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Abstract

Objective: Congenital hypogonadotropic hypogonadism (CHH) and constitutional delay of growth and puberty (CDGP) 

represent rare and common forms of GnRH de�ciency, respectively. Both CDGP and CHH present with delayed puberty, 

and the distinction between these two entities during early adolescence is challenging. More than 30 genes have been 

implicated in CHH, while the genetic basis of CDGP is poorly understood.

Design: We characterized and compared the genetic architectures of CHH and CDGP, to test the hypothesis of a shared 

genetic basis between these disorders.

Methods: Exome sequencing data were used to identify rare variants in known genes in CHH (n = 116), CDGP (n = 72) and 

control cohorts (n = 36 874 ExAC and n = 405 CoLaus).

Results: Mutations in at least one CHH gene were found in 51% of CHH probands, which is signi�cantly  

higher than in CDGP (7%, P = 7.6 × 10−11) or controls (18%, P = 5.5 × 10−12). Similarly, oligogenicity  

(de�ned as mutations in more than one gene) was common in CHH patients (15%) relative to  

CDGP (1.4%, P = 0.002) and controls (2%, P = 6.4 × 10−7).

Conclusions: Our data suggest that CDGP and CHH have distinct genetic pro�les, and this  

�nding may facilitate the differential diagnosis in patients presenting with delayed puberty.
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Introduction

Congenital hypogonadotropic hypogonadism (CHH 

(MIM: 146110)) is a rare disorder affecting approximately 

1 in 4000 births (1). It is caused by GnRH deficiency, 

and subsequently results in altered activation of the 

hypothalamic–pituitary–gonadal (HPG) axis that 

controls sexual maturation and fertility. Clinically, CHH 

presents as absent/incomplete puberty and infertility. It 

is characterized by isolated low sex steroids in the setting 

of low (or inappropriately normal) serum gonadotropins 

in the absence of other hypothalamo-pituitary defects. 

Clinically, CHH is a heterogeneous disorder. In the presence 

of anosmia (the inability to smell) in approximately 50% 

of CHH probands, the condition is termed Kallmann 

syndrome (KS (MIM: 308700)). Other associated 

phenotypes such as hearing loss, synkinesia, renal agenesis, 

ataxia and cleft lip/palate are also observed with variable 

frequency (2). Interestingly, a higher than expected 

proportion (10%) of family members of CHH probands 

report a history of delayed puberty (3). Moreover, reversal 

of hypogonadotropic hypogonadism in CHH patients after 

discontinuing hormone therapy also points to a clinical 

overlap between the two entities (4). Therefore, congenital 

delay of growth and puberty (CDGP), also termed self-

limited delayed puberty, and CHH appear to be part of the 

same clinical spectrum – one being classically described as 

transient (CDGP) and the other as permanent (CHH) (3). 

In contrast to CHH, CDGP is a common disease, observed 

in 2–2.5% of the population (5).

Since the initial genetic report implicating KAL1 

(now ANOS1) (6, 7), the genetics of CHH has been widely 

studied. Similar to its diverse clinical presentation, the 

genetic architecture of CHH is also heterogeneous, with 

several modes of inheritance having been described 

including autosomal dominant, autosomal recessive, 

X-linked and de novo. Mutations in more than 30 genes 

have been shown to cause CHH (2); however, they only 

account for approximately 35% of cases (8). Defects 

in genes involved in GnRH neuron development and 

olfactory system usually result in KS, whereas mutations 

in genes involved in GnRH secretion or homeostasis 

result in normosmic CHH (nCHH). Interestingly, clinical 

overlap between KS and nCHH has been reported, with 

a disease spectrum rather than a binary classification for 

normosmic and anosmic (9). In parallel, genetic overlap 

between KS and nCHH also exists, with several genes 

mutated in both subgroups (2).

Although long thought to be a monogenic disorder, 

frequent observations of incomplete penetrance and 

variable expressivity within and across families suggested 

this model was insufficient to fully explain the observed 

phenotypes in CHH. Indeed, previous work by our team 

and others has shown that oligogenic inheritance (i.e. 

more than one gene mutated in the same individual) 

can at least partially explain some of these phenomena 

(8, 10). Synergistic effects between CHH genes have been 

also described in vitro (e.g. FGF8/FGFR1) (11) and in vivo 

(e.g. KISS1/KISS1R) (12). Oligogenicity has been proposed 

in heterogeneous genetic disorders such as Bardet–Biedl 

syndrome (BBS) (13) and retinitis pigmentosa (14). In 

addition, oligogenicity is also proposed for other endocrine 

diseases such as premature ovarian failure (15, 16) with 

the constellation of more than one gene mutated.

Pubertal timing is a highly heritable trait as up to 

50–80% of the variance is explained by genetic factors 

(17). Consistently, CDGP runs in families with complex 

inheritance pattern (18), but in contrast to CHH, little 

is known about the genetics of CDGP. A recent study 

identified mutations with low frequencies (MAF <2.5%) 

in IGSF10 in 13% of CDGP probands. IGSF10 is a large 

protein that is part of the immunoglobulin superfamily 

and appears to have a developmental role in GnRH neuron 

migration (19). In addition, genome-wide association 

studies (GWAS) evaluating common and rare variants in 

the timing of puberty identified significant associations 

with hundreds of loci, including regions near or within 

ANOS1, TACR3, LEPR and PCSK1 – four known CHH 

genes. Taken together, these loci account for <3% of the 

variance in age of puberty onset (20, 21). In view of the 

possible overlap between the pathophysiology of delayed 

puberty and conditions of GnRH deficiency, few studies 

have searched for mutations in CHH genes in CDGP 

cohorts. A homozygous partial loss-of-function mutation 

in GNRHR was found in two brothers, one with CDGP and 

one with CHH (22). Of 50 CDGP patients investigated for 

mutations in TAC3 and TACR3, only one mutation in a 

single patient was found in the latter gene (23). However, 

a recent study screening 21 CHH genes in a CDGP cohort 

(n = 56) found potentially pathogenic mutations in 14% 

of patients (3). Recently, low frequency (MAF <2.5%) 

potentially pathogenic variants in IGSF10 were found in 

10% of CHH patients (19), suggesting the hypothesis of a 

partial genetic overlap between CHH and CDGP.

Currently, the differential diagnosis between CHH 

and CDGP at early adolescence remains challenging, as 

both conditions present with isolated delay in puberty. 

Further, there are no specific biochemical markers to 

accurately differentiate these two disorders (24). In the 

current study, we explored the genetic architecture of 

Downloaded from Bioscientifica.com at 08/27/2022 03:55:16AM
via free access



E
u

ro
p

e
a
n

 J
o

u
rn

a
l 
o

f 
E
n

d
o

cr
in

o
lo

g
y
178:4 379Clinical Study D Cassatella and others Diverse genetic patterns in CHH 

and CDGP

www.eje-online.org

both CHH and CDGP and to investigate whether genetic 

testing could assist in the differential diagnosis. We also 

characterized the genetic overlap between KS and nCHH 

using a comprehensive screening of all CHH genes and 

defined the mutational spectrum of CHH genes in the 

control population.

Subjects and methods

Patient and control cohorts

The study cohort includes 116 CHH probands of European 

descent (n = 61 KS, n = 55 nCHH) with a 2:1 male-to-

female ratio consistent with previous reports of male 

predominance (1). The diagnosis of CHH was determined 

by (1) absent or partial puberty by 17 years (25), (2) low/

normal serum gonadotropin levels in the setting of low 

serum testosterone/estradiol levels, (3) otherwise normal 

anterior pituitary function and (4) normal imaging of the 

hypothalamic–pituitary area (25). Olfaction was assessed 

by self-report and/or formal testing (9) using the UPSIT or 

Sniffin’ Stick tests. When possible, family members were 

recruited for clinical and genetic studies.

The delayed puberty cohort consists of 72 unrelated 

probands with CDGP of primarily Finnish European 

origin and has been previously described in detail (26). 

All patients met the diagnostic criteria for CDGP, defined 

as (1) onset of Tanner genital stage II two SDs later than 

population average (i.e. in boys testicular volume >3 mL 

after 13.5  years of age and in girls Tanner breast stage 

II after 13.0  years of age) (27). Medical history, clinical 

examination and routine laboratory tests were performed 

to exclude chronic illnesses, and the diagnosis of CHH 

was ruled out by spontaneous pubertal development 

at follow-up. All patients were followed until near-full 

pubertal development was attained (i.e., Tanner stage 4).

Ethnically matched controls (non-Finnish European 

(NFE) and Finnish European (FIN)) from the Exome 

Aggregation Consortium (ExAC) (28) were used for 

individual variant and gene mutation frequencies. 

Oligogenicity was assessed using the ‘Cohorte 

Lausannoise’ (CoLaus) control population, consisting of 

405 participants of mixed European origin, phenotyped as 

described by Firmann and coworkers (29). This population-

based cohort was assembled as part of a cardiovascular 

risk study, and therefore, has a typical distribution of 

pubertal age relative to the general population. The ages 

of the cohort participants are 35–75  years old (mean 

51 ± 11 years).

DNA extraction and sequencing

DNA was extracted from peripheral blood leukocytes 

using the PureGene kit (QIAGEN). Exome sequencing 

was performed on CHH and CDGP cohorts using the 

SureSelect V2 or V5 probes (Agilent) or the Nimblegen 

SeqCap EZ Exome V2 (Roche) and sequenced on the HiSeq 

2000 platform (Illumina, San Diego, CA, USA) at either 

BGI (BGI, Shenzen, PRC) or Otogenetics (Otogenetics 

Corp., Atlanta, GA, USA). Exome sequencing on CoLaus 

DNA was performed at the Wellcome Trust Sanger 

Institute (WTSI) as part of a partnership between the 

Institute, the CoLaus principal investigators and the 

Quantitative Sciences department of GlaxoSmithKline 

(GSK, Brentford, UK).

De�nition of genes to be screened

‘CHH genes’ are those which met the following criteria: 

(1) identified as CHH genes in Boehm and coworkers 

(2), (2) had publications demonstrating loss-of-function 

variants, (3) had been demonstrated to be expressed in 

organs/tissues relevant for GnRH biology and (4) covered 

by the exome capture probes. Twenty-four genes met these 

criteria: ANOS1, SEMA3A, FGF8, FGF17, SOX10, IL17RD, 

AXL, FGFR1, CHD7, HS6ST1, PCSK1, LEP, LEPR, FEZF1, 

NSMF, PROKR2, WDR11, PROK2, GNRH1, GNRHR, KISS1, 

KISS1R, TAC3 and TACR3. In addition, we screened the 

IGSF10 gene, recently implicated in CDGP and CHH (19).

Bioinformatics analysis and downstream 

variants �ltering

Exome sequences from CHH probands, CDGP probands 

and CoLaus controls were analyzed following the 

Genome Analysis Toolkit (GATK) Best Practices (30). The 

computations were performed at the Vital-IT Center for 

High-Performance Computing of the Swiss Institute of 

Bioinformatics. Variants called with a genotype quality 

(GQ) <50 were excluded. The complete set of CHH 

gene variants from the ExAC database was downloaded 

from the ftp site (ftp://ftp.broadinstitute.org/pub/ExAC_

release/release0.3). Annotation was performed using 

SnpEff (31), version 4.0. Intronic variants within ±6 bp 

of exonic boundaries and predicted to affect splicing by 

MaxEnt (32) with a wild-type vs mutated site change of 

±20% were retained, as well as inframe/frameshift indels, 

stop gain, and missense variants. Protein-truncating 

variants (PTVs) were defined as frameshift, stop gain and 

splice variants (28).
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For the purpose of this study, we define as mutations 

(1) rare (MAF <1%) PTVs, (2) rare missense variants 

predicted to be damaging to protein function by at least 

one in silico algorithm (SIFT (33) or PolyPhen-2 (34)) and 

(3) loss-of-function variants based on in vitro studies, 

regardless of in silico predictions.

Statistical analyses

Statistics for individual and oligogenic variants in cases 

vs controls were performed using a two-tailed Fisher’s 

exact test. Gene-based allele frequencies in ExAC were 

calculated dividing the sum of alternate allele counts in 

ethnically matched samples with the average of alleles 

inspected. Gene-collapsed rare variant association 

(RVA) tests in cases vs controls were calculated using 

mutated allele frequencies in a two-tailed Fisher’s exact 

test. Statistical significance in gene-based RVA tests was 

defined using Bonferroni correction, dividing nominal 

significance (0.05) with the number of tests performed 

(i.e. genes analyzed, n = 25); hence, the cutoff to determine 

significance was set at P = 0.002.

Ethics approval and consent to participate

This study was approved by the ethics committee of the 

University of Lausanne. All participants provided written 

informed consent prior to study participation. The 

study protocol was approved by the Ethics Committee 

for Paediatrics, Adolescent Medicine and Psychiatry, 

Hospital District of Helsinki and Uusimaa (and extended 

to encompass Kuopio, Tampere and Turku University 

Hospitals) (570/E7/2003). UK ethical approval was 

granted by the London-Chelsea NRES committee (13/

LO/0257). The study was conducted in accordance with 

the guidelines of The Declaration of Helsinki.

Results

CHH genes are mutated in 51% of CHH probands 

but only in 7% in CDGP probands

Exome sequencing was performed on 116 CHH probands, 

and 59 (51%) harbored mutations in 20 of the 25 genes 

evaluated (Fig. 1A and Supplementary Table 1, see section 

on supplementary data given at the end of this article). 

No mutations were identified in NSMF, FEZF1, PCSK1, LEP 

and LEPR. Nearly two-thirds of familial CHH probands 

carried mutations in CHH genes (27/44, 61%), while the 

frequency in sporadic probands was lower (32/72, 44%) 

(Supplementary Fig. 2).

FGFR1 and CHD7 were the most frequently mutated 

genes in CHH probands (Fig.  1A), and both were 

statistically enriched for mutations compared to ExAC 

NFE controls (Table 1 and Supplementary Fig. 1). All of 

the identified FGFR1 and CHD7 mutations were present in 

a heterozygous state (Supplementary Table 2). In addition, 

a significant enrichment of mutations was observed for 

SOX10, with a prevalence of 4% in CHH patients (Table 1 

and Supplementary Table 1).

Figure 1

KS and nCHH display both shared and 

speci�c genetic patterns, and CDGP is not 

characterized by genetic overlap with 

CHH. Histograms showing CHH genes and 

IGSF10 mutational prevalence in (A) CHH, 

(B) KS, (C) nCHH, (D) CDGP, (E) CoLaus, 

and (F) ExAC Finnish (FIN) cohorts. The 

prevalence of probands with variants in 

each gene are noted in black for 

nonsynonymous (i.e. missense and 

inframe InDels), white for splicing, and 

gray for nonsense (i.e. frameshift and stop 

gained) variants.
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Exome sequencing identified 7% (n = 5) of CDGP 

probands harboring mutations in the known CHH genes, 

all of which are heterozygous (Fig. 1D and Supplementary 

Table 3). Thus, the genetic profile of the CDGP cohort more 

closely resembles the controls (both ExAC Finnish and 

non-Finnish controls) rather than CHH probands. Among 

the six identified mutations, there were five missense and 

one intronic change predicted to affect splicing. Three 

mutations were private compared to 3307 Finnish ExAC 

controls. Only one CDGP proband harbored two mutated 

genes (oligogenicity) (1.4%, P = 0.002 vs CHH), a similar 

rate as observed in controls ( and Supplementary Table 2). 

Clinically, this CDGP patient had spontaneous puberty at 

14.3 years and achieved normal adult testicular volume 

and testosterone levels over the subsequent 2.4  years, 

thereby excluding a diagnosis of CHH.

Prevalence of putative IGSF10 mutations in  

CHH is similar to CDGP

We found a large number of CHH patients (19/116, 16.4%) 

harboring putative IGSF10 mutations compared to CDGP 

(8/72, 11.1%) (Fig.  1A, B, C and D). Our data did not 

show enrichment for mutations in our cohorts as similar 

frequencies were seen in controls (Fig. 1A, B, C and D).

KS and nCHH show both exclusive and shared 

genetic architectures

We examined the mutational spectrum relative to the 

two subgroups of CHH – KS (n = 61) and nCHH (n = 55). 

Among KS, FGFR1 and CHD7 were the most frequently 

mutated genes, and together with SOX10 are significantly 

enriched when compared to controls (Fig. 1B and Table 1). 

This finding is even more robust when evaluating the KS 

subgroup alone. Similarly, FGF8 showed a prevalence of 

1.6% in KS; yet, this association was not evident in the 

CHH cohort as a whole. Mutations in ANOS1, SEMA3A, 

FGF17 and FGF8 were only found in KS.

Among normosmic probands (nCHH), FGFR1 and 

CHD7 were also the most frequently mutated genes. 

Mutations in GNRHR and TACR3 were only found in 

nCHH (7% and 5%, respectively) (Fig. 1C). Further, FGFR1, 

KISS1, GNRHR and TACR3 were significantly enriched in 

nCHH cases compared to ExAC NFE controls (Table 1).

In addition to FGFR1 and CHD7, six other CHH genes 

(SOX10, IL17RD, AXL, HS6ST1, PROKR2 and WDR11) 

were mutated in both KS and nCHH (Fig. 1B and C). This 

represents an increased genetic overlap in comparison 

to prior report (2). Overall, these results indicate both 

exclusive and shared genetic architectures for both KS and 

nCHH.

nCHH probands are enriched with  

biallelic mutations

Biallelic mutations (i.e. homozygous or compound 

heterozygous changes in the same gene) were found 

exclusively in nCHH (6/55, 11%) and were not seen in 

KS (P = 0.01), CDGP (P = 0.006) or in CoLaus (P = 2.3 × 10−6) 

(Fig. 2). Furthermore, 4/15 (27%) genes mutated in nCHH 

(GNRHR, GNRH1, PROKR2, PROK2, TACR3) only exhibited 

biallelic mutations, consistent with their recessive mode 

of inheritance (Fig. 2C and Supplementary Table 1).

Figure 2

The majority of CHH genes are inherited 

in a oligogenic fashion in CHH probands, 

a trend not observed in CDGP probands 

and CoLaus controls. Histograms showing 

CHH genes mutational prevalence in (A) 

CHH, (B) KS, (C) nCHH, (D) CDGP and (E) 

CoLaus screened individuals. Each bar 

contains the frequency of each gene 

inheritance: monoallelic (gray), biallelic 

(yellow) or oligogenic (red).
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Oligogenicity is a common factor in CHH patients

Oligogenicity was present in 17/116 (15%) of CHH 

probands (Fig.  3) – a higher frequency than previous 

reports of 2.5–7% (8, 10). A significantly lower rate of 

oligogenicity was observed in controls (CoLaus: 2%, 

P = 6.4 × 10−7).

Additionally, although monogenic inheritance was 

more frequent in KS (46%) compared to nCHH (25%, 

P = 0.03), CDGP (6%, P = 3.7 × 10−8) and CoLaus (16%, 

P = 4.6 × 10−7), similar frequencies of oligogenicity were 

identified in both KS (13%) and nCHH (16%) (Fig. 3 and 

Supplementary Table 3).

Among the 20 mutated genes identified in CHH 

patients, 84% (n = 16 genes) participated in oligogenicity 

(Fig. 2A). Of these 16 genes, mutations in IL17RD, HS6ST1, 

KISS1R and TAC3 occurred exclusively in an oligogenic 

manner. ANOS1, FGF17, KISS1 and PROK2 were the 

only genes exclusively showing monogenic inheritance 

(Fig. 2A).

Among possible gene combinations, FGFR1 and CHD7 

was the most frequent pair interaction (n = 4), followed by 

FGFR1/IL17RD and CHD7/HS6ST1 (n = 2) (Fig.  4A). One 

KS proband (Fig.  4B, Pedigree 1) carrying mutations in 

both CHD7 and FGFR1, had two daughters after receiving 

fertility treatment. One of them carried both mutations 

and was eventually diagnosed with KS, while the second 

unaffected daughter did not harbor either of the two 

changes. In Pedigree 2, we identified three mutated 

genes (FGFR1, CHD7 and SOX10) in a KS proband. His KS 

brother showed overlapping FGFR1 and SOX10 mutations. 

As there were no phenotypic differences between the 

proband and his sibling, the CHD7 mutation is likely not 

critical in the etiology of KS for this pedigree. Last, we 

identified a KS proband (Fig. 4B, Pedigree 3) harboring an 

IL17RD mutation inherited from his anosmic mother and 

a de novo FGFR1 mutation. We did not identify any CHH 

gene mutations in the anosmic father or the unaffected 

brother.

The majority of mutations in CHH probands 

are private

When assessing the mutations identified in CHH 

probands, more than half of them (38/68, 56%) were 

not found in the ExAC NFE controls (n = 33  370), and 

therefore, are private.

In total, we identified 1492 putative mutations in 

ExAC NFE controls and 80 mutations in 72/405 (18%) 

CoLaus controls. However, the majority of mutations 

in CoLaus (89%, P = 6.6 × 10−4) (Fig.  2E) occurred in a 

monoallelic pattern. Given the variant-based (rather than 

sample-based) nature of the ExAC database, the allelic 

patterns in these controls could not be assessed.

Protein-truncating variants are enriched in 

CHH probands

PTVs are defined as changes predicted to severely disrupt 

genes, i.e. splicing, frameshift and stop gain variants. 

A large fraction of the discovered mutations in CHH 

probands were PTVs (20/68, 29%), while the frequency 

was significantly lower (5%) in ExAC NFE controls 

(P = 1.0 × 10−9). Overall, 18% (n = 21) of patients in our 

cohort harbored at least one PTV in the known CHH 

genes. Specifically, the CHH cohort was enriched for splice 

variants in FGFR1 (2.6%, P = 1.7 × 10−4) and for frameshift/

stop gain variants in FGFR1 (8%, P = 6.9 × 10−13), SOX10 

(1.7%, P = 1.2 × 10−5) and TACR3 (1.7%, P = 4.9 × 10−3) 

when compared to ExAC NFE.

We observed that 80% of PTVs in CHH were in 

genes with a high constraint to this type of variants (i.e. 

probability of being loss-of-function intolerant – pLi >0.9) 

Figure 3

Oligogenicity is a common factor in CHH, and it is not found 

in CDGP. Histogram showing the frequency of KS (red), nCHH 

(yellow), CHH (orange), CoLaus (blue) and CDGP (green) 

individuals having no rare variants in CHH genes, one gene 

mutated or at least two genes mutated (oligogenicity). 

Differences between KS, nCHH and CHH vs CoLaus controls 

were analyzed via a two-sided Fisher’s exact test. P < 0.05 was 

considered signi�cant. *P < 0.05; **P < 0.01; ***P < 0.001; 

****P < 0.0001. Not signi�cant differences among KS, nCHH 

and CHH vs CoLaus are not displayed.
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(28), a higher frequency than in ExAC controls (P = 0.002). 

Conversely, the majority of PTVs in ExAC (60%) were present 

in PTV-tolerant genes (pLi <0.1) (Fig.3 and Supplementary 

Fig.  4). Furthermore, a large majority of PTVs found in 

CHH probands (16/20, 80%) are heterozygous and occur in 

CHH genes where mutations are inherited in an autosomal 

dominant mode. Moreover, all of the PTVs identified 

in CHH probands likely result in haploinsufficiency, as 

they do not lie within the last exon (or in last 50 bp of 

penultimate exon) and are therefore likely to be subjected 

to nonsense-mediated decay (NMD) (35).

Discussion

CDGP and CHH are part of a continuum of GnRH 

deficiency, ranging from transiently delayed to a 

complete absence of puberty. However, it is challenging 

to make a clinical distinction between CHH and CDGP 

in adolescents presenting with delayed puberty. In this 

study, we investigated the genetic overlap between these 

two conditions focusing on rare variants in known 

CHH genes and IGSF10, a gene recently identified in 

CDGP. CHH and CDGP differ in terms of the number of 

patients harboring mutations in individual CHH genes 

(51% vs 7%), as well as the overall mutational load in 

CHH genes (oligogenicity). In both instances, the CDGP 

probands more closely resembled the control cohort. 

We also observed similar frequencies of putative IGSF10 

mutations in CDGP and CHH probands, although 

higher than previously reported (19). It is important to 

note, however, that the previous study by Howard and 

coworkers utilized a different filtering strategy to identify 

low-frequency variants, specifically focusing on variants 

with MAF of <2.5% – a level consistent with the frequency 

of CDGP. Notably, the present study focused on variants 

with MAF <1.0% given the rarity of the CHH phenotype. 

Thus, it is not surprising that different results would be 

achieved. This would suggest that variants with MAF 

1.0–2.5% may contribute more strongly to the CDGP 

phenotype. Indeed, the most frequent IGSF10 variant in 

the CDGP cohort (p.Glu161Lys) has a MAF of 2.0% in 

the Finnish population. In the current study, the variants 

identified have not been functionally validated nor has 

segregation with trait within pedigree been analyzed, 

both of which were used to identify definitive pathogenic 

variants in the previous study by Howard and coworkers. 

Furthermore, the lack of an association of IGSF10 

mutations with CDGP or CHH in the current study may 

reflect a limitation of rare variant burden testing. It is 

possible that in a very large gene such as IGSF10, there 

may be a large number of non-causal variants or both 

Figure 4

FGFR1 and CHD7 are frequently inherited 

in digenic fashion among CHH probands. 

(A) Matrix showing shading-coded 

frequencies CHH genes digenic 

combinations. (B) Available pedigrees of 

CHH probands displaying oligogenic 

inheritance. Circles denote females; 

squares denote males; arrows depict 

probands; WT denotes wild-type.
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protective and deleterious variants, and the proportion 

of these may vary between different populations. In 

summary, the current data show that the genetic profile 

of the Finnish CDGP patients, while enriched for rare 

putative pathogenic variants in IGSF10 as compared to 

ethnically matched controls, closely resemble the profile 

of both ExAC Finnish and non-Finnish control cohorts 

with respect to known CHH genes.

Recent GWAS studies have identified hundreds of loci 

associated with puberty onset in the general population 

(20, 21), with several signals lying close to or within CHH 

genes suggestive of a genetic overlap between CHH and 

CDGP. However, GWAS signals may result from intergenic, 

intronic, promoter or other regulatory changes that are 

not detected by exome sequencing. Therefore, our results 

in CHH and CDGP patients could have missed pathogenic 

mutations in regulatory regions. Notably, a genome-wide 

significant signal in the coding sequence was reported in 

TACR3 (p.Trp275*), a mutation identified in nCHH in this 

report as well as in previous studies (8, 36, 37). Although 

prior GWAS studies have not identified an association 

for its ligand TAC3, we identify mutations in TAC3 in 

both CHH and CDGP cohorts. Further, TAC3 mutations 

were previously reported in CHH as well as CDGP 

(3). Combined, these data implicate the neurokinin B 

pathway in both CHH and CDGP. We propose that larger 

studies examining pathways rather than individual genes 

identified by GWAS are required to further elucidate the 

genetic overlap between CHH and CDGP.

Using whole exome sequencing to examine a larger 

number of CHH genes in our study, we identified mutations 

in 51% of CHH cases. This is increased in relation to prior 

reports of 31% (10) and 35% (8) respectively. Our data are 

mostly consistent with a recent publication by Francou 

et al. (38) that evaluated a large cohort of nCHH patients 

of European descent for pathogenic variants in KISS1R, 

GNRHR, TACR3, KISS1, TAC3 and GNRH1.

We report a genetic overlap between KS and nCHH. 

Using a gene-collapsed rare variant association study 

(RVAS) on the entire CHH cohort, we found significant 

associations for FGFR1, CHD7 and SOX10. Separating 

CHH into KS and nCHH, the burden test remained 

significant for FGFR1 in both subgroups while CHD7 and 

SOX10 were significant only for KS. Notably, significant 

association appears for FGF8 in KS while GNRHR, TACR3 

and KISS1 showed association only in nCHH. A significant 

enrichment of rare variants in the RNF216 gene was 

recently shown in patients with CHH and cerebellar ataxia 

(39). In contrast, no enrichment in KISS1 rare variants 

was detected in 1025 CHH patients, without respect to 

the phenotypic subgroups (12). These data point toward 

the importance of phenotypic clustering to identify novel 

associated genes (8, 40). Finally, our results show that such 

burden tests might miss associations in important genes 

like KISS1R, because of the low frequency of rare variants 

in both patient and control population.

Oligogenicity occurs in our study in 15% of CHH 

cases as compared to 2.5% and 7% in previous reports 

(8, 10) using nearly identical strategies for variant 

classification. This increase is due in part to the 

increased number of CHH genes screened using exome 

sequencing. Although this study does not provide 

molecular evidences of oligogenic interactions, previous 

studies demonstrated that oligogenicity is a critical 

factor in CHH pathogenesis (8, 11, 41). Recent guidelines 

from the American College of Medical Genetics aid in 

the identification of pathogenic variants in a clinical 

setting (42). While these guidelines are suited only 

for monogenic disorders, they do provide a structured 

framework from which to evaluate variants. Using these 

guidelines, all ACMG pathogenic or likely pathogenic 

variants were also classified as pathogenic in the current 

study (Supplementary Table 2). However, a large number 

of pathogenic variants detected in the current study 

were classified as unknown significance using ACMG 

guidelines. This is primarily due to the weight assigned 

to (i) familial segregation that is not applicable in the 

setting of oligogenicity and (ii) detection of de novo 

mutations that was not possible in this study as parental 

DNA was not available for most probands.

The combination of mutations in both FGFR1 and 

CHD7 occurred most frequently (n = 4 probands). These 

two genes might play coordinated roles during GnRH 

neuron development and migration as CHD7 regulates 

the transcription of Fgf8, a major ligand for FGFR1 in 

GnRH neuron ontogeny (11). Moreover, both FGFR1 and 

CHD7 are expressed in relevant tissues for CHH, such as 

the olfactory bulb and hypothalamus (43). A previous 

report also suggested functional interactions between 

these genes, as CHH patients with mutations in FGFR1 

and CHD7 exhibit overlaps in associated phenotypes 

(cleft lip/palate, coloboma or ear anomalies) (44).

One notable exception to oligogenicity was ANOS1 –  

which was inherited in an exclusively monoallelic fashion 

due to its X-linked recessive mode of inheritance and 

high penetrance. Mutations in other genes such as TAC3, 

KISS1, PROK2 and PROKR2 were primarily biallelic and 

oligogenic interactions were not observed – likely due 

to their recessive mode of inheritance. Interestingly, the 

frequency of monogenic inheritance in KS was significantly 
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higher than in nCHH. To date, it is unclear whether this 

difference is due to distinct genetic architecture or that 

‘missing’ partners in an oligogenic inheritance for KS 

have yet to be discovered.

We discovered putatively pathogenic mutations in 

CHH genes in up to 17% of controls, which at first glance 

seems counterintuitive. Importantly, oligogenicity was 

only rarely found in controls (2%), further supporting the 

oligogenic model of CHH pathogenesis. Additionally, many 

of the putative heterozygous mutations in controls were 

found in genes with an autosomal recessive inheritance, 

which would explain the lack of obvious reproductive 

phenotypes among controls. Further, CHH and controls 

differ markedly for PTVs (29% vs 5%, respectively), and 

the PTVs in controls were less likely to be pathogenic.

This study expands our understanding of the genetic 

architecture of both CHH and CDGP and highlights 

the very large proportion of cases of CDGP that are not 

explained by mutations in known genes. Further, the 

genetic profiles of CHH and CDGP appear to be distinct 

with respect to the 25 CHH genes studied here, with the 

understanding that ethnic differences between groups 

(European vs Finnish) could contribute to this finding. 

This observation may facilitate differential diagnosis of 

CHH and CDGP in early adolescence when a clear and 

early diagnosis is critical to initiate timely induction of 

puberty in patients with CHH. A genetic test resulting in 

(1) more than one CHH gene mutated (oligogenicity), 

(2) hemizygous ANOS1 mutations in male patients or (3) 

biallelic mutations in genes associated with autosomal 

recessive inheritance would favor a diagnosis of CHH. 

Additional comprehensive studies in larger cohorts may 

enable genetic testing to inform a more precise differential 

diagnosis in the clinical setting.

Supplementary data

This is linked to the online version of the paper at https://doi.org/10.1530/

EJE-17-0568.
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