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ABSTRACT
Theory and experiments show that as the per-flow product of band-
width and latency increases, TCP becomes inefficient and prone to
instability, regardless of the queuing scheme. This failing becomes
increasingly important as the Internet evolves to incorporate very
high-bandwidth optical links and more large-delay satellite links.

To address this problem, we develop a novel approach to Inter-
net congestion control that outperforms TCP in conventional en-
vironments, and remains efficient, fair, scalable, and stable as the
bandwidth-delay product increases. This new eXplicit Control Pro-
tocol, XCP, generalizes the Explicit Congestion Notification pro-
posal (ECN). In addition, XCP introduces the new concept of de-
coupling utilization control from fairness control. This allows a
more flexible and analytically tractable protocol design and opens
new avenues for service differentiation.

Using a control theory framework, we model XCP and demon-
strate it is stable and efficient regardless of the link capacity, the
round trip delay, and the number of sources. Extensive packet-level
simulations show that XCP outperforms TCP in both conventional
and high bandwidth-delay environments. Further, XCP achieves
fair bandwidth allocation, high utilization, small standing queue
size, and near-zero packet drops, with both steady and highly vary-
ing traffic. Additionally, the new protocol does not maintain any
per-flow state in routers and requires few CPU cycles per packet,
which makes it implementable in high-speed routers.
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1. INTRODUCTION
For the Internet to continue to thrive, its congestion control mech-

anism must remain effective as the network evolves.
Technology trends indicate that the future Internet will have a large
number of very high-bandwidth links. Less ubiquitous but still
commonplace will be satellite and wireless links with high latency.
These trends are problematic because TCP reacts adversely to in-
creases in bandwidth or delay.

Mathematical analysis of current congestion control
algorithms reveals that, regardless of the queuing scheme, as the
delay-bandwidth product increases, TCP becomes oscillatory and
prone to instability. By casting the problem into a control theory
framework, Low et al. [23] show that as capacity or delay increases,
Random Early Discard (RED) [13], Random Early Marking (REM)
[5], Proportional Integral Controller [15], and Virtual Queue [14]
all eventually become oscillatory and prone to instability. They
further argue that it is unlikely that any Active Queue Management
scheme (AQM) can maintain stability over very high-capacity or
large-delay links. Furthermore, Katabi and Blake [19] show that
Adaptive Virtual Queue (AVQ) [22] also becomes prone to insta-
bility when the link capacity is large enough (e.g., gigabit links).

Inefficiency is another problem facing TCP in the future Inter-
net. As the delay-bandwidth product increases, performance de-
grades. TCP’s additive increase policy limits its ability to acquire
spare bandwidth to one packet per RTT. Since the bandwidth-delay
product of a single flow over very-high-bandwidth links may be
many thousands of packets, TCP might waste thousands of RTTs
ramping up to full utilization following a burst of congestion.

Further, the increase in link capacity does not improve the trans-
fer delay of short flows (the majority of the flows in the Internet).
Short TCP flows cannot acquire the spare bandwidth faster than
“slow start” and will waste valuable RTTs ramping up even when
bandwidth is available.

Additionally, since TCP’s throughput is inversely proportional to
the RTT, fairness too might become an issue as more flows in the
Internet traverse satellite links or wireless WANs [25]. As users
with substantially different RTTs compete for the same bottleneck
capacity, considerable unfairness will result.

Although the full impact of large delay-bandwidth products is
yet to come, we can see the seeds of these problems in the cur-
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rent Internet. For example, TCP over satellite links has revealed
network utilization issues and TCP’s undesirable bias against long
RTT flows [4]. Currently, these problems are mitigated using ad
hoc mechanisms such as ack spacing, split connection [4], or per-
formance enhancing proxies [8].

This paper develops a novel protocol for congestion control that
outperforms TCP in conventional environments, and further remains
efficient, fair, and stable as the link bandwidth or the round-trip de-
lay increases. This new eXplicit Control Protocol, XCP, general-
izes the Explicit Congestion Notification proposal (ECN) [27]. In-
stead of the one bit congestion indication used by ECN, our routers
inform the senders about the degree of congestion at the bottleneck.
Another new concept is the decoupling of utilization control from
fairness control. To control utilization, the new protocol adjusts
its aggressiveness according to the spare bandwidth in the network
and the feedback delay. This prevents oscillations, provides stabil-
ity in face of high bandwidth or large delay, and ensures efficient
utilization of network resources. To control fairness, the protocol
reclaims bandwidth from flows whose rate is above their fair share
and reallocates it to other flows.

By putting the control state in the packets, XCP needs no per-
flow state in routers and can scale to any number of flows. Further,
our implementation (Appendix A), requires only a few CPU cycles
per packet, making it practical even for high-speed routers.

Using a control theory framework motivated by previous work
[22, 15, 23], we show in x 4 that a fluid model of the protocol is
stable for any link capacity, feedback delay, or number of sources.
In contrast to the various AQM schemes where parameter values
depend on the capacity, delay, or number of sources, our analysis
shows how to set the parameters of the new protocol to constant
values that are effective independent of the environment.

Our extensive packet-level simulations in x 5 show that, regard-
less of the queuing scheme, TCP’s performance degrades signifi-
cantly as either capacity or delay increases. In contrast, the new
protocol achieves high utilization, small queues, and almost no
drops, independent of capacity or delay. Even in conventional en-
vironments, the simulations show that our protocol exhibits bet-
ter fairness, higher utilization, and smaller queue size, with almost
no packet drops. Further, it maintains good performance in dy-
namic environments with many short web-like flows, and has no
bias against long RTT flows. A unique characteristic of the new
protocol is its ability to operate with almost zero drops.

Although we started with the goal of solving TCP’s limitations
in high-bandwidth large-delay environments, our design has several
additional advantages.

First, decoupling fairness control from utilization control opens
new avenues for service differentiation using schemes that provide
desired bandwidth apportioning, yet are too aggressive or too weak
for controlling congestion. In x 6, we present a simple scheme that
implements the shadow prices model [21].

Second, the protocol facilitates distinguishing error losses from
congestion losses, which makes it useful for wireless environments.
In XCP, drops caused by congestion are highly uncommon (e.g.,
less than one in a million packets in simulations). Further, since
the protocol uses explicit and precise congestion feedback, a con-
gestion drop is likely to be preceded by an explicit feedback that
tells the source to decrease its congestion window. Losses that are
preceded and followed by an explicit increase feedback are likely
error losses.

Third, as shown in x 7, XCP facilitates the detection of misbe-
having sources.

Finally, XCP’s performance provides an incentive for both end
users and network providers to deploy the protocol. In x 8 we

present possible deployment paths.

2. DESIGN RATIONALE
Our initial objective is to step back and rethink Internet conges-

tion control without caring about backward compatibility or de-
ployment. If we were to build a new congestion control architecture
from scratch, what might it look like?

The first observation is that packet loss is a poor signal of con-
gestion. While we do not believe a cost-effective network can al-
ways avoid loss, dropping packets should be a congestion signal of
last resort. As an implicit signal, loss is bad because congestion is
not the only source of loss, and because a definite decision that a
packet was lost cannot be made quickly. As a binary signal, loss
only signals whether there is congestion (a loss) or not (no loss).
Thus senders must probe the network to the point of congestion
before backing off. Moreover, as the feedback is imprecise, the in-
crease policy must be conservative and the decrease policy must be
aggressive.

Tight congestion control requires explicit and precise congestion
feedback. Congestion is not a binary variable, so congestion sig-
nalling should reflect the degree of congestion. We propose using
precise congestion signalling, where the network explicitly tells the
sender the state of congestion and how to react to it. This allows the
senders to decrease their sending windows quickly when the bottle-
neck is highly congested, while performing small reductions when
the sending rate is close to the bottleneck capacity. The resulting
protocol is both more responsive and less oscillatory.

Second, the aggressiveness of the sources should be adjusted ac-
cording to the delay in the feedback-loop. The dynamics of con-
gestion control may be abstracted as a control loop with feedback
delay. A fundamental characteristic of such a system is that it be-
comes unstable for some large feedback delay. To counter this
destabilizing effect, the system must slow down as the feedback de-
lay increases. In the context of congestion control, this means that
as delay increases, the sources should change their sending rates
more slowly. This issue has been raised by other researchers [23,
26], but the important question is how exactly feedback should de-
pend on delay to establish stability. Using tools from control theory,
we conjecture that congestion feedback based on rate-mismatch
should be inversely proportional to delay, and feedback based on
queue-mismatch should be inversely proportional to the square of
delay.

Robustness to congestion should be independent of unknown and
quickly changing parameters, such as the number of flows. A fun-
damental principle from control theory states that a controller must
react as quickly as the dynamics of the controlled signal; other-
wise the controller will always lag behind the controlled system and
will be ineffective. In the context of current proposals for conges-
tion control, the controller is an Active Queue Management scheme
(AQM). The controlled signal is the aggregate traffic traversing the
link. The controller seeks to match input traffic to link capacity.
However, this objective might be unachievable when the input traf-
fic consists of TCP flows, because the dynamics of a TCP aggregate
depend on the number of flows (N ). The aggregate rate increases
by N packets per RTT, or decreases proportionally to 1=N . Since
the number of flows in the aggregate is not constant and changes
over time, no AQM controller with constant parameters can be fast
enough to operate with an arbitrary number of TCP flows. Thus, a
third objective of our system is to make the dynamics of the aggre-
gate traffic independent from the number of flows.

This leads to the need for decoupling efficiency control (i.e., con-
trol of utilization or congestion) from fairness control. Robustness
to congestion requires the behavior of aggregate traffic to be inde-
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Figure 1: Congestion header.

pendent of the number of flows in it. However, any fair bandwidth
allocation intrinsically depends on the number of flows traversing
the bottleneck. Thus, the rule for dividing bandwidth among indi-
vidual flows in an aggregate should be independent from the control
law that governs the dynamics of the aggregate.

Traditionally, efficiency and fairness are coupled since the same
control law (such as AIMD in TCP) is used to obtain both fair-
ness and efficiency simultaneously [3, 9, 17, 18, 16]. Conceptually,
however, efficiency and fairness are independent. Efficiency in-
volves only the aggregate traffic’s behavior. When the input traffic
rate equals the link capacity, no queue builds and utilization is op-
timal. Fairness, on the other hand, involves the relative throughput
of flows sharing a link. A scheme is fair when the flows sharing a
link have the same throughput irrespective of congestion.

In our new paradigm, a router has both an efficiency controller
(EC) and a fairness controller (FC). This separation simplifies the
design and analysis of each controller by reducing the requirements
imposed. It also permits modifying one of the controllers with-
out redesigning or re-analyzing the other. Furthermore, it provides
a flexible framework for integrating differential bandwidth alloca-
tions. For example, allocating bandwidth to senders according to
their priorities or the price they pay requires changing only the fair-
ness controller and does not affect the efficiency or the congestion
characteristics.

3. PROTOCOL
XCP provides a joint design of end-systems and routers. Like

TCP, XCP is a window-based congestion control protocol intended
for best effort traffic. However, its flexible architecture can easily
support differentiated services as explained in x 6. The description
of XCP in this section assumes a pure XCP network. In x 8, we
show that XCP can coexist with TCP in the same Internet and be
TCP-friendly.

3.1 Framework
First we give an overview of how control information flows in

the network, then in x 3.5 we explain feedback computation.
Senders maintain their congestion window cwnd and round trip

time rtt1 and communicate these to the routers via a congestion
header in every packet. Routers monitor the input traffic rate to
each of their output queues. Based on the difference between the
link bandwidth and its input traffic rate, the router tells the flows
sharing that link to increase or decrease their congestion windows.
It does this by annotating the congestion header of data packets.
Feedback is divided between flows based on their cwnd and rtt
values so that the system converges to fairness. A more congested
router later in the path can further reduce the feedback in the con-
gestion header by overwriting it. Ultimately, the packet will contain
the feedback from the bottleneck along the path. When the feed-

1In this document, the notation RTT refers to the physical round
trip time, rtt refers to the variable maintained by the source’s
software, and H rtt refers to a field in the congestion header.

back reaches the receiver, it is returned to the sender in an acknowl-
edgment packet, and the sender updates its cwnd accordingly.

3.2 The Congestion Header
Each XCP packet carries a congestion header (Figure 1), which

is used to communicate a flow’s state to routers and feedback from
the routers on to the receivers. The field H cwnd is the sender’s
current congestion window, whereas H rtt is the sender’s current
RTT estimate. These are filled in by the sender and never modified
in transit.

The remaining field, H feedback, takes positive or negative
values and is initialized by the sender. Routers along the path
modify this field to directly control the congestion windows of the
sources.

3.3 The XCP Sender
As with TCP, an XCP sender maintains a congestion window of

the outstanding packets, cwnd, and an estimate of the round trip
time rtt. On packet departure, the sender attaches a congestion
header to the packet and sets the H cwnd field to its current cwnd
and H rtt to its current rtt. In the first packet of a flow, H rtt
is set to zero to indicate to the routers that the source does not yet
have a valid estimate of the RTT.

The sender initializes the H feedback field to request its de-
sired window increase. For example, when the application has a
desired rate r, the sender sets H feedback to the desired increase
in the congestion window (r� rtt - cwnd) divided by the number
of packets in the current congestion window. If bandwidth is avail-
able, this initialization allows the sender to reach the desired rate
after one RTT.

Whenever a new acknowledgment arrives, positive feedback in-
creases the senders cwnd and negative feedback reduces it:

cwnd = max(cwnd+H feedback; s);

where s is the packet size.
In addition to direct feedback, XCP still needs to respond to

losses although they are rare. It does this in a similar manner to
TCP.

3.4 The XCP Receiver
An XCP receiver is similar to a TCP receiver except that when

acknowledging a packet, it copies the congestion header from the
data packet to its acknowledgment.

3.5 The XCP Router: The Control Laws
The job of an XCP router is to compute the feedback to cause

the system to converge to optimal efficiency and min-max fairness.
Thus, XCP does not drop packets. It operates on top of a dropping
policy such as DropTail, RED, or AVQ. The objective of XCP is
to prevent, as much as possible, the queue from building up to the
point at which a packet has to be dropped.

To compute the feedback, an XCP router uses an efficiency con-
troller and a fairness controller. Both of these compute estimates
over the average RTT of the flows traversing the link, which smooths
the burstiness of a window-based control protocol. Estimating pa-
rameters over intervals longer than the average RTT leads to slug-
gish response, while estimating parameters over shorter intervals
leads to erroneous estimates. The average RTT is computed using
the information in the congestion header.

XCP controllers make a single control decision every average
RTT (the control interval). This is motivated by the need to ob-
serve the results of previous control decisions before attempting a
new control. For example, if the router tells the sources to increase
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their congestion windows, it should wait to see how much spare
bandwidth remains before telling them to increase again.

The router maintains a per-link estimation-control timer that is
set to the most recent estimate of the average RTT on that link.
Upon timeout the router updates its estimates and its control deci-
sions. In the remainder of this paper, we refer to the router’s current
estimate of the average RTT as d to emphasize this is the feedback
delay.

3.5.1 The Efficiency Controller (EC)
The efficiency controller’s purpose is to maximize link utiliza-

tion while minimizing drop rate and persistent queues. It looks
only at aggregate traffic and need not care about fairness issues,
such as which flow a packet belongs to.

As XCP is window-based, the EC computes a desired increase or
decrease in the number of bytes that the aggregate traffic transmits
in a control interval (i.e., an average RTT). This aggregate feedback
� is computed each control interval:

� = � � d � S � � �Q; (1)

� and � are constant parameters, whose values are set based on our
stability analysis (x 4) to 0:4 and 0:226, respectively. The term d is
the average RTT, and S is the spare bandwidth defined as the dif-
ference between the input traffic rate and link capacity. (Note that
S can be negative.) Finally, Q is the persistent queue size (i.e., the
queue that does not drain in a round trip propagation delay), as op-
posed to a transient queue that results from the bursty nature of all
window-based protocols. We compute Q by taking the minimum
queue seen by an arriving packet during the last propagation delay,
which we estimate by subtracting the local queuing delay from the
average RTT.

Equation 1 makes the feedback proportional to the spare band-
width because, when S � 0, the link is underutilized and we want
to send positive feedback, while when S < 0, the link is congested
and we want to send negative feedback. However this alone is in-
sufficient because it would mean we give no feedback when the
input traffic matches the capacity, and so the queue does not drain.
To drain the persistent queue we make the aggregate feedback pro-
portional to the persistent queue too. Finally, since the feedback is
in bytes, the spare bandwidth S is multiplied by the average RTT.

To achieve efficiency, we allocate the aggregate feedback to sin-
gle packets as H feedback. Since the EC deals only with the ag-
gregate behavior, it does not care which packets get the feedback
and by how much each individual flow changes its congestion win-
dow. All the EC requires is that the total traffic changes by � over
this control interval. How exactly we divide the feedback among
the packets (and hence the flows) affects only fairness, and so is the
job of the fairness controller.

3.5.2 The Fairness Controller (FC)
The job of the fairness controller (FC) is to apportion the feed-

back to individual packets to achieve fairness. The FC relies on the
same principle TCP uses to converge to fairness, namely Additive-
Increase Multiplicative-Decrease (AIMD). Thus, we want to com-
pute the per-packet feedback according to the policy:

If � > 0, allocate it so that the increase in throughput of all flows
is the same.

If � < 0, allocate it so that the decrease in throughput of a flow is
proportional to its current throughput.

This ensures continuous convergence to fairness as long as the ag-
gregate feedback � is not zero. To prevent convergence stalling
when efficiency is around optimal (� � 0), we introduce the con-
cept of bandwidth shuffling. This is the simultaneous allocation and

deallocation of bandwidth such that the total traffic rate (and conse-
quently the efficiency) does not change, yet the throughput of each
individual flow changes gradually to approach the flow’s fair share.
The shuffled traffic is computed as follows:

h = max(0;  � y � j�j); (2)

where y is the input traffic in an average RTT and  is a constant
set to 0.1. This equation ensures that, every average RTT, at least
10% of the traffic is redistributed according to AIMD. The choice
of 10% is a tradeoff between the time to converge to fairness and
the disturbance the shuffling imposes on a system that is around
optimal efficiency.

Next, we compute the per-packet feedback that allows the FC
to enforce the above policies. Since the increase law is additive
whereas the decrease is multiplicative, it is convenient to compute
the feedback assigned to packet i as the combination of a positive
feedback pi and a negative feedback ni.

H feedbacki = pi � ni: (3)

First, we compute the case when the aggregate feedback is pos-
itive (� > 0). In this case, we want to increase the throughput of
all flows by the same amount. Thus, we want the change in the
throughput of any flow i to be proportional to the same constant,
(i.e., �throughputi / constant). Since we are dealing with a
window-based protocol, we want to compute the change in con-
gestion window rather than the change in throughput. The change
in the congestion window of flow i is the change in its through-
put multiplied by its RTT. Hence, the change in the congestion
window of flow i should be proportional to the flow’s RTT, (i.e.,
�cwndi / rtti).

The next step is to translate this desired change of congestion
window to per-packet feedback that will be reported in the conges-
tion header. The total change in congestion window of a flow is the
sum of the per-packet feedback it receives. Thus, we obtain the per-
packet feedback by dividing the change in congestion window by
the expected number of packets from flow i that the router sees in
a control interval d. This number is proportional to the flow’s con-
gestion window divided by its packet size (both in bytes), cwndi

si
,

and inversely proportional to its round trip time, rtti. Thus, the per-
packet positive feedback is proportional to the square of the flow’s
RTT, and inversely proportional to its congestion window divided

by its packet size, (i.e., pi / rtt2i
cwndi=si

). Thus, positive feedback pi
is given by:

pi = �p
rtt2i � si
cwndi

; (4)

where �p is a constant.
The total increase in the aggregate traffic rate is h+max(�;0)

d
,

where max(�; 0) ensures that we are computing the positive feed-
back. This is equal to the sum of the increase in the rates of all
flows in the aggregate, which is the sum of the positive feedback a
flow has received divided by its RTT, and so:

h+max(�; 0)

d
=

LX pi
rtti

; (5)

where L is the number of packets seen by the router in an average
RTT (the sum is over packets). From this, �p can be derived as:

�p =
h+max(�; 0)

d �P rtti�si
cwndi

: (6)

Similarly, we compute the per-packet negative feedback given
when the aggregate feedback is negative (� < 0). In this
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case, we want the decrease in the throughput of
flow i to be proportional to its current throughput (i.e.,
�throughputi / throughputi). Consequently, the desired change
in the flow’s congestion window is proportional to its current con-
gestion window (i.e., �cwndi / cwndi). Again, the desired per-
packet feedback is the desired change in the congestion window
divided by the expected number of packets from this flow that the
router sees in an interval d. Thus, we finally find that the per-packet
negative feedback should be proportional to the packet size multi-
plied by its flow’s RTT (i.e., ni / rtti �si). Thus negative feedback
ni is given by:

ni = �n � rtti � si (7)

where �n is a constant.
As with the increase case, the total decrease in the aggregate

traffic rate is the sum of the decrease in the rates of all flows in the
aggregate:

h+max(��; 0)
d

=

LX ni
rtti

: (8)

As so, �n can be derived as:

�n =
h+max(��; 0)

d �P si
; (9)

where the sum is over all packets in a control interval (average
RTT).

3.5.3 Notes on the Efficiency and Fairness Controllers
This section summarizes the important points about the design

of the efficiency controller and the fairness controller.
As mentioned earlier, the efficiency and fairness controllers are

decoupled. Specifically, the efficiency controller uses a
Multiplicative-Increase Multiplicative-Decrease law (MIMD), which
increases the traffic rate proportionally to the spare bandwidth in
the system (instead of increasing by one packet/RTT/flow as TCP
does). This allows XCP to quickly acquire the positive spare band-
width even over high capacity links. The fairness controller, on the
other hand, uses an Additive-Increase Multiplicative-Decrease law
(AIMD), which converges to fairness [10]. Thus, the decoupling
allows each controller to use a suitable control law.

The particular control laws used by the efficiency controller
(MIMD) and the fairness controller (AIMD) are not the only possi-
ble choices. For example, in [20] we describe a fairness controller
that uses a binomial law similar to those described in [6]. We chose
the control laws above because our analysis and simulation demon-
strate their good performance.

We note that the efficiency controller satisfies the requirements
in x 2. The dynamics of the aggregate traffic are specified by the
aggregate feedback and stay independent of the number of flows
traversing the link. Additionally, in contrast to TCP where the in-
crease/decrease rules are indifferent to the degree of congestion in
the network, the aggregate feedback sent by the EC is proportional
to the degree of under- or over-utilization. Furthermore, since the
aggregate feedback is given over an average RTT, XCP becomes
less aggressive as the round trip delay increases.2

Although the fairness controller uses AIMD, it converges to fair-
ness faster than TCP. Note that in AIMD, all flows increase equally

2The relation between XCP’s dynamics and feedback delay is hard
to fully grasp from Equation 1. We refer the reader to Equation 16,
which shows that the change in throughput based on rate-mismatch
is inversely proportional to delay, and the change based on queue-
mismatch is inversely proportional to the square of delay.

regardless of their current rate. Therefore, it is the multiplicative-
decrease that helps converging to fairness. In TCP, multiplicative-
decrease is tied to the occurrence of a drop, which should be a rare
event. In contrast, with XCP multiplicative-decrease is decoupled
from drops and is performed every average RTT.

XCP is fairly robust to estimation errors. For example, we esti-
mate the value of �p every d and use it as a prediction of �p during
the following control interval (i.e., the following d). If we underes-
timate �p, we will fail to allocate all of the positive feedback in the
current control interval. Nonetheless, the bandwidth we fail to allo-
cate will appear in our next estimation of the input traffic as a spare
bandwidth, which will be allocated (or partially allocated) in the
following control interval. Thus, in every control interval, a por-
tion of the spare bandwidth is allocated until none is left. Since our
underestimation of �p causes reduced allocation, the convergence
to efficiency is slower than if our prediction of �p had been correct.
Yet the error does not stop XCP from reaching full utilization. Sim-
ilarly, if we overestimate �p then we will allocate more feedback to
flows at the beginning of a control interval and run out of aggregate
feedback quickly. This uneven spread of feedback over the alloca-
tion interval does not affect convergence to utilization but it slows
down convergence to fairness. A similar argument can be made
about other estimation errors; they mainly affect the convergence
time rather than the correctness of the controllers.3

XCP’s parameters (i.e., � and �) are constant whose values are
independent of the number of sources, the delay, and the capacity
of the bottleneck. This is a significant improvement over previ-
ous approaches where specific values for the parameters work only
in specific environments (e.g, RED), or the parameters have to be
chosen differently depending on the number of sources, the capac-
ity, and the delay (e.g., AVQ). In x 4, we show how these constant
values are chosen.

Finally, implementing the efficiency and fairness controllers is
fairly simple and requires only a few lines of code as shown in
Appendix A. We note that an XCP router performs only a few
additions and 3 multiplications per packet, making it an attractive
choice even as a backbone router.

4. STABILITY ANALYSIS
We use a fluid model of the traffic to analyze the stability of

XCP. Our analysis considers a single link traversed by multiple
XCP flows. For the sake of simplicity and tractability, similarly
to previous work [22, 15, 23, 24], our analysis assumes all flows
have a common, finite, and positive round trip delay, and neglects
boundary conditions (i.e., queues are bounded, rates cannot be neg-
ative). Later, we demonstrate through extensive simulations that
even with larger topologies, different RTTs, and boundary condi-
tions, our results still hold.

The main result can be stated as follows.

THEOREM 1. Suppose the round trip delay is d. If the parame-
ters � and � satisfy:

0 < � <
�

4
p
2

and � = �2
p
2;

then the system is stable independently of delay, capacity, and num-
ber of sources.
3There is one type of error that may prevent the convergence to
complete efficiency, which is the unbalanced allocation and deallo-
cation of the shuffled traffic. For example, if by the end of a control
interval we deallocate all of the shuffled traffic but fail to allocate
it, then the shuffling might prevent us from reaching full link uti-
lization. Yet note that the shuffled traffic is only 10% of the input
traffic. Furthermore, shuffling exists only when j�j < 0:1y.
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Figure 2: A single bottleneck topology.

Figure 3: A parking lot topology.

The details of the proof are given in Appendix B. The idea un-
derlying the stability proof is the following. Given the assumptions
above, our system is a linear feedback system with delay. The sta-
bility of such systems may be studied by plotting their open-loop
transfer function in a Nyquist plot. We prove that by choosing �
and � as stated above, the system satisfies the Nyquist stability cri-
terion. Further, the gain margin is greater than one and the phase
margin is positive independently of delay, capacity, and number of
sources.4

5. PERFORMANCE
In this section, we demonstrate through extensive simulations

that XCP outperforms TCP both in conventional and high bandwidth-
delay environments.

Our simulations also show that XCP has the unique characteristic
of almost never dropping packets.

We also demonstrate that by complying with the conditions in
Theorem 1, we can choose constant values for � and � that work
with any capacity and delay, as well as any number of sources. Our
simulations cover capacities in [1.5 Mb/s, 4 Gb/s], propagation de-
lays in [10 ms, 1.4 sec], and number of sources in [1, 1000]. Fur-
ther, we simulate 2-way traffic (with the resulting ack compression)
and dynamic environments with arrivals and departures of short
web-like flows. In all of these simulations, we set � = 0:4 and
� = 0:226 showing the robustness of our results.

Additionally, the simulations show that in contrast to TCP, the
new protocol dampens oscillations and smoothly converges to high
utilization, small queue size, and fair bandwidth allocation. We
also demonstrate that the protocol is robust to highly varying traffic
demands and high variance in flows’ round trip times.

5.1 Simulation Setup
Our simulations use the packet-level simulator ns-2 [1], which

we have extended with an XCP module.5 We compare XCP with
TCP Reno over the following queuing disciplines:

Random Early Discard (RED [13]). Our experiments use the
“gentle” mode and set the parameters according to the authors’ rec-
ommendations in [2]. The minimum and the maximum thresholds
are set to one third and two thirds the buffer size, respectively.
4The gain margin is the magnitude of the transfer function at the
frequency ��. The phase margin is the frequency at which the
magnitude of the transfer function becomes 1. They are used to
prove robust stability.
5The code is available at www.ana.lcs.mit.edu/dina/XCP.
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Figure 4: XCP significantly outperforms TCP in high band-
width environments. The graphs compare the efficiency of XCP
with that of TCP over RED, CSFQ, REM, and AVQ as a func-
tion of capacity.

Random Early Marking (REM [5]). Our experiments set REM
parameters according to the authors’ recommendation provided with
their code. In particular, � = 1:001,  = 0:001, the update interval
is set to the transmission time of 10 packets, and qref is set to one
third of the buffer size.

Adaptive Virtual Queue (AVQ [22]). As recommended by the
authors, our experiments use  = 0:98 and compute � based on
the equation in [22]. Yet, as shown in [19], the equation for setting
� does not admit a solution for high capacities. In these cases, we
use � = 0:15 as used in [22].

Core Stateless Fair Queuing (CSFQ [28]). In contrast to the
above AQMs, whose goal is to achieve high utilization and small
queue size, CSFQ aims for providing high fairness in a network
cloud with no per-flow state in core routers. We compare CSFQ
with XCP to show that XCP can be used within the CSFQ frame-
work to improve its fairness and efficiency. Again, the parameters
are set to the values chosen by the authors in their ns implementa-
tion.

The simulator code for these AQM schemes is provided by their
authors. Further, to allow these schemes to exhibit their best per-
formance, we simulate them with ECN enabled.

In all of our simulations, the XCP parameters are set to � = 0:4
and � = 0:226. We experimented with XCP with both Drop-Tail
and RED dropping policies. There was no difference between the
two cases because XCP almost never dropped packets.

Most of our simulations use the topology in Figure 2. The bot-
tleneck capacity, the round trip delay, and the number of flows vary
according to the objective of the experiment. The buffer size is al-
ways set to the delay-bandwidth product. The data packet size is
1000 bytes. Simulations over the topology in Figure 3 are used to
show that our results generalize to larger and more complex topolo-
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Figure 5: XCP significantly outperforms TCP in high delay en-
vironments. The graphs compare bottleneck utilization, aver-
age queue, and number of drops as round trip delay increases
when flows are XCPs and when they are TCPs over RED,
CSFQ, REM, and AVQ.

gies. When unspecified, the reader should assume that the simula-
tion topology is that in Figure 2, the flows RTTs are equivalent, and
the sources are long-lived FTP flows. Simulations’ running times
vary depending on the propagation delay but are always larger than
300 RTTs. All simulations were run long enough to ensure the
system has reached a consistent behavior.

5.2 Comparison with TCP and AQM Schemes
Impact of Capacity: We show that an increase in link capacity
(with the resulting increase of per-flow bandwidth) will cause a
significant degradation in TCP’s performance, irrespective of the
queuing scheme.

In this experiment, 50 long-lived FTP flows share a bottleneck.
The round trip propagation delay is 80 ms. Additionally, there are
50 flows traversing the reverse path and used merely to create a
2-way traffic environment with the potential for ack compression.
Since XCP is based on a fluid model and estimates some parame-
ters, the existence of reverse traffic, with the resulting burstiness,
tends to stress the protocol.

Figure 4 demonstrates that as capacity increases, TCP’s bottle-
neck utilization decreases significantly. This happens regardless of
the queuing scheme.

In contrast, XCP’s utilization is always near optimal independent
of the link capacity. Furthermore, XCP never drops any packet,
whereas TCP drops thousands of packets despite its use of ECN.
Although the XCP queue increases with the capacity, the queu-
ing delay does not increase because the larger capacity causes the
queue to drain faster.

Impact of Feedback Delay: We fix the bottleneck capacity at 150
Mb/s and study the impact of increased delay on the performance

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

B
ot

tle
ne

ck
 U

til
iz

at
io

n

(a) Number of FTP Flows

XCP
RED

CSFQ
REM
AVQ

0

500

1000

1500

0 100 200 300 400 500 600 700 800 900 1000A
ve

ra
ge

 B
ot

tle
ne

ck
 Q

ue
ue

 (
pa

ck
et

s)

(b) Number of FTP Flows

XCP
RED

CSFQ
REM
AVQ

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600 700 800 900 1000

B
ot

tle
ne

ck
 D

ro
ps

 (
pa

ck
et

s)
(c) Number of FTP Flows

XCP
RED

CSFQ
REM
AVQ

Figure 6: XCP is efficient with any number of flows. The
graphs compare the efficiency of XCP and TCP with various
queuing schemes as a function of the number of flows.

of congestion control. All other parameters have the same values
used in the previous experiment.

Figure 5 shows that as the propagation delay increases, TCP’s
utilization degrades considerably regardless of the queuing scheme.
In contrast, XCP maintains high utilization independently of delay.

The adverse impact of large delay on TCP’s performance has
been noted over satellite links. The bursty nature of TCP has been
suggested as a potential explanation and packet pacing has been
proposed as a solution [4]; however, this experiment shows that
burstiness is a minor factor. In particular, XCP is a bursty window-
based protocol but it copes with delay much better than TCP. It does
so by adjusting its aggressiveness according to round trip delay.

Impact of Number of Flows: We fix the bottleneck capacity at
150 Mb/s and round trip propagation delay at 80 ms and repeat the
same experiment with a varying number of FTP sources. Other
parameters have the same values used in the previous experiment.

Figure 6 shows that overall, XCP exhibits good utilization, rea-
sonable queue size, and no packet losses. The increase in XCP
queue as the number of flows increases is a side effect of its high
fairness (see Figure 8). When the number of flows is larger than
500, the fair congestion window is between two and three pack-
ets. In particular, the fair congestion window is a real number but
the effective (i.e., used) congestion window is an integer number of
packets. Thus, as the fair window size decreases, the effect of the
rounding error increases causing a disturbance. Consequently, the
queue increases to absorb this disturbance.

Impact of Short Web-Like Traffic: Since a large number of flows
in the Internet are short web-like flows, it is important to investi-
gate the impact of such dynamic flows on congestion control. In
this experiment, we have 50 long-lived FTP flows traversing the
bottleneck link. Also, there are 50 flows traversing the reverse
path whose presence emulates a 2-way traffic environment with
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Figure 7: XCP is robust and efficient in environments with ar-
rivals and departures of short web-like flows. The graphs com-
pare the efficiency of XCP to that of TCP over various queuing
schemes as a function of the arrival rate of web-like flows.

the resulting ack compression. The bottleneck bandwidth is 150
Mb/s and the round trip propagation delay is 80 ms. Short flows
arrive according to a Poisson process. Their transfer size is de-
rived from a Pareto distribution with an average of 30 packets (ns-
implementation with shape = 1:35), which complies with real
web traffic [11].

Figure 7 graphs bottleneck utilization, average queue size, and
total number of drops, all as functions of the arrival rate of short
flows. The figure demonstrates XCP’s robustness in dynamic en-
vironments with a large number of flow arrivals and departures.
XCP continues to achieve high utilization, small queue size and
zero drops even as the arrival rate of short flows becomes signif-
icantly high. At arrival rates higher than 800 flows/s (more than
10 new flows every RTT), XCP starts dropping packets. This be-
havior is not caused by the environment being highly dynamic. It
happens because at such high arrival rates the number of simulta-
neously active flows is a few thousands. Thus, there is no space in
the pipe to maintain a minimum of one packet from each flow and
drops become inevitable. In this case, XCP’s behavior approaches
the under-lying dropping policy, which is RED for Figure 7.

Fairness : This experiment shows that XCP is significantly fairer
than TCP, regardless of the queuing scheme. We have 30 long-
lived FTP flows sharing a single 30 Mb/s bottleneck. We conduct
two sets of simulations. In the first set, all flows have a common
round-trip propagation delay of 40 ms. In the second set of simu-
lations, the flows have different RTTs in the range [40 ms, 330 ms]
(RTTi+1 = RTTi + 10ms).

Figures 8-a and 8-b demonstrate that, in contrast to other ap-
proaches, XCP provides a fair bandwidth allocation and does not
have any bias against long RTT flows. Furthermore, Figure 8-b
demonstrates XCP robustness to high variance in the RTT distri-
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Figure 8: XCP is fair to both equal and different RTT flows.
The graphs compare XCP’s Fairness to that of TCP over RED,
CSFQ, REM, and AVQ. Graph (b) also shows XCP’s robustness
to environments with different RTTs.

bution. Thus, although XCP computes an estimate of the average
RTT of the system, it still operates correctly in environments where
different flows have substantially different RTTs. For further infor-
mation on this point see Appendix C.

A More Complex Topology: This experiment uses the 9-link topol-
ogy in Figure 3, although results are very similar for topologies
with more links. Link 5 has the lowest capacity, namely 50 Mb/s,
whereas the others are 100 Mb/s links. All links have 20 ms one-
way propagation delay. Fifty flows, represented by the solid arrow,
traverse all links in the forward direction. Fifty cross flows, illus-
trated by the small dashed arrows, traverse each individual link in
the forward direction. 50 flows also traverse all links along the
reverse path.

Figure 9 illustrates the average utilization, queue size, and num-
ber of drops at every link. In general, all schemes maintain a rea-
sonably high utilization at all links (note the y-scale). However,
the trade off between optimal utilization and small queue size is
handled differently in XCP from the various AQM schemes. XCP
trades a few percent of utilization for a considerably smaller queue
size. XCP’s lower utilization in this experiment compared to previ-
ous ones is due to disturbance introduced by shuffling. In particu-
lar, at links 1, 2, 3, and 4 (i.e., the set of links preceding the lowest
capacity link along the path), the fairness controller tries to shuffle
bandwidth from the cross flows to the long-distance flows, which
have lower throughput. Yet, these long-distance flows are throttled
downstream at link 5, and so cannot benefit from this positive feed-
back. This effect is mitigated at links downstream from link 5 be-
cause they can observe the upstream throttling and correspondingly
reduce the amount of negative feedback given (see implementation
in Appendix A). In any event, as the total shuffled bandwidth is less
than 10%, the utilization is always higher than 90%.

96



0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9

U
til

iz
at

io
n

(a) Link ID

XCP
RED

CSFQ
REM
AVQ

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 Q
ue

ue
 (

pa
ck

et
s)

(b) Link ID

XCP
RED

CSFQ
REM
AVQ

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9

P
ac

ke
t D

ro
ps

(c) Link ID

XCP
RED

CSFQ
REM
AVQ

Figure 9: Simulation with multiple congested queues. Utiliza-
tion, average Queue size, and number of drops at nine consecu-
tive links (topology in Figure 3). Link 5 has the lowest capacity
along the path.

It is possible to modify XCP to maintain 100% utilization in the
presence of multiple congested links. In particular, we could mod-
ify XCP so that it maintains the queue around a target value rather
than draining all of it. This would cause the disturbance induced
by shuffling to appear as a fluctuation in the queue rather than as a
drop in utilization. However, we believe that maintaining a small
queue size is more valuable than a few percent increase in utiliza-
tion when flows traverse multiple congested links. In particular,
it leaves a safety margin for bursty arrivals of new flows. In con-
trast, the large queues maintained at all links in the TCP simulations
cause every packet to wait at all of the nine queues, which consid-
erably increases end-to-end latency.

At the end of this section, it is worth noting that, in all of our sim-
ulations, the average drop rate of XCP was less than 10�6 , which
is three orders of magnitude smaller than the other schemes despite
their use of ECN. Thus, in environments where the fair congestion
window of a flow is larger than one or two packets, XCP can con-
trol congestion with almost no drops. (As the number of competing
flows increases to the point where the fair congestion window is
less than one packet, drops become inevitable.)

5.3 The Dynamics of XCP
While the simulations presented above focus on long term aver-

age behavior, this section shows the short term dynamics of XCP. In
particular, we show that XCP’s utilization, queue size, and through-
put exhibit very limited oscillations. Therefore, the average behav-
ior presented in the section above is highly representative of the
general behavior of the protocol.

Convergence Dynamics: We show that XCP dampens oscillations
and converges smoothly to high utilization small queues and fair
bandwidth allocation. In this experiment, 5 long-lived flows share
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Figure 10: XCP’s smooth convergence to high fairness, good
utilization, and small queue size. Five XCP flows share a 45
Mb/s bottleneck. They start their transfers at times 0, 2, 4, 6,
and 8 seconds.

a 45 Mb/s bottleneck and have a common RTT of 40 ms. The flows
start their transfers two seconds apart at 0, 2, 4, 6, and 8 seconds.

Figure 10-a shows that whenever a new flow starts, the fair-
ness controller reallocates bandwidth to maintain min-max fair-
ness. Figure 10-b shows that decoupling utilization and fairness
control ensures that this reallocation is achieved without disturbing
the utilization. Finally, Figure 10-c shows the instantaneous queue,
which effectively absorbs the new traffic and drains afterwards.

Robustness to Sudden Increase or Decrease in Traffic Demands:
In this experiment, we examine performance as traffic demands and
dynamics vary considerably. We start the simulation with 10 long-
lived FTP flows sharing a 100 Mb/s bottleneck with a round trip
propagation delay of 40 ms. At t = 4 seconds, we start 100 new
flows and let them stabilize. At t = 8 seconds, we stop these 100
flows leaving the original 10 flows in the system.

Figure 11 shows that XCP adapts quickly to a sudden increase or
decrease in traffic. It shows the utilization and queue, both for the
case when the flows are XCP, and for when they are TCPs travers-
ing RED queues. XCP absorbs the new burst of flows without drop-
ping any packets, while maintaining high utilization. TCP on the
other hand is highly disturbed by the sudden increase in the traffic
and takes a long time to restabilize. When the flows are suddenly
stopped at t = 10 seconds, XCP quickly reallocates the spare band-
width and continues to have high utilization. In contrast, the sudden
decrease in demand destabilizes TCP and causes a large sequence
of oscillations.

6. DIFFERENTIAL BANDWIDTH ALLOCA-
TION

By decoupling efficiency and fairness, XCP provides a flexible
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Figure 11: XCP is more robust against sudden increase or decrease in traffic demands than TCP. Ten FTP flows share a bottleneck.
At time t = 4 seconds, we start 100 additional flows. At t = 8 seconds, these 100 flows are suddenly stopped and the original 10 flows
are left to stabilize again.

framework for designing a variety of bandwidth allocation schemes.
In particular, the min-max fairness controller, described in x 3, may
be replaced by a controller that causes the flows’ throughputs to
converge to a different bandwidth allocation (e.g., weighted fair-
ness, proportional fairness, priority, etc). To do so, the designer
needs to replace the AIMD policy used by the FC by a policy that
allocates the aggregate feedback to the individual flows so that they
converge to the desired rates.

In this section, we modify the fairness controller to provide dif-
ferential bandwidth allocation. Before describing our bandwidth
differentiation scheme, we note that in XCP, the only interesting
quality of service (QoS) schemes are the ones that address band-
width allocation. Since XCP provides small queue size and near-
zero drops, QoS schemes that guarantee small queuing delay or low
jitter are redundant.

We describe a simple scheme that provide differential bandwidth
allocation according to the shadow prices model defined by Kelly
[21]. In this model, a user chooses the price per unit time she
is willing to pay. The network allocates bandwidth so that the
throughputs of users competing for the same bottleneck are pro-
portional to their prices; (i.e., throughputi

pricei
=

throughputj
pricej

).
To provide bandwidth differentiation, we replace the AIMD pol-

icy by:

If � > 0, allocate it so that the increase in throughput of a flow is
proportional to its price.

If � < 0, allocate it so that the decrease in throughput of a flow is
proportional to its current throughput.

We can implement the above policy by modifying the conges-
tion header. In particular, the sender replaces the H cwnd field
by the current congestion window divided by the price she is will-
ing to pay (i.e, cwnd/price). This minor modification is enough to
produce a service that complies with the above model.

Next, we show simulation results that support our claims. Three
XCP sources share a 10 Mb/s bottleneck. The corresponding prices
are p1 = 5, p2 = 10, and p3 = 15. Each source wants to transfer
a file of 10 Mbytes, and they all start together at t = 0. The re-
sults in Figure 12 show that the transfer rate depends on the price
the source pays. At the beginning, when all flows are active, their
throughputs are 5 Mb/s, 31

3
Mb/s, and 12

3
Mb/s, which are propor-

tional to their corresponding prices. After Flow 1 finishes its trans-
fer, the remaining flows grab the freed bandwidth such that their
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Figure 12: Providing differential bandwidth allocation using
XCP. Three XCP flows each transferring a 10 Mbytes file over
a shared 10 Mb/s bottleneck. Flow 1’ s price is 5, Flow 2’ s
price is 10, and Flow 3’ s price is 15. Throughput is averaged
over 200 ms (5 RTTs).

throughputs continue being proportional to their prices. Note the
high responsiveness of the system. In particular, when Flow 1 fin-
ishes its transfer freeing half of the link capacity, the other flows’
sending rates adapt in a few RTTs.

7. SECURITY
Similarly to TCP, in XCP security against misbehaving sources

requires an additional mechanism that polices the flows and ensures
that they obey the congestion control protocol. This may be done
by policing agents located at the edges of the network. The agents
maintain per-flow state and monitor the behavior of the flows to
detect network attacks and isolate unresponsive sources.

Unlike TCP, XCP facilitates the job of these policing agents be-
cause of its explicit feedback. Isolating the misbehaving source
becomes faster and easier because the agent can use the explicit
feedback to test a source. More precisely, in TCP isolating an un-
responsive source requires the agent/router to monitor the average
rate of a suspect source over a fairly long interval to decide whether
the source is reacting according to AIMD. Also, since the source’s
RTT is unknown, its correct sending rate is not specified, which
complicates the task even further. In contrast, in XCP, isolating a
suspect flow is easy. The router can send the flow a test feedback
requiring it to decrease its congestion window to a particular value.

98



If the flow does not react in a single RTT then it is unresponsive.
The fact that the flow specifies its RTT in the packet makes the
monitoring easier. Since the flow cannot tell when an agent/router
is monitoring its behavior, it has to always follow the explicit feed-
back.

8. GRADUAL DEPLOYMENT
XCP is amenable to gradual deployment, which could follow one

of two paths.

8.1 XCP-based Core Stateless Fair Queuing
XCP can be deployed in a cloud-based approach similar to that

proposed by Core Stateless Fair Queuing (CSFQ). Such an ap-
proach would have several benefits. It would force unresponsive
or UDP flows to use a fair share without needing per-flow state in
the network core. It would improve the efficiency of the network
because an XCP core allows higher utilization, smaller queue sizes,
and minimal packet drops. It also would allow an ISP to provide
differential bandwidth allocation internally in their network. CSFQ
obviously shares these objectives, but our simulations indicate that
XCP gives better fairness, higher utilization, and lower delay.

To use XCP in this way, we map TCP or UDP flows across a net-
work cloud onto XCP flows between the ingress and egress border
routes. Each XCP flow is associated with a queue at the ingress
router. Arriving TCP or UDP packets enter the relevant queue, and
the corresponding XCP flow across the core determines when they
can leave. For this purpose, H rtt is the measured propagation de-
lay between ingress and egress routers, and H cwnd is set to the
XCP congestion window maintained by the ingress router (not the
TCP congestion window).

Maintaining an XCP core can be simplified further. First, there
is no need to attach a congestion header to the packets, as feedback
can be collected using a small control packet exchanged between
border routers every RTT. Second, multiple micro flows that share
the same pair of ingress and egress border routers can be mapped to
a single XCP flow. The differential bandwidth scheme, described
in x 6, allows each XCP macro-flow to obtain a throughput propor-
tional to the number of micro-flows in it. The router will forward
packets from the queue according to the XCP macro-flow rate. TCP
will naturally cause the micro-flows to converge to share the XCP
macro-flow fairly, although care should be taken not to mix respon-
sive and unresponsive flows in the same macro-flow.

8.2 A TCP-friendly XCP
In this section, we describe a mechanism allowing end-to-end

XCP to compete fairly with TCP in the same network. This design
can be used to allow XCP to exist in a multi-protocol network, or
as a mechanism for incremental deployment.

To start an XCP connection, the sender must check
whether the receiver and the routers along the path are XCP-enabled.
If they are not, the sender reverts to TCP or another conventional
protocol. These checks can be done using simple TCP and IP op-
tions.

We then extend the design of an XCP router to handle a mix-
ture of XCP and TCP flows while ensuring that XCP flows are
TCP-friendly. The router distinguishes XCP traffic from non-XCP
traffic and queues it separately. TCP packets are queued in a con-
ventional RED queue (the T-queue). XCP flows are queued in an
XCP-enabled queue (the X-queue, described in x 3.5). To be fair,
the router should process packets from the two queues such that
the average throughput observed by XCP flows equals the average
throughput observed by TCP flows, irrespective of the number of
flows. This is done using weighted-fair queuing with two queues
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Figure 13: XCP is TCP-friendly.

where the weights are dynamically updated and converge to the fair
shares of XCP and TCP. The weight update mechanism uses the T-
queue drop rate p to compute the average congestion window of
the TCP flows. The computation uses a TFRC-like [12] approach,
based on TCP’s throughput equation:

cwndTCP =
sq

2p
3
+ 12p

q
3p
8
� (1 + 32p2)

; (10)

where s is the average packet size. When the estimation-control
timer fires, the weights are updated as follows:

wT = wT + �
cwndXCP � cwndTCP

cwndXCP + cwndTCP
; (11)

wX = wX + �
cwndTCP � cwndXCP

cwndXCP + cwndTCP
; (12)

where � is a small constant in the range (0,1), and wT and wX are
the T-queue and the X-queue weights. This updates the weights to
decrease the difference between TCP’s and XCP’s average conges-
tion windows. When the difference becomes zero, the weights stop
changing and stabilize.

Finally, the aggregate feedback is modified to cause the XCP
traffic to converge to its fair share of the link bandwidth:

� = � � d � SX � � �QX ; (13)

where � and � are constant parameters, d the average round trip
time, QX is the size of the X-queue, and SX is XCP’s fair share of
the spare bandwidth computed as:

SX = wX � c� yX ; (14)

where wX is the XCP weight, c is the capacity of the link, and yX
is the total rate of the XCP traffic traversing the link.

Figure 13 shows the throughputs of various combinations of com-
peting TCP and XCP flows normalized by the fair share. The bot-
tleneck capacity is 45 Mb/s and the round trip propagation delay is
40 ms. The simulations results demonstrate that XCP is as TCP-
friendly as other protocols that are currently under consideration
for deployment in the Internet [12].

9. RELATED WORK
XCP builds on the experience learned from TCP and previous

research in congestion control [6, 10, 13, 16]. In particular, the use
of explicit congestion feedback has been proposed by the authors
of Explicit Congestion Notification (ECN) [27]. XCP generalizes
this approach so as to send more information about the degree of
congestion in the network.

Also, explicit congestion feedback has been used for control-
ling Available Bit Rate (ABR) in ATM networks [3, 9, 17, 18].
However, in contrast to ABR flow control protocols, which usu-
ally maintain per-flow state at switches [3, 9, 17, 18], XCP does
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not keep any per-flow state in routers. Further, ABR control pro-
tocols are usually rate-based, while XCP is a window-based pro-
tocol and enjoys self-clocking, a characteristic that considerably
improves stability [7].

Additionally, XCP builds on Core Stateless Fair Queuing (CSFQ)
[28], which by putting a flow’s state in the packets can provide fair-
ness with no per-flow state in the core routers.

Our work is also related to Active Queue Management disci-
plines [13, 5, 22, 15], which detect anticipated congestion and at-
tempt to prevent it by taking active counter measures. However,
in contrast to these schemes, XCP uses constant parameters whose
effective values are independent of capacity, delay, and number of
sources.

Finally, our analysis is motivated by previous work that used a
control theory framework for analyzing the stability of congestion
control protocols [23, 26, 15, 22, 24].

10. CONCLUSIONS AND FUTURE WORK
Theory and simulations suggest that current Internet congestion

control mechanisms are likely to run into difficulty in the long term
as the per-flow bandwidth-delay product increases. This motivated
us to step back and re-evaluate both control law and signalling for
congestion control.

Motivated by CSFQ, we chose to convey control information be-
tween the end-systems and the routers using a few bytes in the
packet header. The most important consequence of this explicit
control is that it permits a decoupling of congestion control from
fairness control. In turn, this decoupling allows more efficient
use of network resources and more flexible bandwidth allocation
schemes.

Based on these ideas, we devised XCP, an explicit congestion
control protocol and architecture that can control the dynamics of
the aggregate traffic independently from the relative throughput of
the individual flows in the aggregate. Controlling congestion is
done using an analytically tractable method that matches the ag-
gregate traffic rate to the link capacity, while preventing persistent
queues from forming. The decoupling then permits XCP to real-
locate bandwidth between individual flows without worrying about
being too aggressive in dropping packets or too slow in utilizing
spare bandwidth. We demonstrated a fairness mechanism based on
bandwidth shuffling that converges much faster than TCP does, and
showed how to use this to implement both min-max fairness and
the differential bandwidth allocation.

Our extensive simulations demonstrate that XCP maintains good
utilization and fairness, has low queuing delay, and drops very few
packets. We evaluated XCP in comparison with TCP over RED,
REM, AVQ, and CSFQ queues, in both steady-state and dynamic
environments with web-like traffic and with impulse loads. We
found no case where XCP performs significantly worse than TCP.
In fact when the per-flow delay-bandwidth product becomes large,
XCP’s performance remains excellent whereas TCP suffers signif-
icantly.

We believe that XCP is viable and practical as a congestion con-
trol scheme. It operates the network with almost no drops, and sub-
stantially increases the efficiency in high bandwidth-delay product
environments.
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APPENDIX

A. IMPLEMENTATION
Implementing an XCP router is fairly simple and is best de-

scribed using the following pseudo code. There are three relevant
blocks of code. The first block is executed at the arrival of a packet
and involves updating the estimates maintained by the router.

On packet arrival do:
input traffic += pkt size
sum rtt by cwnd += H rtt � pkt size / H cwnd
sum rtt square by cwnd += H rtt�H rtt� pkt size / H cwnd

The second block is executed when the estimation-control timer
fires. It involves updating our control variables, reinitializing the
estimation variables, and rescheduling the timer.

On estimation-control timeout do:
avg rtt = sum rtt square by cwnd / sum rtt by cwnd6

� = �� avg rtt � (capacity - input traffic) - �� Queue
shuffled traffic = 0:1� input traffic
�p = ((max(�,0) + shuffled traffic) / (avg rtt� sum rtt by cwnd)
�n = ((max(��,0) + shuffled traffic) / (avg rtt� input traffic)
residue pos fbk = (max(�,0)+ shuffled traffic) /avg rtt
residue neg fbk = (max(��,0)+ shuffled traffic) /avg rtt
input traffic = 0
sum rtt by cwnd = 0
sum rtt square by cwnd = 0
timer.schedule(avg rtt)

The third block of code involves computing the feedback and is ex-
ecuted at packets’ departure. On packet departure do:

pos fbk = �p� H rtt � H rtt � pkt size / H cwnd
neg fbk = �n� H rtt � pkt size
feedback = pos fbk - neg fbk
if (H feedback � feedback) then

H feedback = feedback
residue pos fbk -= pos fbk / H rtt
residue neg fbk -= neg fbk / H rtt

else
if (H feedback � 0)

residue pos fbk -= H feedback / H rtt
residue neg fbk -= (feedback - H feedback) / H rtt

else
residue neg fbk += H feedback / H rtt
if (feedback� 0) then residue neg fbk -= feedback/H rtt

6This is the average RTT over the flows (not the packets).

if (residue pos fbk � 0) then �p = 0
if (residue neg fbk � 0) then �n = 0

Note that the code executed on timeout does not fall on the crit-
ical path. The per-packet code can be made substantially faster
by replacing cwnd in the congestion header by packet size �
rtt/cwnd, and by having the routers return feedback � H rtt
in H feedback and the sender dividing this value by its rtt. This
modification spares the router any division operation, in which
case, the router does only a few additions and 3 multiplications
per packet.

B. PROOF OF THEOREM 1
Model: Consider a single link of capacity c traversed by N XCP

flows. Let d be the common round trip delay of all users, and ri(t)
be the sending rate of user i at time t. The aggregate traffic rate is
y(t) =

P
ri(t). The shuffled traffic rate is h(t) = 0:1 � y(t).7

The router sends some aggregate feedback every control interval
d. The feedback reaches the sources after a round trip delay. It
changes the sum of their congestion windows (i.e.,

P
w(t)). Thus,

the aggregate feedback sent per time unit is the sum of the deriva-
tives of the congestion windows:

X dw

dt
=

1

d

�
�� � d � (y(t� d)� c)� � � q(t� d)

�
:

Since the input traffic rate is y(t) =
P wi(t)

d
, the derivative of the

traffic rate _y(t) is:

_y(t) =
1

d2

�
�� � d � (y(t� d)� c)� � � q(t� d)

�
:

Ignoring the boundary conditions, the whole system can be ex-
pressed using the following delay differential equations.

_q(t) = y(t)� c (15)

_y(t) = ��

d
(y(t� d)� c)� �

d2
q(t� d) (16)

_ri(t) =
1

N
([ _y(t�d)]++h(t�d))�ri(t� d)

y(t� d)
([� _y(t�d)]++h(t�d))

(17)
The notation [ _y(t� d)]+ is equivalent to max(0; _y(t� d)). Equa-
tion 17 expresses the AIMD policy used by the FC; namely, the
positive feedback allocated to flows is equal, while the negative
feedback allocated to flows is proportional to their current through-
puts.

Stability: Let us change variable to x(t) = y(t)� c.
Proposition: The Linear system:

_q(t) = x(t)

_x(t) = �K1x(t� d)�K2q(t� d)

is stable for any constant delay d > 0 if

K1 =
�

d
and K2 =

�

d2
;

where � and � are any constants satisfying:

0 < � <
�

4
p
2

and � = �2
p
2:

7We are slightly modifying our notations. While y(t) in x 3.5 refers
to the input traffic in an average RTT, we use it here as the input
traffic rate (i.e., input traffic in a unit of time). The same is true for
h(t).
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Figure 14: The feedback loop and the Bode plot of its open loop
transfer function.

Figure 15: The Nyquist plot of the open-loop transfer function
with a very small delay.

PROOF. The system can be expressed using a delayed feedback
(see Figure 14. The open loop transfer function is:

G(s) =
K1 � s+K2

s2
e�ds

For very small d > 0, the closed-loop system is stable. The
shape of its Nyquist plot, which is given in Figure 15, does not
encircle �1.

Next, we can prove that the phase margin remains positive inde-
pendent of the delay. The magnitude and angle of the open-loop
transfer function are:

jGj =
p
K2

1 � w2 +K2
2

w2
;

\G = �� + arctan
wK1

K2
� w � d:

The break frequency of the zero occurs at: wz = K2

K1

.

To simplify the system, we decided to choose � and � such that
the break frequency of the zero wz is the same as the crossover
frequency wc (frequency for which jG(wc)j = 1). Substituting
wc = wz =

K2

K1
in jG(wc)j = 1 leads to � = �2

p
2.

To maintain stability for any delay, we need to make sure that the
phase margin is independent of delay and always remains positive.
This means that we need \G(wc) = �� + �

4
� �

�
> �� )

�
�
< �

4
. Substituting � from the previous paragraph, we find that

we need � < �

4
p
2

, in which case, the gain margin is larger than
one and the phase margin is always positive (see the Bode plot in
Figure 14). This is true for any delay, capacity, and number of
sources.

C. XCP ROBUSTNESS TO HIGH VARIANCE
IN THE ROUND TRIP TIME
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Figure 16: XCP robustness to high RTT variance. Two XCP
flows each transferring a 10 Mbytes file over a shared 45 Mb/s
bottleneck. Although the first flow has an RTT of 20 ms and
the second flow has an RTT of 200 ms both flows converge to
the same throughput. Throughput is averaged over 200 ms in-
tervals.
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