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Abstract

Brain fog, also known as confusion, is one of the main reasons for low performance in the learning 

process or any kind of daily task that involves and requires thinking. Detecting confusion in a 

human’s mind in real time is a challenging and important task that can be applied to online 

education, driver fatigue detection and so on. In this paper, we apply Bidirectional LSTM 

Recurrent Neural Networks to classify students’ confusion in watching online course videos from 

EEG data. The results show that Bidirectional LSTM model achieves the state-of-the-art 

performance compared with other machine learning approaches, and shows strong robustness as 

evaluated by cross-validation. We can predict whether or not a student is confused in the accuracy 

of 73.3%. Furthermore, we find the most important feature to detecting the brain confusion is the 

gamma 1 wave of EEG signal. Our results suggest that machine learning is a potentially powerful 

tool to model and understand brain activity.
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1 INTRODUCTION

1.1 Motivation

Brain fog is a constellation of symptoms that include reduced mental acuity and cognition, 

inability to concentrate and multitask, and loss of short-term and long-term memory. It is 

well distributed among not only patients with brain diseases but also healthy people [1]. 

Brain confusion, which is one of the symptoms of brain fog, can reduce people’s 

concentration and cognition. Detecting and preventing brain confusion is very important and 

has many benefits. When a driver is confused, his/her cognition is reduced. This is very 

dangerous and can cause serious consequences. Another example is Massive Open Online 

Course (MOOC), which is an online course aiming at unlimited participation and open 

access via the web. Although there are several MOOC websites, the format still has 

shortcoming compared with traditional classes. Valerie et al. [2] showed that the lack of 

feedback is one of the main problems of student-teacher long distance communication. The 

students may feel confused about the lecture while the teacher doesn’t notice and continues 

the lecture. If there is a practical approach to detect student’s confusion immediately, it will 

help teachers understand better the students’ status and react accordingly.

Electroencephalography (EEG) is an electro-physiological monitoring method to record 

electrical activity of the brain. In clinical contexts, EEG refers to the recording of the brain’s 

spontaneous electrical activity over a period of time, as recorded from multiple electrodes 

placed on the scalp. It measures voltage fluctuations resulting from ionic currents within the 

neurons of the brain. EEG is most often used to diagnose epilepsy, which causes 

abnormalities in EEG readings. It is also used to diagnose sleep disorders, coma, 

encephalopathy, and brain death. Our motivation for choosing EEG signals as the data for 

detecting confusion in people’s brains is that EEG signal is continuous and contains some 

patterns of status transitions. Our hypothesis is that when people are confused, their EEG 

signal will differ from normal. It is possible to build a model to analyze the continuous data 

and predict whether the subject is confused or not.

1.2 Related Work

There is a general agreement that visual inspection of EEG wave-forms patterns can reliably 

identify driver fatigue or drowsiness. There are many researchers applying machine learning 

methods to EEG data to accomplish different tasks, such as driver fatigue detection. Yeo et 

al. [3] used Support Vector Machines (SVMs) to detect the drowsiness of car drivers. Their 

results showed that extracting features from four EEG frequency bands achieved 99.3% 

accuracy. Besides drowsiness, Subashi et al. [4] applied SVM classifiers to predict if EEG 

signals represented epileptic seizures and achieved 100% accuracy. Wang et al. [5] showed 

the possibility of using EEG data to detect the confusion of students when they watch 

MOOC videos. They analyzed the EEG data using Gaussian Naive Bayes classifiers. The 

Gaussian Naive Bayes classifiers achieved a classification accuracy of 57%. The current 

paper explores methods to improve this confusion classification result on the same dataset.

Recently, deep learning has shown its power on many classification-related tasks compared 

with traditional machine learning approaches. Boureau et al. [6] proposed a Deep Belief 
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Network (DBN) that can learn a high-level feature based on raw input and can capture 

higher-order dependencies between observed variables. Hajinoroozi et al. [7] applied DBNs 

to EEG signals to predict drivers’ cognitive states. Classifiers using the features learned by 

DBNs outperformed those using Principal Component Analysis (PCA) features. Lee et al. 

[8] introduced convolutional DBNs to learn better feature representations and outperformed 

machine learning approaches using raw features. Due to the fact that the EEG signal is a 

time-series, however, detecting events in EEG signals using fixed-length features may be 

difficult.

Laurent et al. [2] proposed a Hidden Markov Model-based approach for mental state 

detection in EEG signals. Petrosiana et al. [9] showed that Recurrent Neural Networks can 

identify early signs of Alzheimer’s disease in long-term EEG recordings. Few studies focus 

on detecting confusion from EEG signals using Deep Neural Networks (DNNs). Since 

LSTM Recurrent Neural Networks can easily analyze time-series data, the current study 

applies them to detecting confusion in EEG signal.

We utilize batch normalization, which has been shown to speed training of DNNs. Ioffe et al. 

[10] proposed a batch normalization layer, which uses mini-batch statistics to standardize 

features in deep neural networks which can achieve the same accuracy in much less time. 

Laurent et al. [11] showed that applying batch normalization, to Recurrent Neural Networks 

leads to a faster convergence of training.

1.3 Problem Statement

Given EEG data from 10 college students, our task is to predict their confusion using 

machine learning methods. The data is from the “EEG brain wave for confusion” data set, an 

EEG data from a Kaggle challenge [12]. 10 students were assigned to watch 20 videos, 10 of 

which were pre-labeled as “easy” and 10 as“difficult”. Each video was about 2 minutes long. 

For “difficult” videos, the two-minute clip was taken abruptly from the middle of a topic to 

make the videos more confusing.

The students wore a single-channel wireless MindSet EEG device that measured activity 

over the frontal lobe. The MindSet measures the voltage between an electrode resting on the 

forehead and two electrodes (one ground and one reference) each in contact with an ear [13]. 

After each session, the student rated his/her confusion level on a scale of 1–7, where one 

corresponded to the least confused and seven corresponded to the most confused. These 

labels were quantized into two classes representing whether the students were confused or 

not. The two-class label serves as the target of our prediction task.

Since the confusion label is true or false, our problem is a two-class classification problem. 

In theory, many machine learning approaches can be applied to this task. To take advantage 

of EEG data’s properties, we propose a confusion detection framework using LSTM 

Recurrent Neural Networks.

Ni et al. Page 3

ACM BCB. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 CONFUSION DETECTION FRAMEWORK

Based on the consideration that these data are continuous in time and the detection sample 

should not be too long to permit real-time processing, we propose a confusion detection 

framework as shown in Figure 1. The dataset provides EEG features organized by time. We 

then use Batch Normalization to normalize the value of each feature to have a mean of 0 and 

standard deviation of 1. We then train a Bidirectional LSTM model and evaluate its 

performance using 5-fold cross validation. We also test the contribution of each variable to 

the model and rank these contributions. The framework is designed as followed:

2.1 Feature Extraction

The EEG data can be downloaded from the Kaggle website [12], which provides open 

source data for various challenges. In the EEG dataset, 10 college students are asked to wear 

a wireless single-channel MindSet EEG device [13] that measured activity over the frontal 

lobe and to watch 10 2-minute long videos. The MindSet extracted the features that are 

shown in Table 1. “Attention” measures the mental focus of the student, and “Meditation” 

measures calmness. “Raw” is the average of the original EEG signals. The following 

features are values in different frequency regions of the power spectrum. The sampling 

frequency for the features extracted from the MindSet is 2 Hz. For each sample point, there 

are 14 features extracted from EEG signals, shown in Table 2.

“Subject id” ranges from 0 to 9, representing the subject of each recording, “video id” is the 

same for videos. We don’t use them as features in our model. In the feature representations, 

we also have power spectrum for specific frequencies, which are all continuous data.

For each subject watching a video, features are extracted at a sampling frequency of 2 Hz. 

The final features are truncated to around one-minute long. So there are around 120 sample 

features for each data point. For models the only accept fixed-length features, we took the 

minimum number of samples (112 samples at last) and concatenated all the time steps to 

create a single feature vector. For the LSTM, the length of the time-series data is 112, each 

with a 12-dimension feature. In the end there are 100 data points, each with 112 × 12 

features in total.

2.2 RNN-LSTM and Bidirectional LSTM

In RNNs, back propagation flows through many layers, passing through many stages of 

multiplication. During the training process, error messages flowing backward in time tend to 

either blow up, which may lead to oscillating weights, or vanish in which case they become 

too small to provide a learning signal.

Exploding gradients can be mitigated via truncation or squashing. Vanishing gradients are 

more difficult to fix. The Long Short-Term Memory RNN (LSTM) addresses this problem 

by introducing memory units to RNNs. The memory units help preserve the error signal so 

that it is large enough to be back propagated through time and layers, thereby opening a 

channel that links remote causes and effects. The architecture of the LSTM is shown in 

Figure 2.
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Given an input sequence X = (x1, x2, x3,…, xT), the hidden state in time t in RNN is defined 

as followed:

(1)

where Wh ∈ ℝdh×dh, Wx ∈ℝdx×dx, b ∈ ℝdh.

The architecture of the LSTM is defined as followed:

(2)

(3)

(4)

where Wh ∈ ℝdh×4dh, Wx ∈ ℝdx×4dx, σ is the logistic function, and the ⊙ operation is the 

Hadamard product.

LSTM RNNs can learn long-term temporal dynamics that traditional RNNs cannot. Using 

its memory cells, it learns to forget previous memories and considering the current input, 

determines how much of the memory to be transferred to the next hidden state. In our case, 

since EEG features arrive over time, the LSTM can incorporate context information across 

time to improve performance.

While LSTMs predict the current output based on previous inputs, bidirectional LSTMs 

predict the current output based on both the past and the future. The basic idea is to predict 

the future based on the past and predict the past based on the future, then take the average of 

these two outputs as the finial output. In this way both future and past context information 

can be utilized to improve performance.

In our framework, we set the Bidirectional LSTM layer to have 50 neural units. The 

activation function in the LSTM layer is tanh. After the LSTM layer, the hidden states are 

fed into a fully connected layer with a sigmoid activation function, which produces output 

value between 0 and 1.

2.3 Batch Normalization

Training Deep Neural Networks is complicated by the fact that the distribution of the inputs 

to each layer changes during training, as the parameters of the previous layers change [14]. 
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This slows down the training by requiring lower learning rates and careful parameter 

initialization, and makes it notoriously difficult to train models with saturating 

nonlinearities.

Recently, Ioffe et al. [10] proposed a Batch Normalization method which can be built as a 

sub-architecture into a model. Batch Normalization allows us to use much higher learning 

rates and be less careful about initialization. They showed that adding Batch Normalization 

to a state-of-the-art image classification model yields a substantial speedup in training. By 

further increasing the learning rates, removing Dropout, and applying other modifications 

afforded by Batch Normalization, their model matches the previous state of the art in only a 

small fraction of the number of training steps and then beats the state of the art in single-

network image classification. Batch Normalization is defined as:

(5)

where x is the vector that needs to be normalized. � ̂(x) and V̂ar (x) are the expectation and 

variance of the current mini-batch of x, respectively, ε is a constant added to the mini-batch 

variance for numerical stability, and β is a parameter to shift the normalized value.

In our framework, we normalize the training data in a feature-wise fashion (i.e., each feature 

dimension is normalized to have a mean of 0 and standard deviation of 1 across each batch 

of samples). The batch size is set to 20, which corresponds to our test data size. After Batch 

normalization, we put the normalized features into our Bidirectional LSTM model.

3 EXPERIMENTS

3.1 Baseline Models

To evaluate our framework’s performance, we designed several baseline machine learning 

approaches, listed in Table 3.

We apply three SVM classifiers using different kernel functions. We use grid search to tune 

the parameters C ranging in (1, 10, 100, 1000) and γ ranging in (10−3, 104) for each kernel, 

respectively. We also apply a K Nearest Neighbor classifier as another baseline method. We 

use different K parameter values ranging from 2 to 5 and choose the highest accuracy as the 

final result. To compare the results of different neural networks, we use Convolutional 

Neural Network, Deep Belief Network, and a single-layer LSTM Recurrent Neural Network 

(RNN-LSTM) to classify the EEG data.

3.2 Variable Selection

To test which feature of the EEG dataset contributes the most to our model, we propose a 

variable selection method to find the most important feature in our Bidirectional LSTM 

model. Not putting all the features into the model, instead we leave one single feature out. 

Then we run the experiments with the remaining features. After we get the average accuracy 
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across cross validation folds, we rank the accuracy from lowest to highest, providing the 

feature importance from highest to lowest.

4 RESULTS

4.1 Cross-Validation Results

To evaluate the models, we perform 5-fold cross validation. The result is shown in Table 4.

The results show that the Bidirectional LSTM achieves the best performance compared to 

the other methods. Due to the nature of the dataset, the Deep Belief Network cannot 

approximate the data distribution with only 100 data points. Neither can the Convolutional 

Neural Network or K-Nearest Neighbors classifier. The SVM with linear kernel performs 

similarly to the RNN-LSTM, and outperforms the SVMs with more complex kernels. This 

result implies that the feature space is almost linearly separable. Classifying the data in this 

linear space is better than other spaces, which may cause overfitting.

Then we evaluated the robustness of the RNN-LSTM model and the Bidirectional LSTM 

model by analyzing the accuracy of each iteration of cross validation. The results are shown 

in Figures 3 and 4

The accuracy across the five folds of the RNN-LSTM model varies from 60 percent to 85 

percent, while that of the Bidirectional LSTM model varies from 71 percent to 74 percent. 

These results show that the Bidirectional LSTM model not only outperforms all the other 

methods, but also is consistent.

4.2 Variable Selection

To find the feature that makes the most contribution to the model, we ran 12 experiments, 

each leaving out one feature. The accuracy of each of these classifiers is shown in Figure 5. 

From the rank among accuracies, we can see that losing feature 10, which is the gamma-1 

feature, decreases the accuracy the most. The beta-2 and attention features also lead to large 

decreases in performance. Based on the rank of the features, we can select the most 

important features for the confusion detection system. In this way we can still maintain high 

accuracy and also make it possible for the system to detect confusion in real time.

We also found that the pre-defined video label contributed the least to our Bidirectional 

LSTM model’s accuracy. The subjective judgment of video difficulty of the experiment 

designer is different from that of the students, a very interesting point. This can help teachers 

identify topics that students don’t understand, while the teachers may think the class is easy 

for students.

For this specific dataset, it is hard to build a model from so few examples. Hence for deep 

neural networks such as the DBN and CNN it is hard to tune the parameters perfectly and 

easy to overfit. However, for the LSTM, though different time steps (i.e. feature for each 0.5 

second) input to the LSTM share the same weights in the neural network, the forget gate can 

learn how to make use of previous hidden states. Bidirectional LSTMs make use of 
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sequential information in both directions and learn a better representation. Adding context 

information helps us build a more robust and accurate model.

5 CONCLUSIONS

We have proposed a Bidirectional LSTM Recurrent Neural Network framework to detect 

students’ confusion when watching online course videos. The accuracy achieved by our 

model is higher than other machine learning approaches including a single-layer RNN-

LSTM model and achieves the state-of-the-art result. The architecture of the Bidirectional 

LSTM model takes advantage of time-series features and helps improve performance. By 

analyzing the contribution of each feature to the model, we find the “gamma-1” and 

“attention” features are the most important in this task. We plan to validate our model on a 

larger EEG dataset. We also plan to apply our Bidirectional LSTM model on other EEG-

related tasks, such as driver drowsiness detection.
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Figure 1. 
Framework of Bidirectional LSTM model.
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Figure 2. 
Architecture inside LSTM cell.
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Figure 3. 
Accuracy variation of RNN-LSTM model.
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Figure 4. 
Accuracy variation of Bidirectional LSTM model.
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Figure 5. 
Accuracy without specific feature from 12 features. Ranked from lowest accuracy to highest.
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Table 1

Features extracted from MindSet. Table from [5]

Features Description Sampling rate Statistic

Attention Proprietary measure of mental focus 1 Hz Mean

Meditation Proprietary measure of calmness 1 Hz Mean

Raw Raw EEG signal 512 Hz Mean

Delta 1–3 Hz of power spectrum 8 Hz Mean

Theta 4–7 Hz of power spectrum 8 Hz Mean

Alpha1 Lower 8–11 Hz of power spectrum 8 Hz Mean

Alpha 2 Higher 8–11 Hz of power spectrum 8 Hz Mean

Beta1 Lower 12–29 Hz of power spectrum 8 Hz Mean

Beta 2 Higher 12–29 Hz of power spectrum 8 Hz Mean

Gamma1 Lower 30–100 Hz of power spectrum 8 Hz Mean

Gamma2 Higher 30–100 Hz of power spectrum 8 Hz Mean
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Table 2

Features with index.

F1 Attention

F2 Meditation

F3 Raw

F4 Delta

F5 Theta

F6 Alpha1

F7 Alpha2

F8 Beta1

F9 Beta2

F10 Gamma1

F11 Gamma2

F12 Predefined Label

F13 Subject id

F14 Video id
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Table 3

Baseline classification methods for classifying confusion.

Baseline Classification Methods

SVM (linear kernel)

SVM (rbf kernel)

SVM (sigmoid kernel)

K-Nearest Neighbors

Convolutional Neural Network

Deep Belief Network

RNN-LSTM
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Table 4

Average accuracy for 5-fold cross validation.

Classification methods Accuracy(%)

SVM (linear kernel) 67.2

SVM (rbf kernel) 51.3

SVM (sigmoid kernel) 51.0

K-Nearest Neighbors 51.9

Convolutional Neural Network 64.0

Deep Belief Network 52.7

RNN-LSTM 69.0

Bidirectional LSTM 73.3
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