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ABSTRACT

The performance of in-network caching in information-
centric networks, and of cache networks more generally, is
typically characterized by network-centric performance met-
rics such as hit rate and hop count, with approaches to locat-
ing and caching content evaluated and optimized for these
metrics. We believe that user-centric performance metrics,
in particular the delay from when a content request is made
by the user to the time at which the requested content has
been completely downloaded, are also important. For such
metrics, performance is often determined by link capacity
constraints and network congestion. We investigate net-
work cache management and search policies that account for
path-level (content-server to content-requestor) congestion
and file popularity in order to directly minimize user-centric,
content-download delay. Through simulation, we find that
our policies yield significantly better download delay per-
formance than existing policies, even though these existing
policies provide better performance according to traditional
metrics such as cache hit rate and hop count.
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1. INTRODUCTION
A key component of many information-centric network

(ICN) designs is the use of in-network caching at storage-
enabled routers lying between content custodians (origin
servers) and content requesters [3]. The key advantage of
serving content to the requester from an in-network cache
(particularly a cache enroute to the custodian) is that con-
tent will be returned to the user faster than if the content
had been served by the content custodian. When design-
ing and evaluating the effectiveness of cache management
and content location schemes for such networks, one of the
primary performance metrics has been cache hit probability
— the fraction of content requests passing through a cache
node that find the content stored in that node, — a perfor-
mance metric used since the earliest analyses of standalone
caches more than 40 years ago. More recently, when ana-
lyzing networks of caches, the number of hops between the
requester and the in-network cache or custodian returning
content, has been used as an additional performance metrics
of interest, e.g., [1].

Cache hit rates and hop counts are network-centric per-
formance metrics. Since a network exists to provide ser-
vice to its users, user-centric performance metrics are also
of great importance. For the case of content retrieval, the
content download delay — the time from when a user first
issues a request to the time when the content has been com-
pletely received by the user — is a natural performance
metric of interest. Here, the capacity of the links on the
download path between the requester and the in-network
cache or custodian returning content, and the number of
ongoing content flows using those links will influence the
content download delay. Given the differences between tra-
ditional network-centric metrics and the user-centric metric
of download delay, one might expect (and indeed we will see
in this paper) that cache management and content-request
routing approaches developed for network-centric metrics do
not necessarily perform well when evaluated using download
delay as the performance metric of interest, and that new
approaches designed with congestion-sensitive download de-
lay in mind can achieve better performance.

In this paper, we propose and evaluate new cache man-
agement (content replacement) and content-request routing
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Figure 1: A cache-enabled content network

schemes using a user-centric performance metric of content-
download delay. We first consider the case of fixed routing of
requests towards a custodian and present a congestion-aware
cache management policy that considers the relative costs of
downloading various content. The intuition behind our ap-
proach is that rather than optimizing hit rates, one should
use space in the local cache to avoid using the most con-
gested links to download requested content. We then con-
sider the complementary challenge of content-request rout-
ing, investigating an approach in which the requester adopts
a congestion-aware search for content, before routing the re-
quest to the custodian. Through simulation, we find that
our policies yield significantly better download delay per-
formance than existing policies, even though these existing
policies provide better performance according to traditional
metrics such as cache hit rate and hop count.
The remainder of this paper is structured as follows. Sec-

tion 2 provides a simple, motivating example that pro-
vides intuition and insight into why cache management
and content-routing policies that provide a high hit rate or
low content-download hop count may perform poorly when
download delay is the performance metric of interest. In
Section 3, we describe our network model. We present our
congestion-aware caching and search policies in Sections 4
and 5, respectively. These policies incorporate not only the
popularity of a given piece of content, but also the estimated
download delay in the presence of network congestion, as a
basis for deciding what to cache, what to evict, and from
where to download content. In Section 6, we evaluate our
policies through simulation across a variety of topologies (in-
cluding a grid, a scale-free network, a hybrid MANET, and
ISP backbones based on Rocketfuel), finding that our poli-
cies yield the lowest average download delay in all studied
networks. We discuss these findings in Section 7 and discuss
related work in Section 8. Finally, Section 9 concludes the
paper and outlines future work.

2. A MOTIVATING EXAMPLE
We begin with a simple example, shown in Figure 1, to

provide intuition and insight into why cache management
policies that optimize the network-centric goal of maximiz-
ing hit rate need not lead to good performance for a user’s
point of view, where content download delay is the metric
of interest. Figure 1 shows two users, U1 and U2, and two
servers, S1 and S2. A cache-enabled router C, with the abil-
ity to store exactly one piece of content, connects all nodes.
The content universe consists of two equally sized pieces,
F1 and F2, residing in S1 and S2, respectively. We assume
that the users request a single piece of content at a time

Content Request Ratios

Cached
Content

F1:0.50, F2:0.50 F1:0.10, F2:0.90 F1:0.01, F2:0.99

Hit Rate Delay Hit Rate Delay Hit Rate Delay

F1 0.5 0.106 0.10 0.110 0.01 0.111

F2 0.5 0.550 0.90 0.190 0.99 0.109

Table 1: Hit rate and average delay, under a static
caching policy, for content of size 10 Mb with various
content request ratios

(i.e., each user issues their next content request only after
completely downloading the previous content). The links
U1-C and U2-C both have a capacity of 100 Mbps, while the
links C-S1 and C-S2 have a capacity 10 Mbps and 90 Mbps,
respectively.

In this paper, we will assume the existence of some mech-
anism (e.g., TCP-like) that fairly shares link-bandwidth
among multiple download flows traversing a common bot-
tleneck link, although this assumption is not needed for this
simple example. A flow’s bottleneck link determines that
flow’s overall download rate along the path from content
sender to content requester. Temporarily ignoring the cache,
the end-to-end throughput between the users and the two
servers, S1 and S2, would be 10 Mbps and 90 Mbps, respec-
tively, due to the links C-S1 and C-S2 acting as bottlenecks.
However, if a requester finds its content cached at C, that
content can be downloaded at a rate of 100 Mbps.

Let us first consider the case that the request rates for
F1 and F2 are equal. In this case, if F1 is cached at C, the
average download delay is 0.106 secs - F1 requests are down-
loaded at 100 Mbps to U1 with a delay of .1 secs from C, and
F2 requests are downloaded to U2 from S2 at a bottleneck
rate of 90 Mbs, with a delay of .112 sec. If F2 is cached at
C, the average download delay increases to 0.555 secs, since
F1 requests are downloaded to U1 from S1 at a bottleneck
rate of only 10 Mbps (requiring 1 sec to download), while
F2 requests are downloaded from C with a delay of .1 sec.
This example suggests that caching on the downstream end
of a low-capacity or congested link can make most effective
use of cache space.

Suppose next that the request rates for F1 and F2 are
0.1 and 0.9 respectively (the middle column in Table 1). In
this case, if F1 is cached at C, the average download delay
is 0.110 but the hit rate is only 0.1. Now suppose that F2

(which receives 90% of the requests) is cached at C. The hit
rate here increases to 0.9 but the delay increases to .19 secs.
This increase in delay results from the fact that F1 (which is
only receiving 10% of the requests) must now be downloaded
from S1 over the slow 10 Mbps path. In this example, the
policy of caching F1 at C has the best performance from a
user-centric point of view (minimizing download delay) but
the worst performance from a network-centric point of view
(maximizing hit rate). Similarly, the policy of caching F2

at C has the best performance from a network-centric point
of view but the worst performance from a user-centric point
of view. This example suggests that a caching policy that
provides the best network-centric performance may provide
very poor user-centric performance, and that caching policies
designed for network centric performance metrics such as hit
rate may not be well-suited for scenarios when user-centric
performance metrics are of primary interest.
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Last, suppose the asymmetry in the F1 and F2 request
rates increases further to 0.01 and 0.99, respectively. In this
case, caching F2 (which is receiving 99% of the requests) at
C provides both a higher hit rate and a lower average delay,
making this policy the winner from both a user-centric and
a network-centric point of view. This example suggests that
content popularity, although not always the deciding factor,
can play a role in determining the preferred cache manage-
ment policy.
We these insights, we can now consider cache management

policies whose goals are to decrease the user-centric measure
of average download delay.

3. NETWORK MODEL
We consider a typical ICN model with named content, but

the cache management and content-request routing policies,
insights, and results apply more generally to networks of
caches. Our content universe consists of a finite set of dis-
tinct, but equally sized, content. Each piece of content has
a node responsible for its permanent storage, referred to as
the custodian. We assume there is some baseline mecha-
nism for forwarding content requests (e.g., along a shortest
path) from content requester to content custodian. Requests
arrive exogenously at every node, and nodes route every ex-
ogenous and endogenous content request to the respective
custodian, e.g. via shortest-path routing. Content delivery
follows the request path.
Nodes are cache-enabled; the size of a cache is given in

terms of the number of pieces of content that can be stored
within. If a content request, en-route to the custodian,
reaches a node that contains the content in its cache, then
the intermediate node directly services the request from its
own cache. This is a technique commonly used in ICN lit-
erature [4, 10].
Our goal is to design cache management and content-

request routing policies that minimize content download de-
lay. To this end, we factor congestion (resulting from simul-
taneous downloads using a link) into caching and routing
decisions. We adopt a fluid model to capture the effects
of congestion and heterogeneous link capacity on download
throughput. Specifically, we assume there is some mech-
anism (e.g., TCP-like) that fairly shares link-bandwidth
among multiple download flows that are bottlenecked at a
link. If there are N flow crossing a link, each flow is guar-
anteed to receive a fair share of at least 1/N of the link
bandwidth. The throughput of a content-download flow is
limited by the most congested link on its path. Note that a
flow may not use the fair share of bandwidth allocated to it
across a link due to a bottleneck elsewhere along the path.
In such a scenario, the capacity freed up by the congested
flow may be fairly divided among other flows sharing that
link.

4. CONGESTION-AWARE CACHING
In the section, we present a novel congestion-aware cache

management policy that determines whether a piece of con-
tent passing through the router should be cached, and if so,
what piece of content currently in the cache must be evicted
to make room for this to-be-cached content. The effective-
ness of our policy lies in the metrics used in its design —
our policy considers the link congestion experienced along
the path from content sender to content requester during

content retrieval, combined with content popularity, in the
caching and eviction process. Our intuition is that caches
should preferentially retain content that has been forwarded
over congested links, and evict content forwarded over un-
congested links. We use a utility function to approximate
the value of caching a given content item. We first describe
the construction of our utility function, followed by the de-
sign of our management policy.

We design a utility function that operates at each node
and estimates the download delay saved by caching a piece
of content (that is currently being forwarded through that
node) at that node. The download delay savings is defined
as the difference between the time it takes for a requester
to download content from this cache, and the time it would
take the requester to download from the transmitting source
(either the upstream cache or the custodian). We will use
a fluid model to estimate download delay, with the flow’s
bottleneck link along the path determining flow throughput,
and flow throughput, in turn, determining download time,
as in our simple example in Section 2.

Content popularity will also play a role. The intuition
here is that caching content that is costly (i.e., has a high
download delay from where it is currently being served), but
is also unpopular, will not provide significant benefit to the
system as a whole. Similarly, caching a popular piece of con-
tent on a relatively uncongested path will also not provide
significant benefit. Consequently, it is best to cache content
that is both popular and costly, relative to the location of the
source, the location of the cache, and the level of congestion
experienced along the path between them.

Estimating Local Congestion: Each node keeps a
count of the number of flows (active downloads) currently
passing over each of its interfaces. The bandwidth Bl of link
l available to a download flow is estimated by dividing the
link capacity, Cl, by the number of flows passing through it,
Fl:

Bl =
Cl

Fl

Note that this is an underestimate of the bandwidth actually
available to the flow on this link, since (as described above),
any of the flows passing over a link may use less bandwidth
than is allocated, due to bottlenecks elsewhere along the
flow’s path.

Estimating Popularity: The popularity of a piece of
content f , denoted as Pf , is defined as the number of re-
quests for the content divided by the number of total inter-
est requests for all content. These requests may be counted
during a moving window, updated according to an exponen-
tially weighted moving average over the windows, or simply
counted since the last time such counts were zeroed; we will
assume the latter in our evaluation below, assuming that
counts are zeroed when a router starts up. At a given cache,
denote the number of times a piece of content has been re-
quested at that cache by Nf . The set F is the set of all
content that has been requested at the cache. We define Pf

as:

Pf =
Nf

∑F

f ′ Nf ′

Considering End-to-End Throughput: A content
download flow may be bottlenecked either in the source-
to-cache (upstream) path segment or the cache-to-requester
(downstream) path segment. Downstream congestion can
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limit the gain of caching content at the cache, especially if
the effective cache-to-requester throughput is significantly
lower than the source-to-cache throughput. Certainly,
caching the content would still yield some gains, because
other flows would not have to share the upstream link ca-
pacity. However, if the downstream links are the more con-
gested, the upstream links are (by definition) less congested
and therefore flow using the upstream links are less likely to
benefit significantly from caching a piece of content at the
cache (and thereby obviating the need for future requests
for that content to use those upstream links). It would ap-
pear as though it is not beneficial to cache content if the
requester has a path with low available bandwidth to the
specified cache — it appears to neither decrease the down-
load time for the next request for the content, nor signifi-
cantly impact other flows sharing the upstream links. For
this reason, considering downstream throughput is impor-
tant in making caching decisions.
Putting it All Together: Let us define LU as the set

of links connecting the upstream source (the custodian, or
another upstream cache) to the cache, and LD as the set of
links connecting the cache to the downstream requester. For
every link l in either LU or LD, let Bl denote the available
bandwidth for that link, in the presence of the congestion
resulting from simultaneous downloads. Define the set BLU

as the set of available capacities of the links in LU , and the
set BLD as the set of available capacities of the links in LD.
Using the fluid model, the cache-to-requester throughput is
then min(BLD). For the same reason, min(BLD ∪ BLU )
is the throughput of the end-to-end path. The estimated
delay saved by caching the content for future requests is
then S/min(BLD ∪ BLU ) − S/min(BLD), where S is the
content unit size.
Recalling the insights gained through our simple example

in Section 2, we also want to take content popularity (as
seen at a given cache) into account when defining the overall
utility of caching file f at that given cache. The utility of
caching f , given the set of bandwidth available at each link
BL at node N is thus the delay savings weighted by content
popularity:

Uf,N = (
S

min(BLD ∪BLU )
−

S

min(BLD)
) ∗ Pf (1)

We also consider a policy that takes only the upstream con-
gestion level into account. This can be seen as absolute
instead of relative savings. Such a policy could be relevant
in the case of a hop-by-hop [14] congestion control mecha-
nism (where there is no notion of end-to-end throughput).
The utility value of the alternate policy is defined as:

Uf,N =
S

min(BLU )
∗ Pf (2)

The various pieces of information needed to compute the
utility value in Equations 1 and 2 can be obtained by
piggybacking additional information in content-request and
content-download packets already present in many ICN ar-
chitectures. Specifically, an interest request for content that
is being forwarded upstream towards the custodian contains
the running minimum of Bl for all links that it has traversed
and is (potentially) updated after passing through each link.
Similarly, a running minimum of Bl is passed downstream
with the content. In this manner, each cache obtains the
values of BLU and BLD with each request. The other values

needed in Equations 1 and 2 are all locally-available pieces
of information.

Eviction and Management: Given our utility function,
cache management and eviction are simple. When new con-
tent enters a router, its utility is computed. If the computed
utility value is lower than the lowest existing utility in the
cache, the content is forwarded, without caching. Other-
wise, the content with the lowest utility is evicted and the
new content is cached. When deciding to cache a piece of
content, a cache resets the running downstream Bl value,
so that the utility computed at downstream caches will be
computed with respect this cache, rather than the original
source. This prevents all caches downstream of a congested
link from caching the content.

5. CONGESTION-AWARE SEARCH
Typically, ICN proposals have advised using the strategy

layer to route to the nearest replica [4]. However, the nearest
replica is not guaranteed to be the one to which the requester
has the highest throughput path or equivalently the small-
est download delay. In this section, we thus describe a sim-
ple scoped-flooding protocol that locates requested cached
content with minimum download delay. If cached content is
not found with the scope of the flood, the content-requesting
node routes a standard interest request for content towards
the custodian, as described earlier. In our evaluation in the
following section, we will compare content-aware search with
a simple nearest-cache policy.

Our search policy operates as follows. Content requester
R begins by flooding an interest request to all surrounding
neighbors. These neighbors, in turn, flood the packet, so
on, until a boundary, in terms of number of hops, or link
weight, is reached. The weight of link l might correspond
to the inverse of Bl, in which case the scoped flood would
stop when a link of sufficiently low available bandwidth is
encountered. A link may be assigned a high initial weight,
preventing any queries from being sent over it. In this sense,
the search is scoped, because it does not flood the entire
network.

Any node, N, containing the requested file sends an in-
terest reply message that is forwarded back to the requester
along the reverse path, accumulating the minimum value of
Bl of all links on the path back to R, in a manner similar to
that discussed in the previous section. R then receives all
replies, and selects the source to which it has the best con-
nection (i.e., the maximum of the minimum throughputs).
In this fashion, a user may retrieve content from a node that
is further away in terms of hop count, but to which a better
connection exists. Formally, if BL is the set of effective ca-
pacities of the links lying on the path between R andN , then
min(BL) is the effective throughput between R and N . The
node NB to which the requester has the best throughput,
and thus the one selected to serve the content, is defined as:

NB = maxN (minl(BL))

Caching Policy Interactions: Interesting interactions
arise from combining a congestion-aware caching policy with
a congestion-aware search policy. Most notably, the policies
complement each other in two ways:

1. Cached content with high utility values would be dis-
coverable even if the cache was not on the shortest path
from the requester to the custodian; with search, con-
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tent that ordinarily could only be downloaded slowly
over congested network links, from a distant custodian,
could now be quickly obtained.

2. If content is found via search and is delivered over
an uncongested path, then the congestion-aware pol-
icy would likely not cache the content anywhere along
the path, due to the low computed utility value. This
would leave space for other, higher utility content to
be cached, that could not be found nearby via search.

Together, these two properties provide a form of implicit
coordination among nearby caches, preventing redundant
caching not just along a path, but also across a group of
nearby nodes.

6. PERFORMANCE EVALUATION
To evaluate the different caching and routing policies, we

built a discrete-event simulator. An event is any action
that has the potential of changing the throughput of ex-
isting flows. For example, a flow entering due to an ex-
ogenous interest-request arrival or exiting the network when
requested content has been downloaded can impact the fair-
share throughput of other flows, and introduce or remove
bottlenecks. Additionally, changes in the routing (which
will occur in the hybrid MANET scenarios we consider) can
also change flow throughput. Before every new event, all ex-
isting flows are drained based on the time passed since the
last event and the previously-calculated flow rate. Then, the
rate of every flow is recomputed in the simulator based on
the new network state. The key notion here is that flow rate
is discretized, and does not change in between events. Our
flow rate estimation is described in Algorithm 1.
We evaluate our caching and routing policies on simple

network topologies such as grid and scale-free as well as real
network topologies (Rocketfuel). We also perform simula-
tions on a hybrid network consisting of a MANET and a
cellular infrastructure to demonstrate the broad applicabil-
ity of our cache management and request-routing policies
across a variety of scenarios.
We assume that exogenous requests arrive at every node in

the network according to a Poisson process with rate λ. Un-
less otherwise stated, we assume that content popularity fol-
lows a Zipfian distribution with rate α = 0.8 and cache size
C = 500. We consider a content universe of size F = 10000.
Custodians are placed randomly throughout the network for
each trial. Content unit size varies from 0.5 Mb to 3.0 Mb.
We assume that shortest path routes are computed using Di-
jkstra’s shortest-path (lowest-weight) algorithm. Error bars
in our results correspond to 90% confidence intervals.
We evaluate the following set of cache management poli-

cies:

• TERC+LRU: Transparent en-route caching (TERC)
is a common caching mechanism used in the ICN lit-
erature [4]. This policy caches everywhere along the
path, and uses LRU as the cache eviction algorithm.

• BTW+LRU: The policy described in [1], using be-
tweenness centrality to cache at the most central node
along the download path, and LRU as the cache evic-
tion algorithm.

• CAC-E2E: Our congestion-aware caching policy, con-
sidering the end-to-end path congestion.

• CAC-UP: Our congestion-aware caching policy, con-
sidering only upstream throughput.

We will also evaluate our cache management policies both
with, and without, the following search policies.

• SEARCH-CNG: Congestion-based search, as de-
scribed in Section 4.

• SEARCH-HOP: This policy finds the closest cache
containing the content with respect to hop count. The
search is also scoped (as described in Section 4)

Algorithm 1 Download Flow Rate Calculation

1: Determine the set of active flows, and mark each as un-
finalized.

2: Determine the set of all links being utilized by those
flows.

3: Create a list of effective link capacities, initialized to the
set of maximum link capacities.

4: Find the bottleneck link - the utilized link with the low-
est value of effective link capacity divided by number
of unfinalized flows at that link (i.e., the link with the
lowest fair share throughput for remaining flows.)

5: Find all unfinalized flows traversing the bottleneck link,
and set the throughput of each of these flows to be the
effective capacity of the bottleneck link.

6: Mark those flows as finalized.
7: For every link being traversed by any of those flows,

reduce its effective capacity by that of the bottleneck
link; this effectively allows all finalized flows to receive
their fair share bandwidth.

8: Repeat Steps 4-8 until all flows have been finalized. At
this point, the download throughputs of all flows have
been determined.

6.1 Grid Topology
We begin by examining our caching policy in the context

of a 10x10 grid topology. Two kinds of links that exist in
the network: high capacity at 10 Mbps, denoted by solid
lines, and low capacity at 2 Mbps, denoted by dotted lines
in Figure 2. The grid is essentially split into two poorly-
connected halves. Figure 2 shows the fraction of cached
content across the entire topology whose custodian resides
in the bottom-left cluster C, encompassed by the grey box.

Figure 3 shows the average download delay, average hop
count, and average hit rate vs. arrival rate for content
across all nodes. The higher the arrival rate, the more con-
gested links become; the more flows in the system, the more
they must complete for bandwidth. This is especially true
in the case of links with a low initial capacity. Figure 2
shows TERC+LRU caches the files in C relatively uniformly
throughout the network, with slightly higher concentrations
in the cluster itself. This is due to the cache everywhere ap-
proach. Our congestion-aware caching scheme demonstrates
an interesting property. The nodes on the top half of the grid
with low-capacity links all tend to cache a high percentage of
content originating from C. On the contrary, nodes on the
bottom half of the grid, connected to the weak links cache
little relatively from C. This is a direct consequence of our
caching scheme; it is congestion-aware. Our policy assigns
a high utility value to content traversing highly congested,
low-capacity links. Likewise, it assigns a relatively low value
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Figure 2: A heatmap of percentage of content cached per node belonging to the custodians located within
the grey box. The dotted links denote the poor connectivity between the top and bottom half of the grid.

(a) Average Download Delay (b) Average Hit Rate (c) Average Hop Count

Figure 3: Grid network performance with increasing λ

to content that is obtained over uncongested, high-capacity
links, making such content easy to evict. Together, these
two properties work to not only cache, but to also retain,
content that takes a long time to download from the custo-
dian.
Figure 3 presents the average download delay, hit rate,

and hop count for varying λ. As λ increases, the links in the
network become more congested. As seen in Figure 3(a), the
delay for TERC+LRU increases at the fastest rate. CAC-
E2E and CAC-UP perform well even for higher arrival rates.
It is also very instructive to note results in Figures 3(b) and
3(c). Note BTW+LRU has the highest average hit rate, but
not the lowest delay — as in the case of our simple example
in Section 2, a higher hit rate does not necessarily translate
to better download delay performance. Although topology-
aware, BTW+LRU does not consider network state, and
thus makes no effort to cache content with respect to con-
gested links. CAC-E2E and CAC-UP cache with respect to
available link bandwidth, resulting in fewer flows travers-
ing the low-capacity links and a consequently lower average
delay.

6.2 Scale-free Network
We consider a scale-free network, such as the one consid-

ered in [1]. Here, there are 100 nodes, each link has a capac-
ity of 10 Mbps, and the content unit size is 1 Mb. Even in

the case of homogeneous link capacity, effective throughput
can vary greatly across links. A more central link will nat-
urally have more flows traversing it. Within the Internet,
central links are often provisioned with higher capacity to
account for this. However, in a wireless or mesh network,
all links may have identical capacity regardless of position.
In this case, more central links become more congested, and
are best avoided. Therefore, a congestion-aware caching pol-
icy can still provide gains even in the case of homogeneous
link capacity. Figure 4 presents delay and hit rate as λ in-
creases. As in the grid case, BTW+LRU provide the high-
est hit rate, but CAC-E2E and CAC-UP provide the lowest
content-download delay.

6.3 Rocketfuel Topologies
Borrowing from the methodology of [2], we use topologies

generated by Rocketfuel [6] (Sprint and Tiscali) to measure
performance on a realistic, Internet-scale backbone network.
The Rocketfuel topologies provide latencies and link weights
inferred from measurement. We use the inverse of the link
weights to estimate the relative link capacities, as network
operators often use the inverse of link capacity to set link
weight. Links in the two networks range from 10 Mbps to
100 Mbps. Here we set the content size to 3 Mb. In Figures
5 and 6, we vary λ. We can see that for realistic backbone
topologies, the trend holds; BTW+LRU and TERC+LRU
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Figure 4: Scale-free download delay and hit rate with increasing λ

Figure 5: Sprint (US) topology download delay and hit rate with increasing λ

have high hit rates, but the average delay for both CAC
policies is significantly lower. In Figures 7 and 8 we vary C
and α, and set λ = 1.0. Across a variety of cache sizes, rang-
ing from 0.1% to 1.0% of the content universe size, we see
that the results remain the same; congestion-aware schemes
yield lower delay. As α gets larger, we see the policies con-
verge; as popularity becomes more skewed, it becomes more
important to user-centric performance. We observed this
in Section 2. We suspect that at higher arrival rates, as
congestion plays a larger role, the policies again diverge.
Figures 9 and 10 show the performance of our pro-

posed search policies (both scoped to two hops) as λ in-
creases. Note that for both TERC+LRU and CAC-UP, us-
ing SEARCH-HOP results in a lower hop count. However,
using SEARCH-CNG yields a lower average delay for both
policies. Note that CAC-UP, using either search policy, out-
performs TERC+LRU. We attribute this to the coordina-
tion described in Section 5. TERC+LRU, augmented with
a search policy, would not necessarily have the same coor-
dinative properties; although search would allow requesters
to find content nearby, the caching would not be coordi-
nated. Content that could be downloaded quickly would
be cached everywhere along the path, creating unnecessary
redundancy.

6.4 Hybrid Network
We simulate a Hybrid network, that is, a MANET where

all nodes are connected to a base station. Nodes are grouped
into clusters, and each cluster is either stationary or mobile
over the course of the entire scenario. We use a random-
waypoint mobility model to simulate cluster movement.
Therefore, clusters merge and separate over time. In the

worst case, a cluster may become completely disconnected
from all others, and must rely solely on the base station
for connectivity. In this scenario, there are 100 nodes total,
grouped into 10 clusters, 5 of which are mobile. Here, the
content size is 0.5 Mb. The capacity of MANET links is 10
Mbps, while the capacity of the wireless base station links
is 2 Mbps. For this reason, the base station, while allowing
for connectivity where there would otherwise be none, is not
a desirable resource; the base station weight is set to be 5x
higher than that of the MANET links. Due to the scoped as-
pect of the search policies, neither sends search queries over
the base station (although it is still used if the content is not
found via search, and shortest-path routing so dictates).

Again, CAC-E2E and CAC-UP perform better than
TERC+LRU and BTW+LRU, as our congestion-aware poli-
cies tend to cache content received over lower capacity links.
Naturally, there is higher in variation in delay due to node
mobility. As was true for the Rocketfuel evaluation, both
congestion-aware policies perform better than both TERC
policies when search is added. Here, the search policies per-
form fairly similarly; this is because inter-cluster congestion
is low, and there is not a large difference between select-
ing the closest node, or the one to which the throughput is
greatest.

7. DISCUSSION
Our initial exploration has demonstrated the benefits of

designing caching and search policies based on congestion,
but a number of open research questions remain.

In the design of our cache management policy we have
considered the available capacity of the bottleneck link on an
end-to-end path to decide whether content should be cached.
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Figure 6: Tiscali (EU) topology download delay and hit rate with increasing λ

Figure 7: Sprint (US) topology download delay with increasing C and α.

We also experimented by only considering congestion on the
upstream path from a node and observed that it provides
very similar performance to the scheme that considers end-
to-end path congestion. Though this observation needs to be
validated through additional experimentation, we conjecture
that this is due to cross streams; what is downstream for one
node may be upstream for another, and in that manner, the
congestion of links in all parts of the network is still factored
into utility values of the upstream-only policy.
In our current model, the utility of a cached content does

not vary over time. Therefore, a previously hard to obtain
content may never be evicted from a cache, regardless of
how easy to obtain it becomes in the future. This situation
is more likely to arise in a mobile scenario where groups
of nodes merge and split over time. Therefore, as part of
our future work we plan to incorporate a notion of aging
content periodically in the design of our cache policy. We
have observed that a naive approach of decreasing the utility
of cached content by a constant factor periodically does not
perform well in our simulations.
One lesson we have learnt from this work is that con-

gestion and caching are closely coupled; one directly influ-
ences the other. Though our long term objective is to de-
sign jointly optimal caching and routing policies for ICN, as
a first attempt we aim to adopt a fixed point approxima-
tion approach. The approximation can start with an initial
caching policy, determine the congestion, and then utilize
the congestion to update the caching policy. The iterative
process converges once the average congestion falls below a
threshold.

8. RELATED WORK
Previous works have proposed caching schemes for ICN,

leveraging various network properties to increase perfor-
mance. In [1], the authors use betweenness centrality to
make caching decisions, placing content at the point where
they expect it to receive the most cache hits. In [9], the au-
thors estimate the caching capacity of a path to fair-share
cache space appropriately. The authors of [7] describe a
policy which uses a coordinated age parameter to evict con-
tent. While not a caching scheme, [11] examines the impact
of heterogenous cache sizes in ICN. In [8], the authors model
bandwidth and cache sharing, and then use their model to
estimate download delay.

Routing is another challenge of ICN. In [10], the authors
propose a best-effort content location scheme that uses pre-
vious requests to estimate where content may reside. In [12],
the authors develop a coordinated scheme to directly route
users to replicated content.

Web proxy caching is similar in nature to ICN, and two
works have examined non-traditional metrics as a basis for
caching. In [13], the authors demonstrate that considering
delay, and not just hit rate, is important to caching policies.
In [15], the authors create a policy that estimates delay, and
bases caching decisions on their estimation.

Several works propose caching policies that exploit topo-
logical and popularity factors in their caching decision.
While [7] and [2] evaluate ICNs with respect to delay and
congestion, to the best of our knowledge, no prior works
have directly examined the relationship between hit rate,
hop count, and end-user delay. The authors of [13] and
[15] propose factoring delay into caching decisions. In [5],
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Figure 8: Tiscali (EU) topology download delay with increasing C and α.

Figure 9: Sprint (US) topology download delay and hop count with increasing λ (using search)

the authors propose a caching algorithm factoring in overall
popularity, and not just temporal locality, in caching deci-
sions. However, no policies have been proposed to cache and
route based on end-to-end congestion measurements.

9. CONCLUSION
In this paper, we have investigated network cache man-

agement and content-request routing policies that account
for path-level (content-server to content-requestor) conges-
tion and file popularity in order to directly minimize user-
centric, content-download delay. Through simulation of sev-
eral congestion aware congestion-aware cache management
and content-request routing policies, and for a number of
different network topologies, we showed that these content-
aware policies yield significantly better download delay per-
formance than existing policies, even though these existing
policies provide better performance according to traditional
metrics such as cache hit rate and hop count. Our finding
that existing policies that provide superior performance ac-
cording to network-centric performance metrics do not do
so for user-centric metrics, makes a compelling case for con-
sidering user-centric performance metrics in designing and
evaluating future ICN and other network protocols. Our
future work includes investigating a more explicit coupling
between local search and custodian-targeted routing of con-
tent requests, and an evaluation of our approaches in the
presence of temporally-correlated content requests.
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