
Congestion control for coded transport layers

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Kim, MinJi, Jason Cloud, Ali ParandehGheibi, Leonardo Urbina,
Kerim Fouli, Douglas J. Leith, and Muriel Medard. “Congestion
Control for Coded Transport Layers.” 2014 IEEE International
Conference on Communications (ICC) (June 2014).

As Published http://dx.doi.org/10.1109/ICC.2014.6883489

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/100957

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100957
http://creativecommons.org/licenses/by-nc-sa/4.0/

Congestion Control for Coded Transport Layers
MinJi Kim∗, Jason Cloud∗, Ali ParandehGheibi∗, Leonardo Urbina∗,

Kerim Fouli∗, Douglas J. Leith†, and Muriel Médard∗

Abstract—The application of congestion control can have a
significant detriment to the quality of service experienced at
higher layers, especially under high packet loss rates. The effects
of throughput loss due to the congestion control misinterpreting
packet losses in poor channels is further compounded for
applications such as HTTP and video leading to a significant
decrease in the user’s quality of service. Therefore, we consider
the application of congestion control to transport layer packet
streams that use error-correction coding in order to recover from
packet losses. We introduce a modified AIMD approach, develop
an approximate mathematic model suited to performance analy-
sis, and present extensive experimental measurements in both the
lab and the “wild” to evaluate performance. Our measurements
highlight the potential for remarkable performance gains, in
terms of throughput and upper layer quality of service, when
using coded transports.

I. INTRODUCTION

We consider congestion control for transport layer packet
streams that use error-correction coding to recover from packet
loss. Recently, there has been a resurgence of interest in the use
of coding at the transport layer [1]–[5]. Much of this has been
driven by the ubiquity of wireless connectivity at the network
edge. Growing trends toward cellular traffic offloading onto
802.11 wireless links and the increasing density of wireless
deployments is making interference a major contributor to
packet erasures in unlicensed and white-space bands. As a
result, the quality of wireless links at the network edge is
becoming much more diverse and challenging.

Addressing these issues at the transport layer is very appeal-
ing. Unlike link layer changes, transport layer solutions help
to ensure backward compatibility and enables mass deploy-
ment. For example, a recent industry study [6] estimated that
almost 1.2 billion 802.11 devices have been shipped to date.
Replacing these devices, in addition to other existing wireless
infrastructures, to incorporate new link layer technologies is
largely impractical due to the costs involved.

A key issue with transport layer solutions is congestion
control, which is responsible for protecting the network from
congestion collapse, ensuring reasonably efficient use of avail-
able capacity, and allocating capacity in a roughly fair manner.
When links experience packet losses due to poor channels
or interference, lost packets are no longer synonymous with
network congestion. Furthermore if error-correction coding is
used to recover from packet losses, packet retransmissions
become unnecessary and the trade-off between throughput and

∗M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, and M.
Médard are with the Massachusetts Institute of Technology, MA USA (e-
mail: {minjikim, jcloud, parandeh, lurbina, fouli, medard}@mit.edu).
†D. Leith is with the Hamilton Institute, NUI Maynooth, Ireland (e-mail:

doug.leith@nuim.ie).
This work is sponsored, in part, by the Assistant Secretary of Defense

(ASD R&E) under Air Force Contract # FA8721-05-C-0002. Opinions,
interpretations, recommendations and conclusions are those of the authors
and are not necessarily endorsed by the United States Government.

delay changes. In addition, notions of fairness need to be
revisited because different paths may have different levels of
packet losses (e.g. should a lossy path be given more or less
bandwidth than a loss-free path sharing the same bottleneck?).

In this paper, we introduce a modified additive increase,
multiplicative decrease (AIMD) approach to congestion con-
trol for coded packet flows that helps to meet the following
goals:

1) Provide high throughput under independent and iden-
tically distributed (i.i.d.) and correlated packet losses.
These losses may occur due to a) channels with high
interference or fading, b) hidden terminals in wireless
networks, and c) any additional known or unknown
cause of packet loss not related to congestion.

2) Operate under a wide range of network conditions (i.e.,
different round-trip times (RTT) and packet loss rates).

3) Be friendly to other non-coded flows.
4) Provide a better quality of service for higher layer

applications than current transport protocols.
We also develop an approximate mathematic model for

performance analysis, implement it using a protocol called
Network Coded TCP (CTCP) ([7] and [8] provide detailed
descriptions of the implementation), and present extensive
experimental measurements. Our measurements highlight the
potential for remarkable performance gains when using coded
transports. In controlled lab experiments, with i.i.d. packet
losses, we find reductions of more than an order of magnitude
(i.e. >1000%) in completion times for both HTTP and stream-
ing video flows when the link packet loss rate exceeds 5%.
These gains translate into significant increases in the quality of
service provided by upper layer applications (e.g., the number
of buffer under-runs experienced during the playback of a
video drops from approximately 50 to zero). Note that these
benefits take into account encoding/decoding delay associated
with coded transport protocols, indicating that the cost of
encoding/decoding is negligible given the immense gain in
throughput. Measurements are also taken in real networks
(i.e., in the “wild” at public WiFi hotspots) where the packet
losses are not necessarily i.i.d. or known. These measurements
also show reductions in connection completion times of 100-
300% compared with standard TCP, which does not use error-
correction coding. Importantly, these gains do not come at the
cost of penalizing standard TCP flows sharing the same links.

II. PRELIMINARIES

Reference [1] first introduced TCP/NC, which inserts a
network coding layer between TCP and IP in the protocol
stack. The network coding layer intercepts and modifies TCP’s
acknowledgement scheme such that random erasures do not
affect the transport layer’s performance. Our work builds upon

TCP/NC using a new coded transport protocol, CTCP, that is
more efficient, robust, and adaptive than its predecessor.

Congestion control operation is logically decoupled from
the specific coding scheme employed since congestion control
relates to the scheduling of packet transmissions while the
coding scheme relates to the contents of the packets transmit-
ted (e.g. coded or uncoded). As discussed in [7] and [8], this
decoupling can be implemented in practice by using tokens to
control the sender’s transmission rate instead of the congestion
window cwnd. Therefore, tokens play a similar role for coded
TCP as cwnd does for TCP. If a token is available, the
sender can transmit a single packet (either coded or uncoded).
Once the packet is sent, the token is used. New tokens are
generated upon reception of feedback indicating the packet is
no longer on the fly.

Our focus here is on congestion control; but in order to
carry out the experimental performance evaluation, we also
need to specify the coding scheme. Information packets are
queued at the sender, but also transmitted in order without
delay. After a block of N = 32 packets are transmitted,
Nc = N(1

1−p − 1) coded packets are inserted into the packet
stream to help recover from lost packets where p is an estimate
of the path’s packet loss rate based on ACK feedback from the
receiver. Coded packets are constructed using an equiprobable
random linear network code in field GF (28) [9]. If the
receiver is unable to decode the block after the first round of
transmissions, additional coded packets are transmitted upon
receipt of the appropriate feedback. Implementation details and
additional discussion concerning CTCP are provided in [7] and
[8].

III. CONGESTION CONTROL

Traditional TCP’s AIMD congestion control increases the
sender’s congestion window size cwnd by α packets per RTT
and multiplicatively decreases cwnd by a backoff factor β on
detecting packet losses. The typical values are α = 1 when
appropriate byte counting is used, and β = 0.5. On lossy
links, repeated backoffs in response to noise, rather than queue
overflow, can prevent cwnd from increasing to fill the available
capacity. The behavior is well known and is captured. For
example, cwnd scales as

√
1.5/p in [10], where p is the packet

loss rate.
On lossy links, packet loss is not a reliable indicator of net-

work congestion. One option might be to use delay, rather than
loss, as the indicator of congestion; but this raises many new
issues and purely delay-based congestion control approaches
have not been widely adopted in the internet despite being
the subject of extensive study. Another option might be to
use explicit signaling, (e.g. via ECN). However, this requires
both network-wide changes and disabling cwnd backoffs when
packets are lost. These considerations motivate consideration
of hybrid approaches, making use of both loss and delay
information. The use of hybrid approaches is well-established,
for example Compound TCP [11] is widely deployed.

We consider modifying the AIMD multiplicative backoff to

β =
RTTmin
RTT

, (1)

where RTTmin is the path round-trip propagation delay (typi-
cally estimated as the lowest per packet RTT observed during
the lifetime of a connection) and RTT is the current round-
trip time. The choice for β in Eq. (1) decreases the flow’s
tokens so that the link queue just empties and full throughput
is maintained upon packet loss. This is similar to the approach
considered in [12], which uses β = RTTmin/RTTmax. In
fact, Eq. (1) reduces to the approach in [12] on links with
only queue overflow losses since RTT = RTTmax (the
link queue is full) when loss occurs. If a link is provisioned
with a bandwidth-delay product of buffering, as per standard
guidelines, then RTTmax = 2RTTmin and β = 0.5 (i.e.,
the behavior is identical to that of standard TCP). More
generally, the sum of n flows’ throughput must equal the
link capacity B (i.e.,

∑n
i=1 tokensi/RTTi = B) when a

queue overflow occurs. After a packet loss is identified,
backoff occurs according to Eq. (1), and the sum-throughput
becomes

∑n
i=1 βitokensi/RTTmin,i = B allowing the queue

to empty.
When a network path is under-utilized and a packet loss

occurs, RTT = RTTmin resulting in β = 1 and β×tokens =
tokens (i.e., tokens is not decreased). Hence, tokens is
able to grow despite the presence of packet losses. Once the
link starts to experience queueing delay, RTT > RTTmin
making β < 1 (i.e., tokens is decreased on loss). Since
the link queue is filling, the sum-throughput before loss
is
∑n
i=1 tokensi/RTTi = B. After each flow decreases

their tokens in response to queue overflow losses, the sum-
throughput is at least

∑n
i=1 βitokensi/RTTmin,i = B when

the queue empties (i.e., Eq. (1) adapts β to maintain full
throughput).

While we have focused primarily on modifications to the
backoff factor β in combination with the standard linear
additive increase (i.e., where α is constant), we note that
our adaptive backoff can be combined with other additive
increase approaches. In particular, approaches similar to Cubic
or Compound TCP can be substituted for the one used in this
paper.

IV. THROUGHPUT PERFORMANCE MODELING

Consider a link shared by n flows where we define B to
be the link capacity and Ti to be the round-trip propagation
delay of flow i. We will assume that the queueing delay is
negligible (i.e., the queues are small), and differences in the
times when flows detect packet losses due to differences in
propagation delays can be neglected. Let tk denote the time
of the k-th network backoff event, where a network backoff
event is defined to occur when one or more flows reduce their
tokens. Furthermore, let wi(k) denote the tokens of flow i
immediately before the k-th network backoff event and let
si(k) = wi(k)/Ti be the corresponding throughput. We then
have

si(k) = β̃i(k − 1)si(k − 1) + α̃iT (k), (2)

where α̃i = α/T 2
i , α is the AIMD increase rate in packets per

RTT, T (k) is the time in seconds between the k− 1 and k-th
backoff events, and β̃i(k) is the backoff factor of flow i at
event k. The backoff factor β̃i(k) is a random variable, which

takes the value 1 when flow i does not experience a loss at
network event k and takes the value given by Eq. (1) otherwise.
The time T (k) is also a random variable with a distribution
dependent on the packet loss process and typically coupled to
the flow rates si(k), i = 1, · · · , n.

For example, associate a random variable δj with packet
j, where δj = 1 when packet j is erased and 0 other-
wise. Assume δj are i.i.d with erasure probability p. Then
Prob(T (k) ≤ t) = 1 − (1 − p)Nt(k) where Nt(k) =∑n
i=1Nf,i(t) is the total number of packets transmitted over

the link in interval t following backoff event k − 1 and
Nt,i(k) = β̃i(k − 1)si(k − 1)t + 0.5α̃it

2 is the number of
packets transmitted by flow i in this interval t. Also, the prob-
ability γi(k) := Prob(˜βi(k) = 1) that flow i does not back
off at the k-th network backoff event is the probability that it
does see any loss during the RTT interval [T (k), T (k) + Ti].
This can be approximated by γi(k) = (1− p)si(k)Ti on a link
with sufficiently many flows.

Since both β̃i(k) and T (k) are coupled to the flow rates
si(k), i = 1, . . . , n, analysis of the network dynamics is
generally challenging; although the analysis becomes fairly
straightforward when the backoff factor β̃i(k) is stochastically
independent of the flow rate si(k). Note that this assumption is
valid in a number of useful and interesting circumstances. One
such circumstance is when links are loss-free (with only queue
overflow losses) [13]. Another is on links with many flows
and i.i.d packet losses where the contribution of a single flow
i to the queue occupancy is small. Furthermore, experimental
measurements provided later in the paper indicate that analysis
using the independence assumption accurately predicts perfor-
mance over a range of other network conditions suggesting
that the results are insensitive to this assumption.

Given independence, the expected throughput using Eq. (2)
is

E[si(k)] = E[β̃i(k − 1)]E[si(k − 1)] + α̃iE[T (k)]. (3)

When the network is also ergodic, a stationary distribution of
flow rates exists. Let E[si] denote the mean stationary rate of
flow i. From Eq. (3), we have

E[si] =
α̃i

1− E[β̃i]
E[T]. (4)

Since the factor E[T] is common to all flows, the fraction of
link capacity obtained by flow i is determined by α̃i

1−E[β̃i]
.

Fairness between flows with the same RTT: When flows i,
j have the same RTT, α̃i = α̃j from Eq. (4). Therefore, both
flows have the same mean backoff factor E[β̃i] = E[β̃j]; and
they obtain, on average, the same throughput share.
Fairness between flows with different RTTs: When flows i, j
have different round trip times (Ti 6= Tj) but the same mean
backoff factor, the ratio of their throughputs is E[si]

E[sj] = (
Tj

Ti
)2.

Observe that this is identical to standard TCP behavior [13].
Fairness between flows with different loss rates: The station-
ary mean backoff factor E[β̃i] depends on the probability that
flow i experiences a packet loss at a network backoff event.
If two flows i and j experience different per packet loss rates
pi and pj (e.g., they might have different access links while

Server Client

Dummynet

Router

Buffer, size Q

packets

Packet discard

probability p

Rate,

B Mbps
Delay T

Fig. 1: Schematic of experimental testbed.

sharing a common throughput bottleneck), fairness is affected
through E[β̃i].
Friendliness: Eq. (2) is sufficiently general enough to include
AIMD with a fixed backoff factor, which is used by standard
TCP. We consider two cases. First, consider a loss-free link
where the only losses are due to queue overflow and all flows
backoff when the queue fills. Under this case, E[β̃i] = βi(k).
For flow i with fixed backoff of 0.5 and flow j with adap-
tive backoff βj , the ratio of the mean flow throughputs is
E[si]/E[sj] = 2(1 − βj) (by Eq. (4)), assuming both flows
have the same RTT. Note that the throughputs are equal when
βj = Tj/RTTj = 0.5. Since RTTj = Tj + qmax/B where
qmax is the link buffer size, βj = 0.5 when qmax = BTj (i.e.,
the buffer is half the size of the bandwidth-delay product).
Second, consider the case when the link has i.i.d packet losses
with probability p. If p is sufficiently large, the queue rarely
fills and queue overflow losses are rare. The throughput of flow
i with a fixed backoff of 0.5 can then be accurately modeled
using the Padhye model [10]. Specifically, the throughput is
largely decoupled from the behavior of other flows sharing
the link, since coupling takes place via queue overflow. This
means that flows using an adaptive backoff do not penalize
flows that use a fixed backoff. Section V-C presents experi-
mental measurements confirming this behavior.

V. EXPERIMENTAL MEASUREMENTS

Experimental measurements, both in a controlled setting and
in the “wild", were taken to determine the effectiveness of
our proposed congestion control in meeting the goals listed in
Section I. The throughput performance over a wide range of
packet loss rates and RTT’s were measured to verify perfor-
mance is not degraded in these environments. Fairness with
legacy transport protocols (i.e., various TCP implementations)
is measured with and without packet losses showing that
our congestion control is fair with other non-coded flows.
Furthermore, measurements were taken to show the benefits
to the quality of user experience that our congestion control
has on upper layer applications. Specifically, the completion
time of HTTP requests and the number of buffer under-
runs experienced when downloading and playing a video are
measured. Finally, a series of real-world measurements were
taken to show that the congestion control is capable of not
only handling i.i.d. packet losses, but also correlated packet
losses.

A. Testbed Setup

The lab testbed consists of commodity servers (Dell Pow-
eredge 850, 3GHz Xeon, Intel 82571EB Gigabit NIC) con-
nected via a router and gigabit switches (Figure 1). Sender

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

Loss probability

E
ff

ic
ie

n
c
y

Coded TCP

Coded TCP, 0.25BDP buffer

Std TCP

Std TCP Theory

H−TCP

Cubic

Westwood

Veno

(a) Link 25 Mbps, RTT 20 ms

10
−3

10
−2

10
−1

0.88

0.9

0.92

0.94

0.96

0.98

1

Loss probability

E
ff

ic
ie

n
c
y

Theory

5M/10ms

10M/10ms

25M/10ms

5M/25ms

10M/25ms

25M/25ms

5M/50ms

10M/50ms

25M/50ms

5M/100ms

10M/100ms

25M/100ms

(b) CTCP

Fig. 2: Measurements of goodput efficiency against packet loss
rate, link rate and RTT. The Theory curve in Figure 2b is
generated using Eq. (5).

and receiver machines used in the tests both run a Linux
2.6.32.27 kernel. The router is also a commodity server
running FreeBSD 4.11 and ipfw-dummynet. It can be
configured with various propagation delays T , packet loss rates
p, queue sizes Q and link rates B to emulate a range of
network conditions. As indicated in Figure 1, packet losses
in dummynet occur before the rate constraint, not after.
Therefore, packet losses do not reduce the bottleneck link
capacity B. Unless otherwise stated, appropriate byte counting
is enabled for standard TCP and experiments are run for at
least 300 s. Data traffic is generated using rsync (version
3.0.4), HTTP traffic using apache2 (version 2.2.8) and wget
(version 1.10.2), and video traffic using vlc as the both server
and client (version 0.8.6e as server, version 2.0.4 as client).

Coded TCP (CTCP) is implemented in userspace as a
forward proxy located on the client and a reverse proxy located
on the server. This has the advantage of portability and of
requiring neither root-level access nor kernel changes. Traffic
between the proxies is sent using CTCP. With this setup, a
client request is first directed to the local forward proxy. This
transmits the request to the reverse proxy, which then sends
the request to the appropriate port on the server. The server
response follows the reverse process. The proxies support
the SOCKS protocol and standard tools allow traffic to be
transparently redirected via the proxies. In our tests, we used
proxychains (version 3.1) for this purpose.

B. Efficiency
Figure 2 presents experimental measurements of the effi-

ciency (equal to goodput
link capacity) of various TCP implementations

and CTCP over a range of network conditions. Figure 2a
shows the measured efficiency versus the packet loss probabil-
ity p for a 25 Mbps link with a 25 ms RTT and a bandwidth-
delay product of buffering. Baseline data is shown for standard

10 25 50 100
0

5

10

15

20

RTT (ms)

G
o

o
d

p
u

t
(M

b
p

s
)

Std TCP (10Mbps link)
Coded TCP (10Mbps link)
Std TCP (25Mbps link)
Coded TCP (25Mbps link)

Fig. 3: Goodput for a standard TCP and a CTCP flow sharing
a loss-free link; results are shown for 10 Mbps and 25 Mbps
links with varying RTTs.

10
−2

10
−1

10
0

10
1

Loss Probability
G

o
o

d
p

u
t

(M
b

p
s
)

Std TCP

CTCP

Std TCP vs Std TCP

(a) Lossy 10 Mbps link with RTT =
25 ms

10
−2

10
−1

10
0

10
1

Loss Probability

G
o

o
d

p
u

t
(M

b
p

s
)

Std TCP

CTCP

Std TCP vs Std TCP

(b) Lossy 25 Mbps link with RTT =
25 ms

Fig. 4: Goodput against link loss rate for (i) a TCP and a
CTCP flow sharing this link (solid lines), and (ii) two TCP
flows sharing lossy link (dashed line).

TCP (i.e., TCP SACK/Reno), Cubic TCP (current default
on most Linux distributions), H-TCP, TCP Westwood, TCP
Veno, together with the value

√
1.5/p packets per RTT that is

predicted by the popular Padhye model [10]. It can be seen that
the standard TCP measurements are in good agreement with
the Padhye model; and each of the non-CTCP implementations
closely follow the standard TCP behavior because the link
bandwidth-delay product of 52 packets lies in the regime
where TCP variants seek to ensure backward compatibility
with standard TCP. Furthermore, the achieved goodput falls
to 20% of the link capacity when the packet loss rate is just
1%. This behavior of standard TCP is well known. However,
the efficiency measurements for CTCP (provided in Figure
2a and also given in more detail in Figure 2b) show that the
goodput is > 96% of link capacity for a loss rate of 1%. This
is a five-fold increase in goodput compared to standard TCP.

Figure 2b further shows that CTCP is not sensitive to the
link rate or RTT by presenting CTCP efficiency measurements
for a range of link rates, RTTs, and loss rates. Also shown
in Figure 2b is a theoretical upper bound on the efficiency
calculated using

η =
1

N

n−1∑
k=0

(n− k)
(
n

k

)
pk(1− p)N−k, (5)

where N = 32 is the block size, p the packet erasure
probability, and n = bN/(1 − p)c − N is the number of
forward-transmitted coded packets sent with each block. The
value η is the mean number of forward-transmitted coded
packets that are unnecessary because there are fewer then n

erasures.
As discussed in Section III, the efficiency achieved by

CTCP is also insensitive to the buffer provisioning. This
property is illustrated in Figure 2a, which presents CTCP
measurements when the link buffer is reduced in size to 25%
of the bandwidth-delay product. The efficiency achieved with
25% buffering is close to that with a full bandwidth-delay
product of buffering.

C. Friendliness with Standard TCP
Figures 3 and 4 confirm that standard TCP and CTCP can

coexist in a well-behaved manner. In these measurements, a
standard TCP flow and a CTCP flow share the same link
competing for bandwidth. As a baseline, Figure 3 presents
the goodputs of TCP and CTCP for range of RTTs and link
rates on a loss-free link (i.e., when queue overflow is the only
source of packet loss). As expected, the standard TCP and
CTCP flows consistently obtain similar goodput.

Figure 4 presents goodput data when the link is lossy.
The solid lines indicate the goodputs achieved by CTCP
and standard TCP sharing the same link with varying packet
loss rates. At low loss rates, they obtain similar goodputs;
but as the loss rate increases, the goodput of standard TCP
rapidly decreases (as already observed in Figure 2a). It is also
important to note that CTCP’s goodput actually increases as
the standard TCP goodput decreases. Because the standard
TCP flow cannot fully use the available bandwidth, CTCP is
able to use this bandwidth and obtain a higher goodput.

For comparison, Figure 4 also shows (using the dotted lines)
the goodput achieved by a standard TCP flow when competing
against another standard TCP flow (i.e., when two standard
TCP flows share the link). Note that the goodput achieved is
close to that achieved when sharing the link with a CTCP flow.
This demonstrates that CTCP does not penalize the standard
TCP flow under both low and high packet loss rates.

D. Application Performance
The performance of a particular congestion control algo-

rithm can have serious, non-linear, impacts to upper layer
applications. While throughput is usually the primary measure
used, the effects of congestion control on the upper layers is
possibly even more important since they usually impact the
quality of service or user experience. As a result, two upper
layer applications (HTTP and streaming video) are used to
measure the performance of our congestion control scheme.

1) Web: Figure 5 shows measurements of HTTP request
completion time against file size for standard TCP and CTCP.
The completion times with CTCP are largely insensitive to the
packet loss rate. For larger file sizes, the completion times ap-
proach the best possible performance indicated by the dashed
line. For smaller file sizes, the completion time is dominated
by slow-start behavior. Note that CTCP and TCP achieve
similar performance when the link is loss-free; however, TCP’s
completion time quickly increases with loss rate. For a 1 MB
connection, the completion time with standard TCP increases
from 0.9 s to 18.5 s as the loss rate increases from 1% to 20%.
For a 10 MB connection the corresponding increase is from
7.1 s to 205 s. This is a reduction of more than 20× and 30×
for a 1 MB and 10 MB connection, respectively.

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

File Size (KB)

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

25Mbps

0

0.001

0.01

0.05

0.1

0.2

Fig. 5: Measured HTTP request mean completion time against
file size over 25 Mbps link with RTT = 10 ms. Data is shown
for standard TCP (red) and CTCP (black) for a range of loss
rates. Error bars are comparable in size to the symbols used in
the plot and so are omitted. Note the log scale on the y-axis.

0 0.05 0.1 0.15 0.2
10

1

10
2

10
3

10
4

Loss Probability

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Std TCP

CTCP

(a) Completion Time

0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

120

Loss Probability

N
o

.
o

f
B

u
ff

e
r

U
n

d
e

r−
R

u
n

s

Std TCP

CTCP

(b) Buffer Under-runs

Fig. 6: Measurements of video streaming performance against
loss rate with a 25 Mbps link and a RTT of 10 ms. Data
is shown for standard TCP and CTCP. Figure 6a shows the
running time taken to play a video of nominal duration (60
s); Figure 6b shows the number of under-runs of the playout
buffer at the client.

2) Streaming Video: Figure 6 plots performance measure-
ments for streaming video for a range of packet loss rates on
a 25 Mbps link with RTT equal to 10 ms. A vlc server and
client are used to stream a 60 s video. Figure 6a plots the
measured time for playout of the video to complete. Again,
note the log scale on the y-axis.

The playout time with CTCP is approximately 60 s and is
insensitive to the packet loss rate. In contrast, the playout time
with standard TCP increases from 60 s to 95 s when the loss
rate is increased from 0% to 1%. It increases further to 1886
s (31 minutes) as the loss rate is increased to 20% (more than
30× slower than when using CTCP).

Figure 6b plots measurements of the playout buffer under-
run events at the video client. No buffer under-run events
occur when using CTCP even when the loss rate is as high
as 20%. With standard TCP, the number of buffer under-runs
increases with loss rate until it reaches a plateau at around
100 events, corresponding to a buffer underrun occurring
after every playout of a block of frames. In terms of user
experience, the increases in running time result in the video
repeatedly stalling for long periods of time and are indicative
of a thoroughly unsatisfactory quality of experience, even at
a loss rate of 1%.

These benefits also take into account the encoding/decoding
delay associated with CTCP indicating that the cost of encod-

2 5.5 9 11 18 36 54
0

0.5

1

1.5

2

2.5

3

3.5

WiFi Tx Rate (Mbps)

M
e

a
n

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

TCP
CTCP

Fig. 7: Measurements of mean throughput vs wireless PHY
rate used with standard TCP (Cubic TCP) and CTCP on an
802.11 link affected by microwave oven interference.

ing/decoding is negligible given the immense gain in through-
put. For example, the CTCP receiver may need to receive N
coded packets before it can even decode the first packet among
the N coded packets. However, given the significant gain in
throughput, the time needed to receive and decode N packets
become negligible. In addition, the use of systematic network
coding (as explained in [7] and [8] helps to minimize the
potential delay associated with encoding/decoding.

VI. REAL-WORLD PERFORMANCE

While the measurements shown in the previous section
provide insight into the performance of our congestion control
within a controlled setting using fixed RTTs and i.i.d. packet
losses, it is necessary to verify its performance in real-world
networks where packet losses are not i.i.d. Unless otherwise
stated, the default operating system settings are used for all
network parameters.

A. Microwave Oven Interference

We consider a 802.11b/g wireless client downloading a 50
MB file from an access point (AP) over a link subject to
interference from a microwave oven (MWO). The wireless
client and AP were equipped with Atheros 802.11b/g 5212
chipsets (radio 4.6, MAC 5.9, PHY 4.3 using Linux MadWifi
driver version 0.9.4) operating on channel 8. The MWO used
was a 700 W Tesco MM08 17L, which operates in the 2.4 GHz
ISM band with significant overlap (> 50%) with the WiFi
20 MHz channels 6 to 13. Its interference is approximately
periodic with a period of 20 ms (i.e., 50 Hz) and mean pulse
width of 9 ms (the width was observed to fluctuate due to
frequency instability of the MWO cavity magnetron, a known
effect in MWOs).

Figure 7 presents measurements of the mean throughout
achieved over the file download versus the PHY rate used on
the downlink. Data is shown using standard TCP (in this case
Cubic TCP) and CTCP. Data for a PHY rate of 1 Mbps is not
shown because the packet loss rate was close to 100% due
to the 1500 B frame’s transmission time being greater than
the interval between the MWO’s interference bursts. It can
be seen that the throughput achieved by standard TCP rises
slightly as the PHY rate is increased from 1 Mbps to 5.5 Mbps,
but then decreases to zero for PHY rates above 36 Mbps. In
comparison, CTCP’s throughput is approximately double (i.e.,
200%) that of standard TCP at a PHY rate of 5.5 Mbps, more

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−2

10
−1

10
0

10
1

Hidden Terminal Tx Rate (Mbps)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

TCP
CTCP

Fig. 8: Throughput vs intensity of hidden terminal interference
when using standard TCP (Cubic TCP) and CTCP over an
802.11b/g wireless link.

than tripled (i.e., 300%) at PHY rates between 8 and 18 Mbps,
and more than an order of magnitude (i.e., 1000%) at PHY
rates above 18 Mbps. Furthermore, the fluctuations of both
TCP and CTCP performance under different link layer coding
rates and modulation schemes (indicated by the changes in the
802.11 transmission rate) suggests that CTCP is much more
robust to network and link layer changes than TCP, although
more testing is required to verify this claim.

B. Hidden Terminal Interference

We now consider an 802.11 wireless link (configured sim-
ilarly to that in Section VI-A) which is subject to hidden
terminal interference. The hidden terminal is created by adding
a third station to the network used in the last section. Carrier
sense on the new terminal’s wireless interface card is disabled
and 1445 B UDP packets are transmitted with exponentially
distributed inter-arrival times. The 802.11 transmit rates for
both the hidden terminal and AP were set to 11 Mbps. Figure
8 plots the measured throughput on the downlink from the AP
to a wireless client versus the mean transmit rate of the hid-
den terminal traffic. CTCP consistently obtains approximately
twice (i.e., 200%) the throughput of standard TCP (Cubic
TCP) across a wide range of interference conditions.

C. Public WiFi Measurements

Finally, the performance of CTCP in a completely uncon-
trolled environment was measured to determine the effec-
tiveness of our proposed congestion control. Measurements
were collected at public WiFi networks in the greater Boston
area by downloading a 50 MB file from a server (running
Ubuntu 10.04.3 LTS) on MIT campus to a laptop (running
Ubuntu 12.04.1 LTS) under the public WiFi hotspot. The
default operating system settings are used for all of the
network parameters. Figure 9 shows representative traces for
five examples of these experiments. It is important to point
out that standard TCP stalled and had to be restarted twice
before successfully completing in the test shown in Figure 9c.
CTCP, on the other hand, never stalled nor required a restart.

Each trace represents a different WiFi network that was
chosen because of the location, accessibility, and perceived
congestion. For example, the experiments were run over WiFi
networks in shopping center food courts, coffee shops, and
hotel lobbies. In Figures 9a - 9d, the WiFi network spanned a

0 500 1000
0

0.5

1

1.5

2

Time (sec)

G
o
o
d
p
u
t
(M

b
it
s
/s

e
c
)

(a) CTCP Time = 313 s,
TCP Time = 807 s,
Mean PLR = 4.28%,
Mean RTT = 54.21 ms

0 500 1000 1500
0

2

4

6

Time (sec)

(b) CTCP Time = 388 s,
TCP Time = 1151 s,
Mean PLR = 5.25%,
Mean RTT = 73.51 ms

0 200 400 600 800
0

0.5

1

1.5

Time (sec)

(c) CTCP Time = 676 s,
TCP Time = 753 s,
Mean PLR = 4.65%,
Mean RTT = 106.31 ms

0 200 400
0

0.5

1

1.5

2

Time (sec)

(d) CTCP Time = 292 s,
TCP Time = 391 s,
Mean PLR = 4.56%,
Mean RTT = 50.39 ms

0 2000 4000
0

0.5

1

1.5

Time (sec)

CTCP

TCP

(e) CTCP Time = 1093 s,
TCP Time = 3042 s,
Mean PLR = 2.16%,
Mean RTT = 208.94 ms

Fig. 9: Public WiFi Network Test Traces (CTCP in black, TCP in red). The download completion times, the mean packet loss
rate (PLR), and mean RTT for each experiment are also provided.

(a) (b) (c) (d) (e)
0

0.5

1

1.5

G
o

o
d

p
u

t
(M

b
p

s
)

CTCP

TCP

Fig. 10: Mean goodput for each of the experiments shown in
Figure 9.

large user area increasing the possibility of hidden terminals; a
scan of most of the networks showed > 40 active WiFi radios.
The only experiment that had a small number of terminals (i.e.,
five active radios) is shown in Figure 9e. The mean packet loss
rate measured over all experiments was approximately 4%.

In each of the experiments, CTCP consistently achieved
a larger average goodput and faster completion time. The
average throughput for both CTCP and TCP is shown in Figure
10. Taking the mean throughput over all of the conducted
experiments, CTCP achieves a goodput of approximately 750
kbps while standard TCP achieves approximately 300 kbps;
resulting in a gain of approximately 2.5 (i.e., 250%).

We emphasize the observed loss rates of approximately
4% in Figure 9 is quite high and unexpected, resulting in
CTCP’s significant performance gain over TCP. We believe
that the loss rate is not only due to randomness but also due
to congestion, interference, and hidden terminals. This is an
area that would be worthwhile to investigate further. If our
intuition is indeed correct, we believe that CTCP can greatly
help increase efficiency in challenged network environments.

VII. CONCLUSIONS

We considered a new congestion control for transport layer
packet streams that use error-correction coding to recover from
packet losses with the following goals: increase throughput
under high packet loss rates, operate under a wide range of
network conditions, provide fairness to non-coded flows, and
increase upper layer quality of service. We introduced a mod-
ified AIMD approach, developed an approximate mathematic
model suited to performance analysis, and presented extensive
experimental measurements both in the lab and in the “wild”
to evaluate performance. In controlled lab experiments, we
consistently observed reductions of more than an order of
magnitude (i.e., > 1000%) in completion times for both HTTP
and streaming video flows when the link packet loss rate ex-
ceeds 5%. Finally, measurements using an 802.11 testbed and

public WiFi hotspots, which highlights CTCP’s performance
under real-world scenarios, showed reductions in connection
completion times of 100-300% compared with uncoded TCP.
In terms of the potential improvements in the quality of service
experienced by someone streaming video under a public WiFi
hotspot with an average packet loss rate of 4%, CTCP would
eliminate all buffer under-runs while approximately 50 buffer
under-runs would occur using standard TCP (making the video
almost unwatchable). We have shown that the application
of the proposed congestion control to coded transport layer
streams not only significantly increases throughput over a wide
range of packet loss rates and RTTs, but also has positive
implications for upper layer performance that directly affects
the user’s quality of service.

REFERENCES

[1] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets TCP: Theory and
implementation,” Proceedings of IEEE, vol. 99, pp. 490–512, March
2011.

[2] M. Kim, M. Médard, and J. Barros, “Modeling network coded TCP
throughput: A simple model and its validation,” in Proceedings of
ICST/ACM Valuetools, May 2011.

[3] “IRTF ICCRG and NWCRG Meeting, Berlin, July 2014.”
http://www.ietf.org/proceedings/87/agenda/agenda-87-iccrg.

[4] J. Cloud, F. du Pin Calmon, W. Zeng, G. Pau, L. Zeger, and M. Médard,
“Multi-path TCP with network coding for mobile devices in heteroge-
neous networks,” in Proceedings of VTC-Fall, 2013.

[5] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle, “Loss-Tolerant TCP
(LT-TCP): Implementation and experimental evaluation,” in MILCOM,
pp. 1–6, Oct 2012.

[6] “Wireless technologies for network service providers 2012-2013.” Tech-
nicolor White Paper.

[7] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. J.
Leith, and M. Médard, “Network coded TCP (CTCP),” in ArXiv
http://arxiv.org/abs/1212.2291.

[8] M. Kim, A. ParandehGheibin, L. Urbina, and M. Médard,
“CTCP: Coded TCP using multiple paths,” in ArXiv
http://arxiv.org/abs/1212.1929, 2012.

[9] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, pp. 4413–4430, October 2006.

[10] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling
TCP Reno performance: a simple model and its empirical validation,”
IEEE/ACM Trans. Netw., vol. 8, pp. 133–145, 2000.

[11] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in Proceedings
of INFOCOM, 2006.

[12] R. N. Shorten and D. J. Leith, “On queue provisioning, network
efficiency and the transmission control protocol,” IEEE/ACM Trans.
Netw., vol. 15, pp. 866–877, 2007.

[13] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of TCP-
like congestion control: asymptotic results,” IEEE/ACM Trans. Netw.,
vol. 14, pp. 616–629, 2006.

