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Abstract 

 

 

Increasing transportation efficiency is an interesting and important problem. In the world 

with convenient means of ICTs, the concept of “smart city” emerged. In the meantime, a lot 

of data-driven traffic network optimization algorithms have also been developed and applied 

widely. However, the performance of some optimization algorithms can be improved with 

some pre-works added. This thesis discusses two such pre-works. The first pre-work is urban 

traffic network congestion region identification and prediction with two case studies at NTU 

campus and Jurong area, which utilizes the vehicle data (average speed, GPS-based location, 

heading direction) via V2X to analyse the traffic condition of each link. Links with similar 

congestion levels will be clustered together into a region. Our simulation-based case studies 

show that about 75% of the total queue delay could be reduced with good knowledge of 

congestion regions in the network. The second pre-work is about traffic network turning ratio 

prediction, which may be useful in developing more accurate network dynamic models. By 

constructing a recurrent neural network to predict the vehicle turning ratios at the next time 

step with prior or online-learned knowledge of network supply functions, traffic light 

schedules and historical vehicle turning ratios as inputs. This prediction model can be 

integrated with a real-time traffic signal control algorithm to form an adaptive closed-loop 

traffic signal control strategy, which in our simulated case studies decreases 24% of the delay 

time compared to the case without turning ratio prediction.   
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Chapter 1: Introduction 

 

1.1    Introduction to traffic networks and traffic light control  

 

With the rapid development of urbanization, the number of vehicles increased exponentially 

with the improvement of policy effectiveness and income standard. In the meantime, the 

urban transportation network also expands both in size and complexity. However, the 

expanding transportation network still cannot adapt this change itself due to many reasons 

such as the fixed traffic light schedule, delay awareness of the traffic condition. As a result, 

problems like traffic congestions and traffic accidents occur more frequently, which worsen 

the traffic status in return. Thus, an efficient solution is needed, which could handle all these 

problems well. Two decades ago, the concept of “smart city” was first considered in Dubai [1], 

and many smart methods are suggested which help to build the smart city [2]. For example, 

adaptive traffic signals which modifying the traffic signal time by analysing the real-time 

vehicle data and the traffic flow pattern have been introduced by other researchers [3]. Thus, 

having a better understanding of current traffic network conditions and the patterns of 

dynamic traffic flows is the key to increase the efficiency of those optimization solutions. 

Traffic signals are designed to eliminate many conflicts by assigning right of way. A good 

signalized traffic control strategy can increase the intersection capacity and reduce the 

frequency of certain types of crashes such that reducing vehicle travelling delays, balancing 

traffic flow, and improving operational efficiency of an urban street network.    
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1.2    Motivations for congestion region and turning ratio analyses

  

 

According to the survey result shown in Texas A&M Transportation Institute’s 2019 Urban 

Mobility Report, commuters in L.A. spend in average 119 hours a year stuck in traffic. 

Although the traffic congestion statics in Singapore is better than L.A., commuters in 

Singapore still spend extra 16 mins per a 30-mins trip in the morning peak and 18 extra mins 

in the evening peak.[1] Eliminating traffic congestions becomes the most essential work in 

the improvement process.  

Solving the congestion problem for the whole traffic network is time-consuming and requires 

highly efficient computational capabilities. The effectiveness decreases, when the complexity 

of the network increases. According to observation, congestion commonly appears in regions. 

Dividing a large traffic network into small regions and solving signal control problems locally 

and simultaneously would increase the efficiency greatly, which could be applied in different 

traffic networks easily.     

Traffic light control plays a significant role in adjusting the traffic network performance. A 

fixed traffic light schedule is widely used due to its simplicity. Nevertheless, this schedule will 

aggravate the congestion level in some situations, e.g., during peak hours. To overcome this 

drawback, an adaptive traffic light control strategy is put forward by researchers, which 

considers the real-time traffic condition and adjusts the green time of each phase accordingly, 

which could reduce the traffic delay time significantly. A good turning ratio prediction model 

is critically important for deriving a high-quality network dynamic model, which may 

significantly improve the performance of a traffic network. 
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1.3    Literature review 

 

A. Congestion Identification 

 

Upon the literature review, many researchers tried to provide different definitions of traffic 

congestion. In general, those definitions can be broadly categorized into three groups based 

on the feature they are referring to. The first group is the method that defines the congestion 

based on the road capacity and the traffic flows. For example, in the report published in 1999 

by ECMT (European Conference of Ministers of Transport), “Congestion is the impedance 

vehicles impose on each other, due to the speed-flow relationship, in conditions where the 

use of a transport system approaches its capacity” [4]. The second group is the method that 

defines the congestion based on the delayed traveling time. For example, in the paper 

published in 2001 by Weisbrod, Varyand Treyz, “Traffic congestion is a condition of traffic 

delay (when the flow of traffic is slowed below reasonable speeds) because the number of 

vehicles trying to use the road exceeds the traffic network capacity to handle them” [5]. The 

third group is the method that defines the congestion based on the cost occurred on the road. 

For example, in the paper published in 2005 by VTPI (Victoria Transport Policy Institute),” 

Traffic congestion refers to the incremental costs resulting from interference among road 

users” [6]. Although various definitions have been proposed, there is no universally agreed 

definition of traffic congestion [7]. However, by reading the above definitions, it could be 

summarized that congestion is the phenomenon when the traffic flow exceeds the designed 

link capacity.  

 

Furthermore, some researchers also provide a set of criteria that a good congestion 

measurement should meet. In 1992, Turn suggested that measures to quantify the level of 

congestion should (i) deliver comparable results for various systems with similar congestion 

levels, (ii) accurately reflect the quality of service for any type of systems, and (iii) be simple, 

well-defined and easily understood and interpreted among various users and audiences [8]. 

In 1996, Levinson and Lomax suggested that a congestion index should (i) be easy to 

communicate, (ii) measure congestion at a range of analysis levels (a route, subarea or entire 

urban region), (iii) measure congestion in relation to a standard, (iv) provide a continuous 
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range of values, (v) be based on travel time data because travel time-based measures can be 

used for multimodal analysis and for analyses that include different facility types, and (vi) 

adequately describe various magnitudes of congested traffic conditions.[9] And in 1997, 

Lomax indicate that an ideal congestion measure would have (i) clarity and simplicity 

(understandable, unambiguous and credible), (ii) descriptive and predictive ability (ability to 

describe existing conditions, predict change and be forecast), (iii) statistical analysis capability 

(ability to apply statistical techniques to provide a reasonable portrayal of congestion and 

replicability of result with a minimum of data collection requirements), and (iv) general 

applicability (applicability to various modes, facilities, time periods and scales of application) 

[10]. Many other similar suggestions are also provided by researchers. Thus, it could be 

summarized that the measurement of traffic congestion should be: 

 

• Simple and clear for the audience;   

• Generally applicable with commonly available traffic data in typical traffic networks; 

• Descriptive and predictive to facilitate a congestion prediction model; 

• Continuously valued instead of being discrete and range-based. 

 

Based on the criteria listed above, congestion level indicators could be assessed before being 

decided where to use. The Texas Transportation Institute (TTI) is a leader in developing 

measurements for determining congestion. There are four most commonly used measures 

based on mobility developed by them [11] [12]:  

1. Volume-Capacity Ratio (V/C Ratio), which is the ratio of the number of vehicles passing 

through (V) over the number of vehicles that could theoretically pass through when at 

capacity. The traffic condition is said to be not congested if the ratio is less than one and 

congested if the ratio is larger than one.   

2. The Level of Service (LOS). In this measurement, six levels are used from rank A (free-

flow) to rank F (over-saturated) – that indicates how well the roadway or intersection is 

serving its intended traffic which is based on V/C ratio as well. The specific threshold for each 

rank is shown below [13]:    
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The main advantage of LOS is comprehensible to the non-technical audiences by using 

description instead of a certain index. However, LOS is a rank-based method that could result 

in a sudden change in the operation condition. The use of LOS sometimes generates 

misleading results, especially when the condition is near a threshold.     

3. Travel Rate Index (TRI) /Travel Delay, which calculates the ratio of average peak travel 

time over an off-peak (free flow) standard. For example, an index of 1.5 indicates that a 20-

minute free-flow trip takes 30 minutes in a specific traffic condition. The advantage of TRI is 

its wide applicability owing to its continuously-ranged outputs. The weakness is that the 

method does not show the traffic condition explicitly, thus, making it not easily 

understandable.  

4. Percentage of Congestion Travel, which describes the percentage of congested vehicle-

miles of travel with respect to the total vehicle-miles of travel is used. The advantage and 

weakness of this method is the same as those of TRI. 

 

In summary, none of the measurements provided a systematic and comprehensive analytical 

framework to quantify the relationship between the presence of public transport and the 

amount of traffic congestion. In fact, a balance between the comprehensive and data-driven 

results should be made when selecting a proper congestion measurement method. In this 

thesis, a new congestion measurement method is introduced based on the criteria discussed 

Table 1: Standard of Level of Service identification   
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above, which aims to find a good balance between comprehensibility (by using three levels 

to describe the traffic congestion) and predictiveness by considering the trends that include 

the differentiation when calculating the congestion level index. 

 

B. Predictors 

 

Traffic congestion prediction plays an important role in intelligent transportation as it has 

multiple applications in improving traffic network operation efficiency and integration. For 

example, by predicting the congestion area with high accuracy, some traffic network system 

management optimization algorithms may significantly improve the quality of their solutions 

in terms of reducing the congestion. Based on different objectives of a prediction model, 

three congestion prediction problems could be formulated, i.e., predicting the travel time, 

predicting the traffic congestion and predicting the traffic volume. This thesis only focusses 

on traffic congestion prediction. 

 

A general algorithm that could be applied in solving this problem is FFT (Fast Fourier 

transformation) with the key idea of the decomposition. We know that a reasonably 

continuous and periodic function can be expressed as the sum of sine terms. The weekly 

behaviour of the traffic network is observed to be typically periodic. The reason is that most 

users in the network have highly repetitive weekly schedules, especially during peak hours, 

resulting in the repetitive traffic patterns in the traffic network. Thus, by analysing the 

historical periodic traffic congestion curve (e.g. traffic flow, average speed, etc.), a series of 

sine functions with different amplitudes, frequencies and phases could be calculated and 

summed up to match the curve. However, the congestion prediction problem discussed is 

more relevant to the short-term prediction problem. For large discrete time intervals, a 

situation will eventually be reached where it is no longer possible to theoretically establish a 

stable correlation model with other detection locations within the traffic network [14], 

making long-term forecasts practically useless at this point. Thus, FFT is typically not suitable 

for short-term prediction which requires the predictor to predict the traffic congestion in 

minutes instead of in weeks. In contrast, many short-term congestion prediction models are 
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proposed in the past two decades. Some researchers focus on single-site prediction based on 

one-dimensional traffic time series such as the ARIMA /SARIMA model [14] and the k- nearest 

neighbour (KNN) method [15].  

 

ARIMA (autoregressive integrated moving average) is well suited for predicting the value of a 

dependent variable according to time. ARIMA is a generalized model of Autoregressive 

Moving Average (ARMA) without the requirement on the stationarity of the time series. It 

combines the Autoregressive (AR) process and Moving Average (MA) process and builds an 

integrated model of the time series. Autoregressive is a regression model that uses the 

dependencies between an observation and a number of lagged observations. Moving average 

is an approach that takes into account the dependency between observations and the 

residual error terms when a moving average model is applied to the lagged observations 

 

KNN is much easier to understand. The fundamental assumption of KNN algorithms is that 

future states to be forecasted are similar to a neighbourhood of the past more or less. K is the 

number of neighbours the algorithm tries to choose from for historical data in accordance 

with the similarity between them. Those k neighbourhoods will be analysed and summarized 

to predict future states.        

 

Both methods are well developed and improved over years with a rich family of the 

parametric algorithms being proposed, and the performances are proven promising. 

Although the good performance of ARIMA was frequently reported [16], it faces a 

computational challenge which makes it difficult to be implemented in the real-time 

transportation systems. While most existing KNN algorithms are single-stepped, which is easy 

to compute and has higher flexibility to be extended for solving multivariate problems by 

adding more data, KNN is sensitive to noisy neighbour and may generate overlapping nearest 

neighbours when it is extended to multi-step forecasting.  
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Random forest algorithm  

In the meantime, RNN (recurrent neural network) shows its outstanding ability in solving 

seq2seq (sequence to sequence) prediction problems such as speech recognition, language 

modelling, translation, image captioning, etc. It benefits from its unique characteristic: 

persistence of information. Traditional predictors predict the future points by analysing its 

neighbours or last few cycles, which means a short memory is typically used. Recurrent neural 

networks, on the other hand, can address this issue effectively. They are networks with loops 

in them, allowing information to persist.  

 

     

 

 

 

 

 

The unfolded structure of RNN is like a chain. This nature reveals that they are intimately 

related to sequences and lists. At each step, the model will calculate the output by analysing 

both the historical data group and the memory persistent in the well-trained parameters 

assigned to each node.  

 

Training a recurrent neural network is the process to estimate a series of hypermeters which 

makes the model most suitable for our problem. Some hypermeters are listed below:  

• Number of steps, which determines how many historical time steps need to be used. 

For example, if the number of steps equals 3, it means that historical data recorded 

as [𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)  ] will be used to determine its output  𝑌(𝑡) 
 

Fig.1 RNN unit and the unfold structure display 
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• Batch size, which indicates the number of sample-label sets used for training. For 

example, if the batch size is equal to 2 with the number of steps equal to 3, it means 

the data set {[𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1) ~ 𝑌(𝑡−1) ], [𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡) ~ 𝑌(𝑡) ]} is used 

to train the RNN at each iteration. 

• Structure of the network, which includes two items, i.e., the number of hidden 

layers and the number of neurons for each hidden layer.  

 

• Activation function, which is used to add the nonlinearity to the network such that 

the network could be trained to solve much more complex problems. Proper 

activation could also be used to avoid the gradient vanishing and exploding problem. 

 

In addition, some other parameters or components can be set at default values such as the 

drop rate, memory unit, optimizer, etc. Generally, while dealing with a simple problem, a 

rough range of selection for each parameter will be determined first before training the 

network with a different combination of alternative values. The performance of the trained 

network will be further examined by the cross-validation data set. However, the chain-like 

structure and the depth of the loops make RNNs difficult to train because of the vanishing or 

blowing up gradient problems during the backpropagating process. 

 

There have been a number of attempts to overcome the difficulty of training RNNs over the 

years. These difficulties were successfully addressed by the Long Short-Term Memory 

networks (LSTMs) [17], which is a type of RNN with gated structure to learn long-term 

dependencies of sequence-based tasks. As a representative deep learning method handling 

sequence data, LSTMs have been proven to be able to process sequence data and applied in 

many real-world problems, like speech recognition [18], image captioning [19], music 

composition [20] and human trajectory prediction [21]. In recent years, LSTMs have been 

gaining popularity in traffic forecasting due to their ability to model long-term dependencies. 

Several studies [22-30] have been done to examine the applicability of LSTMs in traffic 

forecasting, and the results demonstrate the advantages of LSTMs. However, it is still a big 

challenge to predict larger-scale transportation network traffic. Most existing studies utilize 
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traffic data at a sensor location or along a corridor, and thus, network-wide prediction could 

not be achieved unless N models were trained for a traffic network with N nodes [23]. Thus, 

learning complex spatial-temporal features of a large-scale traffic network by using only one 

model should be explored.  

 

Besides, some alternative prediction algorithms that can also be used for performance 

comparison: support vector machine (SVM), extreme learning machine (ELM), random forest 

(RF), gradient boosting decision trees (GBDT). 

 

SVM blends linear modelling within stance-based learning, it selects a small number of critical 

boundary samples from each category and builds a linear discriminant function that separates 

them as widely as possible.[51] In the case that no linear separation is possible, the technique 

of kernel will be used to automatically inject the training samples into a higher dimensional 

space and to learn a separator in that space. SVM is acknowledged to be among the most 

reliable and accurate algorithms in most Machine Learning applications. 

 

Extreme Learning Machine is a recently available learning algorithm for single layer 

feedforward neural network. [52] Compared with classical learning algorithms in neural 

networks e.g. Backpropagation, ELM can achieve better performance with much shorter 

learning time. In some of the existing work, it is claimed to yield better performance in 

comparison with SVM. 

 

Random forest is an ensemble learning method for both classification and prediction 

problems.[53] It operates by constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes of the individual trees. RF corrects for 

decision trees’ habit of overfitting to their training set. The gradient boosting method 

represents an ensemble of single regression trees built in a greedy fashion. It produces a 

prediction model in the form of an ensemble of weak prediction models, such as decision 

trees. Stochastic Gradient Boosting Trees (GBDT) [54][55] combines gradient boosting with 
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bootstrap bagging. At each iteration of the algorithm, a n new decision tree model is built 

based on the residuals of the previous decision trees. GBDT is a simple yet very effective 

method for learning non-linear functions [56].  

 

 

 

C. Clustering Algorithm 

 

As the networked world continues to expand, the amount of information in the network has 

grown rapidly. Mining these messages by evaluating those data manually is not realistic. Thus, 

a lot of data analyzing algorithms are developed, including the data clustering algorithm that 

is widely used in many fields. The clustering algorithm is an unsupervised learning algorithm 

which means the data do not need to be labelled before being processed. The objective of 

the clustering algorithm is to divide disorganized data into different groups based on their 

features. In other word, data in the same group has a high similarity among each other. Figure 

2 shows how the clustering algorithm works:    

 

 

 

 

 

 

 

 

 

 

Generally, clustering algorithms can be categorized into hierarchical clustering methods, 

partitioning clustering methods, density-based clustering methods, grid-based clustering 

methods, and model-based clustering methods. More details are provided below: 

 

Fig.2 Different clustering algorithms 
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• Hierarchical clustering methods: a hierarchical clustering algorithm divides the given data 

set into smaller subsets in a hierarchical manner. The basic steps of hierarchical clustering 

could be summarized as follows: 

 

- Step one: Calculate the similarity between all the data points and the other points  

- Step two: Cluster two points with smallest similarity  

- Step three: Calculate the central point of the cluster and the similarity between this 

central point and the remaining point  

- Step four: Go back to step two until one cluster including all the data points is formed.  

The strength of this algorithm is easy to understand and straightforward to program. And 

by using the hierarchical clustering algorithm, the number of clusters no need to decide 

before applying it. A proper number of clusters could be selected based on the result 

obtained. However, this algorithm also has a significant weakness. The computational 

complexity in step one is O(𝑛2)  , which means the computational cost will increase 

exponentially towards a large data set.   

 

• Partitioning clustering methods: The partitioning clustering algorithm also classifies the 

data set into multiple subsets based on the similarity. Representative partitioning 

clustering algorithms are K-means clustering, K-medoids clustering and CLARA (Clustering 

Large Applications) algorithm. K-means clustering is one of the most commonly used 

clustering algorithms. Instead of calculating the similarity between each data point, the K-

means algorithm only take few reference points into consideration. The basic steps of K-

means clustering algorithm could be summarized as follows: 

    

- Step one: Randomly select K reference points initially. Calculate the similarity between 

the remaining points and each reference point. 

- Step two: All the remaining points will be clustering to one of the reference points with 

the highest similarity (smallest distance/cost)  

- Step three: K clusters will be formed after step two. Calculate the imaginary central point 

for each cluster. K data Points with highest similarity to the imaginary central point will be 

selected as the new reference point 

- Step four:  Repeat step one to three until no changes to all the clusters. 
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The significant advantage of K-means clustering is its low computational complexity, 

which is O(𝐾 ∗ 𝑛), when compared to the hierarchical algorithm. However, the number 

of clusters K is required before running the algorithm which means this algorithm needs 

to be run multiple times in searching for a suitable cluster number. And K-means 

algorithm is sensitive to the outliers.  With the consideration of reducing the impact of 

outliers, K-medoids clustering is proposed which, instead of taking the mean value of all 

the points in a cluster as a reference point, only uses the most centrally located points for 

calculating the mean value. The basic steps of K- medoids clustering algorithm could be 

summarized as follows: 

 

- Step one: Randomly select K reference points initially. Calculate the similarity between 

the remaining points and each reference point. 

- Step two: All the remaining points will be clustering to one of the reference points with 

the highest similarity (smallest distance/cost)  

- Step three: Randomly select a data point (excluding the reference point). Compute the 

total cost S of swapping the initial reference point to this new point  

- Step four: if the cost is less than 0 which means the quality of new clusters is higher than 

previous clusters.  Replace the reference point with this new data point. 

- Step five: Repeat step three and four until the convergence criterion is satisfied. 

 

K-medoids clustering eliminates the impact of outliers by avoiding using the mean value. 

However, the computational complexity is increased to O(𝐾(𝑛 − 𝑘)2). Thus, K-medoids 

clustering algorithm works effectively for small data sets but does not scale well for large 

data sets. So, CLARA is proposed as an extension to the K-medoids clustering algorithm to 

deal with data containing a huge number of objects. The basic process is similar to the K-

medoids algorithm. Instead of checking all the non-refence point in searching for better 

clusters quality, CLARA only considers a small number of data with a fixed size and applies 

the same methodology to generate an optimal set of medoids for the sample while the 

efficiency depends on the sample size. 
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• Density-based clustering methods: different from the above two clustering algorithms, 

density-based clustering works by detecting areas where points are concentrated and 

where they are separated by areas that are empty or sparse. Especially, not all points will 

be clustered since some isolated points will be identified as noise. There are three 

different clustering algorithms belong to this category: 1. Defined distance (DBSCAN) 

which use a threshold distance to separate dense clusters from sparse noise. 2. Self-

adjusting (HDBSCAN) which use multiple threshold distance to separate clusters of varying 

densities from sparser noise in a hierarchical way. 3. Multi-scale (OPTICS) uses the 

distance between neighboring features to create a reachability plot for the clustering 

reference.    

 

Density-based clustering algorithm holds three advantages: 1. No predefined number of 

clusters is required. 2. Clusters formed by this algorithm can be of any shape including 

non-spherical ones. 3. High robustness: Able to distinguish the noise point which immune 

to the impact of outliers. However, this algorithm will fail it there are no density drops 

between clusters and sensitive to parameters that define density.  

 

• Grid-based clustering methods: Grid-based clustering algorithm is similar to the density-

based method which both of them cluster the data with high density. Grid-based 

algorithm first divides the whole data space into small rectangular cells. The data density 

of each cell will be calculated after then. Subspace with data density lower than a 

threshold will be removed while those higher than the threshold will form a cluster by 

combine the subspace adjected to it. There are two main algorithms under this category: 

STING [31] and CLIQUE [32].  

 

STING (Statistical Information Grid): STING is used as an information clustering algorithm 

with a hierarchical structure employed. The first level only has one cell which represents 

the while space. The second level has four cells with each corresponding to one quadrant 

of the cell in the first level. This split will be continuously processed until a desirable 

number of layers is obtained. Statistical information of each cell is calculated and stored. 

The STING structure is widely used in auto-answering robots embedded in some service 

web as they can answer frequently asked questions efficiently. The basic steps of STING 
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could be summarized as follows: 

 

- Step one: Determine a layer to begin with. 

- Step two: Go through all the cells in this cell and a confidence index that this cell is relevant 

to the query will be calculated. After then, each cell will be assigned with a Boolean value 

indicating the relevance to the query based on the confidence index calculated.   

- Step three: checking all the cells which labelled as relevant. If this cell is the bottom layer, 

output the information stored in this cell. If not, goes to the next level and repeat step 

two and three until reach the bottom cell. 

 

The computational complexity is O(K), where K is the number of cells in the lowest level 

and usually K<< N (the number of data). This feature makes this algorithm efficient when 

dealing with the query. Besides, when data are updated, the information in the cell 

hierarchy do not need to be recalculated. Instead, an incremental update could be 

processed [33]. The disadvantage is that the confidence index is calculated in a possibility 

form, which may imply a loss of accuracy in query processing. 

 

CLIQUE (Clustering in QUEst): CLIQUE is a density-based and grid-based subspace 

clustering algorithm. It partitions the high-dimensional data space into non-overlapping 

rectangular units as introduced before. Dense units will be determined and connected in 

all subspace of interests. The advantage of this algorithm is this algorithm able to 

automatically find the subspaces of the highest dimensionality with arbitrary shape as 

long as high-density clusters exist. As in all grid-based clustering approaches, the 

weakness of this algorithm is the quality of the result highly related to the choice of the 

number and width of the petitions and grid cells.  

 

Instead of assigning each point to just a single cluster, Expectation–Maximization (EM) 

clustering algorithm goes a step further and describe each cluster by its centroid, 

covariance, and weight.[57] The probability that a point belongs to a cluster is now given 

by a multivariate Gaussian probability distribution. This enables clusters overlapping each 

other as some points may assigned to multiple clusters. 
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Unlike clustering algorithms mentioned above, Affinity propagation does not require the 

number of clusters to be determined or estimated before running the algorithm.[58] 

Affinity propagation takes as input measures of similarity between pairs of data points, 

and simultaneously considers all data points as potential exemplars. Real-valued 

messages are exchanged between data points until a high-quality set of exemplars and 

corresponding clusters gradually emerges. 

 

 

 

 

 

 

D. Feature Selection 

 

As a learning machine, a neural network generates its output by interacting the input with 

the parameters stored inside the model. The quality of the training data set is essential in 

determine the quality of the neural network, as good training data can reduce the training 

time and enhance the performance of the network. However, in the cases with high-

dimensional training data sets, it is not advised to use all the features as it will increase the 

computational complexity, resulting in extremely long training time and the overfitting 

problem. A good feature selection method should be able to figure out two types of data: 

irrelevant data and redundant data. Irrelevant features cannot involve in the learning process 

(e.g., student matric number is irrelevant to predict the student’s GPA) and redundant 

features contain the same information and may mislead the learning process (e.g., purchase 

prices of a product and the amount of sales tax paid).   

 

Two categories can be classified for the process of feature selection. Feature subset selection 

and feature ranking methods based on how the features are combined for evaluation. The 

feature subset selection method searches proper combinations of feature subsets by using 

some searching strategies such as a greedy forward selection, greedy backward elimination, 
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etc. Then, statistical measures or the supervised learning algorithms (e.g., the wrapper 

method) are used to evaluate those data subsets. The disadvantage of this method is that it 

generates 2𝑁subsets form N features for evaluation. This method is obviously not applicable 

when dealing with high-dimensional data space. The feature ranking-based methods focus on 

individual features. In this method, each feature is ranked by a selection metric such as 

information gain, symmetric uncertainty, importance matrix, etc. and the top ranked features 

are selected as relevant features by a pre-defined threshold value. Compared to the feature 

selection method, this method is computationally cheaper, as the space complexity is not high. 

However, the disadvantage of this method is that it does not deal with redundant values. 

 

E. Ensemble Learning  

 

When a person is planning to purchase a high-valued product, e.g., a desktop, it is quite rare that 

he/she makes a purchase decision immediately based on the information received from the first shop 

entered. Instead, he/she may go to multiple similar shops and compare different models with reviews 

post by other buyers. Ensemble models in machine learning operate on a similar idea.  Instead of 

adopting the output from a single model directly, ensemble learning summaries multiple outputs by 

tuning different models before generating the output value. Many researchers have investigated the 

technique of combining the predictions of multiple predictors to produce a single prediction [34][35]. 

The ensembled predictors are generally more accurate than any of the individual predictors making 

up the ensemble. 

Ensemble methods work best when the predictors are independent from one another. One way to 

get diverse classifiers is to train them using very different algorithms. This increases the chance that 

they will make different types of errors, improving the ensemble’s accuracy. Another approach is to 

use the same training algorithm for every predictor, but to train them on different random subsets of 

the training set. These different random subsets can be obtained by using some techniques such as 

bagging and pasting. When sampling is performed with replacement, this method is called bagging 

[36] (short for bootstrap aggregating). When sampling is performed without replacement, it is called 

pasting [37]. In other words, both bagging and pasting allow training instances to be sampled several 

times across multiple predictors, but only bagging allows training instances to be sampled several 

times for the same predictor. 
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After multiple predictors or classifiers are built, four simple but powerful aggregating techniques are 

frequently used: max voting, averaging, median and weighted averaging. The max voting method is 

generally used for classification problems. In this technique, multiple models are used to make 

predictions for each data point. The predictions by each model are considered as a ‘vote’. The 

predictions which voted by the majority of the models are used as the final prediction. Similar to the 

max voting technique, averaging method take the average value of all the predictions as the output 

and the median method take the median value as the output. Weighted averaging is an extension of 

the averaging method. All models are assigned different weights defining the importance of each 

model for prediction. Outputs from these models are multiplied by this weight when calculating the 

average value.  

 

F. Traffic Light Control 

 

Traffic signals are designed to eliminate many conflicts by assigning right of way. A good 

signalized traffic control strategy can increase the intersection capacity and reduce the 

frequency of certain types of crashes such that reducing vehicle travelling delays, balancing 

traffic flow, and improving operational efficiency of an urban street network [38]. An 

engineering study of traffic conditions, pedestrian characteristics, and physical characteristics 

of location shall be performed to determine whether signal is warranted. This study shall 

include an analysis of factors related to the existing operation and safety at the study location 

and the potential to improve these conditions. There are two main types of current 

intersection signal control systems: 1. fixed-time, which includes staged-based and phase-

based control system. 2. real-time adaptive signal control systems, such as SCAT [39] and 

SCOOT [40] 

 

Fig.3 Structure of ensemble learning  
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Fixed-time traffic light control strategy was widely utilized in the past when there is no huge 

demand on the transportation so it can solve almost congestion problem easily. However, this 

strategy can no longer meet the increasing transportation demand in the modern 

transportation system with exploding population of vehicles holders and limited road capacity.  

Now a days, many adaptive traffic signal controllers are developed based on the above control 

systems to optimize the travelling delays and control the traffic flow. Following are some state 

of art traffic light control algorithms formulated by other researchers with real case 

application.   

 

Rongrong Tian, Xu Zhang  [41] first use the TRANSYT traffic modelling software to find the 

optimal fixed-time signal plan. After then, they use VISSIM to affirm, evaluate the TRANSYT 

model. This model is used to assess the optimal signal plan. They also use VISSIM and VS-PLUS 

emulator to refine and evaluate an adaptive frame signal plan. The simulation result shows 

that delay in the adaptive signal control was shortened noticeably than that in the fixed time 

control. 

 

Jianhua Guo et al  [42] introduces a new method for area-wide traffic signal timing 

optimization under user equilibrium traffic. The optimization model was formulated as a 

multi-dimensional search problem which use the production of the sum of the travel time for 

each for each base station pair of regional urban street network and the variance of travel 

time of unit mileage for each base station pair as its objective. However, this objective 

function is not convex so the smallest product cannot mean that the two elements are both 

smallest. Multi-objective optimization model might offer more power in finding the best 

solution. 

 

Gustav Nilsson and Giacomo Como [43] focused on a class of dynamic feedback traffic signal 

control policies that only requires information about the traffic volume in order to stabilize 

network. Stability is then proved by interpreting the generalized proportional allocation 



25 

 

controllers as minimizes of a certain entropy-like function that is then used as a Lyapunov 

function for the closed-loop system. 

 

Junchen Jin and Xiaoliang Ma [44] proposed an adaptive group-based signal control approach 

capable of making decisions based on its understanding of traffic conditions at the 

intersection level. The control problem is formulated using a framework of stochastic optimal 

control for multi-agent system in which each signal group is modeled as an intelligent agent. 

The parameters were off-line optimized using a genetic algorithm. Simulation results shown 

that the proposed adaptive group-based control system outperforms the optimized GBVA 

control system mainly because of that’s real-time adaptive learning capacity in response to 

the changes in traffic demand. 

 

Nasser R. Sabar et al [45] proposed an adaptive memetic algorithm (MA) for optimizing signal 

timings in real world urban road networks using traffic volumes derived from induction loop 

detectors. This algorithm improves the current genetic algorithm (GA) by busing a systematic 

neighborhood based simple descent algorithm as a local search to effectively exploit the 

search space around GA solutions and proposing an indicator scheme to control the local 

search application based on the diversity and the quality of the search process. This memetic 

algorithm accelerates the local search process compared to genetic algorithm.  

 

Mohammad Aslani et al [46] utilized RL (Reinforcement learning) algorithms to design 

adaptive traffic signal controllers called actor-critic adaptive traffic signal controllers (A-CATs 

controllers). This controller takes traffic disruptions, discrete and continuous state actor-critic 

approaches and function approximation definitions into consideration. The simulation result 

shows the continuous A-CATs controller with the optimal function approximation 

outperforms the discrete one. 
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1.4    Contributions of this thesis  

 

This thesis first provides the solution for the traffic congestion identification problem. By 

figuring out the congested region in the traffic network based on the vehicle data, economic 

benefit could be achieved since adaptive traffic light control algorithms could be applied on 

these targeted regions without significant degradation of network-wise performance. It is 

verified by the experiment carried out in this thesis that traffic delay time is reduced 75% 

compared to the case without knowing the congestion region. Also, a congestion level 

prediction model is proposed in this thesis. By using this model, potential traffic jam can be 

detected in some links and some prevention methods can be used to reduce or stop the 

negative impact of congestion for these links. Lastly, a traffic turning ratio prediction model 

is proposed in this thesis. The power of this model is shown in the experiment by integrating 

with the adaptive traffic light control strategy. With accurate turning ratio prediction, traffic 

light control algorithm works much more efficiently, and the total traffic queue time spend in 

the road can be reduced significantly.  

 

1.5    Organization of the Thesis  

 

The organization of the thesis is as follows. In chapter 2, part of the collected data with labels 

are trained with a simple feed-forward neural network such that all the newly collected data 

can be assigned with labels with respect to their current locations. Then, based on the data 

accumulated for every 15 seconds, the congestion level of each link is determined according 

to the average speed and vehicle density obtained. In the next step, two clustering algorithms 

are applied in solving the congestion region clustering problem. After discussing the result 

and performance of these two algorithms, a new hybrid clustering algorithm is developed 

which could highlight the over-saturated region with shorter computation time. Lastly, an 

RNN-based congestion level prediction model is constructed. The model could forecast the 

congestion level of each link that is very likely to occur in the following 15-second time step. 
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In Chapter 3 two machine learning models, i.e., a feed-forward neural network and an offline 

recurrent neural network (RNN), are trained for predicting the turning ratios. After that, 

performances of two models are discussed and compared. To increase the prediction 

accuracy of the RNN model, an ensemble learning method is introduced, which trains three 

independent RNN predictors instead of only one. This work could increase the stability of the 

prediction accuracy and robustness to the abnormal data collections. Finally, the well-trained 

model is integrated with an online optimization model, which aims at reducing the traffic 

delay time. The turning ratio prediction models are used in Chapter 4, together with real-time 

traffic signal control, to form a closed-loop adaptive traffic signal control strategy.   

 

Chapter 5 summarizes all the results, and presents some envisioned future works, which could 

be carried out for other uses. All the tables and figures used in this thesis are listed in 

Appendix.  
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Chapter 2:  Traffic Congestion Region Identification 

and Prediction 

 

 

In this chapter some concepts will be first defined. Then specific algorithms for congestion 

region identification will be introduced, and an improved clustering algorithm leveraging on 

existing ones will be discussed in detail. After providing detailed case studies with relevant 

comparisons, we provide some concluding remarks. 

 

2.1     Basic concepts and problem statement   
 
 
 
We first provide definitions of some key concepts that will be extensively used later. 

 

• Link and link number: a link in a traffic network is defined as a uni-directional and one-

lane road segment. In this thesis, each bi-directional road segment will be represented by 

two uni-directional links with opposite directions. A link number is a unique number 

assigned to a specific link. In this chapter, without loss of generality, we assume that the 

link label set is the set of consecutive discrete values, ranging from 1 to x (where, x is the 

total number of links in the target traffic network). The symbol used to represent a link is 𝑙𝑚 where m is the corresponding link number 

 

 

 

 

 

• Node and node number: a node in a traffic network is defined as an intersection, 

connecting with at least three links, having antagonistic traffic streams. It essentially 

represents either the beginning point or the endpoint of a link. Whenever a vehicle 

Figure 4:  Example link number labelling (left) and Example node number labelling (right) 
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reaches a node, a decision will be made as which link the driver intends to enter after 

leaving the current link. A node number is a unique number assigned to each node, taking 

from the set of consecutive discrete values ranging from 1 to x (x is the total number of 

nodes in the target traffic network). The symbol used to represent a node is 𝑁𝑚 where m 

is the corresponding node number. 

 
 

• The number of nodes between two links: it is defined as the minimum number of nodes 

required for a vehicle starting from one link to another. This number is used to represent 

the “distance” between two links while calculating the cost in the clustering algorithm. 

The symbol used to represent the number of nodes between two links is N_xy where x 

and y are the link numbers of these two links. 

 

 

 

 

 

 

• Link congestion level: the link congestion level is defined to represent the traffic condition 

of this link. In this thesis, the traffic congestion condition is categorized into three levels, 

although more levels will not change the feasibility of our proposed approach. Each level 

is associated with two link characteristics: link speed and link available capacity (or link 

density). The first level expresses the under-saturated status where all the vehicle 

travelling in the target link drive at a free-flow speed and the link still has spare capacity 

for more vehicles to fit in, i.e., the link density is low. In this thesis, the label assigned to 

the first congestion level is 1 while calculating the cost in the clustering algorithm. The 

second level expresses the saturated status where the vehicles travelling in the target link 

drive at a saturation speed with no spare capacity for extra vehicles. The label assigned to 

the second congestion level is 2 while calculating the cost in the clustering algorithm. The 

third level expresses the over-saturated status where the driving speed is significantly 

Figure 5:  Example of calculating the number of nodes between two links 
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lower than the saturation speed and there is absolutely no spare capacity to 

accommodate any more vehicles. The value assigned to the third level is 3 while 

calculating the cost. A detailed rule on how to rigorously define these three levels will be 

discussed shortly.  The symbol used to represent the congestion level of the link is  𝐶𝑚 

where m is the corresponding link number.   

 

• Road and road congestion level: a road is a bi-directional route segment. As mentioned 

before, it is captured by two uni-directional links with opposite directions. The road 

congestion level is defined as the higher congestion level between the constituent links.  

 

• The region, congestion level of region and congestion region: the region discussed in this 

thesis is defined as a cluster of roads in which all the roads are accessible from other roads 

in the same region. The congestion level of the region is defined as the average congestion 

levels of all the roads included in the region. A region is identified as a congestion region 

when the average congestion level is higher than a threshold value (e.g. 2.5).  
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2.2     Congestion level identification and prediction  
 

 

The objective of this section is to formulate a new congestion measurement method in a 

proper way that meets most criteria discussed in the literature review. The criteria for a 

proper congestion measurement method, adopted in this thesis, are listed as follows:  

1. Simple and clear for the audience to understand.   

2. Generally applicable with typical traffic data to most traffic networks.  

3. Descriptive and predictive 

 

Based on these criteria, assessments are made to estimate the performance of the current 

commonly used congestion measures. Unfortunately, none of them provided a systematic 

and comprehensive analytical framework to quantify the relationship between the presence 

of public transport and the amount of traffic congestion. Recall the definitions of the 

congestion, the key is the relationship between the traffic flow and the link capacity since 

other features such as delay time and cost could be summarized as a consequence. The 

following figure depicts the fundamental diagram of the traffic flow versus density. 

    

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: A Fundamental Diagram for the Congestion Identification 
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The first figure shows the relationship between the traffic follow which is denoted by q and 

the vehicle density which is denoted by d. It is obviously to be observed that the traffic flow 

is proportional to the vehicle density at the beginning until the traffic flow reaches its 

maximum number q𝑚𝑎𝑥. If keep increasing the vehicle density, the traffic flow will start to 

decrease until a certain value. The second figure shows the relationship between the average 

travelling speeds which is denoted v and the vehicle density. In the beginning, when the 

vehicle density is low, all the vehicles could travel at its free-flow speed. The speed will start 

decreasing when the number of vehicles reaches a threshold point. The average speed will 

decrease to a certain value and maintain it until the link reaches its maximum density. The 

traffic flow is estimated as follows: q(𝑡) = v(𝑡)  ∙ d(𝑡) 
The token “t” indicates a specific time step as the average vehicle speed and vehicle density 

are calculated based on a fixed time period. Then, the partial derivative of the traffic flow rate 

over traffic density could be estimated as follows, (𝜕𝑞𝜕𝑑)(𝑡)  =  q(𝑡) − q(𝑡−1) d(𝑡) − d(𝑡−1)  
Based on the traffic flow-vehicle density curve shown in the fundamental diagram, a traffic 

condition-based congestion measurement is defined as follows:  

 

 

 

 

 

 

 

If 
𝜕𝑞𝜕𝑑 is larger than zero, this link is labeled as undersaturated, as the green part and half of the 

yellow part shown in Fig. 9. If 
𝜕𝑞𝜕𝑑 is less than zero while the traffic flow rate is higher than 15% 

of its maximal value,q𝑚𝑎𝑥, the link is labelled as saturated. A threshold of 15% of q𝑚𝑎𝑥 is set 

based on some empirical formula [47]. If 
𝜕𝑞𝜕𝑑 is less than zero and the traffic flow rate is lower 

than 15% of q𝑚𝑎𝑥 , the link is labelled as oversaturated, as the red part shown in the 

fundamental diagram. 
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The performances of this method can be assessed based on the criterion.  

 

1. Simplicity: this method relies on the fundamental diagram and two easily evaluated 

factors: the gradient and value of q. 

2. Generality: this method is applicable to any traffic network, where its fundamental 

diagram is available.  

3.  Descriptive and Predictive: this method assigns traffic light colors to each congestion 

level which is easy to show on the map. In the meanwhile, this method identifies the 

congestion level based on the differentiation of traffic flow and vehicle density. This 

trend is further used for predicting the traffic condition in the next section.  

In summary, the method proposed in this chapter qualifies three criteria above. While the 

output of this method is rank-based, the internal result is a specific value as calculated by 

the change of traffic flow divided by the change of vehicle density. Thus, the method 

proposed could be regarded as an acceptable method that could be applied to identify the 

traffic congestion identification.  
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2.3     Congestion Level Prediction    

 

The objective of this section is to construct two well-trained, many-to-many recurrent neural 

networks which are able to predict the average speed and vehicle density respectively based 

on the historical data with an acceptable accuracy. As discussed in the literature, most 

participants in the traffic network follow a fixed periodic schedule. Thus, traffic congestion 

also shows patterns, especially during rush hours, e.g., 8 am to 9 am every Monday.  

 

A general RNN model is shown below:  

 

    

 

 

 

 

 𝑎<0> is the initial memory which is pre-set to a default small non-zero value (-0.3~0.3).  𝑊𝑎𝑎 

is the weight needed to be trained and multiplied by memory 𝑎<0> . 𝑥<1> is the first input 

value among the input sequence. 𝑊𝑎𝑥 is the weight needed to be trained and multiplied by 

input 𝑥<1>.  By summing up the above two results, the memory will be updated with the 

equation:  𝑎<1> = 𝑔(𝑤𝑎𝑎𝑎<0> + 𝑤𝑎𝑥𝑥<1> +  𝑏𝑎) where 𝑔 is the activation function and 𝑏𝑎 

is pre-trained bias. Based on the new memory obtained, the first perdition result can be 

calculated with the equation: �̂�<1> = ℎ(𝑤𝑦𝑎𝑎<1> + 𝑏𝑦) where ℎ is the activation function, 𝑤𝑦𝑎 is the weight needed to be trained and multiplied by memory 𝑎<1>, 𝑏𝑦 is pre-trained bias. 

The above process will be repeated until a desired prediction result is calculated. In general, 

the process could be summarized as:   

 

 

 

 

Figure 7: Unfolded general RNN model  
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To deal with the congestion prediction problem whose objective is to predict the congestion 

level in the next few time steps based on information of several previous time steps, a many 

-to-many RNN model is used, which is shown below. This model could be analyzed as two 

parts: encoder and decoder. These two components can be understood easily based on the 

general model introduced above. The encoder part (layers in the blue box) is the general RNN 

model with only the last output is calculated. The decoder part (layers in the green box) is the 

general RNN model with only one input and use the previous output as its new input.   

 

 

 

 

 

 

 

 

 

 

After training the above RNN model, the performance can be assessed by the testing data set 

which is neither used for training nor for parameter tuning. The equation for calculating the 

accuracy is defined below 𝑎𝑐𝑐 =  𝑁𝑜. 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑤ℎ𝑜𝑠𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Encoder and Decoder parts  
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2.4     Congestion region clustering 

 

Previous works solve the problem as how to identify and predict the traffic congestion level. 

The objective of this section it to formulate a proper clustering algorithm based on the result 

obtained previously such that the congested region could be highlighted. Many clustering 

algorithms have been discussed in the literature review. From these clustering algorithms, K-

means clustering and hierarchical clustering method are selected with two following reasons:    

 

1. Clustering of congestion region is calculated based on the feature of the data instead of 

distribution. Density-based clustering methods and grid-based clustering methods which 

also take dense data into consideration are not suitable for this problem (please explain 

here why they are not suitable). 

 

2. The size of a concerned congestion network is generally large. K-medoids is not suitable 

since this algorithm is only applicable and effective in small-scale problems. 

 

When applying K-means clustering and hierarchical clustering algorithms, the key step is to 

calculate the similarity between two points. However, the general similarity formula only 

calculates the Euclidean distance between two points in the data space which is not feasible 

in this problem. New formulas for calculating the similarity between two points need to be 

developed first. There are two features need to be taken into consideration while calculating 

it:  

 

1. Congestion level: In this problem, congestion level is an abstract feature which is not 

computable. Thus, congestion levels should be transformed into specific values first 

before running the clustering algorithm.  Concretely, in this thesis, the undersaturated 

status is assigned with 1, the saturated status is assigned with 2 and the oversaturated 

status is assigned with 3.  

 

2. Distance between two links: the congestion situation in the links radiates its impact to 

its downstream and affected by its upstream link. Thus, neighboring links have a deeper 

impact on this link instead of the links in the distance. One way to calculate the distance 
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between two links is to calculate the geographic distance between the middle point of 

each link. However, the length of links in the traffic network varies a lot. Geographic 

distance between adjacent links may larger than the distance between two links which 

is far apart.  Congestion region clustering is a link-based problem, the impact of the 

internal feature should be eliminated. Instead, the number of nodes between two links 

is used to measure the distance between two links.    

 

 

Thus, the general formula used for calculating the dissimilarity between two links is shown 

below. 𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠  is the number of nodes between link i and the reference link m. 𝐶𝑖 is the 

congestion level of link i and  𝐶𝑚 is the congestion level of link m. 𝛼 𝑎𝑛𝑑 𝜆  are hypermeters 

which could be set at users’ preferences depending on which feature is more concerned. For 

instance, Increase 𝛼 will increase the dissimilarity between two links which is far part and 

increase  λ will increase the dissimilarity between two links which has different congestion 

levels.  

 D𝑖𝑚 = 𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝛼 + (𝐶𝑖 − 𝐶𝑚)λ 

 

Besides, formulas for calculating the central point should also be developed since the general 

method will calculate the geographical center point and the link with the smallest distance 

will be selected as reference link in the next round. Obviously, this approach is not precise as 

this approach neglects the link distribution and could be influenced by some long links easily. 

By observing the congestion region, links in the center always hold smallest  𝑁𝑚𝑎𝑥  , where 𝑁𝑚𝑎𝑥 is the max number of nodes between this link towards all the other links in the same 

cluster. A simple example is shown below to make this concept understandable: figure in the 

left shows a congestion region with 9 links. 𝑁𝑚𝑎𝑥 for each link is shown is the right table. 

Either Link 6 or link 7 can be selected as the central link in this case.   
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2.4.1 K-means clustering 
 

 

When applying the K-means clustering algorithm, besides the new dissimilarity formula and 

the reformulated method in searching for the central links, the last problem is how to choose 

the proper number of clusters. In general, there are two methods that are widely used for 

determining the number of clusters. The most widely used method is the elbow method. In 

this method, K will be set as 2 initially and the clustering algorithm will be run multiple times 

with each time increase K by 1. By plotting the global 𝑁𝑚𝑎𝑥 among all the links for each K, an 

elbow point could be observed, the value of K corresponding to this elbow point is regarded 

as the best number of clusters. Thus, an adjusted K-means clustering could be applied with 

the following process: 

- Step 1: Pre-set the number of clusters K equal to 2 initially and choose K links randomly 

as reference links 

- Step 2: Assigning the rest links to one of these K links with respect to the dissimilarity 

calculated by the formula above. With the consideration of link connectivity, links will 

only be clustered with the reference link when the link is accessible for the chosen link. 

- Step 3: After clustering all the links in the network. For each cluster, a link with the 

smallest 𝑁𝑚𝑎𝑥 will be selected as the central link, which is also the new reference link. 

If multiple links have the same smallest 𝑁𝑚𝑎𝑥 , all these links will be selected as 

reference links. An additional clustering algorithm will be applied on each reference 

  𝑁𝑚𝑎𝑥  w.r.t 

link 1 4 link 9 

link 2  4 link 9 

link 3 3 link 9 

link 4 3 link 9 

link 5 3 link 9 

link 6 2 link 1,2,3,9 

link 7 2 link 1,2,3,9 

link 8 3 link 1,2 

link 9 4 link 1,2 
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link, clusters with the smallest global 𝑁𝑚𝑎𝑥 win the completion. The link which forms 

this cluster will be selected as a new reference link.  If this result remains same, 

reference links will be selected randomly from them.  

- Step 4: Repeating steps 2 and 3 until no changes to all the regions. Global 𝑁𝑚𝑎𝑥 is 

recorded among all the links  

- Step 5: Go back to step 1 and increase the number of clusters K by 1 until reaches a 

threshold value. 

- Step 6:  Plot the K - 𝑁𝑚𝑎𝑥 curve, selecting the best number of clustering by observing 

the elbow point. Clusters obtained by using the corresponding K will be selected as 

the output of this algorithm.  

 

2.4.2 Hierarchical clustering 
 

 

The general hierarchical clustering algorithm clusters the data based on their distance. 

Similarly, an adjusted algorithm could be formulated based on the dissimilarity function 

formulated previously:   

 

- Step 1: Calculate the dissimilarity between each two links in the traffic network based 

on the dissimilarity function. Cluster all the links with lowest dissimilarity, in this case, 

those links are neighboring links with same congestion level (𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 = 1  , 𝐶𝑖 −𝐶𝑚 = 0). 

- Step 2: Cluster remaining link or clustering with second lowest dissimilarity.  

- Step 3: Repeat step 2 by increasing the dissimilarity until all the links are included in 

one cluster and a hierarchical tree diagram could be obtained.  

- Step 4: From the top of the hierarchical tree, select a suitable threshold that divides 

the links into a certain number of clusters.   

 

2.4.3 Improved the K-means clustering algorithm 

 

In practice, people pay more attention to the most congested region as it plays a 

dominant role in the traffic jam. And most traffic control optimizing algorithms are also 
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focusing on relieving the traffic condition in those areas. Thus, it is more meaningful to 

highlight the most congested region instead of taking all the links into consideration while 

applying the clustering algorithm. Based on this concern, additional constraints are needed 

while applying the adjusted K-means clustering algorithm. In this thesis, a threshold of the 

average congestion level among all the links in the cluster is selected as the constraint. Only 

the clusters with an average congestion level above the threshold are kept after running the 

algorithm. However, if this constraint is only applied at the last step, no result will be output 

because the average congestion level of all the clusters is likely to be lower than the threshold 

because they are generated by clustering all the links in the traffic network. And if we apply 

this constraint every time when assigning a link to a cluster, the computational cost will 

explode as many undersaturated links will be clustered multiple times during each clustering 

progress. The algorithm needs to be reformulated and an improved K-means clustering 

algorithm which only focuses on the most congested region, as proposed below:     

 

- Step 1:  Choose one over-saturated link as the reference/starting link.  

- Step 2: Cluster its neighboring links (upstream/downstream) with the same 

congestion level (over-saturated). 

- Step 3: Cluster all the neighboring links (upstream/downstream) of the cluster with a 

congestion level difference up to 1 while keeping the average congestion level above 

a pre-defined threshold. 

- Step 4 (optional): If all adjacent links to the clustered links are not qualified for the 

constraint in step 3. A tolerance number of links is introduced, which will include 

multiple adjacent links first regardless of the constraint and cluster these links’ 

adjacent links. If the clustering this link could maintain the average congestion level 

above the threshold value, these two links will be all clustered.  

- Step 5: Repeat step 2-4 until all the adjacent links of this cluster are unqualified for the 

constraint  

- Step 6: Choose another over-saturated but not clustered yet link as the new starting 

link and go back to step 2 until no over saturated link is left. 

 

 

 



41 

 

2.5 Simulation-based experiments 

 

In this section, two case studies are carried out in order to test the performance of the 

methodology proposed above. The first experiment is to test the traffic congestion level 

identification algorithm in the on-campus traffic network. The second experiment is to test 

the traffic congestion level identification and traffic congestion region clustering algorithm in 

the Jurong area traffic network.  

 

 

2.5.1  Case study one: Traffic congestion level identification (target: campus 

traffic network) 

 

The first experiment is testing the congestion level identification algorithm based on the 

traffic data in the campus, the process is summarized as follow: 

 

Phase 1: Data collection with the on-board unit (OBU) 

 

In the first experiment, all on-campus data used were collected via OBU pre-installed in 

selected vehicles, including personal vehicles and school shuttle buses, running on the 

campus of Nanyang Technological University. Those data were sent from these vehicles to a 

server in the Smart Mobility Experience Lab (SMEL), as shown in figure 9. 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Installed On-Board Unit   
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Data received were categorized into two types: pedestrian data and vehicle data. Only vehicle 

data were used in this thesis. Each set of vehicle data contains information including received 

time, vehicle ID, vehicle type, vehicle class, GPS data, heading, and speed, as shown in the 

table below. Vehicle ID is a unique series of numbers and vehicle types use numbers ranging 

from 0-255 to indicate vehicle type. For example, 4 indicates cars, 6 indicates buses. Heading 

determines the direction this vehicle is currently driving in. Heading starts with North at 00 and increases in a clockwise manner. This information is essential for determining each 

specific link that belongs to a road, as each road contains two directions (directed links). Our 

data were only collected when the vehicles were inside the campus transportation network 

which was the project region meant for testing.  Data were only collected when the vehicles 

were inside the campus transportation network which was the project region meant for 

testing.   

 

 

 

 

 

Table 2: Sample data set 

 

Phase 2: Link labelling   

 

For the convenience of calculating and 

analysing, each link in the traffic 

network was pre-labelled with a unique 

number. Figure 10 shows the NTU 

campus main links with its pre-defined 

link numbers and nodes numbers,    

 

 

 

 

 Figure 10: Labelled school campus   
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Phase 3: Link Identification 

 

It could be observed that the original BSM dataset does not have the feature of “link label”. 

Thus, the first step of this project is to associate the raw data with relevant link numbers 

accordingly. A well-trained FNN (feed-forward neural network) model is used here. The 

training process could be summarized in the following steps: 

- Step 1:  Select part of the collected data from the database with the requirement of 

covering all the links. Label all those data sets manually based on the GPS information 

and the heading direction.  A small list of the training data is shown in Table 3:  

 

 

 

 

 

 

 

 

Table 3: Sample training data set for training   

- Step 2:     To balance the weight of each input feature in the cost function, it is advised 

to adjust them into identical data sizes before proceeding with the data training 

session. During this step, all data will be normalized, with values ranging from -1 to 1. 

MATLAB has the inbuilt function “mapminmax” (mathematical function is shown 

below) which can transform data of the same type into the same range. 

 

mapminmax(𝑋) =  𝑋 − 𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛2  𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛2 =  2𝑋𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛 − 1 

𝑋𝑚𝑎𝑥 𝑖𝑠 𝑡hemax 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡              𝑋𝑚𝑖𝑛 𝑖𝑠 𝑡ℎ𝑒 min 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑟𝑎 𝑠𝑒𝑡 
 

- Steps 3:  In order to get familiar with the neural networks, an FNN model is selected 

here and the normalized data obtained in steps 2 are used in training the model. The 

labelled feature is the output while other features are input. The well-trained network 
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structure is shown in figure 8., where three features are used: latitude, longitude and 

the heading angle. Thus, the size of the first layer is 3. There are 34 links in total for 

the NTU on-campus traffic network, so the size of the last layer is 34.  Since the 

problem here is not complex, any reasonable combination of the hidden layer size 

could achieve high identification accuracy.  Each input data set will activate one of the 

neurons in the last layer. The order of the neurons is the output of the network that 

also indicates the label of the link where the data set signals are derived.   

 

 

 

 

                       

 

 

 

- Steps 4:      Before putting this model into real practice, accuracy should be tested with 

the testing data set (testing data set is the data set that never be leaned during the 

training phase). Figure 12 shows the sample comparison between the identification result 

and the true link number with 10 randomly selected inputs: 

 

 

 

 

 

 

 

 

It can be observed that the performance of this model is good. In general, this model achieved 

identification accuracy at 98.5% on the whole testing data set. Main errors were made in 

Figure 11. Well-tuned Fees-forward Neural Network  

Figure 12. Comparison between output and label    
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some junction area or turning area where the boundary is not clearly divided. Since the errors 

do not have a significant influence on the result, the model is still considered adequate for 

this project.    

 

Phase 4: Link Congestion Level Identification    

 

In this project, a discrete-time framework is adopted. The congestion level is designed to 

describe the traffic condition for a certain period (e.g.,15 seconds in this project) to reduce 

the impact of outliers.  

 

After accumulating the data for every 15 seconds, the algorithm introduced above is applied 

to identify the congestion level of the traffic network in NTU. The result is shown below. Table 

4 is the output of the MATLAB codes and figure 13 visualized the result on the map to make 

the data easier to understand. 

 

 

 

 

From the map above we could easily know that the link between nodes 8 and 7 as well as the 

link between nodes 7 and 11 are over-saturated, the link between nodes 10 and 1, the link 

between nodes 1 and 2, the link between nodes 3 and 4, and the link between nodes 5 and 

11 are median congested while other links are not congested.  

 

Table 4:  Congestion level identified by MATLAB  

 
Fig.13   Visualizing the identifying result on NTU campus   
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2.5.2  Case study two: Traffic congestion level prediction and congestion region 

clustering in the Jurong area traffic network 

 

In the first experiment, not all vehicles on the campus are installed with OBU which means 

the data collected may not exactly represent the traffic condition. And the traffic condition in 

the campus are seldom congested which makes further research work difficult to process. 

Thus, another traffic network is considered: the Jurong area traffic network. The process is 

summarized as follow: 

 

Phase 1: Simulated traffic network setup and data collection  

 

Due to the reason that the real traffic data is not accessible, a simulated traffic network is 

constructed with identical layout and size compared to the real transportation network in 

Jurong area. The software used is VISSIM which is a micro multi-model flow simulation 

software package. The overall view of this traffic network and one junction among it is shown 

below. The green and red bars restrict the traffic flow directions with practical consideration. 

This traffic network holds 66 junctions and 253 links in total. 

 

  

 

 

 

 

 

 

Similarly, all the links need to be assigned with a unique number for calculating:  

Fig.14 overall view of Jurong area 

transportation network 

Fig.15 Single junction layout 
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Fig.16 Jurong East & West Link Numbers & 

Junctions (Main area: D4,D5) 

 

Figure 17: Jurong East & West Link Numbers & 

Junctions (Main area: E3, E4, partial D3, partial D4) 

Figure 18:  Jurong East & West Link Numbers & 

Junctions (Main area: Main area: D3,E3)) 
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Vehicle data will be then auto-generated by the software. Data features are selected based 

on research needs. A sample collected data sheet is shown below: 

 

 

Phase 2: Traffic congestion level prediction 

 

From case study one, the same methodology could be applied in identifying the link 

congestion level. However, only identifying the congestion level for each link is far from being 

enough. It could be better if the congestion level can be forecasted. With high-accuracy 

congestion level predictions, emergent solutions could be put into use immediately to 

prevent the occurrence of potential congestion.  As discussed in the literature review, a single 

layer many-to-many RNN model is used to predict the average speed and vehicle density 

separately as shown in the figure below: 

 

 

The batch size of this RNN model is set at 15. This number is selected based on how many 

steps ahead are required to forecasting the congestion level. The longer the predicting time 

horizon, the larger the number. For example, the model constructed can be used to predict 

the congestion level up to 15 time steps later.  Concretely, once after a time step (t), the 

algorithm will take the current average speed 𝑆𝑡 as well as all the average speed recorded in 

Fig.19 Two RNN models for speed and density prediction 

Table 5:  Sample data collected from VISSIM  
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the past 14 time steps {𝑆𝑡−14, … , 𝑆𝑡−1} as input. Those 15 inputs will generate 15 outcomes 

corresponding to the predicted average speed in 1~15 time steps. Thus, for each future time 

(t+m): the predicted outcome will be the average of the predicted results generated from the 

current time interval to the previous (15-m) time steps. The equation is shown below: 

 

 

 

 

 

 

 

A prediction result is shown in figure 20, which compares the actual congestion level with 

the predicted congestion level for the next time step.  

 

 

 Figure 20: Comparison with actual congestion level (left) and predicted congestion level (right) 

 

As shown in the table below, the prediction accuracy is very high when the prediction horizon 

is not too long. However, prediction accuracy drops fast when increasing the prediction 

horizon due to the traffic fluctuations. 

𝑆𝑡+𝑚𝑃 =  
116 − 𝑚 ∑ 𝑆𝑡+𝑚+𝑖𝑃𝑡−𝑖15−𝑚

𝑖=0   , 𝑚 ∈ [1,15] 

𝐷𝑡+𝑚𝑃 =  
116 − 𝑚 ∑ 𝐷𝑡+𝑚+𝑖𝑃𝑡−𝑖  

15−𝑚
𝑖=0 , 𝑚 ∈ [1,15] 
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Phase 3: Congestion region clustering  

 

In this section, three clustering algorithms were used respectively: k-means clustering 

algorithm, hierarchical clustering algorithm and improved clustering algorithm based on the 

methodology discussed above. 

 

When applying K-means clustering algorithm, the number of clusters should be decided in 

advance. In general, the optimal cluster number could be determined by using the elbow 

method. Figure below shows three results of the largest number of junctions between the 

links in the same cluster 𝑁𝑚𝑎𝑥  after applying the K-means clustering algorithm with different 

pre-set numbers of clusters: 

 

  

 

 

 

 

 

 

 

 

 

It could be observed from the above graph that the elbow point falls on M=6 with a high 

probability. Thus, in this case,(the Jurong area with 66 junctions and 253 links in total), M 

could be set at 6 generally when applying the K-means clustering algorithm. Figure 22 shows 

0

5
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30

M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

Case 1 Case 2 Case 3

Fig.21. The largest number of junctions 𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥  vs different number of clusters  

Table 6:  Congestion level prediction accuracy with different time horizon   
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the computational time used when applying K-means clustering algorithm and hierarchical 

algorithm: 

 

 

  

 

 

 

 

 

 

 

It takes about 12 seconds for the K-means method to complete the clustering computation, 

while more than 350 seconds are needed for the hierarchical method. This result verifies the 

disadvantage of the hierarchical algorithm. Since the congestion region is needed to be 

updated once every 15 seconds, the K-means clustering algorithm is more suitable. 

 

However, the clusters obtained by the K-means clustering algorithm are not significantly 

different from each other in terms of average regional congestion levels. It can be shown from 

the graph below. It could be found that the average congestion level fluctuates around 2 and 

these average congestion levels are similar to each other, which makes it impossible to figure 

out the most congested region. 

 

  

 

 

 

 

 

 

 

 

 

0 50 100 150 200 250 300 350 400
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K-means Hierarchical

Figure 22: Computation time cost for each algorithm   
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Figure 23: Average congestion level of each cluster 
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With the aim of identifying the over-saturated region, the improved clustering algorithm is 

used. Staring from the over-saturated links, a region is expanded by spreading upstream links 

and downstream links. Besides, by saving the time used on calculating the under saturated 

regions, the processing time is faster than the general K means clustering which only 9 

seconds is needs on average to get the result.    
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2.6    Summary 

 

This chapter aims to solve three problems: link congestion level identification, link congestion 

level prediction and congestion region clustering. For link congestion level identification, a 

new method is introduced which uses the difference of traffic flows and densities between 

the current traffic condition and that of the previous time step in deciding the traffic 

congestion level. The advantage of this method is that, by considering the differential value 

instead of static value, not only the current traffic congestion level can be identified but also 

the trend of changing can be detected. As a result, more information is generated which could 

be used in other related research projects. For the link congestion level prediction problem, 

a simple many-to-many single layer RNN model is used as the predictor. The model 

implemented is trained off-line. For the congestion region clustering problem, two general 

clustering algorithms are used whose performances are not satisfactory. Thus, an improved 

clustering algorithm is intruded which only focuses on the most congested region. The 

advantage of this algorithm is its (relatively) low computational complexity when compared 

with the other two, mainly owing to the step of ignoring the under-saturated links and only 

highlighting the most congested region which the traffic optimizing algorithm is of most 

interest. Future work involves applying more prediction algorithms (SVM, ELM and GBDT) and 

clustering algorithm (EM clustering and Affinity propagation) to solve this problem and 

compare the performance with current work.  
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Chapter 3:  Traffic Network Turning Ratio Prediction 

 
 

This chapter contains four parts. The first part defines some basic concepts. The second part 

introduces two neural networks which can be tuned as a predictor. These two networks have 

been widely used and developed in many aspects. However, there is no relevant research that 

applies these two models in predicting the traffic turning ratio. And these works are done in 

Part three together with a case study on a 3*3 simulated traffic network. The key challenge is 

how to tune the hypermeter of the network well in order to increase the prediction accuracy. 

The last part is the summary for the project based on the experiment result.   

 
 
 
3.1:   Basic concepts and problem statement 
 

To make the subsequent technical development clear, some concepts are defined below. 

 

• Turning ratio: whenever a vehicle reaches a node, it will decide which link to enter, 

after leaving the current link. In this thesis, all nodes are connected with four links, 

which means the vehicle will have three choices: turn left, go straight and turn right. 

Turning ratio is the percentage of the vehicles that make the same choices among all 

the vehicles leaving the current link. The symbol used to represent the turning ratio 

during time step t is λ(t). The calculation formula is shown below 

 

 

 

 

 

 

 

 

• Traffic light status and assignments: Each signalized node in the traffic network control 

the traffic flow by adjusting the traffic light status for each direction. In this thesis, four 

statuses are used to describe different traffic light condition. These four statuses are 

shown below: 
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Phase one will enable the vehicles to go straight and turn left in the horizontal direction. Phase 

two will enable the vehicles to go straight only in the horizontal direction. Phase three is 

identical to phase one except for the direction changes from being horizontal to being vertical. 

Phase four will enable the vehicles to go straight only on the vertical direction. When a fixed-

time traffic light assignment is under consideration in this thesis for a performance 

comparison purpose, each phase is assumed to last for 15 seconds. The symbol used to 

represent the traffic light status during one time step is θ(t). The traffic light assignment is a 

sequence of pre-determined traffic light statuses. The traffic light in the node will operate 

based on this assignment. 

 

• Supply function: In this thesis, the traffic network used is a region-based network. All 

the vehicles running inside is assumed to be supplied from the terminals of the traffic 

network. The number of vehicles supplied into the traffic network are different for 

different terminals and different time steps. Thus, a supply function is introduced to 

represent the number of incoming vehicles over time at each terminal. The symbol 

used to represent the supply function is s(t). 
 

The turning ratio is conceptually determined by each driver’s driving habit (i.e., his/her 

origin-destination pair and the corresponding fixed yet unknown trajectory), the supply 

function and all previous traffic light assignments. Our conjecture is that, by a fixed 

Figure 24: Four traffic light phases 

with traffic flow allowed 

 

Figure 25: time length and schedule of each 

traffic light phase 
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driving habit for each driver each link turning ratio is a function of the supply volume 

and past traffic light schedules, which could be written as: 

 λ(t) = f(s(o), s(1), … , s(t − 1);  θ(0), θ(1), … , θ(t)) λ(t − 1) = f(s(o), s(1), … , s(t − 2);  θ(0), θ(1), … , θ(t − 1)) 
So, a turning ratio at t is supposed to be a function of all historical turning ratios, flow-

in vehicles and traffic light schedules:  λ(t) ←  f {[λ(0), … λ(t − 1)], [𝑠(1), … s(t − 1)], [𝜃(0), … , θ(t)] } 
 

• Prediction accuracy: In order to visualize the performance of parameter selection while 

tuning the neural network, prediction accuracy is computed, which is defined as the 

number of turning ratios correctly predicted over the total number of turning 

directions. Since the turning ratio is a number between 0 and 1, the predicted turning 

ratio is said to be correct if the difference is less than 0.1. This standard is for testing 

only, it can be adjusted according to a user’ expectation or requirement. 
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 3.2:  Machine learning algorithms for turning ratio prediction 
 

In this section, the component and the architecture of the proposed FNN and RNN models 

are introduced. Here, turning ratio prediction is defined as predicting future turning ratios 

based on historical traffic information.  

 

3.2.1 Network-wide Traffic Data  

 

Turning ratio prediction at one link normally utilizes a sequence of traffic information with 

N historical time steps as the input data, which are represented by a vector. 

                          𝑋𝑇 = [𝑋𝑇−𝑛 , 𝑋𝑇−(𝑛−1), … , 𝑋𝑇−2, 𝑋𝑇−1] , X is a collection of { λ , s, 𝜃 } 

 

But the turning ratio of one link may be influenced by the traffic condition of nearby links or 

even locations faraway, especially when traffic jam propagates through the traffic network. 

To take these network-wide influences into account, it is better to take the network-wide 

traffic data as the input. Suppose the traffic network consists of P links and we need to predict 

the traffic turning ratio at time T using n historical time steps, the input can be characterized 

as a traffic data matrix: 

𝑋𝑇𝑃 = [𝑥1𝑥2…𝑥𝑃] =  [   
 𝑋𝑇−𝑛1 𝑋𝑇−(𝑛−1)1 … 𝑋𝑇−21 𝑋𝑇−11𝑋𝑇−𝑛2 𝑋𝑇−(𝑛−1)2 ⋯ 𝑋𝑇−22 𝑋𝑇−12⋮ ⋮ ⋱ ⋮ ⋮𝑋𝑇−𝑛𝑃 𝑋𝑇−(𝑛−1)𝑃 ⋯ 𝑋𝑇−2𝑃 𝑋𝑇−1𝑃 ]   

 
 

Where each element 𝑥𝑡𝑝 represent the turning ratio λ of the pth link, traffic light assignment 𝜃 and the supply function at the tth time.  

 

3.2.2   An FNN model and parameter identification  

 

Feed-forward neural networks [48] are designed with one input layer, one output layer and 

hidden layers [49]. The size of the input layer is equal to the number of input features and the 

size of the output layer is equal to the physical quantities of output. Thus, when constructing 
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an FNN model, the key is to find a proper number of hidden layers and their size respectively. 

Insufficient neurons in the hidden layers will lead to underfitting problems with low precision 

and too many neurons in the hidden layers will result in overfitting problems with high 

precision on the training data set and low precision on the testing data set. One common 

technique in searching proper parameters of hidden layers is Bayesian regularization, along 

with a Levenberg–Marquardt algorithm [50]. 

 

 

 

 

 

 

 

A general FNN model is shown above. In the FNN model, the input features will be placed in 

the neurons of the first layer. The data will be then propagated to the first hidden layers by 

multiplying the weights stored in the interconnections. Each neuron in the hidden layers is 

connected to every neuron in adjacent layers. These neurons will sum up the arrived weighted 

inputs of the previous hidden layer. After propagating the summation through an active 

function, the result will be transferred to all the neurons in the next hidden layer or output 

layer. In this work, the activation function used is an exponential sigmoid function, which has 

generally and traditionally been used to develop FNNs. The mathematical expression of 

sigmoid function is  

                                                           f(x) =  1 1 + 𝑒−𝑥⁄  

 

A bias term, b, is associated with each interconnection in order to introduce a supplementary 

degree of freedom. The expression of the weighted sum, S, to the ith neuron in the kth layer 

(k≥2) is 

𝑆𝑘,𝑖 = ∑ [(𝑊𝑘−1,𝑗,𝑖𝐼𝑘−1.𝑗) + 𝑏𝑘,𝑖]𝑁𝑘−1
𝑗=1  

To train this model, the collected data sets will be divided into three groups: the training data 

set, cross validation data set and testing data set. After partitioning the data sets, the training 

Figure 26: Basic structure of FNN 

 



59 

 

set is used to adjust the parameters. The network is then trained until it correctly emulates 

the input/output mapping, by minimizing the average root mean square error. The testing set 

is used, during the adjustment of the network’s parameters, to evaluate the algorithm’s 

performance and stop the adjustment if the error on the testing set increases. Finally, the 

validation set measures the generalization ability of the model after the fitting process. 

 

3.2.3   An RNN model and parameter identification 

 

RNN is one of the powerful deep neural networks by using its internal memory with loops to 

deal with sequencial data. Recall the structure of RNN shown in Figure 27:  

  

 

 

 

 

 

 

The right part of the figure shows the interval calculation process that, at each time iteration, 

t, the hidden layer maintains a hidden state,𝑎<𝑡> , and updates it based on the layer input, 𝑥𝑡, and previous hidden state 𝑎<𝑡−1>  by using the following equation:  

 

 

 

where 𝑤𝑎𝑎  is the weight matrix stored in the interconnection between two consecutive 

hidden states, 𝑤𝑎𝑥 is the weight matrix stored in the interconnection between the input layer 

and the hidden layer, 𝑏𝑎 is the bias vector of the hidden layer.𝑔𝑎 is the activation function of 

the hidden layer which adding the non-linearity property to the model. The network output 

can be computed by the equation:  

Hidden layer  

𝑎<𝑡> = 𝑔𝑎(𝑤𝑎𝑎𝑎<𝑡−1> + 𝑤𝑎𝑥𝑥<𝑡> +  𝑏𝑎) 

Figure 27: Basic structure of RNN 
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Where 𝑤𝑦𝑎 is the weight matrix stored in the interconnection between the hidden layer and 

the output layer, 𝑏𝑦 is the bias vector of the output layer. 𝑔𝑦 is the activation function of the 

output layer. The weight matrix and bias stored in the RNN will be trained and updated 

iteratively via the back-propagation method. Hidden layers will calculate and output a result 

for each input, and the last output, �̂�<𝑡> is the desired predicted turning ratio in the next time 

step. However, traditional deep RNN model suffering from the vanishing or exploding gradient 

problem. In the past decades, several recurrent architectures are proposed to handle this 

problem, like LSTM architecture and Gated Recurrent Unit (GRU). LSTM improve the RNN 

model by adding three gates in the hidden layers which enable the RNN deal with long-term 

dependencies to allow useful information pass along the LSTM. These three gates are called 

input gate, forget gate, and output gate which is denoted as 𝑖<𝑡>, 𝑓<𝑡> , 𝑜<𝑡> respectively. 

The interval structure of LSTM is shown in figure below and they can be calculated with 

following equations: 

 

 

 

 

 

 

 

 

 

 

 

  

 

�̂�<𝑡> = 𝑔𝑦(𝑤𝑦𝑎𝑎<𝑡> + 𝑏𝑦)  

𝑐𝑁<𝑡> = 𝑡anh (𝑤𝑐[𝑎<𝑡−1>,  𝑥<𝑡>] +  𝑏𝑐)                𝑐𝑁<𝑡> is a candidate for replacing 𝑐<𝑡> 

    Г𝑖     =  𝜎(𝑤𝑢[𝑎<𝑡−1>,  𝑥<𝑡>] +  𝑏𝑖)                             input gate      Г𝑓     =  𝜎(𝑤𝑓[𝑎<𝑡−1>,  𝑥<𝑡>] +  𝑏𝑓)                            forget gate  

Figure 28: Basic structure of LSTM 
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Where 𝑐𝑁<𝑡>  is the primary hidden layer state (𝑐𝑁<𝑡> = 𝑎<𝑡>  for classic RNN model) which 

needed to be processed by the other parts in the LTSM cell.   𝑤𝑐, 𝑤𝑓, 𝑤𝑢, 𝑤𝑜 are the weight 

matrices mapping the hidden layer input to the three gates and the input cell state, 𝑏𝑐, 𝑏𝑓, 𝑏𝑖, 𝑏𝑜 are four bias vectors. Based on the above four equations, the cell output state 𝐶<𝑡> , and 

the new hidden layer state  𝑎<𝑡>,  can be calculated with following equations: 

 

 

 
 
3.3   Simulation-based experiments  

 

In this section, an FNN and an RNN are tuned to solve realistic problems. A simulated 3*3 

traffic network is built in VISSIM, and all the data used for training the network are provided 

by this software. The procedures of tuning the networks are explained in detail.     

 

3.3.1   System setup 

 

A. Simulated traffic network construction  

 

In order to test the capability of FNN and RNN in predicting the traffic turning ratio, a 

simulated traffic network is constructed in the VISSIM. Considering the computational cost, 

the size of the network is set at 3*3, it is neither too big to train nor too simple. This traffic 

network has 12 flow-in terminals, 9 junctions, and 48 links as shown below. Figure in the left 

shows the link number, node number, terminal number assignment. Figure in the right shows 

the built simulated traffic network with vehicles running inside. Vehicle data are generated 

and recorded per second. 

Г𝑜     =  𝜎(𝑤𝑜[𝑎<𝑡−1>,  𝑥<𝑡>] +  𝑏𝑜)                            output gate 

𝐶<𝑡> = Г𝑖* 𝑐𝑁<𝑡>   + Г𝑓 * 𝑐<𝑡−1>
 𝑎<𝑡> = Г𝑜 ∗  𝐶<𝑡>  
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B. Data preprocessing  

 

In this experiment, raw data generated by the above traffic network contains 261 features: 

• The number of flow-in vehicles from 12 terminals. 

• Traffic light schedules at 9 junctions  

• The current number of vehicles in all 48 links  

• The number of vehicles leaving each link 

• The number of leaving vehicles turn right, go straight and turn left respectively. 

 

Part of features are collected for other research purposes which needs to be discarded and 

some important missing features need to be calculated and added into the training data set. 

The basic idea of feature selection is to choose the features that could provide enough 

information to the network such that the trained network can generated the output based 

on this information with high accuracy. Unlike picture processing or text processing, features 

in this problem hold their practical significance which is easier to decide if the feature is 

related to the turning ratio prediction. Thus, data preprocessing for this problem can be done 

manually which are summarized in the following steps: 

• Sum up the vehicle information for every 15 seconds. This length of time is the time unit 

in formulating the traffic light assignment. By summing up the vehicle data, the change of 

Figure 29: 3*3 traffic network built in VISSIM 
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traffic flow due to traffic light assignment is easier to be observed.  

• Third feature which contains the information of current number of vehicles in all 48 links 

is removed as they have no contributions to the prediction result based on the 

mathematical model implemented previously. 

• It is observed that 24 links in the traffic network are connecting the terminals and half of 

them are exporting the vehicle form the network. Vehicle data of these 12 links is removed 

as they have no more impact on the vehicles still running inside the network.    

 

3.3.2   Experimental procedure and data collection 

 

A. Trained with FNNs 

   

The first model used is a fully connected neural network, which only predicts turning ratios at 

a specific time step. Firstly, the model only uses one time-step information to predict the 

turning ratio in the next time step. 

                                                       λ(t)    ←  {λ(t-1),s(t-1)  ,θ(t) } 

Searching for the best size of two hidden layers requires a lot of work. Figure 15 shows the 

prediction accuracy performed on the cross-validation data set with a different combination 

of two hidden layers. 
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First hidden layer size = 40 First hidden layer size = 50 First hidden layer size = 60 First hidden layer size = 70

Second hidden layer size = 30 Second hidden layer size = 40 Second hidden layer size =50

Figure 30: Prediction accuracy with different combination of hidden layer size  
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With the result obtained from Figure 30, when the size of the first hidden layer equals 70 and 

the size of the second hidden layer equals 30, the accuracy has the highest value at around 

68%. Before settling down the structure of this FNN model, the performance should be double 

tested by the testing data set. Figure 16 shows the comparison between the predicted turning 

ratio (first row) and the actual turning ratio (second row). The accuracy applied to the testing 

data set is 65%. Not bad, the combination of these hidden layers could be selected. And the 

construction of the feed-forward network with the size of two hidden layers is shown in figure 

31. 

 

 

 

 

 

 

 

The number of outputs is ten, only one of them is activated when an input is provided. The 

sequence of the activated nodes (output equal to or close to 1) among these neurons is the 

output of the network. For example, if the second node is activated, it means the output of 

the network is 2 and it also indicates that only around 10% of the existing vehicles flow into 

this direction. If the last node is activated, it means the output of the network is 10 and all 

vehicles leaving this link flow into this direction. 

 

Obviously, the accuracy achieved is not satisfactory.  What could happen, if we increase the 

number of input features by looking at more time steps backward in time? For example, say: λ(t)    ←   {𝜆(𝑡 − 2), 𝜆(𝑡 − 1), 𝑠(𝑡 − 2), 𝑠(𝑡 − 1) , 𝜃(𝑡 − 1), 𝜃(𝑡) } 
 

Figure 31: Comparison with the labeled value and the FNN structure  
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Following the same procedure, we could get the prediction accuracy graph shown below: 

 

 

It is obvious to see that when the size of the first hidden layer is 100 and the size of the second 

hidden layer is 50, the accuracy reached is around 75%. Furthermore, the average accuracy 

increases roughly by 7% compared to the result obtained when only one single time step is 

used for prediction. Lastly, testing the structure set on testing data attains accuracy at 71%. 

Thus, the FNN model for two time-steps ahead is shown in Figure 33. 

 

 

 

 

 

 

The observation obtained in the previous two experiments suggests that, increasing the 

number of backward time steps is likely to shows a decent way to increase the prediction 

accuracy. And the result of adding one more backward time step information matches this 

conjecture nicely, as shown in Figure 34. 

 

Figure 32: Prediction accuracy with different combination of hidden layer size  

 

Figure 33: Construction parameters of the tuned FNN 
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However, Figure 34 also shows that the accuracy drops to 80% if four time steps are used as 

an input data set. The reason for this result is due to the lack of training data to match the 

number of model parameters increasing significantly with respect to the number of backward 

time steps used in the neural network model, set which results in the underfitting issue. After 

collecting enough training data, the accuracy rises to 88%! 

 

What if all the historical time steps are used to predict the turning ratio at the next time step? 

In this project, this assumption could not be realized since it incurs a prohibitively high 

computational burden, making it unable to complete train the model training. However, it 

still could be illustrated if only a small number of time steps are involved. For example, the 

first two time steps could be used in predicting the turning ratio at the third time step.  

Although only two previous time steps are considered, they include all the information. The 

prediction accuracy for this experiment is shown in Table 7. 
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Figure 34: Prediction accuracy with respect to different historical time step used  

Table 7: Turning ratio prediction accuracy with different time horizon and sample quantity  
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In conclusion, it is possible to predict the turning ratio with a sufficiently high accuracy, if all 

the previous traffic light assignment information is known and used for training. However, in 

practice, it will certainly lead to high computational complexity. Thus, an acceptable trade-off 

between the computational complexity cost and prediction accuracy is needed. 

 

B. Trained with RNNs 

 

The solution provided in section A seems decent with up to 90% prediction accuracy. However, 

the neural network model is a static model, which is only applicable to a specific time step. 

Thus, to cope with a long prediction horizon, many neural network models need to be 

constructed, which is not only computationally demanding, but also lacks of robustness to 

traffic disturbances. Thus, a dynamic prediction model is needed. 

 

Recall that the problem is to use historical data to predict the turning ratio at the next time 

step, based on past data. The recurrent neural network is a possible choice in dealing with 

such a dynamic prediction problem 

 

The off-line RNN is designed to be able to predict the turning ratio 

with any time step input. Thus, a three hidden layer RNN is used to 

confine the complexity of the problem. Each layer is also assigned 

with an LSTM unit to increase the performance on memorizing the 

essential information during the training phase. The primal model 

is shown in Figure 35. The first and second activation functions 

selected is ReLu to avoid the gradient vanishing problem and a 

sigmoid function is assigned to the final layer as it is required that 

the output should vary from 0 to 1, which is the range of each 

turning ratio. 

 

 

Figure 35: RNN model with three 

hidden layers   
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Phase 1: Tuning the number of epochs  

 

The first LSTM parameter to be tuned is the number of training epochs. The model will use a 

batch size of 5, and 100 neurons for each hidden layer. We will explore the effect of training 

this configuration for different numbers of training epoch. 

 

- Diagnosis of Epochs = 3  

As introduced in the methodology, the number of training epochs is the number of used 

historical time steps. When the number of epochs equals 3, three historical data recorded as [𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)  ] are used to derive the corresponding output  𝑌(𝑡). After running the 

program, the recorded RMSE (root mean square error) during the training process for every 

50 iterations is printed as follows: 

 

 

 

The results clearly show a downward trend in training RMSE over the training epochs and 

have a small impact on decreasing the test RMSE. It is a good sign, it shows that the developed 

model is able to solve this prediction problem. Next, we try to increase the number of epochs, 

and see how the quality of prediction may be affected. 

 

- Diagnosis of Epochs = 4  

When epochs equal 4, [𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)  ] is used to derive its corresponding output  𝑌(𝑡). Running the program again, the output is shown below: 
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The error is getting smaller compared to that of the previous experiment, it means increasing 

the number of epochs is a decent way to get a better prediction model. 

 

- Diagnosis of Epochs = 5 [𝑋(𝑡−4), 𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)  ] is used to attach with output 𝑌(𝑡). The RMSE for 

both training set and test training set is shown below: 

 

 

 

 

It is observed that the error is higher than that of the previous experiment, but the error 

decreases rapidly after hundreds of iterations.   

 

- Diagnosis of Epochs = 6 

In this experiment, [𝑋(𝑡−5), 𝑋(𝑡−4), 𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)  ] is used to derive the output 𝑌(𝑡). The RMSE for both the training set and test training set is shown below: 

 

 

 

 

Although the RMSE for both the Training data and testing data is smaller than that of the 

previous experiment, the training time increases to more than 10 hours to train the model. 

Thus, after balancing the computational cost and performance, Epochs = 5 is selected as the 

LSTM parameter. 
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Phase 2: Tuning the Batch Size 

 

Batch size controls how often to update the weights of the network. And specially, the 

number of batches is normally selected as a factor of the size of the test and the training 

dataset. In this section, we will explore the effect of varying the batch size. We will hold the 

number of training epochs constant at 5. Since the size of the training data is 60, the 

candidates of batch size are selected as 5,10,15,20, respectively. Since the experiment with 

the batch size set at 5 has been carried out in the previous section, we can start from setting 

the batch size at 10 directly.  

 

- Diagnosis of 5 Epochs and Batch Size of 10  

By holding the number of epochs at 5, we change the batch size to 10. Running the program 

again, and the RMSE for both the training set and testing set is shown below: 

 

 

 

 

 

It shows a faster decreasing trend in performance than that of a batch size of 5, and the 

computational time is around 10 minutes which is acceptable. Thus, setting the batch size at 

10 is better than setting it at 5. 

 

- Diagnosis of 5 Epochs and Batch Size of 15  

Repeating the previous experiment by changing the batch size to 15, The RMSE for both the 

training set and testing set is shown below: 
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By increasing the batch size to 15, the RMSE of the training data set decreases rapidly while the RMSE 

of the test data set decreases first and then increases after hundreds of iterations. This result indicates 

that the model falls into overfitting problems, thus, setting the batch size to 15 seems not a wise 

choice. 

 

In summary, by holding the number of epochs at 5, the best number of batch size is 10 as it has a 

better performance than setting the batch size at 5, while not encountering any overfitting problems. 

And the experiment is early stopped since the last experiment shows that keeping increasing the 

number of batch size has no improvement on the computational performance of the network. 

 

Phase 3: Tuning the number of neurons in the hidden layer 

 

The last parameter that needs to be tuned is the number of neurons in the hidden layer. Since the 

work of this step is much larger than that of previous steps, it is better to decide other parameters 

first. From previous experiments, the most proper setting for the numbers of epochs and batch size 

are 5 and 10, respectively. Thus, while tuning the size of hidden layers in LSTM, these two parameters 

will be fixed at its best value. There are some general rules that can help to choose the range that may 

speed up the tuning process. The following formula provides a reference on deciding the range of the 

hidden layers’ size : 

𝑁ℎ = 𝑁𝑠(𝛼 ∗ (𝑁𝑖 + 𝑁0)) 

 𝑁𝑖= number of input neurons. 𝑁0 = number of output neurons. 
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𝑁𝑠 = number of samples in training data set. 

α = an arbitrary scaling factor usually 2-10. 

 

Considering that the number of input features is 93 and the number of outputs is 72, and the number 

of samples in the training data set is 168,000, the suggested range of the neurons in the hidden layers 

is from 100 to 500. Thus, the candidates of the hidden layers’ sizes are set at 100, 150, 200, 250, 300, 

350, 400, 450, 500, respectively.  

 

The tuning result is shown in the appendix. From the result, it is observed that the best combinations 

for the hidden layers’ size is 400-300-150. Thus, the parameters for LSTM are all determined as shown 

in the figure below: 

 

Apparently, the accuracy is not satisfactory. Thus, an ensemble learning method is applied to boost 

the prediction accuracy. 

 

Phase 4: Accuracy boost by applying ensemble learning  

 

According to the literature review, building multiple different RNNs and taking the average value of 

the output could increase the accuracy. In order to build different prediction models, different training 

data sets are needed. However, the traffic data used in training the RNN is generated by a simulated 

traffic network. Different data subsets may not sufficiently differ from each other. Thus, instead of 

training multiple models with different data subsets, these models could be trained with different 

Figure 36: Tuned RNN with parameter labelled     
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output features in order to increase the differences among predictors. This idea can be realised based 

on the equation below:  𝑇. 𝑅.𝐿𝐸𝐹𝑇+ 𝑇. 𝑅.𝑆𝑇𝑅𝐴𝐼𝐺𝐻𝑇+ 𝑇. 𝑅.𝑅𝐼𝐺𝐻𝑇 = 1 

 

From the above equation, the sum of the turning ratios for three directions of each link is 1. The 

predictors could be trained to predict either two of them. The third turning ratio could be calculated 

by this equation. Thus, three different predictors are trained as follows: 

 

 

 

 

 

 

 

 

Three different training data sets with the same size are collected from the VISSIM. The first dataset 

is trained to predict the left and straight turning ratio for all the links. Turning ratios for right direction 

is calculated instead of being predicted. With the same procedure, second dataset is trained to predict 

the turning ratio of going left and going right. The third dataset is trained to predict the turning ratio 

of going right and going straight.  

After tuning these three models with the same steps discussed previously, three different results will 

be generated. Since no model is important than other two, the averaging method is used in calculating 

the final output. The accuracy after applying the ensemble learning method increased to 83%, which 

shows that the proposed ensemble method is sufficiently effective. 

 

 

 

 

Figure 37: Ensemble learning model with three independent predictors included  
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3.3.3   Comparisons and discussions  

 

From the above experiment, FNN could achieve higher accuracy up to 88% than RNN. However, the 

limitation of FNN is that this model is only applicable on specific time step, which means thousands of 

FNNs are needed to predict the traffic turning ratios for the entire predicting period. On the contrary, 

only one RNN is required to predict the turning ratios for the whole predicting horizon while the high 

computational complexity leads to a low prediction accuracy. However, the accuracy could be boosted 

by implementing multiple RNNs which are trained with different datasets and different output 

features in an emsemble strategy.       
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3.4   Summary 

 

This chapter is purely application oriented. In this chapter, two neural networks are used in solving 

the traffic turning ratio prediction problem. By building a realistic 3*3 simulated traffic network in 

VISSIM, we were able to obtain sufficient traffic data to train these two networks. The first model 

constructed is the feed-forward neural network. After training the FNN to predict the turning ratio for 

the whole prediction horizon, the accuracy of the tuned model is low, which is just a bit better than 

random guess. Thus, this network is only trained to predict the traffic turning ratio for a specific time. 

The result is promising, as it could achieve a very high prediction accuracy. In addition, an RNN is also 

trained to solve this problem. Due to the computational complexity, although the performance of RNN 

is much better than FNN, the prediction accuracy is still not satisfactory. Thus, an ensemble learning 

techniques is applied to boost the prediction accuracy. Considering that the training data set is 

generated by software which means all the vehicles are running in an ideal environment without 

disturbance, although reducing the outliers could enhance the performance of the neural network, 

the difference between different data sets may not be obvious. In order to increase the differences 

among local predictors, different output features were assigned to these data sets. The result is 

promising as it makes the prediction accuracy increased by 9%. This result also shows the potential of 

getting even higher accuracy by constructing more different predictors and aggregating all the 

predictions, which will be part of my future research topics.  
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Chapter 4: Closed-loop traffic light control: a 

realistic case study 

 

 

Two experiments are carried out in this chapter. In the first experiment, the traffic congestion 

region identification model is integrated with an adaptive traffic light control strategy, which 

aims to compute an optimal traffic light schedule based on real-time traffic conditions. 

However, this strategy requires a high computational cost which cannot be applied to all the 

intersections in the traffic network. Thus, instead of utilizing this optimization algorithm 

globally, only the intersections in the most congested region need to be adjusted and other 

regions remain using the default fixed-time traffic light schedule. Total queue delays inside 

the network after integrating this model is recorded and compared with other algorithms.  In 

the second experiment, a closed-loop traffic light control algorithm is proposed by integrating 

the traffic turning ratio prediction model with the adaptive traffic light control strategy. As 

the turning ratio perdition plays an important role in this strategy, this experiment will explore 

if this turning ratio prediction model can increase the efficiency of this traffic light control 

strategy in reducing the delay time. And by feeding back the new traffic data, the off-line 

traffic turning ratio prediction model will be retrained which enables the prediction model to 

be adaptive to the traffic environment.   
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4.1   System setup and problem statement 

 

Since the first experiment aims to figure out the performance of applying traffic light optimal 

control strategy locally, the size of the tested traffic network should be large enough. The 

traffic network in the Jurong area with 66 junctions is proper to this experiment. While the 

second experiment aims to test the performance of the integrated closed-loop traffic control 

algorithm. The size of the tested network should not be too large, as it will take long time to 

compute the result. Thus, a 3*3 simulated traffic network is selected.  

 

Both experiments are tested on the simulated traffic networks built in VISSIM. The data used 

is generated by VISSIM as well. The program runs 3600 second each time and the traffic light 

control algorithm adjusts the traffic light for every 15 seconds. Traffic data are collected from 

VISSIM. 

 

A.  Integration with traffic congestion identification model  

 

The process of this experiment is designed as follows. After running the simulated traffic 

network built in VISSIM, for every 15 seconds or one time step, Traffic data (vehicle speed, 

vehicle density etc.) will be collected and transferred to the traffic congestion identification 

model. Part of the links will be clustered and identified as the most congested region based 

on the clustering algorithm proposed above. This result will be further transferred to the 

traffic light control module, which computes an optimal traffic light assignment for the next 

15 seconds and feedback to the VISSIM. This process is also presented by the block diagram 

in figure 38 below: 
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B.  Integration with turning ratio perdition model  

 

The process of this experiment is designed as follows. After running the simulated traffic 

network built in VISSIM for a certain period, current traffic data together with the historical 

data within 5 time steps will be accumulated and transferred to the turning ratio prediction 

model. Based on the data provided by VISSIM, the predicted turning ratio at next time step 

for each link is calculated. This result will be further transferred to the traffic light control 

strategy. After that, new traffic light plan assignments can be computed and fed back to 

VISSIM. Then the aforementioned process is repeated for every subsequent time step. The 

following block diagram in the figure 39 above also shows the process: 

 

However, this process uses off-line tuned traffic turning ratio prediction model. This model 

cannot adaptive to the changing environment. In order to keep the prediction model being 

undated, this model needs to be retrained with new data constantly. Generally, this closed-

loop traffic light control strategy is put in use only during daytime. Thus, time in the night can 

Figure 38: Block diagram for the first experiment process   Figure 39: Block diagram for the second experiment process   
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be utilized to the retrain the model by using the traffic data recorded during the daytime. 

New process is shown in the block diagram below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Improved Block diagram for the second experiment process   
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4.2  Experimental results 

 

A.  Integration with traffic congestion identification model  

 

The proposed congestion region identification strategy has been integrated with a traffic light 

scheduling algorithm [reference??], which applies different types of traffic light control 

schemes in regions according to their congestion levels, where pure local strategies such as 

the fixed-time scheme or back-pressure scheme is applied in a least congested region, and a 

full-fledged optimization scheme is applied to the most congested regions. The simulation 

result is shown in figure 16, where the total queue delay in the traffic network reduces 75% 

compared to the situation where only a pre-time (or fixed-time) schedule is assigned. In 

conclusion, identifying the congested regions in a traffic network is potentially able to 

increase the efficiency of real-time optimal traffic light scheduling algorithms.   

 

 

 

 

Figure 41: Simulation result for the traffic light control algorithm with different method integrated   
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B.  Integration with turning ratio perdition model  

 

In this closed-loop traffic light control simulation case study, a traffic network developed in 

VISSIM is treated as a ground truth. The traffic light control system constantly generates data, 

simulating sensor data collection in a real traffic network, while the link turning ratios used in 

the control algorithm are provided by the RNN-based predictor. After sufficient data are 

collected, the VISSIM simulation is paused or switched to a fixed-time scheme, while the RNN-

based predictor is re-trained based on newly collected data. Once the re-training is done, the 

optimal traffic light controller is back online again, and the procedure repeats. The resulting 

network delays are shown in Figure 42 below: 

 

 

 

 

Figure 42: Simulation result for the traffic light control algorithm with different turning ratio prediction model integrated    
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4.3  Comparisons and discussions 

 

From the results of these two experiments, a promising trend of decreasing the delay time can be 

observed. Thus, by integrating the congestion identification model and turning ratio prediction model, 

the performance of the adaptive traffic control strategy is improved noticeably.  Further 

improvements could be carried out on implementing the traffic signal controller with genetic 

algorithms and predict the turning ratios for multiple steps. 
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Chapter 5: Conclusions and Recommendations 

 

 

5.1 Conclusions  

 

This research aims to provide solutions for the congestion region identification and traffic network 

turning ratio prediction. In the first part, a proper way of determining the congestion level is proposed. 

Two different clustering algorithms are used in identifying the congestion regions. Either method 

provides a feasible result which helps to reduce the traffic delay time by 4 times. In the second part, 

two neural network models are constructed. The FNN could achieve higher prediction accuracy but 

with high computational complexity. The RNN is more convenient to use but with relatively low 

accuracy. After that, a commonly used ensemble learning method is applied which successfully 

increases the prediction accuracy of the RNN model by 9%. Lastly, the RNN model is integrated with a 

real-time optimal traffic light control strategy and significantly reduces the overall traffic delay time in 

the simulation, when compared to several other methods. 

 

5.2 Recommendations 

 

More detailed and complete literature review needs to be discussed as many state-of-art algorithms 

are not included. Those algorithms should also be further applied into above cases with clear and 

qualitative comparisons.  

The evolution of the traffic congestion regions deserves to be further explored, as such knowledge 

could help a network-wise real-time traffic signal control strategy generate timely optimal traffic light 

schedules to reduce or eliminate the impact of the traffic congestion. 

Furthermore, a self- adaptive RNN model needs to be further developed, which could take the traffic 

data collected during the day time, and autonomously update the network parameter in a regular 

basis. The self-adaptation could increase the turning ratio prediction accuracy and robustness of the 

closed-loop traffic light control system to network changes. 
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Chapter 6: Appendix 

6.1    Tuning result for different combination of hidden layers size   

• Number of neurons in first hidden layer = 100, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 58.52% 57.61% 62.57% 59.37% 63.55% 61.74% 62.32% 59.10% 63.29% 

150 60.36% 68.92% 59.84% 53.32% 59.52% 54.19% 58.97% 61.96% 61.88% 

200 54.67% 63.5% 59.7% 66.1% 52.06% 55.89% 50.67% 56.67% 57.24% 

250 61.82% 69.67% 64.86% 52.9% 66.43% 64.42% 56.15% 58.3% 54.48% 

300 61.09% 60.05% 62.62% 60.21% 62.85% 56.62% 51.15% 66.22% 60.83% 

350 57.88% 61.95% 63.56% 51.83% 69.5% 66.91% 67.58% 66.49% 55.48% 

400 58.23% 63.92% 55.86% 59.42% 55.84% 64.24% 57.8% 59.23% 63.95% 

450 48.21% 59.53% 60.02% 63.54% 64.58% 64.25% 66.32% 59.82% 53.71% 

500 56.34% 51.23% 72.49% 63.41% 61.19% 65.79% 54.32% 67.4% 53.36% 

 

• Number of neurons in first hidden layer = 150, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 56.42% 51.12% 63.59% 64.32% 62.85% 64.73% 68.22% 65.12% 53.21% 

150 62.41% 64.51% 55.64% 52.63% 55.24% 59.25% 53.34% 63.63% 62.81% 

200 64.62% 54.02% 54.23% 64.83% 50.75% 52.53% 54.62% 53.69% 52.2% 

250 63.8% 64.35% 58.42% 54.04% 63.26% 65.42% 52.56% 57.2% 51.63% 

300 62.74% 69.67% 67.53% 66.51% 72.45% 66.52% 50.1% 68.27% 63.75% 

350 54.56% 66.5% 63.42% 61.03% 63.69% 63.41% 65.62% 63.45% 53.44% 

400 53.2% 57.95% 64.87% 56.45% 54.04% 69.28% 57.5% 54.33% 63.31% 

450 58.01% 53.54% 63.43% 62.56% 63.57% 54.64% 63.65% 56.66% 55.25% 

500 57.35% 55.77% 56.75% 65.45% 71.67% 65.64% 52.35% 64.33% 56.63% 

 

• Number of neurons in first hidden layer = 200, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 53.45% 56.11% 63.49% 54.01% 64.33% 54.77% 64.84% 57.8% 64.23% 

150 69.86% 63.34% 57.45% 54.64% 50.34% 67.37% 64.34% 64.72% 61.51% 

200 61.51% 53.72% 56.65% 62.54% 52.46% 53.43% 58.76% 55.07% 52.56% 

250 62.56% 62.3% 50.62% 63.53% 62.72% 63.81% 62.59% 53.62% 53.59% 

300 63.04% 68.68% 69.64% 62.62% 68.83% 63.72% 51.34% 64.2% 63.05% 

350 56.06% 64.56% 62.62% 63.85% 64.78% 64.63% 65.93% 54.73% 52.98% 

400 68.41% 66.31% 59.45% 55.39% 64.03% 69.42% 64.39% 67.02% 64.44% 

450 61.26% 67.65% 62.76% 51.54% 67.36% 57.44% 53.05% 52.76% 52.26% 

500 61.41% 55.93% 67.72% 60.61% 65.07% 65.17% 51.72% 63.86% 57.54% 
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• Number of neurons in first hidden layer = 250, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 61.18% 63.63% 65.41% 55.42% 55.52% 54.52% 64.51% 52.42% 62.87% 

150 62.03% 64.52% 54.36% 53.37% 55.61% 64.14% 70.22% 64.56% 62.16% 

200 56.92% 68.23% 54.07% 64.31% 55.83% 54.8% 52.65% 53.53% 63.23% 

250 64.42% 62.62% 63.12% 53.05% 62.31% 58.43% 52.04% 63.32% 62.82% 

300 58.51% 61.52% 55.63% 57.38% 57.31% 58.53% 62.45% 63.21% 60.38% 

350 54.3% 62.09% 62.57% 56.52% 64.05% 63.41% 65.55% 63.16% 54.56% 

400 52.04% 57.21% 53.63% 57.51% 54.72% 62.42% 59.42% 65.12% 63.54% 

450 61.23% 54.52% 70.02% 63.34% 62.62% 63.51% 62.52% 54.51% 65.12% 

500 53.19% 54.52% 66.31% 63.86% 67.84% 65.73% 65.43% 67.52% 59.97% 

 

• Number of neurons in first hidden layer = 300, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 53.45% 55.13% 64.63% 63.63% 62.64% 69.32% 64.66% 65.02% 64.53% 

150 63.56% 65.45% 53.1% 55.63% 55.73% 53.75% 63.93% 64.83% 56.34% 

200 64.83% 57.83% 57.3% 62.73% 56.92% 53.95% 63.75% 53.65% 53.66% 

250 66.05% 62.3% 55.07% 53.76% 63.82% 64.83% 54.83% 55.28% 57.03% 

300 61.62% 70.33% 66.53% 66.73% 63.67% 67.54% 50.05% 66.32% 66.45% 

350 58.52% 67.52% 63.42% 65.43% 63.42% 66.42% 64.42% 64.42% 54.05% 

400 63.04% 56.83% 63.76% 52.77% 54.62% 63.95% 61.12% 55.83% 60.16% 

450 63.28% 52.44% 61.31% 58.42% 62.31% 57.63% 63.53% 71.64% 65.28% 

500 55.36% 56.34% 52.78% 65.61% 64.37% 65.62% 55.62% 67.31% 61.42% 

 

• Number of neurons in first hidden layer = 350, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 63.61% 57.51% 67.52% 62.98% 60.5% 63.51% 61.61% 63.61% 62.62% 

150 61.29% 64.82% 58.66% 57.5% 58.03% 59.41% 59.99% 63.81% 63.63% 

200 64.61% 57.53% 56.72% 63.77% 63.5% 55.02% 58.09% 53.51% 64.67% 

250 65.4% 52.47% 68.44% 64.44% 63.66% 66.32% 59.08% 53.41% 60.33% 

300 66.7% 65.63% 67.31% 64.62% 64.96% 68.55% 63.52% 65.24% 60.52% 

350 57.34% 65.72% 62.11% 60.41% 65.61% 62.03% 64.6% 63.99% 63.24% 

400 56.12% 58.82% 63.54% 58.42% 59.63% 67.92% 54.03% 52.51% 63.16% 

450 59.52% 64.56% 69.44% 62.04% 63.62% 57.72% 65.71% 54.71% 64.73% 

500 60.52% 61.94% 65.86% 65.9% 66.72% 66.66% 63.72% 65.72% 63.72% 
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• Number of neurons in first hidden layer = 400, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 63.42% 63.31% 70.12% 62.31% 67.63% 68.34% 66.98% 57.15% 63.63% 

150 63.42% 66.73% 63.62% 67.05% 74.34% 62.15% 69.62% 65.81% 63.75% 

200 59.42% 70.53% 72.41% 67.42% 66.08% 68.64% 67.53% 72.64% 68.23% 

250 71.82% 63.67% 70.86% 66.93% 64.51% 67.84% 64.33% 62.52% 67.42% 

300 66.93% 65.73% 66.88% 63.04% 60.36% 63.77% 67.64% 71.64% 66.42% 

350 57.8% 65.04% 65.62% 63.84% 70.53% 72.42% 64.75% 66.46% 68.09% 

400 73.27% 64.63% 72.06% 65.74% 68.62% 64.53% 70.07% 65.64% 69.35% 

450 63.27% 63.57% 59.85% 63.73% 63.56% 64.73% 68.42% 62.52% 67.53% 

500 64.63% 67.08% 70.52% 67.66% 67.09% 71.05% 53.53% 67.3% 63.76% 

 

• Number of neurons in first hidden layer = 450, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 63.42% 62.52% 59.04% 65.62% 70.42% 67.31% 65.52% 68.88% 57.32% 

150 64.52% 68.21% 64.52% 64.03% 67.23% 71.3% 64.41% 67.63% 65.62% 

200 66.73% 65.72% 57.23% 66.72% 65.52% 67.42% 62.77% 67.82% 63.63% 

250 63.45% 69.76% 64.73% 64.72% 68.53% 65.53% 68.64% 60.05% 72.73% 

300 67.54% 66.67% 67.55% 70.55% 67.85% 65.57% 62.74% 66.82% 65.04% 

350 59.74% 64.42% 66.53% 70.05% 67.24% 70.63% 69.82% 68.63% 67.44% 

400 58.42% 57.45% 66.82% 63.74% 69.53% 64.26% 63.63% 68.42% 64.82% 

450 60.7% 62.86% 57.74% 57.57% 65.64% 59.64% 62.05% 69.66% 67.83% 

500 58.42% 56.5% 59.63% 64.52% 62.53% 63.74% 62.73% 63.52% 68.42% 

 

• Number of neurons in first hidden layer = 500, the first row shows the size of the second hidden 

layer and the first column shows the size of third hidden layer.  

 

Prediction 

Accuracy 

100 150 200 250 300 350 400 450 500 

100 63.52% 63.62% 65.74% 66.73% 66.72% 67.42% 60.24% 58.42% 62.2% 

150 62.04% 63.42% 70.6% 62.53% 63.88% 66.63% 67.73% 57.74% 65.71% 

200 69.53% 58.53% 57.42% 63.52% 62.52% 62.78% 69.42% 70.65% 64.56% 

250 60.46% 68.62% 63.62% 62.52% 70.73% 63.64% 64.74% 63.83% 62.74% 

300 59.42% 62.41% 64.62% 67.41% 64.62% 68.62% 63.62% 60.63% 67.74% 

350 58.72% 65.62% 64.5% 64.86% 64.82% 66.55% 60.73% 56.53% 60.63% 

400 61.22% 63.65% 63.41% 67.99% 67.92% 69.42% 66.31% 61.62% 63.43% 

450 65.73% 60.92% 58.48% 62.85% 62.73% 64.07% 59.83% 63.62% 63.26% 

500 67.35% 62.74% 70.23% 68.62% 63.45% 62.67% 63.73% 67.72% 62.84% 
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