is constrained by natural cloud and precipitation observations using Bayesian inference,
which informs parameter distributions in the detailed scheme. The constrained detailed scheme together with advances in cloud physics knowledge
inform the physical framework for the bulk scheme. Bayesian inference is then used to constrain parameters and structure of the bulk scheme via cloud and
precipitation observations.
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but the analytic functions (or empirical moment relationships) assumed for the particle SDs, needed for clos-

ing the set of microphysical equations, are uncertain. Given the lack of a solid theoretical foundation, these

distribution functions are determined empirically from observations or detailed model simulations (i.e.,

using bin schemes). Although not the focus of this paper, we also emphasize the challenge of parameterizing

cloud macrophysics—the grid cell fractional cloudiness and subgrid‐scale distributions of bulk cloud, preci-

pitation, and thermodynamic quantities and vertical motion directly coupled to the microphysics in

larger‐scale models.

In contrast to bin and bulk approaches, a new tool emerged in the early 21st century: the Lagrangian

particle‐basedmethod. This approach addresses several practical challenges of bin schemes. We also empha-

size an important conceptual advantage: as the number of “super‐particles” approaches the number of

actual cloud particles, and the model resolution approaches that of DNS, the Lagrangian particle‐based

approach converges to particle‐by‐particle DNS, which is the most complete model representation of a tur-

bulent cloud currently available. The main difficulty with Lagrangian particle‐based schemes is the compu-

tational cost, although there are some methods to help mitigate this problem. Lagrangian particle‐based

schemes will likely come into much wider use in the coming years for research, and we anticipate this

approach becoming a staple of cloud modeling within the next decade. We note the potential for these

schemes to be used not only for probing fundamental research questions in cloud physics, but also for devel-

oping and testing bulk schemes for use in operational weather and climate models. Lagrangian

particle‐based schemes can also be used for comparison with bin microphysics schemes in research models.

Such work is ongoing, and we expect it to accelerate in the coming years. This can address important ques-

tions, such as under what circumstances (if any) will these types of schemes produce similar results? What

are specific effects of numerical errors and approximations in bin schemes, relative to Lagrangian

particle‐based schemes?

The second critical challenge—fundamental process‐level uncertainty and complexity—is closely related to

gaps in cloud physics knowledge. This is particularly true for ice‐phase microphysics, owing mainly to the

intricacies of particle shape and density evolution. Ultimately, this problem stems from the fact that theore-

tical descriptions of many microphysical processes are limited, and there is no complete set of governing

equations or benchmark model for microphysics. We highlighted several specific gaps in cloud physics

understanding in section 3.2 and how these gaps contribute to scheme uncertainty. We emphasize a critical

point: These knowledge gaps lead to uncertainty in all models, regardless of how they represent the hydro-

meteor population; this includes Lagrangian particle‐based schemes and even particle‐by‐particle DNS.

Confronting this problem is therefore a necessary step to address overall scheme uncertainty and ultimately

to improve models.

Although theoretical and process‐level descriptions are limited for many microphysical processes owing

to these knowledge gaps, there is now a wealth of cloud and precipitation observations for evaluating

schemes. Unfortunately, individual process rates within schemes generally cannot be obtained from these

observations directly. We therefore argue that it is useful to frame microphysics as an inverse problem

that uses observations to constrain schemes indirectly by way of comparison with model output.

Framed in this way, it is natural to bring to bear tools from statistical modeling. We also emphasize that

cloud and precipitation microphysical processes constitute a physical system. As such, there are impor-

tant physical constraints that, although currently limited, should be incorporated. Thus, broadly speak-

ing, we advocate approaches that pursue a “middle ground” by incorporating elements of both

physical and statistical modeling (Figure 16). This is distinct from purely physical models, such as those

that numerically solve the Navier‐Stokes equations for fluid flow, yet also different from “black box”

unstructured machine learning approaches that have been advocated in recent years as an avenue for

parameterization development. We highlighted a statistical‐physical framework that combines physical

and theoretical insight with Bayesian inference to produce a scheme that is capable of continuous

updates as new theory and observations become available. Bayesian inference has an additional and

important benefit, in that it produces rigorous quantitative estimates of scheme uncertainty. This type

of general statistical‐physical framework, falling under the broad umbrella of theory‐guided data science

(Karpatne et al., 2017), may also be relevant to other physical parameterizations in weather and climate

models, especially those that lack complete governing equations or a benchmark model similar to micro-

physics, such as land surface schemes.
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Following the ideas outlined in this paper, we highlight six specific recommendations for advancing the

representation of microphysics in models:

1. Sustained support for laboratory facilities to study microphysical processes, addressing major gaps in cloud

physics knowledge and providing data to develop physically based parameterizations and to support or

refute cloud physics theories.

2. Sustained support for new airborne and ground‐based instrument development and next‐generation instru-

ments in space to provide the field data that are required to constrain microphysics in global as well as

regional models.

3. Increased emphasis on critical evaluation of model performance using field observations, including statisti-

cally robust sampling from in situ or remote‐sensing approaches and targeted data collection in

well‐defined regions where microphysical properties can be robustly characterized for model evaluation.

4. Development of new frameworks to facilitate rigorous model evaluation and constraint by observations,

leveraging statistical modeling tools and accounting for observational uncertainty characteristics. This

includes the use of machine learning, not as a replacement for microphysics schemes but as a tool to

understand scheme behavior (e.g., via emulation).

5. Increased focus on systematic quantification of parameter and structural uncertainty in schemes, which can

help direct efforts for scheme improvement and point to particular needs for observational constraint.

6. Continued development and use of new methods for microphysical modeling, especially Lagrangian

particle‐based schemes.

More broadly, we envision a hierarchical approach for microphysics scheme development that ties together

the various pieces advocated in this paper (Figure 17). This contrasts with the “traditional” approach for

scheme development that relies heavily on heuristics and (often ad hoc) tuning (Figure 8). A crucial element

of both approaches is the incorporation of advances in cloud physics knowledge gained from laboratory

experimentation, natural cloud and precipitation observations, and theory. The ultimate ideal is to develop

schemes entirely from a “complete” body of cloud physics knowledge, but it is not clear when that might be

achievable—likely decades into the future, if ever. This underlies our basic argument for why it may be use-

ful to incorporate a statistical element into scheme development.

In the proposed approach, centered on the idea of microphysics parameterization as an inverse problem,

scheme development is constrained by cloud and precipitation observations via Bayesian inference within

the confines of a physically based framework (the latter informed by fundamental cloud physics knowledge

and, for bulk schemes, detailed Lagrangian particle‐based and bin schemes). There is a two‐way street in

addressing this inverse problem, especially in a probabilistic framework: While observations constrain the

scheme, this approach could also provide a way to quantify rigorously what information is gained from par-

ticular measurements, helping to guide future observational efforts.

Incorporating these statistical elements does not have to be limited to the development of bulk schemes.

Natural cloud and precipitation observations could also be used to constrain detailed bin and Lagrangian

particle‐based schemes themselves, although solving this inverse problem is more challenging from a tech-

nical standpoint owing to the computational cost of these schemes. It may be worthwhile to explore the use

of much less costly surrogate models of these detailed schemes via emulation as a way to make the problem

computationally tractable. Leveraging advances in computing infrastructure, such as developing schemes

that can be run on GPUs, should also be pursued. There are other technical and practical challenges that

need to be worked out for this kind of hierarchical statistical‐physical approach. Nonetheless, it provides a

possible blueprint for accelerating progress in how microphysics is represented in models.

Data Availability Statement

All new data generated for this paper (shown in Figures 6, 9, and 14) and the accompanying metadata files

are stored in a repository and can be accessed online (10.5065/mn1v‐6a55).
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