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ABSTRACT

Motivation: The success of genome sequencing has resulted in

many protein sequences without functional annotation. We present

ConFunc, an automated Gene Ontology (GO)-based protein function

prediction approach, which uses conserved residues to generate

sequence profiles to infer function. ConFunc split sets of sequences

identified by PSI-BLAST into sub-alignments according to their GO

annotations. Conserved residues are identified for each GO term

sub-alignment for which a position specific scoring matrix is

generated. This combination of steps produces a set of feature

(GO annotation) derived profiles from which protein function is

predicted.

Results: We assess the ability of ConFunc, BLAST and PSI-BLAST

to predict protein function in the twilight zone of sequence similarity.

ConFunc significantly outperforms BLAST & PSI-BLAST obtaining

levels of recall and precision that are not obtained by either method

and maximum precision 24% greater than BLAST. Further for a large

test set of sequences with homologues of low sequence identity, at

high levels of presicision, ConFunc obtains recall six times greater

than BLAST. These results demonstrate the potential for ConFunc to

form part of an automated genomics annotation pipeline.

Availability: http://www.sbg.bio.ic.ac.uk/confunc

Contact: m.sternberg@imperial.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Protein functional annotation is an important task of the

genomics era. The ability to obtain rapidly protein and genome

sequences has resulted in many proteins whose function has not

been experimentally characterized. Further this characteriza-

tion process is slow compared to sequencing itself, resulting in a

need for approaches to predict protein function in order to

obtain accurate annotations. The number of sequences requir-

ing annotation makes it important that such methods are

automated, enabling them to annotate whole genomes without

human intervention.
The simplest approach for predicting protein function is

sequence searching to identify homologues with known

annotation. The accuracy of directly transferring annotations

from a sequence of known annotation to a homologue of

unknown function was initially investigated by Hegyi and

Gerstein (1999). They demonstrated that annotation transfer

among enzymes, using the E.C. enzyme classification, is

successful where sequence similarity is high and that sequences

with low levels of identity are likely to have different functions

making annotation transfer unreliable. Subsequent studies

(Devos and Valencia, 2000; Todd et al., 2001; Wilson et al.,

2000) of this relationship suggests that complete function (all

four E.C. digits) is conserved at high-sequence identity, three

E.C. digits are also likely to be conserved down to 40%. Below

this level function is often different. More recent analyses

(Rost, 2002; Tian and Skolnick, 2003) show that functional

divergence can occur at higher levels of sequence identity,

between 60% (Tian and Skolnick, 2003) and 70% (Rost, 2002),

suggesting that functional transfer between homologues with

levels of identity lower than these may be inaccurate. These

studies demonstrate that while annotation transfer is useful, it

is limited and other approaches are required for the effective

prediction of protein function. However, the use of sequence

searching programs such as BLAST (Altschul et al., 1990) and

PSI-BLAST (Altschul et al., 1997) remains a common first step

for inferring protein function.
An alternative approach is the comparison of sequences with

motif- or domain-based resources such as PFAM (Finn et al.,

2006) or Interpro (Mulder et al., 2005). PFAM contains

multiple sequence alignments and hidden Markov models that

represent domains or families of proteins. Matches to PFAM

can infer protein family or domain. Function can also be

inferred by mapping the functions present within the domain or

family to a query sequence.
The development of Gene Ontology (GO) (Ashburner et al.,

2000) has enabled the classification of both enzyme and non-

enzyme functions, its directed acyclic graph structure effectively

provides a functional hierarchy moving from general to specific

terms. A number of sequence similarity-based methods utilize

GO to predict functional annotations. The earliest methods use

BLAST to identify homologues with known GO annotations

and weight the GO terms according to the BLAST e-values of

the sequences they are associated with (Groth et al., 2004; Khan

et al., 2003; Zehetner, 2003). Martin et al. (2004) used a similar

approach for Gotcha. GOtcha utilizes the GO structure to

combine the e-values from all BLAST homologues to make

predictions for individual GO terms each of which is associated

with a confidence score. PFP (Hawkins et al., 2006) uses a

similar approach to GOtcha by making predictions based*To whom correspondence should be addressed.
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upon the frequency of GO terms within a set of PSI-BLAST

hits.
Phylogenomics approaches have also been used to predict

protein function. SIFTER (Engelhardt et al., 2005), for

example takes a PFAM protein family and generates a

reconciled phylogenetic tree and uses a statistical model of

protein function evolution to infer annotations for the

unannotated sequences in the family.
Early work by Hannenhalli and Russell (2000) used

functional residues to aid function prediction. Their approach

assigns enzymes of a known class to a sub-class by generating

hidden Markov models to extract subfamily-specific functional

sites which are then used to assign protein function. This

approach requires knowledge of protein families in order to

infer enzyme functional subtypes. George et al. (2005) have

used the Catalytic Site Atlas (Porter et al., 2004), which is a

manually curated database of enzyme catalytic residues, to

predict enzyme function using protein sequence.
We have previously demonstrated the ability to use Position

Specific Scoring Matrices (PSSMs) to predict protein molecular

function using GO. Phunctioner (Pazos and Sternberg, 2004)

uses protein structural alignments from which PSSMs are

generated for each potential GO term present among the initial

protein structures used. A query protein is then scored against

each PSSM to predict its function. As Phunctioner relies upon

structural alignments it is limited by structural space. Here we

demonstrate a general approach, ConFunc, similar to

Phunctioner that is applicable to the more extensive sequence

space, which could prove an effective tool for genome

annotation. ConFunc is available for academic use as a web

server at http://www.sbg.bio.ic.ac.uk/confunc
ConFunc uses GO to direct the function prediction process,

by splitting sets of sequences identified by PSI-BLAST into

sub-alignments according to their GO annotations. Each GO

term sub-alignment is then used to identify conserved residues

within that group, for which a PSSM profile is generated. This

combination of steps produces a set of feature- derived (i.e. GO

annotation) profiles from which protein function is predicted.

Many methods that predict functional residues use phyloge-

netics approaches (Aloy et al., 2001; Berezin et al., 2004;

Lichtarge et al., 1996) to group homologous sequences. The

power of ConFunc is that the grouping of sequences by GO

annotation not only enables the identification of conserved

residues potentially associated with a particular function but

further enables them to then predict protein function. The use

of GO makes it possible to predict a full range of protein

functions and is not limited to enzyme function as other

methods utilizing functional residues are (George et al., 2005;

Hannenhalli and Russell, 2000).
As direct transfer of function from a homologue is ineffective

when sequences have low levels of identity, it is important that

alternative methods can perform well in such cases. The

performance of ConFunc has therefore been assessed for a set

of protein sequences where homologues above 30% sequence

identity have been removed to simulate this scenario. Initially

we impose a further constraint to assess ConFunc performance

in the twilight zone (Rost, 1999) by only using sequences in the

test set for which the top hit has a BLAST e-value greater than

1� 10�20. ConFunc performance is also assessed for all
sequences in the test set.
ConFunc performance is compared to the predictions of

annotation transfer from the top BLAST and PSI-BLAST hits.
Annotation transfer using BLAST is a common first step for
inferring protein function, so this comparison importantly

provides an assessment of the ability of this approach to predict
protein function at low levels of sequence identity. Comparing

the performance of the methods at this level of sequence
identity also removes any bias that BLAST and PSI-BLAST
might have due to the potential use of sequence similarity by

curators when assigning annotations (for example, annotations
with the Inferred by sequence similarity (ISS) evidence code).
A limited comparison with PFAM is also performed because it

was not possible to simulate a scenario where sequences with
greater than 30% sequence identity with each query are

removed from PFAM and therefore PFAM predictions have
the advantage of using sequences with greater than 30%
identity.

2 METHODS

The ConFunc method is outlined in Figure 1. Homologues of a query

sequence are identified by running up to three iterations of PSI-BLAST

against Swiss-Prot (Wu et al., 2006). Sequences identified by PSI-

BLAST that also have EBI GO annotations [not of evidence type IEA

(inferred by electronic annotation) or NR (no record)—see GO

annotations below for details] are extracted and their full length

Swiss-Prot sequences are aligned using MUSCLE (Edgar, 2004). All

sequences with greater than 30% identity with the query sequence are

removed from the analysis to assess performance at low levels of

sequence identity. The aligned sequences are then grouped according to

their GO annotations, resulting in sub-alignments representing each of

the GO terms present in the set of homologous sequences, which are

then used to determine the predicted function of the query sequence.

Only terms with three or more homologous sequences are used for

prediction purposes to ensure that a good signal is obtained from the

profiles.

2.1 Identification of conserved residues

For each GO sub-alignment, residue conservation scores are calculated

using a Vingron-type sequence weighting method (Valdar, 2002;

Vingron and Argos, 1989). This ensures that similar sequences are

not over-represented in the calculation of residue conservation. Each

sequence is weighted according to the average distance between it and

the other sequences in the sub-alignment. The weighting of sequence i in

a group of n sequences is

wi ¼
1

n� 1

Xn

j6¼i

1� d i, jð Þ

where d(i, j) is the distance between sequences i and j, which in this case

is their sequence identity. Identical sequences will have a distance of one

and receive a smaller weighting in the calculation, while two sequences

with no identity will have a distance of zero and a higher weighting.

The conservation of a position x in a sub-alignment of n sequences is

given by

Cx ¼
1Pn

i

Pn
j4i wiwj

Xn

i

Xn

j4i

wiwjsubðix, jxÞ

where sub (ix, jx) is the value from the BLOSUM62 substitution matrix

(Henikoff and Henikoff, 1992) for the residues at position x in
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sequences i and j. To identify the conservation of each position

compared to all other positions within the sub-alignment a Z score is

calculated for the conservation at each position as

Zx ¼
Cx � C

�

where Cx is the conservation score at position x, �C is the average

conservation value of all the positions in the sub-alignment and � is the

standard deviation. All residue positions with a Z score greater than a

given threshold are considered to be functionally important residues

and used for the scoring of the GO term PSSMs (see below) against the

query sequence.

2.2 Generating GO term PSSMs

PSSMs are generated for each sub-alignment using the same method as

PSI-BLAST (Altschul et al., 1997). The query sequence is scored against

each sub-alignment at only the positions that have been identified as

conserved and have a conservation Z score greater than the threshold.

The score S for a sequence against a PSSM is

S ¼
Xn

i¼1

Pik

where Pik is the value in the PSSM for residue k at position i. To test the

statistical significance of the score, an expectation value is calculated for

each PSSM score. Expectation values are calculated by fitting the scores

from the shuffled sequences to an extreme-value distribution using

maximum likelihood fitting as described by Eddy (maximum likelihood

fitting of extreme value distributions are available from http://

selab.janelia.org/publications.html). Using the Kolmogorov–Smirnov

test for a subset of the sequences the data was found to have a good fit

to the extreme value distribution at the P¼ 0.001 level.

2.3 Using feature derived scores to predict function

We have described the process that generates GO term-specific

expectation values. To avoid confusion with BLAST e-values, GO

term specific expectation values will be referred to as c-values. The GO

term specific c-values are used to determine which functions are

predicted and they therefore discriminate between correct and incorrect

terms. A simple threshold is used to initially remove any terms that have

poor c-values (greater than 1� 10�3). However, using this single

threshold is not sufficient for accurate prediction because of differences

in GO term c-values between sequences and the high ratio of non-

annotated terms to annotated terms present in the pool of potential GO

terms that can be predicted. To discriminate better between correct and

incorrect terms, an additional threshold is used that relates each GO

term c-value to the c-value of the top GO term and the frequency of

each GO term within the set of homologues present in the complete

alignment. This threshold is different for each GO term and each query

sequence, but it is never allowed to be greater than the initial minimum

threshold. A schematic of this threshold is shown in Figure 1 part ii.

All potential GO terms for a query are sorted by c-value. The top term

is predicted as a function of the query and the prediction of all other

Fig. 1. Outline of the ConFunc method. (i) Schematic representation of the ConFunc method. (ii) Example of ConFunc threshold for GO term

c-value. The diagram shows 2 cases of a set of GO term c-values for a query sequence. The top c-value (lowest c-value) is shown in blue. The

threshold for acceptance of each c-value (expectation value) is determined by its frequency within the set of homologues identified by PSI-BLAST

and the top GO term c-value. Cases a and b show the threshold for GO terms present in 90 and 25% of the annotated sequences respectively. In each

case the GO term above the threshold line is accepted as a predicted function of the sequence and the term below the line is rejected. (iii) schematic

demonstrating how the c-value ratio and GO term frequency are combined.
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terms is determined by the ratio of their c-value and that of the top term

and the frequency of that GO term. Figure 1 part iii shows a schematic

graph of how these values are combined. GO term c-value ratio and

frequency are plotted on the graph and a division (line) separates those

terms which are predicted as functions of the query and those which are

rejected. The terms shown in Figure 2 part iii represent those in part ii

of the figure, showing that a term present in 25% of sequences (A,B)

must have a smaller c-value ratio to be inferred as a function of the

query than a term present in 90% of sequences (C,D). Simply the fewer

sequences present for a GO term the closer its c-value must be to the top

value to be inferred as a function of the query sequence. Conversely

terms represented by a greater number of sequences can have c-values

that are further from the top term (Fig. 1 part ii). The settings of this

threshold are varied in the analysis of ConFunc to obtain results for a

full range of performance.

The variation of c-values described above can be demonstrated by the

difference between c-values obtained for related GO terms.

Functionally specific GO terms (distant from the root) are generally

present in fewer sequences in the set of homologues for a given query,

while more general functional terms have a much higher frequency.

Specific functions often have much smaller c-values than those of

related (i.e. on the path from the specific term to the root node) more

general terms. Incorporating the frequency of each GO term within the

set of homologous sequences resolves this issue.

For each of the analyses discussed, ConFunc has been run using a

PSI-BLAST e-value threshold of 1� 10�8. ConFunc has been run with

a conservation z-score threshold of 1.5 and a maximum GO term

c-value threshold of 1� 10�3. On average, 8% of residues are above this

conservation threshold, and in 79% of sequences less than 10% of

residues are above the threshold.

2.4 Gene ontology annotations

The EBI (European Bioinformatics Institute) gene ontology annota-

tions (GOA) released in April 2005 were used as a source of GO

annotations for sequences in Swiss-Prot. Each GO annotation is

associated with an evidence code describing the source used for

inferring the annotation and therefore gives an indication of the

confidence of annotation. For example, annotations with evidence

codes determined from traceable author statement (TAS), experiment

(Inferred from direct assay IDA) or organism mutant phenotypes

(Inferred from mutant phenotype IMP) have greater reliability than

those for which there is no record (NR) of how the annotation was

generated or those that are electronically inferred (IEA). To ensure that

confident predictions are made, all IEA and NR evidence code

annotations are excluded from the prediction process. The EBI IEA

GO annotations are generated by mapping annotations from other data

sources, including Swiss-Prot keywords and E.C. To assess further the

performance of ConFunc and BLAST, their predictions are also

compared with the full set of annotations, which only excludes

annotations with an NR evidence code.

2.5 Protein sequence test set

Swiss-Prot (release 47) was used to generate a protein sequence test set.

All sequences with only IEA or NR GO annotations were removed.

Further any sequences labelled as fragments in Swiss-Prot were also

removed as were any containing ‘X’ in place of a residue. A non-

redundant test set of GO annotated sequences was generated from the

remaining sequences, using CD-HIT (Li et al., 2002) at 40% identity.

Finally, any remaining sequences for which no GO annotated

homologues were identified by three iterations of PSI-BLAST were

also removed, resulting in a test set of 7150 sequences.

To assess performance in the twilight zone of sequence similarity,

initially only sequences in the test set that have a top BLAST hit greater

than 1� 10�20 and for which all three methods make function

predictions are considered. This set considers 1675 sequences from

the full test set.

The full test set (7150 sequences) includes proteins with annotations

from all the main functional categories in the GO molecular function

component. Catalytic activity and binding functions are the largest

categories and account for 27 and 34% of the annotations, respectively.

Signal transduction, transcription regulation and transporter functions

represent 12, 8 and 7% of the annotations in the test set, with the final

12% of annotations split between the remaining molecular function

categories.

2.6 Comparison with BLAST and PSI-BLAST

The performance of ConFunc has been compared to the annotations

predicted by the top BLAST and top PSI-BLAST hit for each query

sequence against Swiss-Prot. The non-electronic set of GO annotations

does not provide annotations for all sequences in Swiss-Prot, so where

the top hit is not annotated, the first annotated hit is accepted. All

sequences with greater than 30% sequence identity to the query are

removed. To assess the range of performance obtainable by BLAST

and PSI-BLAST the e-value cut off for inclusion of each top hit is

varied between 0.1 and 1� 10�100. For example, with an e-value cut off

of 1� 10�10 predictions are only made for sequences that have a GO

annotated homologue identified by BLAST (or PSI-BLAST) with an

e-value of less than 1� 10�10.

2.7 Comparison with PFAM

PFAM (release 17) was obtained. For each query sequence the PFAM

mysql database was queried to identify all significant hits. Hits were

converted to GO annotations using the pfamToGo mapping file

downloaded from the Gene Ontology website in April 2005. The PFAM

analysis is not directly comparable to the ConFunc and BLAST

analyses because the PFAM alignments and HMMs were generated

without using a 30% sequence identity threshold as has been done for

ConFunc and BLAST (see Section 2.6). Like the BLAST analysis the

Fig. 2. Assessing GO Function Prediction using recall and precision. (i)

Schematic GO annotation. Each circle represents a GO term, black

circles are terms for which the query sequence is annotated and white

circles represent terms that are not annotated for the query. Light grey

circles represent GO terms that are compatible to the annotation, i.e.

they are more specific than the most specific annotation which in this

case is term E. More specific terms of intermediate annotations are not

compatible as shown in this example by terms C and F. (ii) The GO

terms predicted by a method are displayed and the number of true

positives (TP), false positives (FP) and compatible terms are shown and

used to calculate recall (Na is number of annotations) and precision for

the prediction.
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PFAM e-value threshold for inclusion is varied to obtain a range of

results.

2.8 Assessment of results

Numerous approaches have been proposed for assessing GO protein

function prediction methods. Lord et al. (2003) proposed the use of

semantic similarity to compare predictions with annotations. Schlicker

et al. (2006) have also devised scores related to semantic similarity.

Others have used recall and precision (Jones et al., 2005) and variations

of recall and precision that address the hierarchical nature of GO

(Verspoor et al., 2006). A protein annotated with a GO term is also

annotated with all parents of that term, here we use this relationship to

calculate recall and precision over all levels of Gene Ontology (see

Fig. 2 and Supplementary Material). Throughout we refer to existing

annotations as annotations and the functions inferred by each method

as predictions. Our calculation of recall and precision considers the

parent terms of each annotation and compares these with the

predictions made at each level as shown in Figure 2 part ii, with

recall and precision defined for the test set as

Precision ¼
TP

TPþ FPð Þ
Recall ¼

TP

NA

where TP and FP are the total number of true positive and false positive

predictions respectively and NA is the total number of annotations in

the test set.

Assessing function prediction is complicated by the complex nature

of protein function, unlike the comparison of protein structure

predictions with the coordinates of a protein structure. While the

known coordinates of a protein structure fully describe its structure, it is

possible that functional annotations do not fully describe protein

function. Annotations can be too general, with a general function

assigned to a protein when a more specific related functional term better

describes the function. Proteins (especially for multi domain sequences)

may also have more functions than those they are annotated with. It is

therefore possible that predictions that are more specific than existing

annotations and even those which are completely different from existing

annotations are correct. To account for these potential issues, functions

that are compatible to the correct annotation are not considered in the

calculation of recall and precision. We class GO terms that are

descendents of the most specific annotation of each protein as

compatible (Fig. 2 and Supplementary Information). Accepting terms

that are descendents of intermediate nodes in the annotation would

allow too many different GO terms to be accepted as correct (see

Supplementary Information).

3 RESULTS

3.1 Functional annotation in the twilight zone

Our aim in developing ConFunc is to augment the ability to

predict function using other methods, including approaches as

simple as annotation transfer. To assess the ability of ConFunc

to predict function where annotation transfer may be more

limited, we initially consider a subset of the test set, only taking

into account query sequences for which all three methods make

predictions, where the top annotated hit has a BLAST e-value

greater than 1� 10�20 in addition to the removal of all

sequences with greater than 30% sequence identity. This results

in a set of 1675 sequences from the original test set of 7150

sequences. These settings assess the ability of ConFunc to

predict function in the twilight zone of sequence similarity.

The results of this analysis are displayed as a Precision-Recall

graph (Fig. 3). Precision-Recall graphs provide a good

assessment of the performance of methods where the class

distribution is skewed (Davis and Goadrich, 2006). In this case,

the number of annotations is much smaller than the number of

potential functions that can be assigned. A perfect predictor

would be represented by a point at 1,1 on a Precision–Recall

graph, i.e. predicting all annotations without making any false

predictions. Therefore the better a predictor, the closer it will be

to the top right corner of the graph.
The Precision–Recall graph shows that ConFunc outper-

forms annotation transfer by both BLAST and PSI-BLAST.

ConFunc obtains precision as high as 0.77 compared to a

maximum of 0.68 for BLAST. Importantly as shown in

Figure 3, ConFunc recall is 0.41 compared to 0.12 for

BLAST at these levels of precision. BLAST is able to obtain

a comparable recall of 0.41 but only with precision of 0.62. This

analysis highlights that ConFunc functional predictions are of

greatest value in the twilight zone of sequence similarity.

3.2 Predictions assessed against non-IEA annotations

The previous section assessed ConFunc performance in the

twilight zone of sequence similarity. This further analysis

considers the full test set of sequences and continues to use the

30% sequence identity threshold. The results of this analysis are

shown in Figure 4. ConFunc makes predictions for 4844

sequences in the test set and performs better at higher levels of

precision than both BLAST and PSI-BLAST (Fig. 4). The

statistical significance of this difference in performance has

been tested using the McNemar test (McNemar, 1947), which

considers the number of misclassifications in each method that

are classified correctly in the other. Individual results are

Fig. 3. Assessing function prediction in the twilight zone. Recall and

precision analysis using non-electronic annotations. The recall and

precision obtained by ConFunc, BLAST and PSI-BLAST for sequences

with top BLAST hit e-value greater than 1� 10�20. Predictions are

compared to non-electronic annotations.
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compared separately with the most precise ConFunc result

compared with the BLAST results that have the closest recall

and precision to this ConFunc result. The result is significantly

different from BLAST using a 1� 10�10 e-value threshold

(closest recall) at a P¼ 0.001 level and also significantly

different from BLAST performance using a 1� 10�100 e-value

threshold (closest precision) at the same P¼ 0.001 significance

level. At this level of precision, ConFunc recall is more than six

times greater than BLAST and BLAST coverage (percentage of

test set that predictions are aid for) is reduced to 6% compared

to 68% for ConFunc.
Figure 4 shows that BLAST generally outperforms PSI-

BLAST, this occurs because a GO annotated homologue is not

identified by BLAST for some query sequences whereas one or

more are retrieved by PSI-BLAST. In such cases, PSI-BLAST

often identifies a remote homologue of the query sequence and

transfers its annotation, which may account for the difference

in performance. At lower levels of precision, BLAST and PSI-

BLAST obtain greater recall than ConFunc at equivalent

precision. We consider high precision to be more important

than high recall; it is preferable to have a smaller set of mainly

correct annotations than a large set of annotations with a high

proportion of errors. The acceptance of many false positive

predictions can result in the accumulation of annotation errors

in databases, which often propagate (Brenner, 1999; Devos and

Valencia, 2001).
While the recall values obtained are low, all homologues with

greater than 30% identity with each query sequence have been

removed and as such overall performance is poorer compared

to a standard case where no homologues have been removed.

Further recall is calculated over the complete test set of 7150

sequences and using an e-value threshold of 0.1, BLAST makes

predictions for 6157 sequences (PSI-BLAST makes predictions

for the complete set) whereas ConFunc only makes predictions

for 4844 sequences (68%). If only the sequences in the test set

for which all three methods make predictions are considered

(see Supplementary Material), ConFunc obtains greater recall

ranging between 0.52 and 0.75 compared with 0.37–0.54 over

the full test set. This demonstrates that ConFunc is able to

obtain high levels of both recall and precision.
In this analysis, ConFunc performance is also compared with

PFAM-based function predictions. PFAM is a hand curated set

of sequence alignments and Hidden Markov Models and as

such has not been generated with the 30% sequence identity

requirements that have been used in both the ConFunc and

BLAST benchmarking. This complicates the comparison

between the methods. While PFAM function predictions

outperform BLAST and PSI-BLAST at most settings, this

difference is small and the improved performance is likely to be

due to the presence of close homologues in the PFAM

alignments that have been used to make the predictions. The

comparison of ConFunc and PFAM is more important and it

demonstrates that despite the inherent advantage of PFAM,

it is not able to perform better, with ConFunc obtaining greater

recall at equivalent levels of precision (Fig. 4). At the highest

level of precision, PFAM obtains 0.72 precision with recall of

0.10 compared to 0.70 precision and 0.37 recall for ConFunc.

Like BLAST, at this level of precision the coverage of PFAM

predictions is low at 15% comapred to 68% for ConFunc.
As the PFAM analysis does not simulate a low sequence

identity scenario, it might be surprising that the recall ranges

obtained are similar to BLAST and ConFunc (Fig. 4). This

is likely to be caused by the variation in function within

PFAM families as family members often share similar general

functions with various different specific functions (e.g. enzyme

substrate specificity) (Abhiman and Sonnhammer, 2005), and

in many cases the mapping of PFAM to GO is only able

to assign general functions.

3.3 Assessment of predictions with IEA annotations

In the previous analysis, non-electronic GO annotations were

used for the ConFunc prediction process to generate GO term

specific sub-alignments and subsequent c-values. They were

also used for the annotation transfer predictions made by

BLAST and PSI-BLAST. The predictions made were compared

to these non-electronic annotations. In this analysis we

continue to use the non-electronic annotations for the predic-

tion process, as there is greater confidence in their reliability.

However, while non-electronic annotations are used for the

predictive process, it is possible to use electronic annotations

for the testing of these predictions. In this case, the non-

electronic annotations can be considered as a learning set and

the electronic annotations the test set. This approach of using a

set of highly confident annotations for the predictive process

and comparing the results with a large set of annotations from

more varied sources with different reliability has already been

used in the assessment of SIFTER (Engelhardt et al., 2005),

where experimental annotations from the Gene Ontology

Annotation (GOA) database (Camon et al., 2004) (annotations

with evidence codes IMP and IDA) are used to make

predictions, which are then compared to the full set of

annotations present in the GOA database.

Fig. 4. Recall and precision analysis using non-electronic annotations.

The recall and precision obtained by ConFunc, BLAST and PSI-

BLAST when predictions are compared to non-electronic annotations.
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Figure 5 shows the range of recall and precision obtained by

ConFunc, BLAST and PSI-BLAST when compared with this

extended set of annotations. There is an increase in precision in

all cases (compared with performance against non-electronic

annotations Fig. 3), indicating agreement between the

electronic annotations generated from mappings of other

functional annotation types (e.g. Swiss-Prot keywords and

E.C.) and the predictions made by ConFunc and annotation

transfer. A reduction in recall is also observed in comparison to

the non-electronic annotation results because the increase of the

total number of annotations present in the test set is greater

than the increase of the true positive predictions. A clear

difference between the predictive performance of ConFunc and

BLAST is observed with ConFunc obtaining greater recall than

BLAST at all levels of precision. The McNemar test was used

to test the significance between the most precise ConFunc result

and the BLAST results with equivalent recall and precision,

ConFunc is significantly better in both cases at the P¼ 0.001

level.

3.4 Differences between non-electronic and electronic

GO annotations

The electronic annotations provide a much larger set of

annotations to compare predictions against. They result in

performance differences for ConFunc, BLAST and PSI-

BLAST when used for testing compared to using non-electronic

annotations. Are the differences in performance observed due

to the agreement of incorrect predictions with incorrect

electronic annotations, or are correct predictions being made

that are simply missing from the non-electronic set? We use the

example of GTPase enzymes to demonstrate that a large source

of these differences is due to the latter case; correct predictions

are being made that are not present in the non-electronic

annotations. GTPases (GO:0003924) hydrolyse GTP to GDP.

They should therefore be annotated with this catalytic function

and also with the GTP binding (GO:0005525) function.

However, very few sequences annotated as GTPases are also

annotated with the related binding annotation in the non-

electronic set of annotations (Fig. 6 and Supplementary

Material), demonstrating incompleteness in the non-electronic

set of annotations. Most of these sequences are annotated with

the binding function when electronic annotations are included

(Fig. 6 and Supplementary Material).
While it might be clear to someone using these annotations

that a GTPase is likely to bind GTP, this difference in

annotation will have a greater effect upon the perceived

performance of a function prediction algorithm. Predicting a

GTP binding function for a GTPase that is not annotated with

this binding function will be classed as a false positive

prediction, therefore reducing its performance. For the

majority of GTPase predictions ConFunc also predicts GTP

binding (40 out of 48 see Fig. 6i). Only two of these sequences

have non-electronic GTP binding annotations (Fig. 6ii) and as

a result 38 of the 40 are classed as false positive predictions. The

electronic annotations include GTP binding for a further 37 of

these sequences, so only one of the GTP binding annotations is

classed as a false positive when compared to this annotation set

(Fig. 6ii). A similar pattern is observed for BLAST and PSI-

BLAST predictions; eight GTP binding predictions are made

for GTPase sequences, only one of these is present in the non-

electronic set while the remaining seven are all present in the

electronic annotations (Fig. 6). This pattern has been observed

for other types of enzyme (data not shown) and shows that the

increased precision obtained when electronic annotations are

included in the assessment of predictions is due to the

prediction of correct functional terms that should be present

in the non-electronic set.
The analysis of predictions for GTPases also illustrates a

difference between ConFunc and BLAST predictions. Both

methods predict the GTPase function for a similar number of

sequences (Fig. 6i), and ConFunc predicts the GTP binding

function for the majority of GTPase sequences, while BLAST

predicts GTP binding in very few cases. This occurs because

BLAST transfers the annotation of the top hit which appears to

Fig. 5. Recall and precision analysis using electronic annotations. The

recall and precision obtained by ConFunc, BLAST and PSI-BLAST

when predictions are compared to electronic annotations.

Fig. 6. Predictions of GTPase functions. (i) GTPase and GTP binding

function predictions made by ConFunc and BLAST. GTPase predic-

tions without GTP binding predictions are shown in black and

sequences where both GTPase and GTP binding are predicted are

shown in grey. (ii) The annotations of the GTPase sequences predicted

by ConFunc and BLAST. In black are the sequences that have both a

GTPase and GTP binding annotation in the non-IEA set, while those

with both these annotations in the electronic annotations are shown

in grey.
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be often a sequence annotated as a GTPase but not as a GTP

binding protein, whereas ConFunc assesses all of the GO terms

present in the set of PSI-BLAST homologues, giving it the

potential to predict more and different terms than those present

in the top BLAST hit. It also results in more false positive

predictions for ConFunc (when compared to non-electronic

annotations), as BLAST only predicts eight GTP binding

functions compared to 37 by ConFunc.

4 CONCLUDING REMARKS

We have developed ConFunc, which uses Gene Ontology to

direct the function prediction process. Our analysis has assessed

the ability of ConFunc, BLAST and PSI-BLAST to predict

protein function at low levels of sequence identity. ConFunc

provides the greatest improvement over BLAST in the twilight

zone of sequence similarity, obtaining levels of precision not

obtained by either BLAST or PSI-BLAST. ConFunc also

obtains greater recall than BLAST under such conditions,

demonstrating the advantage of ConFunc when close homo-

logues do not exist. ConFunc performs well under such

conditions because it combines the annotations and sequence

information present in all the distant homologues identified by

PSI-BLAST to make functional predictions, whereas BLAST

simply transfers the annotation of the top hit. As the number of

sequences without close homologues of known function

increases, it is important that this analysis has been performed

at low levels of sequence identity showing that ConFunc can

annotate proteins under such conditions.
Further, benchmarking for a larger set of sequences

demonstrates that ConFunc outperforms annotation transfer

by both BLAST and PSI-BLAST and, at high levels of

precision, ConFunc is able to obtain over six times greater

recall than BLAST. Our analysis also demonstrates that

ConFunc outperforms PFAM-based function predictions,

even though PFAM has the advantage of not removing

sequences with greater than 30% sequence identity to the

query sequences in our test set. As previously discussed, PFAM

obtains low levels of recall because it is often only able to make

general GO function predictions.

Annotation transfer by BLAST and PSI-BLAST are limited

by their ability to identify the closest homologue of a query

protein. While ConFunc utilizes PSI-BLAST results it does not

rely on the ability of the search method to identify the closest

homologue, but on its ability to identify a group of homologous

proteins which represent a pool of potential GO terms that can

be assigned to a query sequence. Further each of these GO

terms has an associated c-value and frequency, which can be

used to give an indication of the confidence in prediction of

each individual term. It would be desirable to compare

ConFunc with other recently developed function prediction

methods such as (Engelhardt et al., 2005; Martin et al., 2004).

However, the setup of these systems often makes it difficult to

ensure that query sequences are not used within the predictive

process, a problem encountered by Engelhardt et al., (2005).

For this reason annotation transfer by BLAST and PSI-

BLAST has been used for the comparison. Our analysis

simulated a scenario where only low identity homologues are

present, this would be even more difficult to ensure for external

methods.
Our analysis also considers the effect of using GO annota-

tions with different levels of confidence (i.e. evidence codes) to

assess function prediction methods. We have demonstrated that

using more extensive electronic annotations results in improved

precision compared to a set of only non-electronic annotations.

Using GTPases we have shown that the lack of coverage in

non-electronic annotations is a source of the differences

observed.
ConFunc performance is limited by the current level of

annotated sequences available, as it can only make predictions

for GO terms present in three or more of a query sequence’s

homologues. However, even with limited coverage, ConFunc is

able to outperform BLAST annotation transfer, particularly in

the twilight zone (Fig. 3). ConFunc is fully automated giving it

the potential for use in a genomics annotation pipeline,

automatically identifying conserved residues and inferring

annotations for newly identified genome sequences.
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