
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Congestion estimation and turning ratio
prediction based on machine learning with
applications in urban traffic light control
Chen, Qixing
2019
Chen, Q. (2019). Congestion estimation and turning ratio prediction based on machine
learning with applications in urban traffic light control. Master's thesis, Nanyang
Technological University, Singapore.
https://hdl.handle.net/10356/143517
https://doi.org/10.32657/10356/143517

This work is licensed under a Creative Commons Attribution‑NonCommercial 4.0
International License (CC BY‑NC 4.0).
Downloaded on 09 Aug 2022 15:33:57 SGT

Congestion Estimation and Turning Ratio Prediction Based on

Machine Learning with Applications in

Urban Traffic Light Control

Chen Qixing

School of Electrical & Electronic Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirement for the degree of

Master of Engineering

2019

Table of Contents

Statement of Originality

Supervisor Declaration Statement

Authorship Attribution Statement

Acknowledgments

Abstract

1. Introduction

1.1 Introduction to traffic networks and traffic light control

1.2 Motivations for congestion region analysis and turning ratio analysis

1.3 Literature review

1.4 Contributions of this thesis

1.5 Organization of the Thesis

2. Traffic Congestion Region Identification and Prediction

2.1 Basic concepts and problem statement

2.2 Congestion level identification

2.3 Congestion level prediction

2.4 Congestion region clustering

2.4.1 K-means clustering

2.4.2 Hierarchical clustering

2.4.3 Improved the K-means clustering algorithm

2.5 Simulation-based experiments

2.5.1 Case study one: Traffic congestion level identification (target: campus traffic

network)

2.5.2 Case study two: Traffic congestion level prediction and congestion region

clustering (target: Jurong area traffic network)

2.6 Summary

3. Traffic Network Turning Ratio Prediction

3.1 Basic concepts and problem statement

3.2 Machine learning algorithms for turning ratio prediction

3.2.1 An FNN model and parameter identification

3.2.2 An RNN model and parameter identification

3.3 Simulation-based experiments

3.3.1 System setup

3.3.2 Experimental procedure and data collection

3.3.3 Comparisons and discussions

3.4 Summary

4. Closed-loop traffic light control: a realistic case study

4.1 System setup and problem statement

4.2 Data collection and experimental results

4.3 Comparisons and discussions

5. Conclusion and Recommendations

5.1 Conclusion

5.2 Recommendations for further research

6. Appendix

6.1 Tuning result for different combination of hidden layers size

7. Bibliography

1

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor Professor Su Rong,

who always gives me constructive ideas and ardent guidance for my research work. Whenever

I got stuck in my research process, he guided me patiently and helped me analyze the problem

I faced. I could not complete my Meng project without his effort and help.

I also want to thank the SMEL lab that authorizes me the accessibility to the BSM data for my

first project. Also, I want to express my gratitude to my teammate Sun Chunyang who helped

me constrict the traffic network in the Vissim and provided the simulation results for both of

my projects. He also helped me visualize the result of my simulation on the Google map, which

made the data more comprehensible.

Thirdly, I would also like to thank Dr. Zhang Yicheng who helped me debug my codes and

integrate my model into his research work on traffic signal control. I feel really lucky to be

able to work with him.

Last but not least. I want to thank my parents who give me meticulous care and financial

support on my three-year MEng program. I love them.

2

Abstract

Increasing transportation efficiency is an interesting and important problem. In the world

with convenient means of ICTs, the concept of “smart city” emerged. In the meantime, a lot

of data-driven traffic network optimization algorithms have also been developed and applied

widely. However, the performance of some optimization algorithms can be improved with

some pre-works added. This thesis discusses two such pre-works. The first pre-work is urban

traffic network congestion region identification and prediction with two case studies at NTU

campus and Jurong area, which utilizes the vehicle data (average speed, GPS-based location,

heading direction) via V2X to analyse the traffic condition of each link. Links with similar

congestion levels will be clustered together into a region. Our simulation-based case studies

show that about 75% of the total queue delay could be reduced with good knowledge of

congestion regions in the network. The second pre-work is about traffic network turning ratio

prediction, which may be useful in developing more accurate network dynamic models. By

constructing a recurrent neural network to predict the vehicle turning ratios at the next time

step with prior or online-learned knowledge of network supply functions, traffic light

schedules and historical vehicle turning ratios as inputs. This prediction model can be

integrated with a real-time traffic signal control algorithm to form an adaptive closed-loop

traffic signal control strategy, which in our simulated case studies decreases 24% of the delay

time compared to the case without turning ratio prediction.

3

List of Figures

Fig.1 RNN unit and the unfold structure display Pg.13

Fig.2 Different clustering algorithms Pg.15

Fig.3 Structure of ensemble learning Pg.21

Fig.4 Example link number labelling and node number labelling Pg.27

Fig.5 Example of calculating the number of nodes between two links Pg.27

Fig.6 A Fundamental Diagram for the Congestion Identification Pg.29

Fig.7 Unfolded general RNN model Pg.30

Fig.8 Encoder and Decoder part Pg.33

Fig.9 Installed On-Board Unit Pg.39

Fig.10 Labelled school campus Pg.40

Fig.11 Well-tuned Fees-forward Neural Network Pg.42

Fig.12 Comparison between output and label Pg.42

Fig.13 Visualizing the identifying result on NTU campus Pg.43

Fig.14 Overall view of Jurong area transportation network Pg.44

Fig.15 Single junction layout Pg,44

Fig.16 Jurong East & West Link Numbers & Junctions (Main area: D4, D5) Pg.45

Fig.17 J.E. & W. Link No. & Juns. (Main area: E3, E4, partial D3, partial D4) Pg.45

Fig.18 J.E. & W. Link No. & Juns. (Main area: Main area: D3, E3)) Pg.45

Fig.19 Two RNN models for speed and density prediction Pg.46

Fig.20 Comparison with actual and predicted congestion level Pg.47

Fig.21 The largest number of junction vs different number of clusters Pg.48

Fig.22 Computation time cost for each algorithm Pg.49

Fig.23 Average congestion level of each cluster Pg.49

Fig.24 Four traffic light phases with traffic flow allowed Pg.53

Fig.25 time length and schedule of each traffic light phase Pg.53

Fig.26 Basic structure of FNN Pg.56

Fig.27 Basic structure of RNN Pg.57

Fig.28 Basic structure of LSTM Pg.58

Fig.29 3*3 traffic network built in VISSIM Pg.60

4

Fig.30 Prediction accuracy with different combination of hidden layer size Pg.61

Fig.31: Comparison with the labeled value and the FNN structure Pg.62

Fig.32 Prediction accuracy with different combination of hidden layer size Pg.63

Fig.33 Construction parameters of the tuned FNN Pg.63

Fig.34 Prediction accuracy with respect to different historical time step used Pg.64

Fig.35 RNN model with three hidden layers Pg.65

Fig.36 Tuned RNN with parameter labelled Pg.70

Fig.37 Ensemble learning model with three independent predictors included Pg.71

Fig.38 Block diagram for the first experiment process Pg.76

Fig.39 Block diagram for the second experiment process Pg.76

Fig.40 Improved Block diagram for the second experiment process Pg.77

Fig.41 Simulation result for the traffic light control algorithm with different method

integrated Pg.78

Fig.42 Simulation result for the traffic light control algorithm with different turning ratio

prediction model integrated Pg.79

5

List of Tables

Table 1 Standard of Level of Service identification Pg.10

Table 2 Sample data set Pg.40

Table 3 Sample training data set for training Pg.41

Table 4 Congestion level identified by MATLAB Pg.43

Table 5 Sample data collected from VISSIM Pg.46

Table 6 Congestion level prediction accuracy with different time horizon Pg.48

Table7 Turning ratio prediction accuracy with different time horizon and sample quantity

 Pg.64

6

Chapter 1: Introduction

1.1 Introduction to traffic networks and traffic light control

With the rapid development of urbanization, the number of vehicles increased exponentially

with the improvement of policy effectiveness and income standard. In the meantime, the

urban transportation network also expands both in size and complexity. However, the

expanding transportation network still cannot adapt this change itself due to many reasons

such as the fixed traffic light schedule, delay awareness of the traffic condition. As a result,

problems like traffic congestions and traffic accidents occur more frequently, which worsen

the traffic status in return. Thus, an efficient solution is needed, which could handle all these

problems well. Two decades ago, the concept of “smart city” was first considered in Dubai [1],

and many smart methods are suggested which help to build the smart city [2]. For example,

adaptive traffic signals which modifying the traffic signal time by analysing the real-time

vehicle data and the traffic flow pattern have been introduced by other researchers [3]. Thus,

having a better understanding of current traffic network conditions and the patterns of

dynamic traffic flows is the key to increase the efficiency of those optimization solutions.

Traffic signals are designed to eliminate many conflicts by assigning right of way. A good

signalized traffic control strategy can increase the intersection capacity and reduce the

frequency of certain types of crashes such that reducing vehicle travelling delays, balancing

traffic flow, and improving operational efficiency of an urban street network.

7

1.2 Motivations for congestion region and turning ratio analyses

According to the survey result shown in Texas A&M Transportation Institute’s 2019 Urban

Mobility Report, commuters in L.A. spend in average 119 hours a year stuck in traffic.

Although the traffic congestion statics in Singapore is better than L.A., commuters in

Singapore still spend extra 16 mins per a 30-mins trip in the morning peak and 18 extra mins

in the evening peak.[1] Eliminating traffic congestions becomes the most essential work in

the improvement process.

Solving the congestion problem for the whole traffic network is time-consuming and requires

highly efficient computational capabilities. The effectiveness decreases, when the complexity

of the network increases. According to observation, congestion commonly appears in regions.

Dividing a large traffic network into small regions and solving signal control problems locally

and simultaneously would increase the efficiency greatly, which could be applied in different

traffic networks easily.

Traffic light control plays a significant role in adjusting the traffic network performance. A

fixed traffic light schedule is widely used due to its simplicity. Nevertheless, this schedule will

aggravate the congestion level in some situations, e.g., during peak hours. To overcome this

drawback, an adaptive traffic light control strategy is put forward by researchers, which

considers the real-time traffic condition and adjusts the green time of each phase accordingly,

which could reduce the traffic delay time significantly. A good turning ratio prediction model

is critically important for deriving a high-quality network dynamic model, which may

significantly improve the performance of a traffic network.

8

1.3 Literature review

A. Congestion Identification

Upon the literature review, many researchers tried to provide different definitions of traffic

congestion. In general, those definitions can be broadly categorized into three groups based

on the feature they are referring to. The first group is the method that defines the congestion

based on the road capacity and the traffic flows. For example, in the report published in 1999

by ECMT (European Conference of Ministers of Transport), “Congestion is the impedance

vehicles impose on each other, due to the speed-flow relationship, in conditions where the

use of a transport system approaches its capacity” [4]. The second group is the method that

defines the congestion based on the delayed traveling time. For example, in the paper

published in 2001 by Weisbrod, Varyand Treyz, “Traffic congestion is a condition of traffic

delay (when the flow of traffic is slowed below reasonable speeds) because the number of

vehicles trying to use the road exceeds the traffic network capacity to handle them” [5]. The

third group is the method that defines the congestion based on the cost occurred on the road.

For example, in the paper published in 2005 by VTPI (Victoria Transport Policy Institute),”

Traffic congestion refers to the incremental costs resulting from interference among road

users” [6]. Although various definitions have been proposed, there is no universally agreed

definition of traffic congestion [7]. However, by reading the above definitions, it could be

summarized that congestion is the phenomenon when the traffic flow exceeds the designed

link capacity.

Furthermore, some researchers also provide a set of criteria that a good congestion

measurement should meet. In 1992, Turn suggested that measures to quantify the level of

congestion should (i) deliver comparable results for various systems with similar congestion

levels, (ii) accurately reflect the quality of service for any type of systems, and (iii) be simple,

well-defined and easily understood and interpreted among various users and audiences [8].

In 1996, Levinson and Lomax suggested that a congestion index should (i) be easy to

communicate, (ii) measure congestion at a range of analysis levels (a route, subarea or entire

urban region), (iii) measure congestion in relation to a standard, (iv) provide a continuous

9

range of values, (v) be based on travel time data because travel time-based measures can be

used for multimodal analysis and for analyses that include different facility types, and (vi)

adequately describe various magnitudes of congested traffic conditions.[9] And in 1997,

Lomax indicate that an ideal congestion measure would have (i) clarity and simplicity

(understandable, unambiguous and credible), (ii) descriptive and predictive ability (ability to

describe existing conditions, predict change and be forecast), (iii) statistical analysis capability

(ability to apply statistical techniques to provide a reasonable portrayal of congestion and

replicability of result with a minimum of data collection requirements), and (iv) general

applicability (applicability to various modes, facilities, time periods and scales of application)

[10]. Many other similar suggestions are also provided by researchers. Thus, it could be

summarized that the measurement of traffic congestion should be:

• Simple and clear for the audience;

• Generally applicable with commonly available traffic data in typical traffic networks;

• Descriptive and predictive to facilitate a congestion prediction model;

• Continuously valued instead of being discrete and range-based.

Based on the criteria listed above, congestion level indicators could be assessed before being

decided where to use. The Texas Transportation Institute (TTI) is a leader in developing

measurements for determining congestion. There are four most commonly used measures

based on mobility developed by them [11] [12]:

1. Volume-Capacity Ratio (V/C Ratio), which is the ratio of the number of vehicles passing

through (V) over the number of vehicles that could theoretically pass through when at

capacity. The traffic condition is said to be not congested if the ratio is less than one and

congested if the ratio is larger than one.

2. The Level of Service (LOS). In this measurement, six levels are used from rank A (free-

flow) to rank F (over-saturated) – that indicates how well the roadway or intersection is

serving its intended traffic which is based on V/C ratio as well. The specific threshold for each

rank is shown below [13]:

10

The main advantage of LOS is comprehensible to the non-technical audiences by using

description instead of a certain index. However, LOS is a rank-based method that could result

in a sudden change in the operation condition. The use of LOS sometimes generates

misleading results, especially when the condition is near a threshold.

3. Travel Rate Index (TRI) /Travel Delay, which calculates the ratio of average peak travel

time over an off-peak (free flow) standard. For example, an index of 1.5 indicates that a 20-

minute free-flow trip takes 30 minutes in a specific traffic condition. The advantage of TRI is

its wide applicability owing to its continuously-ranged outputs. The weakness is that the

method does not show the traffic condition explicitly, thus, making it not easily

understandable.

4. Percentage of Congestion Travel, which describes the percentage of congested vehicle-

miles of travel with respect to the total vehicle-miles of travel is used. The advantage and

weakness of this method is the same as those of TRI.

In summary, none of the measurements provided a systematic and comprehensive analytical

framework to quantify the relationship between the presence of public transport and the

amount of traffic congestion. In fact, a balance between the comprehensive and data-driven

results should be made when selecting a proper congestion measurement method. In this

thesis, a new congestion measurement method is introduced based on the criteria discussed

Table 1: Standard of Level of Service identification

11

above, which aims to find a good balance between comprehensibility (by using three levels

to describe the traffic congestion) and predictiveness by considering the trends that include

the differentiation when calculating the congestion level index.

B. Predictors

Traffic congestion prediction plays an important role in intelligent transportation as it has

multiple applications in improving traffic network operation efficiency and integration. For

example, by predicting the congestion area with high accuracy, some traffic network system

management optimization algorithms may significantly improve the quality of their solutions

in terms of reducing the congestion. Based on different objectives of a prediction model,

three congestion prediction problems could be formulated, i.e., predicting the travel time,

predicting the traffic congestion and predicting the traffic volume. This thesis only focusses

on traffic congestion prediction.

A general algorithm that could be applied in solving this problem is FFT (Fast Fourier

transformation) with the key idea of the decomposition. We know that a reasonably

continuous and periodic function can be expressed as the sum of sine terms. The weekly

behaviour of the traffic network is observed to be typically periodic. The reason is that most

users in the network have highly repetitive weekly schedules, especially during peak hours,

resulting in the repetitive traffic patterns in the traffic network. Thus, by analysing the

historical periodic traffic congestion curve (e.g. traffic flow, average speed, etc.), a series of

sine functions with different amplitudes, frequencies and phases could be calculated and

summed up to match the curve. However, the congestion prediction problem discussed is

more relevant to the short-term prediction problem. For large discrete time intervals, a

situation will eventually be reached where it is no longer possible to theoretically establish a

stable correlation model with other detection locations within the traffic network [14],

making long-term forecasts practically useless at this point. Thus, FFT is typically not suitable

for short-term prediction which requires the predictor to predict the traffic congestion in

minutes instead of in weeks. In contrast, many short-term congestion prediction models are

12

proposed in the past two decades. Some researchers focus on single-site prediction based on

one-dimensional traffic time series such as the ARIMA /SARIMA model [14] and the k- nearest

neighbour (KNN) method [15].

ARIMA (autoregressive integrated moving average) is well suited for predicting the value of a

dependent variable according to time. ARIMA is a generalized model of Autoregressive

Moving Average (ARMA) without the requirement on the stationarity of the time series. It

combines the Autoregressive (AR) process and Moving Average (MA) process and builds an

integrated model of the time series. Autoregressive is a regression model that uses the

dependencies between an observation and a number of lagged observations. Moving average

is an approach that takes into account the dependency between observations and the

residual error terms when a moving average model is applied to the lagged observations

KNN is much easier to understand. The fundamental assumption of KNN algorithms is that

future states to be forecasted are similar to a neighbourhood of the past more or less. K is the

number of neighbours the algorithm tries to choose from for historical data in accordance

with the similarity between them. Those k neighbourhoods will be analysed and summarized

to predict future states.

Both methods are well developed and improved over years with a rich family of the

parametric algorithms being proposed, and the performances are proven promising.

Although the good performance of ARIMA was frequently reported [16], it faces a

computational challenge which makes it difficult to be implemented in the real-time

transportation systems. While most existing KNN algorithms are single-stepped, which is easy

to compute and has higher flexibility to be extended for solving multivariate problems by

adding more data, KNN is sensitive to noisy neighbour and may generate overlapping nearest

neighbours when it is extended to multi-step forecasting.

13

Random forest algorithm

In the meantime, RNN (recurrent neural network) shows its outstanding ability in solving

seq2seq (sequence to sequence) prediction problems such as speech recognition, language

modelling, translation, image captioning, etc. It benefits from its unique characteristic:

persistence of information. Traditional predictors predict the future points by analysing its

neighbours or last few cycles, which means a short memory is typically used. Recurrent neural

networks, on the other hand, can address this issue effectively. They are networks with loops

in them, allowing information to persist.

The unfolded structure of RNN is like a chain. This nature reveals that they are intimately

related to sequences and lists. At each step, the model will calculate the output by analysing

both the historical data group and the memory persistent in the well-trained parameters

assigned to each node.

Training a recurrent neural network is the process to estimate a series of hypermeters which

makes the model most suitable for our problem. Some hypermeters are listed below:

• Number of steps, which determines how many historical time steps need to be used.

For example, if the number of steps equals 3, it means that historical data recorded

as [𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)] will be used to determine its output 𝑌(𝑡)

Fig.1 RNN unit and the unfold structure display

14

• Batch size, which indicates the number of sample-label sets used for training. For

example, if the batch size is equal to 2 with the number of steps equal to 3, it means

the data set {[𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1) ~ 𝑌(𝑡−1)], [𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡) ~ 𝑌(𝑡)]} is used

to train the RNN at each iteration.

• Structure of the network, which includes two items, i.e., the number of hidden

layers and the number of neurons for each hidden layer.

• Activation function, which is used to add the nonlinearity to the network such that

the network could be trained to solve much more complex problems. Proper

activation could also be used to avoid the gradient vanishing and exploding problem.

In addition, some other parameters or components can be set at default values such as the

drop rate, memory unit, optimizer, etc. Generally, while dealing with a simple problem, a

rough range of selection for each parameter will be determined first before training the

network with a different combination of alternative values. The performance of the trained

network will be further examined by the cross-validation data set. However, the chain-like

structure and the depth of the loops make RNNs difficult to train because of the vanishing or

blowing up gradient problems during the backpropagating process.

There have been a number of attempts to overcome the difficulty of training RNNs over the

years. These difficulties were successfully addressed by the Long Short-Term Memory

networks (LSTMs) [17], which is a type of RNN with gated structure to learn long-term

dependencies of sequence-based tasks. As a representative deep learning method handling

sequence data, LSTMs have been proven to be able to process sequence data and applied in

many real-world problems, like speech recognition [18], image captioning [19], music

composition [20] and human trajectory prediction [21]. In recent years, LSTMs have been

gaining popularity in traffic forecasting due to their ability to model long-term dependencies.

Several studies [22-30] have been done to examine the applicability of LSTMs in traffic

forecasting, and the results demonstrate the advantages of LSTMs. However, it is still a big

challenge to predict larger-scale transportation network traffic. Most existing studies utilize

15

traffic data at a sensor location or along a corridor, and thus, network-wide prediction could

not be achieved unless N models were trained for a traffic network with N nodes [23]. Thus,

learning complex spatial-temporal features of a large-scale traffic network by using only one

model should be explored.

Besides, some alternative prediction algorithms that can also be used for performance

comparison: support vector machine (SVM), extreme learning machine (ELM), random forest

(RF), gradient boosting decision trees (GBDT).

SVM blends linear modelling within stance-based learning, it selects a small number of critical

boundary samples from each category and builds a linear discriminant function that separates

them as widely as possible.[51] In the case that no linear separation is possible, the technique

of kernel will be used to automatically inject the training samples into a higher dimensional

space and to learn a separator in that space. SVM is acknowledged to be among the most

reliable and accurate algorithms in most Machine Learning applications.

Extreme Learning Machine is a recently available learning algorithm for single layer

feedforward neural network. [52] Compared with classical learning algorithms in neural

networks e.g. Backpropagation, ELM can achieve better performance with much shorter

learning time. In some of the existing work, it is claimed to yield better performance in

comparison with SVM.

Random forest is an ensemble learning method for both classification and prediction

problems.[53] It operates by constructing a multitude of decision trees at training time and

outputting the class that is the mode of the classes of the individual trees. RF corrects for

decision trees’ habit of overfitting to their training set. The gradient boosting method

represents an ensemble of single regression trees built in a greedy fashion. It produces a

prediction model in the form of an ensemble of weak prediction models, such as decision

trees. Stochastic Gradient Boosting Trees (GBDT) [54][55] combines gradient boosting with

16

bootstrap bagging. At each iteration of the algorithm, a n new decision tree model is built

based on the residuals of the previous decision trees. GBDT is a simple yet very effective

method for learning non-linear functions [56].

C. Clustering Algorithm

As the networked world continues to expand, the amount of information in the network has

grown rapidly. Mining these messages by evaluating those data manually is not realistic. Thus,

a lot of data analyzing algorithms are developed, including the data clustering algorithm that

is widely used in many fields. The clustering algorithm is an unsupervised learning algorithm

which means the data do not need to be labelled before being processed. The objective of

the clustering algorithm is to divide disorganized data into different groups based on their

features. In other word, data in the same group has a high similarity among each other. Figure

2 shows how the clustering algorithm works:

Generally, clustering algorithms can be categorized into hierarchical clustering methods,

partitioning clustering methods, density-based clustering methods, grid-based clustering

methods, and model-based clustering methods. More details are provided below:

Fig.2 Different clustering algorithms

17

• Hierarchical clustering methods: a hierarchical clustering algorithm divides the given data

set into smaller subsets in a hierarchical manner. The basic steps of hierarchical clustering

could be summarized as follows:

- Step one: Calculate the similarity between all the data points and the other points

- Step two: Cluster two points with smallest similarity

- Step three: Calculate the central point of the cluster and the similarity between this

central point and the remaining point

- Step four: Go back to step two until one cluster including all the data points is formed.

The strength of this algorithm is easy to understand and straightforward to program. And

by using the hierarchical clustering algorithm, the number of clusters no need to decide

before applying it. A proper number of clusters could be selected based on the result

obtained. However, this algorithm also has a significant weakness. The computational

complexity in step one is O(𝑛2) , which means the computational cost will increase

exponentially towards a large data set.

• Partitioning clustering methods: The partitioning clustering algorithm also classifies the

data set into multiple subsets based on the similarity. Representative partitioning

clustering algorithms are K-means clustering, K-medoids clustering and CLARA (Clustering

Large Applications) algorithm. K-means clustering is one of the most commonly used

clustering algorithms. Instead of calculating the similarity between each data point, the K-

means algorithm only take few reference points into consideration. The basic steps of K-

means clustering algorithm could be summarized as follows:

- Step one: Randomly select K reference points initially. Calculate the similarity between

the remaining points and each reference point.

- Step two: All the remaining points will be clustering to one of the reference points with

the highest similarity (smallest distance/cost)

- Step three: K clusters will be formed after step two. Calculate the imaginary central point

for each cluster. K data Points with highest similarity to the imaginary central point will be

selected as the new reference point

- Step four: Repeat step one to three until no changes to all the clusters.

18

The significant advantage of K-means clustering is its low computational complexity,

which is O(𝐾 ∗ 𝑛), when compared to the hierarchical algorithm. However, the number

of clusters K is required before running the algorithm which means this algorithm needs

to be run multiple times in searching for a suitable cluster number. And K-means

algorithm is sensitive to the outliers. With the consideration of reducing the impact of

outliers, K-medoids clustering is proposed which, instead of taking the mean value of all

the points in a cluster as a reference point, only uses the most centrally located points for

calculating the mean value. The basic steps of K- medoids clustering algorithm could be

summarized as follows:

- Step one: Randomly select K reference points initially. Calculate the similarity between

the remaining points and each reference point.

- Step two: All the remaining points will be clustering to one of the reference points with

the highest similarity (smallest distance/cost)

- Step three: Randomly select a data point (excluding the reference point). Compute the

total cost S of swapping the initial reference point to this new point

- Step four: if the cost is less than 0 which means the quality of new clusters is higher than

previous clusters. Replace the reference point with this new data point.

- Step five: Repeat step three and four until the convergence criterion is satisfied.

K-medoids clustering eliminates the impact of outliers by avoiding using the mean value.

However, the computational complexity is increased to O(𝐾(𝑛 − 𝑘)2). Thus, K-medoids

clustering algorithm works effectively for small data sets but does not scale well for large

data sets. So, CLARA is proposed as an extension to the K-medoids clustering algorithm to

deal with data containing a huge number of objects. The basic process is similar to the K-

medoids algorithm. Instead of checking all the non-refence point in searching for better

clusters quality, CLARA only considers a small number of data with a fixed size and applies

the same methodology to generate an optimal set of medoids for the sample while the

efficiency depends on the sample size.

19

• Density-based clustering methods: different from the above two clustering algorithms,

density-based clustering works by detecting areas where points are concentrated and

where they are separated by areas that are empty or sparse. Especially, not all points will

be clustered since some isolated points will be identified as noise. There are three

different clustering algorithms belong to this category: 1. Defined distance (DBSCAN)

which use a threshold distance to separate dense clusters from sparse noise. 2. Self-

adjusting (HDBSCAN) which use multiple threshold distance to separate clusters of varying

densities from sparser noise in a hierarchical way. 3. Multi-scale (OPTICS) uses the

distance between neighboring features to create a reachability plot for the clustering

reference.

Density-based clustering algorithm holds three advantages: 1. No predefined number of

clusters is required. 2. Clusters formed by this algorithm can be of any shape including

non-spherical ones. 3. High robustness: Able to distinguish the noise point which immune

to the impact of outliers. However, this algorithm will fail it there are no density drops

between clusters and sensitive to parameters that define density.

• Grid-based clustering methods: Grid-based clustering algorithm is similar to the density-

based method which both of them cluster the data with high density. Grid-based

algorithm first divides the whole data space into small rectangular cells. The data density

of each cell will be calculated after then. Subspace with data density lower than a

threshold will be removed while those higher than the threshold will form a cluster by

combine the subspace adjected to it. There are two main algorithms under this category:

STING [31] and CLIQUE [32].

STING (Statistical Information Grid): STING is used as an information clustering algorithm

with a hierarchical structure employed. The first level only has one cell which represents

the while space. The second level has four cells with each corresponding to one quadrant

of the cell in the first level. This split will be continuously processed until a desirable

number of layers is obtained. Statistical information of each cell is calculated and stored.

The STING structure is widely used in auto-answering robots embedded in some service

web as they can answer frequently asked questions efficiently. The basic steps of STING

20

could be summarized as follows:

- Step one: Determine a layer to begin with.

- Step two: Go through all the cells in this cell and a confidence index that this cell is relevant

to the query will be calculated. After then, each cell will be assigned with a Boolean value

indicating the relevance to the query based on the confidence index calculated.

- Step three: checking all the cells which labelled as relevant. If this cell is the bottom layer,

output the information stored in this cell. If not, goes to the next level and repeat step

two and three until reach the bottom cell.

The computational complexity is O(K), where K is the number of cells in the lowest level

and usually K<< N (the number of data). This feature makes this algorithm efficient when

dealing with the query. Besides, when data are updated, the information in the cell

hierarchy do not need to be recalculated. Instead, an incremental update could be

processed [33]. The disadvantage is that the confidence index is calculated in a possibility

form, which may imply a loss of accuracy in query processing.

CLIQUE (Clustering in QUEst): CLIQUE is a density-based and grid-based subspace

clustering algorithm. It partitions the high-dimensional data space into non-overlapping

rectangular units as introduced before. Dense units will be determined and connected in

all subspace of interests. The advantage of this algorithm is this algorithm able to

automatically find the subspaces of the highest dimensionality with arbitrary shape as

long as high-density clusters exist. As in all grid-based clustering approaches, the

weakness of this algorithm is the quality of the result highly related to the choice of the

number and width of the petitions and grid cells.

Instead of assigning each point to just a single cluster, Expectation–Maximization (EM)

clustering algorithm goes a step further and describe each cluster by its centroid,

covariance, and weight.[57] The probability that a point belongs to a cluster is now given

by a multivariate Gaussian probability distribution. This enables clusters overlapping each

other as some points may assigned to multiple clusters.

21

Unlike clustering algorithms mentioned above, Affinity propagation does not require the

number of clusters to be determined or estimated before running the algorithm.[58]

Affinity propagation takes as input measures of similarity between pairs of data points,

and simultaneously considers all data points as potential exemplars. Real-valued

messages are exchanged between data points until a high-quality set of exemplars and

corresponding clusters gradually emerges.

D. Feature Selection

As a learning machine, a neural network generates its output by interacting the input with

the parameters stored inside the model. The quality of the training data set is essential in

determine the quality of the neural network, as good training data can reduce the training

time and enhance the performance of the network. However, in the cases with high-

dimensional training data sets, it is not advised to use all the features as it will increase the

computational complexity, resulting in extremely long training time and the overfitting

problem. A good feature selection method should be able to figure out two types of data:

irrelevant data and redundant data. Irrelevant features cannot involve in the learning process

(e.g., student matric number is irrelevant to predict the student’s GPA) and redundant

features contain the same information and may mislead the learning process (e.g., purchase

prices of a product and the amount of sales tax paid).

Two categories can be classified for the process of feature selection. Feature subset selection

and feature ranking methods based on how the features are combined for evaluation. The

feature subset selection method searches proper combinations of feature subsets by using

some searching strategies such as a greedy forward selection, greedy backward elimination,

22

etc. Then, statistical measures or the supervised learning algorithms (e.g., the wrapper

method) are used to evaluate those data subsets. The disadvantage of this method is that it

generates 2𝑁subsets form N features for evaluation. This method is obviously not applicable

when dealing with high-dimensional data space. The feature ranking-based methods focus on

individual features. In this method, each feature is ranked by a selection metric such as

information gain, symmetric uncertainty, importance matrix, etc. and the top ranked features

are selected as relevant features by a pre-defined threshold value. Compared to the feature

selection method, this method is computationally cheaper, as the space complexity is not high.

However, the disadvantage of this method is that it does not deal with redundant values.

E. Ensemble Learning

When a person is planning to purchase a high-valued product, e.g., a desktop, it is quite rare that

he/she makes a purchase decision immediately based on the information received from the first shop

entered. Instead, he/she may go to multiple similar shops and compare different models with reviews

post by other buyers. Ensemble models in machine learning operate on a similar idea. Instead of

adopting the output from a single model directly, ensemble learning summaries multiple outputs by

tuning different models before generating the output value. Many researchers have investigated the

technique of combining the predictions of multiple predictors to produce a single prediction [34][35].

The ensembled predictors are generally more accurate than any of the individual predictors making

up the ensemble.

Ensemble methods work best when the predictors are independent from one another. One way to

get diverse classifiers is to train them using very different algorithms. This increases the chance that

they will make different types of errors, improving the ensemble’s accuracy. Another approach is to

use the same training algorithm for every predictor, but to train them on different random subsets of

the training set. These different random subsets can be obtained by using some techniques such as

bagging and pasting. When sampling is performed with replacement, this method is called bagging

[36] (short for bootstrap aggregating). When sampling is performed without replacement, it is called

pasting [37]. In other words, both bagging and pasting allow training instances to be sampled several

times across multiple predictors, but only bagging allows training instances to be sampled several

times for the same predictor.

23

After multiple predictors or classifiers are built, four simple but powerful aggregating techniques are

frequently used: max voting, averaging, median and weighted averaging. The max voting method is

generally used for classification problems. In this technique, multiple models are used to make

predictions for each data point. The predictions by each model are considered as a ‘vote’. The

predictions which voted by the majority of the models are used as the final prediction. Similar to the

max voting technique, averaging method take the average value of all the predictions as the output

and the median method take the median value as the output. Weighted averaging is an extension of

the averaging method. All models are assigned different weights defining the importance of each

model for prediction. Outputs from these models are multiplied by this weight when calculating the

average value.

F. Traffic Light Control

Traffic signals are designed to eliminate many conflicts by assigning right of way. A good

signalized traffic control strategy can increase the intersection capacity and reduce the

frequency of certain types of crashes such that reducing vehicle travelling delays, balancing

traffic flow, and improving operational efficiency of an urban street network [38]. An

engineering study of traffic conditions, pedestrian characteristics, and physical characteristics

of location shall be performed to determine whether signal is warranted. This study shall

include an analysis of factors related to the existing operation and safety at the study location

and the potential to improve these conditions. There are two main types of current

intersection signal control systems: 1. fixed-time, which includes staged-based and phase-

based control system. 2. real-time adaptive signal control systems, such as SCAT [39] and

SCOOT [40]

Fig.3 Structure of ensemble learning

24

Fixed-time traffic light control strategy was widely utilized in the past when there is no huge

demand on the transportation so it can solve almost congestion problem easily. However, this

strategy can no longer meet the increasing transportation demand in the modern

transportation system with exploding population of vehicles holders and limited road capacity.

Now a days, many adaptive traffic signal controllers are developed based on the above control

systems to optimize the travelling delays and control the traffic flow. Following are some state

of art traffic light control algorithms formulated by other researchers with real case

application.

Rongrong Tian, Xu Zhang [41] first use the TRANSYT traffic modelling software to find the

optimal fixed-time signal plan. After then, they use VISSIM to affirm, evaluate the TRANSYT

model. This model is used to assess the optimal signal plan. They also use VISSIM and VS-PLUS

emulator to refine and evaluate an adaptive frame signal plan. The simulation result shows

that delay in the adaptive signal control was shortened noticeably than that in the fixed time

control.

Jianhua Guo et al [42] introduces a new method for area-wide traffic signal timing

optimization under user equilibrium traffic. The optimization model was formulated as a

multi-dimensional search problem which use the production of the sum of the travel time for

each for each base station pair of regional urban street network and the variance of travel

time of unit mileage for each base station pair as its objective. However, this objective

function is not convex so the smallest product cannot mean that the two elements are both

smallest. Multi-objective optimization model might offer more power in finding the best

solution.

Gustav Nilsson and Giacomo Como [43] focused on a class of dynamic feedback traffic signal

control policies that only requires information about the traffic volume in order to stabilize

network. Stability is then proved by interpreting the generalized proportional allocation

25

controllers as minimizes of a certain entropy-like function that is then used as a Lyapunov

function for the closed-loop system.

Junchen Jin and Xiaoliang Ma [44] proposed an adaptive group-based signal control approach

capable of making decisions based on its understanding of traffic conditions at the

intersection level. The control problem is formulated using a framework of stochastic optimal

control for multi-agent system in which each signal group is modeled as an intelligent agent.

The parameters were off-line optimized using a genetic algorithm. Simulation results shown

that the proposed adaptive group-based control system outperforms the optimized GBVA

control system mainly because of that’s real-time adaptive learning capacity in response to

the changes in traffic demand.

Nasser R. Sabar et al [45] proposed an adaptive memetic algorithm (MA) for optimizing signal

timings in real world urban road networks using traffic volumes derived from induction loop

detectors. This algorithm improves the current genetic algorithm (GA) by busing a systematic

neighborhood based simple descent algorithm as a local search to effectively exploit the

search space around GA solutions and proposing an indicator scheme to control the local

search application based on the diversity and the quality of the search process. This memetic

algorithm accelerates the local search process compared to genetic algorithm.

Mohammad Aslani et al [46] utilized RL (Reinforcement learning) algorithms to design

adaptive traffic signal controllers called actor-critic adaptive traffic signal controllers (A-CATs

controllers). This controller takes traffic disruptions, discrete and continuous state actor-critic

approaches and function approximation definitions into consideration. The simulation result

shows the continuous A-CATs controller with the optimal function approximation

outperforms the discrete one.

26

1.4 Contributions of this thesis

This thesis first provides the solution for the traffic congestion identification problem. By

figuring out the congested region in the traffic network based on the vehicle data, economic

benefit could be achieved since adaptive traffic light control algorithms could be applied on

these targeted regions without significant degradation of network-wise performance. It is

verified by the experiment carried out in this thesis that traffic delay time is reduced 75%

compared to the case without knowing the congestion region. Also, a congestion level

prediction model is proposed in this thesis. By using this model, potential traffic jam can be

detected in some links and some prevention methods can be used to reduce or stop the

negative impact of congestion for these links. Lastly, a traffic turning ratio prediction model

is proposed in this thesis. The power of this model is shown in the experiment by integrating

with the adaptive traffic light control strategy. With accurate turning ratio prediction, traffic

light control algorithm works much more efficiently, and the total traffic queue time spend in

the road can be reduced significantly.

1.5 Organization of the Thesis

The organization of the thesis is as follows. In chapter 2, part of the collected data with labels

are trained with a simple feed-forward neural network such that all the newly collected data

can be assigned with labels with respect to their current locations. Then, based on the data

accumulated for every 15 seconds, the congestion level of each link is determined according

to the average speed and vehicle density obtained. In the next step, two clustering algorithms

are applied in solving the congestion region clustering problem. After discussing the result

and performance of these two algorithms, a new hybrid clustering algorithm is developed

which could highlight the over-saturated region with shorter computation time. Lastly, an

RNN-based congestion level prediction model is constructed. The model could forecast the

congestion level of each link that is very likely to occur in the following 15-second time step.

27

In Chapter 3 two machine learning models, i.e., a feed-forward neural network and an offline

recurrent neural network (RNN), are trained for predicting the turning ratios. After that,

performances of two models are discussed and compared. To increase the prediction

accuracy of the RNN model, an ensemble learning method is introduced, which trains three

independent RNN predictors instead of only one. This work could increase the stability of the

prediction accuracy and robustness to the abnormal data collections. Finally, the well-trained

model is integrated with an online optimization model, which aims at reducing the traffic

delay time. The turning ratio prediction models are used in Chapter 4, together with real-time

traffic signal control, to form a closed-loop adaptive traffic signal control strategy.

Chapter 5 summarizes all the results, and presents some envisioned future works, which could

be carried out for other uses. All the tables and figures used in this thesis are listed in

Appendix.

28

Chapter 2: Traffic Congestion Region Identification

and Prediction

In this chapter some concepts will be first defined. Then specific algorithms for congestion

region identification will be introduced, and an improved clustering algorithm leveraging on

existing ones will be discussed in detail. After providing detailed case studies with relevant

comparisons, we provide some concluding remarks.

2.1 Basic concepts and problem statement

We first provide definitions of some key concepts that will be extensively used later.

• Link and link number: a link in a traffic network is defined as a uni-directional and one-

lane road segment. In this thesis, each bi-directional road segment will be represented by

two uni-directional links with opposite directions. A link number is a unique number

assigned to a specific link. In this chapter, without loss of generality, we assume that the

link label set is the set of consecutive discrete values, ranging from 1 to x (where, x is the

total number of links in the target traffic network). The symbol used to represent a link is 𝑙𝑚 where m is the corresponding link number

• Node and node number: a node in a traffic network is defined as an intersection,

connecting with at least three links, having antagonistic traffic streams. It essentially

represents either the beginning point or the endpoint of a link. Whenever a vehicle

Figure 4: Example link number labelling (left) and Example node number labelling (right)

29

reaches a node, a decision will be made as which link the driver intends to enter after

leaving the current link. A node number is a unique number assigned to each node, taking

from the set of consecutive discrete values ranging from 1 to x (x is the total number of

nodes in the target traffic network). The symbol used to represent a node is 𝑁𝑚 where m

is the corresponding node number.

• The number of nodes between two links: it is defined as the minimum number of nodes

required for a vehicle starting from one link to another. This number is used to represent

the “distance” between two links while calculating the cost in the clustering algorithm.

The symbol used to represent the number of nodes between two links is N_xy where x

and y are the link numbers of these two links.

• Link congestion level: the link congestion level is defined to represent the traffic condition

of this link. In this thesis, the traffic congestion condition is categorized into three levels,

although more levels will not change the feasibility of our proposed approach. Each level

is associated with two link characteristics: link speed and link available capacity (or link

density). The first level expresses the under-saturated status where all the vehicle

travelling in the target link drive at a free-flow speed and the link still has spare capacity

for more vehicles to fit in, i.e., the link density is low. In this thesis, the label assigned to

the first congestion level is 1 while calculating the cost in the clustering algorithm. The

second level expresses the saturated status where the vehicles travelling in the target link

drive at a saturation speed with no spare capacity for extra vehicles. The label assigned to

the second congestion level is 2 while calculating the cost in the clustering algorithm. The

third level expresses the over-saturated status where the driving speed is significantly

Figure 5: Example of calculating the number of nodes between two links

30

lower than the saturation speed and there is absolutely no spare capacity to

accommodate any more vehicles. The value assigned to the third level is 3 while

calculating the cost. A detailed rule on how to rigorously define these three levels will be

discussed shortly. The symbol used to represent the congestion level of the link is 𝐶𝑚

where m is the corresponding link number.

• Road and road congestion level: a road is a bi-directional route segment. As mentioned

before, it is captured by two uni-directional links with opposite directions. The road

congestion level is defined as the higher congestion level between the constituent links.

• The region, congestion level of region and congestion region: the region discussed in this

thesis is defined as a cluster of roads in which all the roads are accessible from other roads

in the same region. The congestion level of the region is defined as the average congestion

levels of all the roads included in the region. A region is identified as a congestion region

when the average congestion level is higher than a threshold value (e.g. 2.5).

31

2.2 Congestion level identification and prediction

The objective of this section is to formulate a new congestion measurement method in a

proper way that meets most criteria discussed in the literature review. The criteria for a

proper congestion measurement method, adopted in this thesis, are listed as follows:

1. Simple and clear for the audience to understand.

2. Generally applicable with typical traffic data to most traffic networks.

3. Descriptive and predictive

Based on these criteria, assessments are made to estimate the performance of the current

commonly used congestion measures. Unfortunately, none of them provided a systematic

and comprehensive analytical framework to quantify the relationship between the presence

of public transport and the amount of traffic congestion. Recall the definitions of the

congestion, the key is the relationship between the traffic flow and the link capacity since

other features such as delay time and cost could be summarized as a consequence. The

following figure depicts the fundamental diagram of the traffic flow versus density.

Figure 6: A Fundamental Diagram for the Congestion Identification

32

The first figure shows the relationship between the traffic follow which is denoted by q and

the vehicle density which is denoted by d. It is obviously to be observed that the traffic flow

is proportional to the vehicle density at the beginning until the traffic flow reaches its

maximum number q𝑚𝑎𝑥. If keep increasing the vehicle density, the traffic flow will start to

decrease until a certain value. The second figure shows the relationship between the average

travelling speeds which is denoted v and the vehicle density. In the beginning, when the

vehicle density is low, all the vehicles could travel at its free-flow speed. The speed will start

decreasing when the number of vehicles reaches a threshold point. The average speed will

decrease to a certain value and maintain it until the link reaches its maximum density. The

traffic flow is estimated as follows: q(𝑡) = v(𝑡) ∙ d(𝑡)
The token “t” indicates a specific time step as the average vehicle speed and vehicle density

are calculated based on a fixed time period. Then, the partial derivative of the traffic flow rate

over traffic density could be estimated as follows, (𝜕𝑞𝜕𝑑)(𝑡) = q(𝑡) − q(𝑡−1) d(𝑡) − d(𝑡−1)
Based on the traffic flow-vehicle density curve shown in the fundamental diagram, a traffic

condition-based congestion measurement is defined as follows:

If
𝜕𝑞𝜕𝑑 is larger than zero, this link is labeled as undersaturated, as the green part and half of the

yellow part shown in Fig. 9. If
𝜕𝑞𝜕𝑑 is less than zero while the traffic flow rate is higher than 15%

of its maximal value,q𝑚𝑎𝑥, the link is labelled as saturated. A threshold of 15% of q𝑚𝑎𝑥 is set

based on some empirical formula [47]. If
𝜕𝑞𝜕𝑑 is less than zero and the traffic flow rate is lower

than 15% of q𝑚𝑎𝑥 , the link is labelled as oversaturated, as the red part shown in the

fundamental diagram.

33

The performances of this method can be assessed based on the criterion.

1. Simplicity: this method relies on the fundamental diagram and two easily evaluated

factors: the gradient and value of q.

2. Generality: this method is applicable to any traffic network, where its fundamental

diagram is available.

3. Descriptive and Predictive: this method assigns traffic light colors to each congestion

level which is easy to show on the map. In the meanwhile, this method identifies the

congestion level based on the differentiation of traffic flow and vehicle density. This

trend is further used for predicting the traffic condition in the next section.

In summary, the method proposed in this chapter qualifies three criteria above. While the

output of this method is rank-based, the internal result is a specific value as calculated by

the change of traffic flow divided by the change of vehicle density. Thus, the method

proposed could be regarded as an acceptable method that could be applied to identify the

traffic congestion identification.

34

2.3 Congestion Level Prediction

The objective of this section is to construct two well-trained, many-to-many recurrent neural

networks which are able to predict the average speed and vehicle density respectively based

on the historical data with an acceptable accuracy. As discussed in the literature, most

participants in the traffic network follow a fixed periodic schedule. Thus, traffic congestion

also shows patterns, especially during rush hours, e.g., 8 am to 9 am every Monday.

A general RNN model is shown below:

 𝑎<0> is the initial memory which is pre-set to a default small non-zero value (-0.3~0.3). 𝑊𝑎𝑎

is the weight needed to be trained and multiplied by memory 𝑎<0> . 𝑥<1> is the first input

value among the input sequence. 𝑊𝑎𝑥 is the weight needed to be trained and multiplied by

input 𝑥<1>. By summing up the above two results, the memory will be updated with the

equation: 𝑎<1> = 𝑔(𝑤𝑎𝑎𝑎<0> + 𝑤𝑎𝑥𝑥<1> + 𝑏𝑎) where 𝑔 is the activation function and 𝑏𝑎

is pre-trained bias. Based on the new memory obtained, the first perdition result can be

calculated with the equation: �̂�<1> = ℎ(𝑤𝑦𝑎𝑎<1> + 𝑏𝑦) where ℎ is the activation function, 𝑤𝑦𝑎 is the weight needed to be trained and multiplied by memory 𝑎<1>, 𝑏𝑦 is pre-trained bias.

The above process will be repeated until a desired prediction result is calculated. In general,

the process could be summarized as:

Figure 7: Unfolded general RNN model

35

To deal with the congestion prediction problem whose objective is to predict the congestion

level in the next few time steps based on information of several previous time steps, a many

-to-many RNN model is used, which is shown below. This model could be analyzed as two

parts: encoder and decoder. These two components can be understood easily based on the

general model introduced above. The encoder part (layers in the blue box) is the general RNN

model with only the last output is calculated. The decoder part (layers in the green box) is the

general RNN model with only one input and use the previous output as its new input.

After training the above RNN model, the performance can be assessed by the testing data set

which is neither used for training nor for parameter tuning. The equation for calculating the

accuracy is defined below 𝑎𝑐𝑐 = 𝑁𝑜. 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑤ℎ𝑜𝑠𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

Figure 8: Encoder and Decoder parts

36

2.4 Congestion region clustering

Previous works solve the problem as how to identify and predict the traffic congestion level.

The objective of this section it to formulate a proper clustering algorithm based on the result

obtained previously such that the congested region could be highlighted. Many clustering

algorithms have been discussed in the literature review. From these clustering algorithms, K-

means clustering and hierarchical clustering method are selected with two following reasons:

1. Clustering of congestion region is calculated based on the feature of the data instead of

distribution. Density-based clustering methods and grid-based clustering methods which

also take dense data into consideration are not suitable for this problem (please explain

here why they are not suitable).

2. The size of a concerned congestion network is generally large. K-medoids is not suitable

since this algorithm is only applicable and effective in small-scale problems.

When applying K-means clustering and hierarchical clustering algorithms, the key step is to

calculate the similarity between two points. However, the general similarity formula only

calculates the Euclidean distance between two points in the data space which is not feasible

in this problem. New formulas for calculating the similarity between two points need to be

developed first. There are two features need to be taken into consideration while calculating

it:

1. Congestion level: In this problem, congestion level is an abstract feature which is not

computable. Thus, congestion levels should be transformed into specific values first

before running the clustering algorithm. Concretely, in this thesis, the undersaturated

status is assigned with 1, the saturated status is assigned with 2 and the oversaturated

status is assigned with 3.

2. Distance between two links: the congestion situation in the links radiates its impact to

its downstream and affected by its upstream link. Thus, neighboring links have a deeper

impact on this link instead of the links in the distance. One way to calculate the distance

37

between two links is to calculate the geographic distance between the middle point of

each link. However, the length of links in the traffic network varies a lot. Geographic

distance between adjacent links may larger than the distance between two links which

is far apart. Congestion region clustering is a link-based problem, the impact of the

internal feature should be eliminated. Instead, the number of nodes between two links

is used to measure the distance between two links.

Thus, the general formula used for calculating the dissimilarity between two links is shown

below. 𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 is the number of nodes between link i and the reference link m. 𝐶𝑖 is the

congestion level of link i and 𝐶𝑚 is the congestion level of link m. 𝛼 𝑎𝑛𝑑 𝜆 are hypermeters

which could be set at users’ preferences depending on which feature is more concerned. For

instance, Increase 𝛼 will increase the dissimilarity between two links which is far part and

increase λ will increase the dissimilarity between two links which has different congestion

levels.

 D𝑖𝑚 = 𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝛼 + (𝐶𝑖 − 𝐶𝑚)λ

Besides, formulas for calculating the central point should also be developed since the general

method will calculate the geographical center point and the link with the smallest distance

will be selected as reference link in the next round. Obviously, this approach is not precise as

this approach neglects the link distribution and could be influenced by some long links easily.

By observing the congestion region, links in the center always hold smallest 𝑁𝑚𝑎𝑥 , where 𝑁𝑚𝑎𝑥 is the max number of nodes between this link towards all the other links in the same

cluster. A simple example is shown below to make this concept understandable: figure in the

left shows a congestion region with 9 links. 𝑁𝑚𝑎𝑥 for each link is shown is the right table.

Either Link 6 or link 7 can be selected as the central link in this case.

38

2.4.1 K-means clustering

When applying the K-means clustering algorithm, besides the new dissimilarity formula and

the reformulated method in searching for the central links, the last problem is how to choose

the proper number of clusters. In general, there are two methods that are widely used for

determining the number of clusters. The most widely used method is the elbow method. In

this method, K will be set as 2 initially and the clustering algorithm will be run multiple times

with each time increase K by 1. By plotting the global 𝑁𝑚𝑎𝑥 among all the links for each K, an

elbow point could be observed, the value of K corresponding to this elbow point is regarded

as the best number of clusters. Thus, an adjusted K-means clustering could be applied with

the following process:

- Step 1: Pre-set the number of clusters K equal to 2 initially and choose K links randomly

as reference links

- Step 2: Assigning the rest links to one of these K links with respect to the dissimilarity

calculated by the formula above. With the consideration of link connectivity, links will

only be clustered with the reference link when the link is accessible for the chosen link.

- Step 3: After clustering all the links in the network. For each cluster, a link with the

smallest 𝑁𝑚𝑎𝑥 will be selected as the central link, which is also the new reference link.

If multiple links have the same smallest 𝑁𝑚𝑎𝑥 , all these links will be selected as

reference links. An additional clustering algorithm will be applied on each reference

 𝑁𝑚𝑎𝑥 w.r.t

link 1 4 link 9

link 2 4 link 9

link 3 3 link 9

link 4 3 link 9

link 5 3 link 9

link 6 2 link 1,2,3,9

link 7 2 link 1,2,3,9

link 8 3 link 1,2

link 9 4 link 1,2

39

link, clusters with the smallest global 𝑁𝑚𝑎𝑥 win the completion. The link which forms

this cluster will be selected as a new reference link. If this result remains same,

reference links will be selected randomly from them.

- Step 4: Repeating steps 2 and 3 until no changes to all the regions. Global 𝑁𝑚𝑎𝑥 is

recorded among all the links

- Step 5: Go back to step 1 and increase the number of clusters K by 1 until reaches a

threshold value.

- Step 6: Plot the K - 𝑁𝑚𝑎𝑥 curve, selecting the best number of clustering by observing

the elbow point. Clusters obtained by using the corresponding K will be selected as

the output of this algorithm.

2.4.2 Hierarchical clustering

The general hierarchical clustering algorithm clusters the data based on their distance.

Similarly, an adjusted algorithm could be formulated based on the dissimilarity function

formulated previously:

- Step 1: Calculate the dissimilarity between each two links in the traffic network based

on the dissimilarity function. Cluster all the links with lowest dissimilarity, in this case,

those links are neighboring links with same congestion level (𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 = 1 , 𝐶𝑖 −𝐶𝑚 = 0).

- Step 2: Cluster remaining link or clustering with second lowest dissimilarity.

- Step 3: Repeat step 2 by increasing the dissimilarity until all the links are included in

one cluster and a hierarchical tree diagram could be obtained.

- Step 4: From the top of the hierarchical tree, select a suitable threshold that divides

the links into a certain number of clusters.

2.4.3 Improved the K-means clustering algorithm

In practice, people pay more attention to the most congested region as it plays a

dominant role in the traffic jam. And most traffic control optimizing algorithms are also

40

focusing on relieving the traffic condition in those areas. Thus, it is more meaningful to

highlight the most congested region instead of taking all the links into consideration while

applying the clustering algorithm. Based on this concern, additional constraints are needed

while applying the adjusted K-means clustering algorithm. In this thesis, a threshold of the

average congestion level among all the links in the cluster is selected as the constraint. Only

the clusters with an average congestion level above the threshold are kept after running the

algorithm. However, if this constraint is only applied at the last step, no result will be output

because the average congestion level of all the clusters is likely to be lower than the threshold

because they are generated by clustering all the links in the traffic network. And if we apply

this constraint every time when assigning a link to a cluster, the computational cost will

explode as many undersaturated links will be clustered multiple times during each clustering

progress. The algorithm needs to be reformulated and an improved K-means clustering

algorithm which only focuses on the most congested region, as proposed below:

- Step 1: Choose one over-saturated link as the reference/starting link.

- Step 2: Cluster its neighboring links (upstream/downstream) with the same

congestion level (over-saturated).

- Step 3: Cluster all the neighboring links (upstream/downstream) of the cluster with a

congestion level difference up to 1 while keeping the average congestion level above

a pre-defined threshold.

- Step 4 (optional): If all adjacent links to the clustered links are not qualified for the

constraint in step 3. A tolerance number of links is introduced, which will include

multiple adjacent links first regardless of the constraint and cluster these links’

adjacent links. If the clustering this link could maintain the average congestion level

above the threshold value, these two links will be all clustered.

- Step 5: Repeat step 2-4 until all the adjacent links of this cluster are unqualified for the

constraint

- Step 6: Choose another over-saturated but not clustered yet link as the new starting

link and go back to step 2 until no over saturated link is left.

41

2.5 Simulation-based experiments

In this section, two case studies are carried out in order to test the performance of the

methodology proposed above. The first experiment is to test the traffic congestion level

identification algorithm in the on-campus traffic network. The second experiment is to test

the traffic congestion level identification and traffic congestion region clustering algorithm in

the Jurong area traffic network.

2.5.1 Case study one: Traffic congestion level identification (target: campus

traffic network)

The first experiment is testing the congestion level identification algorithm based on the

traffic data in the campus, the process is summarized as follow:

Phase 1: Data collection with the on-board unit (OBU)

In the first experiment, all on-campus data used were collected via OBU pre-installed in

selected vehicles, including personal vehicles and school shuttle buses, running on the

campus of Nanyang Technological University. Those data were sent from these vehicles to a

server in the Smart Mobility Experience Lab (SMEL), as shown in figure 9.

Figure 9: Installed On-Board Unit

42

Data received were categorized into two types: pedestrian data and vehicle data. Only vehicle

data were used in this thesis. Each set of vehicle data contains information including received

time, vehicle ID, vehicle type, vehicle class, GPS data, heading, and speed, as shown in the

table below. Vehicle ID is a unique series of numbers and vehicle types use numbers ranging

from 0-255 to indicate vehicle type. For example, 4 indicates cars, 6 indicates buses. Heading

determines the direction this vehicle is currently driving in. Heading starts with North at 00 and increases in a clockwise manner. This information is essential for determining each

specific link that belongs to a road, as each road contains two directions (directed links). Our

data were only collected when the vehicles were inside the campus transportation network

which was the project region meant for testing. Data were only collected when the vehicles

were inside the campus transportation network which was the project region meant for

testing.

Table 2: Sample data set

Phase 2: Link labelling

For the convenience of calculating and

analysing, each link in the traffic

network was pre-labelled with a unique

number. Figure 10 shows the NTU

campus main links with its pre-defined

link numbers and nodes numbers,

 Figure 10: Labelled school campus

43

Phase 3: Link Identification

It could be observed that the original BSM dataset does not have the feature of “link label”.

Thus, the first step of this project is to associate the raw data with relevant link numbers

accordingly. A well-trained FNN (feed-forward neural network) model is used here. The

training process could be summarized in the following steps:

- Step 1: Select part of the collected data from the database with the requirement of

covering all the links. Label all those data sets manually based on the GPS information

and the heading direction. A small list of the training data is shown in Table 3:

Table 3: Sample training data set for training

- Step 2: To balance the weight of each input feature in the cost function, it is advised

to adjust them into identical data sizes before proceeding with the data training

session. During this step, all data will be normalized, with values ranging from -1 to 1.

MATLAB has the inbuilt function “mapminmax” (mathematical function is shown

below) which can transform data of the same type into the same range.

mapminmax(𝑋) = 𝑋 − 𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛2 𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛2 = 2𝑋𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛 − 1

𝑋𝑚𝑎𝑥 𝑖𝑠 𝑡hemax 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑋𝑚𝑖𝑛 𝑖𝑠 𝑡ℎ𝑒 min 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑟𝑎 𝑠𝑒𝑡

- Steps 3: In order to get familiar with the neural networks, an FNN model is selected

here and the normalized data obtained in steps 2 are used in training the model. The

labelled feature is the output while other features are input. The well-trained network

44

structure is shown in figure 8., where three features are used: latitude, longitude and

the heading angle. Thus, the size of the first layer is 3. There are 34 links in total for

the NTU on-campus traffic network, so the size of the last layer is 34. Since the

problem here is not complex, any reasonable combination of the hidden layer size

could achieve high identification accuracy. Each input data set will activate one of the

neurons in the last layer. The order of the neurons is the output of the network that

also indicates the label of the link where the data set signals are derived.

- Steps 4: Before putting this model into real practice, accuracy should be tested with

the testing data set (testing data set is the data set that never be leaned during the

training phase). Figure 12 shows the sample comparison between the identification result

and the true link number with 10 randomly selected inputs:

It can be observed that the performance of this model is good. In general, this model achieved

identification accuracy at 98.5% on the whole testing data set. Main errors were made in

Figure 11. Well-tuned Fees-forward Neural Network

Figure 12. Comparison between output and label

45

some junction area or turning area where the boundary is not clearly divided. Since the errors

do not have a significant influence on the result, the model is still considered adequate for

this project.

Phase 4: Link Congestion Level Identification

In this project, a discrete-time framework is adopted. The congestion level is designed to

describe the traffic condition for a certain period (e.g.,15 seconds in this project) to reduce

the impact of outliers.

After accumulating the data for every 15 seconds, the algorithm introduced above is applied

to identify the congestion level of the traffic network in NTU. The result is shown below. Table

4 is the output of the MATLAB codes and figure 13 visualized the result on the map to make

the data easier to understand.

From the map above we could easily know that the link between nodes 8 and 7 as well as the

link between nodes 7 and 11 are over-saturated, the link between nodes 10 and 1, the link

between nodes 1 and 2, the link between nodes 3 and 4, and the link between nodes 5 and

11 are median congested while other links are not congested.

Table 4: Congestion level identified by MATLAB

Fig.13 Visualizing the identifying result on NTU campus

46

2.5.2 Case study two: Traffic congestion level prediction and congestion region

clustering in the Jurong area traffic network

In the first experiment, not all vehicles on the campus are installed with OBU which means

the data collected may not exactly represent the traffic condition. And the traffic condition in

the campus are seldom congested which makes further research work difficult to process.

Thus, another traffic network is considered: the Jurong area traffic network. The process is

summarized as follow:

Phase 1: Simulated traffic network setup and data collection

Due to the reason that the real traffic data is not accessible, a simulated traffic network is

constructed with identical layout and size compared to the real transportation network in

Jurong area. The software used is VISSIM which is a micro multi-model flow simulation

software package. The overall view of this traffic network and one junction among it is shown

below. The green and red bars restrict the traffic flow directions with practical consideration.

This traffic network holds 66 junctions and 253 links in total.

Similarly, all the links need to be assigned with a unique number for calculating:

Fig.14 overall view of Jurong area

transportation network

Fig.15 Single junction layout

47

Fig.16 Jurong East & West Link Numbers &

Junctions (Main area: D4,D5)

Figure 17: Jurong East & West Link Numbers &

Junctions (Main area: E3, E4, partial D3, partial D4)

Figure 18: Jurong East & West Link Numbers &

Junctions (Main area: Main area: D3,E3))

48

Vehicle data will be then auto-generated by the software. Data features are selected based

on research needs. A sample collected data sheet is shown below:

Phase 2: Traffic congestion level prediction

From case study one, the same methodology could be applied in identifying the link

congestion level. However, only identifying the congestion level for each link is far from being

enough. It could be better if the congestion level can be forecasted. With high-accuracy

congestion level predictions, emergent solutions could be put into use immediately to

prevent the occurrence of potential congestion. As discussed in the literature review, a single

layer many-to-many RNN model is used to predict the average speed and vehicle density

separately as shown in the figure below:

The batch size of this RNN model is set at 15. This number is selected based on how many

steps ahead are required to forecasting the congestion level. The longer the predicting time

horizon, the larger the number. For example, the model constructed can be used to predict

the congestion level up to 15 time steps later. Concretely, once after a time step (t), the

algorithm will take the current average speed 𝑆𝑡 as well as all the average speed recorded in

Fig.19 Two RNN models for speed and density prediction

Table 5: Sample data collected from VISSIM

49

the past 14 time steps {𝑆𝑡−14, … , 𝑆𝑡−1} as input. Those 15 inputs will generate 15 outcomes

corresponding to the predicted average speed in 1~15 time steps. Thus, for each future time

(t+m): the predicted outcome will be the average of the predicted results generated from the

current time interval to the previous (15-m) time steps. The equation is shown below:

A prediction result is shown in figure 20, which compares the actual congestion level with

the predicted congestion level for the next time step.

 Figure 20: Comparison with actual congestion level (left) and predicted congestion level (right)

As shown in the table below, the prediction accuracy is very high when the prediction horizon

is not too long. However, prediction accuracy drops fast when increasing the prediction

horizon due to the traffic fluctuations.

𝑆𝑡+𝑚𝑃 =
116 − 𝑚 ∑ 𝑆𝑡+𝑚+𝑖𝑃𝑡−𝑖15−𝑚

𝑖=0 , 𝑚 ∈ [1,15]

𝐷𝑡+𝑚𝑃 =
116 − 𝑚 ∑ 𝐷𝑡+𝑚+𝑖𝑃𝑡−𝑖

15−𝑚
𝑖=0 , 𝑚 ∈ [1,15]

50

Phase 3: Congestion region clustering

In this section, three clustering algorithms were used respectively: k-means clustering

algorithm, hierarchical clustering algorithm and improved clustering algorithm based on the

methodology discussed above.

When applying K-means clustering algorithm, the number of clusters should be decided in

advance. In general, the optimal cluster number could be determined by using the elbow

method. Figure below shows three results of the largest number of junctions between the

links in the same cluster 𝑁𝑚𝑎𝑥 after applying the K-means clustering algorithm with different

pre-set numbers of clusters:

It could be observed from the above graph that the elbow point falls on M=6 with a high

probability. Thus, in this case,(the Jurong area with 66 junctions and 253 links in total), M

could be set at 6 generally when applying the K-means clustering algorithm. Figure 22 shows

0

5

10

15

20

25

30

M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

Case 1 Case 2 Case 3

Fig.21. The largest number of junctions 𝑁𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥 vs different number of clusters

Table 6: Congestion level prediction accuracy with different time horizon

51

the computational time used when applying K-means clustering algorithm and hierarchical

algorithm:

It takes about 12 seconds for the K-means method to complete the clustering computation,

while more than 350 seconds are needed for the hierarchical method. This result verifies the

disadvantage of the hierarchical algorithm. Since the congestion region is needed to be

updated once every 15 seconds, the K-means clustering algorithm is more suitable.

However, the clusters obtained by the K-means clustering algorithm are not significantly

different from each other in terms of average regional congestion levels. It can be shown from

the graph below. It could be found that the average congestion level fluctuates around 2 and

these average congestion levels are similar to each other, which makes it impossible to figure

out the most congested region.

0 50 100 150 200 250 300 350 400

time cost(s)

K-means Hierarchical

Figure 22: Computation time cost for each algorithm

2.245

1.637

2.152

1.551

2.27

1.914

0

0.5

1

1.5

2

2.5

Average congestion level

1st cluster 2nd cluster 3rd cluster 4th cluster 5th cluster 6th cluster

Figure 23: Average congestion level of each cluster

52

With the aim of identifying the over-saturated region, the improved clustering algorithm is

used. Staring from the over-saturated links, a region is expanded by spreading upstream links

and downstream links. Besides, by saving the time used on calculating the under saturated

regions, the processing time is faster than the general K means clustering which only 9

seconds is needs on average to get the result.

53

2.6 Summary

This chapter aims to solve three problems: link congestion level identification, link congestion

level prediction and congestion region clustering. For link congestion level identification, a

new method is introduced which uses the difference of traffic flows and densities between

the current traffic condition and that of the previous time step in deciding the traffic

congestion level. The advantage of this method is that, by considering the differential value

instead of static value, not only the current traffic congestion level can be identified but also

the trend of changing can be detected. As a result, more information is generated which could

be used in other related research projects. For the link congestion level prediction problem,

a simple many-to-many single layer RNN model is used as the predictor. The model

implemented is trained off-line. For the congestion region clustering problem, two general

clustering algorithms are used whose performances are not satisfactory. Thus, an improved

clustering algorithm is intruded which only focuses on the most congested region. The

advantage of this algorithm is its (relatively) low computational complexity when compared

with the other two, mainly owing to the step of ignoring the under-saturated links and only

highlighting the most congested region which the traffic optimizing algorithm is of most

interest. Future work involves applying more prediction algorithms (SVM, ELM and GBDT) and

clustering algorithm (EM clustering and Affinity propagation) to solve this problem and

compare the performance with current work.

54

Chapter 3: Traffic Network Turning Ratio Prediction

This chapter contains four parts. The first part defines some basic concepts. The second part

introduces two neural networks which can be tuned as a predictor. These two networks have

been widely used and developed in many aspects. However, there is no relevant research that

applies these two models in predicting the traffic turning ratio. And these works are done in

Part three together with a case study on a 3*3 simulated traffic network. The key challenge is

how to tune the hypermeter of the network well in order to increase the prediction accuracy.

The last part is the summary for the project based on the experiment result.

3.1: Basic concepts and problem statement

To make the subsequent technical development clear, some concepts are defined below.

• Turning ratio: whenever a vehicle reaches a node, it will decide which link to enter,

after leaving the current link. In this thesis, all nodes are connected with four links,

which means the vehicle will have three choices: turn left, go straight and turn right.

Turning ratio is the percentage of the vehicles that make the same choices among all

the vehicles leaving the current link. The symbol used to represent the turning ratio

during time step t is λ(t). The calculation formula is shown below

• Traffic light status and assignments: Each signalized node in the traffic network control

the traffic flow by adjusting the traffic light status for each direction. In this thesis, four

statuses are used to describe different traffic light condition. These four statuses are

shown below:

55

Phase one will enable the vehicles to go straight and turn left in the horizontal direction. Phase

two will enable the vehicles to go straight only in the horizontal direction. Phase three is

identical to phase one except for the direction changes from being horizontal to being vertical.

Phase four will enable the vehicles to go straight only on the vertical direction. When a fixed-

time traffic light assignment is under consideration in this thesis for a performance

comparison purpose, each phase is assumed to last for 15 seconds. The symbol used to

represent the traffic light status during one time step is θ(t). The traffic light assignment is a

sequence of pre-determined traffic light statuses. The traffic light in the node will operate

based on this assignment.

• Supply function: In this thesis, the traffic network used is a region-based network. All

the vehicles running inside is assumed to be supplied from the terminals of the traffic

network. The number of vehicles supplied into the traffic network are different for

different terminals and different time steps. Thus, a supply function is introduced to

represent the number of incoming vehicles over time at each terminal. The symbol

used to represent the supply function is s(t).

The turning ratio is conceptually determined by each driver’s driving habit (i.e., his/her

origin-destination pair and the corresponding fixed yet unknown trajectory), the supply

function and all previous traffic light assignments. Our conjecture is that, by a fixed

Figure 24: Four traffic light phases

with traffic flow allowed

Figure 25: time length and schedule of each

traffic light phase

56

driving habit for each driver each link turning ratio is a function of the supply volume

and past traffic light schedules, which could be written as:

 λ(t) = f(s(o), s(1), … , s(t − 1); θ(0), θ(1), … , θ(t)) λ(t − 1) = f(s(o), s(1), … , s(t − 2); θ(0), θ(1), … , θ(t − 1))
So, a turning ratio at t is supposed to be a function of all historical turning ratios, flow-

in vehicles and traffic light schedules: λ(t) ← f {[λ(0), … λ(t − 1)], [𝑠(1), … s(t − 1)], [𝜃(0), … , θ(t)] }

• Prediction accuracy: In order to visualize the performance of parameter selection while

tuning the neural network, prediction accuracy is computed, which is defined as the

number of turning ratios correctly predicted over the total number of turning

directions. Since the turning ratio is a number between 0 and 1, the predicted turning

ratio is said to be correct if the difference is less than 0.1. This standard is for testing

only, it can be adjusted according to a user’ expectation or requirement.

57

 3.2: Machine learning algorithms for turning ratio prediction

In this section, the component and the architecture of the proposed FNN and RNN models

are introduced. Here, turning ratio prediction is defined as predicting future turning ratios

based on historical traffic information.

3.2.1 Network-wide Traffic Data

Turning ratio prediction at one link normally utilizes a sequence of traffic information with

N historical time steps as the input data, which are represented by a vector.

 𝑋𝑇 = [𝑋𝑇−𝑛 , 𝑋𝑇−(𝑛−1), … , 𝑋𝑇−2, 𝑋𝑇−1] , X is a collection of { λ , s, 𝜃 }

But the turning ratio of one link may be influenced by the traffic condition of nearby links or

even locations faraway, especially when traffic jam propagates through the traffic network.

To take these network-wide influences into account, it is better to take the network-wide

traffic data as the input. Suppose the traffic network consists of P links and we need to predict

the traffic turning ratio at time T using n historical time steps, the input can be characterized

as a traffic data matrix:

𝑋𝑇𝑃 = [𝑥1𝑥2…𝑥𝑃] = [
 𝑋𝑇−𝑛1 𝑋𝑇−(𝑛−1)1 … 𝑋𝑇−21 𝑋𝑇−11𝑋𝑇−𝑛2 𝑋𝑇−(𝑛−1)2 ⋯ 𝑋𝑇−22 𝑋𝑇−12⋮ ⋮ ⋱ ⋮ ⋮𝑋𝑇−𝑛𝑃 𝑋𝑇−(𝑛−1)𝑃 ⋯ 𝑋𝑇−2𝑃 𝑋𝑇−1𝑃]

Where each element 𝑥𝑡𝑝 represent the turning ratio λ of the pth link, traffic light assignment 𝜃 and the supply function at the tth time.

3.2.2 An FNN model and parameter identification

Feed-forward neural networks [48] are designed with one input layer, one output layer and

hidden layers [49]. The size of the input layer is equal to the number of input features and the

size of the output layer is equal to the physical quantities of output. Thus, when constructing

58

an FNN model, the key is to find a proper number of hidden layers and their size respectively.

Insufficient neurons in the hidden layers will lead to underfitting problems with low precision

and too many neurons in the hidden layers will result in overfitting problems with high

precision on the training data set and low precision on the testing data set. One common

technique in searching proper parameters of hidden layers is Bayesian regularization, along

with a Levenberg–Marquardt algorithm [50].

A general FNN model is shown above. In the FNN model, the input features will be placed in

the neurons of the first layer. The data will be then propagated to the first hidden layers by

multiplying the weights stored in the interconnections. Each neuron in the hidden layers is

connected to every neuron in adjacent layers. These neurons will sum up the arrived weighted

inputs of the previous hidden layer. After propagating the summation through an active

function, the result will be transferred to all the neurons in the next hidden layer or output

layer. In this work, the activation function used is an exponential sigmoid function, which has

generally and traditionally been used to develop FNNs. The mathematical expression of

sigmoid function is

 f(x) = 1 1 + 𝑒−𝑥⁄

A bias term, b, is associated with each interconnection in order to introduce a supplementary

degree of freedom. The expression of the weighted sum, S, to the ith neuron in the kth layer

(k≥2) is

𝑆𝑘,𝑖 = ∑ [(𝑊𝑘−1,𝑗,𝑖𝐼𝑘−1.𝑗) + 𝑏𝑘,𝑖]𝑁𝑘−1
𝑗=1

To train this model, the collected data sets will be divided into three groups: the training data

set, cross validation data set and testing data set. After partitioning the data sets, the training

Figure 26: Basic structure of FNN

59

set is used to adjust the parameters. The network is then trained until it correctly emulates

the input/output mapping, by minimizing the average root mean square error. The testing set

is used, during the adjustment of the network’s parameters, to evaluate the algorithm’s

performance and stop the adjustment if the error on the testing set increases. Finally, the

validation set measures the generalization ability of the model after the fitting process.

3.2.3 An RNN model and parameter identification

RNN is one of the powerful deep neural networks by using its internal memory with loops to

deal with sequencial data. Recall the structure of RNN shown in Figure 27:

The right part of the figure shows the interval calculation process that, at each time iteration,

t, the hidden layer maintains a hidden state,𝑎<𝑡> , and updates it based on the layer input, 𝑥𝑡, and previous hidden state 𝑎<𝑡−1> by using the following equation:

where 𝑤𝑎𝑎 is the weight matrix stored in the interconnection between two consecutive

hidden states, 𝑤𝑎𝑥 is the weight matrix stored in the interconnection between the input layer

and the hidden layer, 𝑏𝑎 is the bias vector of the hidden layer.𝑔𝑎 is the activation function of

the hidden layer which adding the non-linearity property to the model. The network output

can be computed by the equation:

Hidden layer

𝑎<𝑡> = 𝑔𝑎(𝑤𝑎𝑎𝑎<𝑡−1> + 𝑤𝑎𝑥𝑥<𝑡> + 𝑏𝑎)

Figure 27: Basic structure of RNN

60

Where 𝑤𝑦𝑎 is the weight matrix stored in the interconnection between the hidden layer and

the output layer, 𝑏𝑦 is the bias vector of the output layer. 𝑔𝑦 is the activation function of the

output layer. The weight matrix and bias stored in the RNN will be trained and updated

iteratively via the back-propagation method. Hidden layers will calculate and output a result

for each input, and the last output, �̂�<𝑡> is the desired predicted turning ratio in the next time

step. However, traditional deep RNN model suffering from the vanishing or exploding gradient

problem. In the past decades, several recurrent architectures are proposed to handle this

problem, like LSTM architecture and Gated Recurrent Unit (GRU). LSTM improve the RNN

model by adding three gates in the hidden layers which enable the RNN deal with long-term

dependencies to allow useful information pass along the LSTM. These three gates are called

input gate, forget gate, and output gate which is denoted as 𝑖<𝑡>, 𝑓<𝑡> , 𝑜<𝑡> respectively.

The interval structure of LSTM is shown in figure below and they can be calculated with

following equations:

�̂�<𝑡> = 𝑔𝑦(𝑤𝑦𝑎𝑎<𝑡> + 𝑏𝑦)

𝑐𝑁<𝑡> = 𝑡anh (𝑤𝑐[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑐) 𝑐𝑁<𝑡> is a candidate for replacing 𝑐<𝑡>

 Г𝑖 = 𝜎(𝑤𝑢[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑖) input gate Г𝑓 = 𝜎(𝑤𝑓[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑓) forget gate

Figure 28: Basic structure of LSTM

61

Where 𝑐𝑁<𝑡> is the primary hidden layer state (𝑐𝑁<𝑡> = 𝑎<𝑡> for classic RNN model) which

needed to be processed by the other parts in the LTSM cell. 𝑤𝑐, 𝑤𝑓, 𝑤𝑢, 𝑤𝑜 are the weight

matrices mapping the hidden layer input to the three gates and the input cell state, 𝑏𝑐, 𝑏𝑓, 𝑏𝑖, 𝑏𝑜 are four bias vectors. Based on the above four equations, the cell output state 𝐶<𝑡> , and

the new hidden layer state 𝑎<𝑡>, can be calculated with following equations:

3.3 Simulation-based experiments

In this section, an FNN and an RNN are tuned to solve realistic problems. A simulated 3*3

traffic network is built in VISSIM, and all the data used for training the network are provided

by this software. The procedures of tuning the networks are explained in detail.

3.3.1 System setup

A. Simulated traffic network construction

In order to test the capability of FNN and RNN in predicting the traffic turning ratio, a

simulated traffic network is constructed in the VISSIM. Considering the computational cost,

the size of the network is set at 3*3, it is neither too big to train nor too simple. This traffic

network has 12 flow-in terminals, 9 junctions, and 48 links as shown below. Figure in the left

shows the link number, node number, terminal number assignment. Figure in the right shows

the built simulated traffic network with vehicles running inside. Vehicle data are generated

and recorded per second.

Г𝑜 = 𝜎(𝑤𝑜[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) output gate

𝐶<𝑡> = Г𝑖* 𝑐𝑁<𝑡> + Г𝑓 * 𝑐<𝑡−1>
 𝑎<𝑡> = Г𝑜 ∗ 𝐶<𝑡>

62

B. Data preprocessing

In this experiment, raw data generated by the above traffic network contains 261 features:

• The number of flow-in vehicles from 12 terminals.

• Traffic light schedules at 9 junctions

• The current number of vehicles in all 48 links

• The number of vehicles leaving each link

• The number of leaving vehicles turn right, go straight and turn left respectively.

Part of features are collected for other research purposes which needs to be discarded and

some important missing features need to be calculated and added into the training data set.

The basic idea of feature selection is to choose the features that could provide enough

information to the network such that the trained network can generated the output based

on this information with high accuracy. Unlike picture processing or text processing, features

in this problem hold their practical significance which is easier to decide if the feature is

related to the turning ratio prediction. Thus, data preprocessing for this problem can be done

manually which are summarized in the following steps:

• Sum up the vehicle information for every 15 seconds. This length of time is the time unit

in formulating the traffic light assignment. By summing up the vehicle data, the change of

Figure 29: 3*3 traffic network built in VISSIM

63

traffic flow due to traffic light assignment is easier to be observed.

• Third feature which contains the information of current number of vehicles in all 48 links

is removed as they have no contributions to the prediction result based on the

mathematical model implemented previously.

• It is observed that 24 links in the traffic network are connecting the terminals and half of

them are exporting the vehicle form the network. Vehicle data of these 12 links is removed

as they have no more impact on the vehicles still running inside the network.

3.3.2 Experimental procedure and data collection

A. Trained with FNNs

The first model used is a fully connected neural network, which only predicts turning ratios at

a specific time step. Firstly, the model only uses one time-step information to predict the

turning ratio in the next time step.

 λ(t) ← {λ(t-1),s(t-1) ,θ(t) }

Searching for the best size of two hidden layers requires a lot of work. Figure 15 shows the

prediction accuracy performed on the cross-validation data set with a different combination

of two hidden layers.

0%

20%

40%

60%

80%

First hidden layer size = 40 First hidden layer size = 50 First hidden layer size = 60 First hidden layer size = 70

Second hidden layer size = 30 Second hidden layer size = 40 Second hidden layer size =50

Figure 30: Prediction accuracy with different combination of hidden layer size

64

With the result obtained from Figure 30, when the size of the first hidden layer equals 70 and

the size of the second hidden layer equals 30, the accuracy has the highest value at around

68%. Before settling down the structure of this FNN model, the performance should be double

tested by the testing data set. Figure 16 shows the comparison between the predicted turning

ratio (first row) and the actual turning ratio (second row). The accuracy applied to the testing

data set is 65%. Not bad, the combination of these hidden layers could be selected. And the

construction of the feed-forward network with the size of two hidden layers is shown in figure

31.

The number of outputs is ten, only one of them is activated when an input is provided. The

sequence of the activated nodes (output equal to or close to 1) among these neurons is the

output of the network. For example, if the second node is activated, it means the output of

the network is 2 and it also indicates that only around 10% of the existing vehicles flow into

this direction. If the last node is activated, it means the output of the network is 10 and all

vehicles leaving this link flow into this direction.

Obviously, the accuracy achieved is not satisfactory. What could happen, if we increase the

number of input features by looking at more time steps backward in time? For example, say: λ(t) ← {𝜆(𝑡 − 2), 𝜆(𝑡 − 1), 𝑠(𝑡 − 2), 𝑠(𝑡 − 1) , 𝜃(𝑡 − 1), 𝜃(𝑡) }

Figure 31: Comparison with the labeled value and the FNN structure

65

Following the same procedure, we could get the prediction accuracy graph shown below:

It is obvious to see that when the size of the first hidden layer is 100 and the size of the second

hidden layer is 50, the accuracy reached is around 75%. Furthermore, the average accuracy

increases roughly by 7% compared to the result obtained when only one single time step is

used for prediction. Lastly, testing the structure set on testing data attains accuracy at 71%.

Thus, the FNN model for two time-steps ahead is shown in Figure 33.

The observation obtained in the previous two experiments suggests that, increasing the

number of backward time steps is likely to shows a decent way to increase the prediction

accuracy. And the result of adding one more backward time step information matches this

conjecture nicely, as shown in Figure 34.

Figure 32: Prediction accuracy with different combination of hidden layer size

Figure 33: Construction parameters of the tuned FNN

66%

68%

70%

72%

74%

76%

First hidden layer size = 80 First hidden layer size =

100

First hidden layer size =120 First hidden layer size =

140

Second hidden layer size = 30 Second hidden layer size = 40 Second hidden layer size =50

66

However, Figure 34 also shows that the accuracy drops to 80% if four time steps are used as

an input data set. The reason for this result is due to the lack of training data to match the

number of model parameters increasing significantly with respect to the number of backward

time steps used in the neural network model, set which results in the underfitting issue. After

collecting enough training data, the accuracy rises to 88%!

What if all the historical time steps are used to predict the turning ratio at the next time step?

In this project, this assumption could not be realized since it incurs a prohibitively high

computational burden, making it unable to complete train the model training. However, it

still could be illustrated if only a small number of time steps are involved. For example, the

first two time steps could be used in predicting the turning ratio at the third time step.

Although only two previous time steps are considered, they include all the information. The

prediction accuracy for this experiment is shown in Table 7.

50

55

60

65

70

75

80

85

One time step Two time step Three time step Four time step

Prediction Accuracy

Prediction Accuracy

Figure 34: Prediction accuracy with respect to different historical time step used

Table 7: Turning ratio prediction accuracy with different time horizon and sample quantity

67

In conclusion, it is possible to predict the turning ratio with a sufficiently high accuracy, if all

the previous traffic light assignment information is known and used for training. However, in

practice, it will certainly lead to high computational complexity. Thus, an acceptable trade-off

between the computational complexity cost and prediction accuracy is needed.

B. Trained with RNNs

The solution provided in section A seems decent with up to 90% prediction accuracy. However,

the neural network model is a static model, which is only applicable to a specific time step.

Thus, to cope with a long prediction horizon, many neural network models need to be

constructed, which is not only computationally demanding, but also lacks of robustness to

traffic disturbances. Thus, a dynamic prediction model is needed.

Recall that the problem is to use historical data to predict the turning ratio at the next time

step, based on past data. The recurrent neural network is a possible choice in dealing with

such a dynamic prediction problem

The off-line RNN is designed to be able to predict the turning ratio

with any time step input. Thus, a three hidden layer RNN is used to

confine the complexity of the problem. Each layer is also assigned

with an LSTM unit to increase the performance on memorizing the

essential information during the training phase. The primal model

is shown in Figure 35. The first and second activation functions

selected is ReLu to avoid the gradient vanishing problem and a

sigmoid function is assigned to the final layer as it is required that

the output should vary from 0 to 1, which is the range of each

turning ratio.

Figure 35: RNN model with three

hidden layers

68

Phase 1: Tuning the number of epochs

The first LSTM parameter to be tuned is the number of training epochs. The model will use a

batch size of 5, and 100 neurons for each hidden layer. We will explore the effect of training

this configuration for different numbers of training epoch.

- Diagnosis of Epochs = 3

As introduced in the methodology, the number of training epochs is the number of used

historical time steps. When the number of epochs equals 3, three historical data recorded as [𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)] are used to derive the corresponding output 𝑌(𝑡). After running the

program, the recorded RMSE (root mean square error) during the training process for every

50 iterations is printed as follows:

The results clearly show a downward trend in training RMSE over the training epochs and

have a small impact on decreasing the test RMSE. It is a good sign, it shows that the developed

model is able to solve this prediction problem. Next, we try to increase the number of epochs,

and see how the quality of prediction may be affected.

- Diagnosis of Epochs = 4

When epochs equal 4, [𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)] is used to derive its corresponding output 𝑌(𝑡). Running the program again, the output is shown below:

69

The error is getting smaller compared to that of the previous experiment, it means increasing

the number of epochs is a decent way to get a better prediction model.

- Diagnosis of Epochs = 5 [𝑋(𝑡−4), 𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)] is used to attach with output 𝑌(𝑡). The RMSE for

both training set and test training set is shown below:

It is observed that the error is higher than that of the previous experiment, but the error

decreases rapidly after hundreds of iterations.

- Diagnosis of Epochs = 6

In this experiment, [𝑋(𝑡−5), 𝑋(𝑡−4), 𝑋(𝑡−3), 𝑋(𝑡−2), 𝑋(𝑡−1), 𝑋(𝑡)] is used to derive the output 𝑌(𝑡). The RMSE for both the training set and test training set is shown below:

Although the RMSE for both the Training data and testing data is smaller than that of the

previous experiment, the training time increases to more than 10 hours to train the model.

Thus, after balancing the computational cost and performance, Epochs = 5 is selected as the

LSTM parameter.

70

Phase 2: Tuning the Batch Size

Batch size controls how often to update the weights of the network. And specially, the

number of batches is normally selected as a factor of the size of the test and the training

dataset. In this section, we will explore the effect of varying the batch size. We will hold the

number of training epochs constant at 5. Since the size of the training data is 60, the

candidates of batch size are selected as 5,10,15,20, respectively. Since the experiment with

the batch size set at 5 has been carried out in the previous section, we can start from setting

the batch size at 10 directly.

- Diagnosis of 5 Epochs and Batch Size of 10

By holding the number of epochs at 5, we change the batch size to 10. Running the program

again, and the RMSE for both the training set and testing set is shown below:

It shows a faster decreasing trend in performance than that of a batch size of 5, and the

computational time is around 10 minutes which is acceptable. Thus, setting the batch size at

10 is better than setting it at 5.

- Diagnosis of 5 Epochs and Batch Size of 15

Repeating the previous experiment by changing the batch size to 15, The RMSE for both the

training set and testing set is shown below:

71

By increasing the batch size to 15, the RMSE of the training data set decreases rapidly while the RMSE

of the test data set decreases first and then increases after hundreds of iterations. This result indicates

that the model falls into overfitting problems, thus, setting the batch size to 15 seems not a wise

choice.

In summary, by holding the number of epochs at 5, the best number of batch size is 10 as it has a

better performance than setting the batch size at 5, while not encountering any overfitting problems.

And the experiment is early stopped since the last experiment shows that keeping increasing the

number of batch size has no improvement on the computational performance of the network.

Phase 3: Tuning the number of neurons in the hidden layer

The last parameter that needs to be tuned is the number of neurons in the hidden layer. Since the

work of this step is much larger than that of previous steps, it is better to decide other parameters

first. From previous experiments, the most proper setting for the numbers of epochs and batch size

are 5 and 10, respectively. Thus, while tuning the size of hidden layers in LSTM, these two parameters

will be fixed at its best value. There are some general rules that can help to choose the range that may

speed up the tuning process. The following formula provides a reference on deciding the range of the

hidden layers’ size :

𝑁ℎ = 𝑁𝑠(𝛼 ∗ (𝑁𝑖 + 𝑁0))

 𝑁𝑖= number of input neurons. 𝑁0 = number of output neurons.

72

𝑁𝑠 = number of samples in training data set.

α = an arbitrary scaling factor usually 2-10.

Considering that the number of input features is 93 and the number of outputs is 72, and the number

of samples in the training data set is 168,000, the suggested range of the neurons in the hidden layers

is from 100 to 500. Thus, the candidates of the hidden layers’ sizes are set at 100, 150, 200, 250, 300,

350, 400, 450, 500, respectively.

The tuning result is shown in the appendix. From the result, it is observed that the best combinations

for the hidden layers’ size is 400-300-150. Thus, the parameters for LSTM are all determined as shown

in the figure below:

Apparently, the accuracy is not satisfactory. Thus, an ensemble learning method is applied to boost

the prediction accuracy.

Phase 4: Accuracy boost by applying ensemble learning

According to the literature review, building multiple different RNNs and taking the average value of

the output could increase the accuracy. In order to build different prediction models, different training

data sets are needed. However, the traffic data used in training the RNN is generated by a simulated

traffic network. Different data subsets may not sufficiently differ from each other. Thus, instead of

training multiple models with different data subsets, these models could be trained with different

Figure 36: Tuned RNN with parameter labelled

73

output features in order to increase the differences among predictors. This idea can be realised based

on the equation below: 𝑇. 𝑅.𝐿𝐸𝐹𝑇+ 𝑇. 𝑅.𝑆𝑇𝑅𝐴𝐼𝐺𝐻𝑇+ 𝑇. 𝑅.𝑅𝐼𝐺𝐻𝑇 = 1

From the above equation, the sum of the turning ratios for three directions of each link is 1. The

predictors could be trained to predict either two of them. The third turning ratio could be calculated

by this equation. Thus, three different predictors are trained as follows:

Three different training data sets with the same size are collected from the VISSIM. The first dataset

is trained to predict the left and straight turning ratio for all the links. Turning ratios for right direction

is calculated instead of being predicted. With the same procedure, second dataset is trained to predict

the turning ratio of going left and going right. The third dataset is trained to predict the turning ratio

of going right and going straight.

After tuning these three models with the same steps discussed previously, three different results will

be generated. Since no model is important than other two, the averaging method is used in calculating

the final output. The accuracy after applying the ensemble learning method increased to 83%, which

shows that the proposed ensemble method is sufficiently effective.

Figure 37: Ensemble learning model with three independent predictors included

74

3.3.3 Comparisons and discussions

From the above experiment, FNN could achieve higher accuracy up to 88% than RNN. However, the

limitation of FNN is that this model is only applicable on specific time step, which means thousands of

FNNs are needed to predict the traffic turning ratios for the entire predicting period. On the contrary,

only one RNN is required to predict the turning ratios for the whole predicting horizon while the high

computational complexity leads to a low prediction accuracy. However, the accuracy could be boosted

by implementing multiple RNNs which are trained with different datasets and different output

features in an emsemble strategy.

75

3.4 Summary

This chapter is purely application oriented. In this chapter, two neural networks are used in solving

the traffic turning ratio prediction problem. By building a realistic 3*3 simulated traffic network in

VISSIM, we were able to obtain sufficient traffic data to train these two networks. The first model

constructed is the feed-forward neural network. After training the FNN to predict the turning ratio for

the whole prediction horizon, the accuracy of the tuned model is low, which is just a bit better than

random guess. Thus, this network is only trained to predict the traffic turning ratio for a specific time.

The result is promising, as it could achieve a very high prediction accuracy. In addition, an RNN is also

trained to solve this problem. Due to the computational complexity, although the performance of RNN

is much better than FNN, the prediction accuracy is still not satisfactory. Thus, an ensemble learning

techniques is applied to boost the prediction accuracy. Considering that the training data set is

generated by software which means all the vehicles are running in an ideal environment without

disturbance, although reducing the outliers could enhance the performance of the neural network,

the difference between different data sets may not be obvious. In order to increase the differences

among local predictors, different output features were assigned to these data sets. The result is

promising as it makes the prediction accuracy increased by 9%. This result also shows the potential of

getting even higher accuracy by constructing more different predictors and aggregating all the

predictions, which will be part of my future research topics.

76

Chapter 4: Closed-loop traffic light control: a

realistic case study

Two experiments are carried out in this chapter. In the first experiment, the traffic congestion

region identification model is integrated with an adaptive traffic light control strategy, which

aims to compute an optimal traffic light schedule based on real-time traffic conditions.

However, this strategy requires a high computational cost which cannot be applied to all the

intersections in the traffic network. Thus, instead of utilizing this optimization algorithm

globally, only the intersections in the most congested region need to be adjusted and other

regions remain using the default fixed-time traffic light schedule. Total queue delays inside

the network after integrating this model is recorded and compared with other algorithms. In

the second experiment, a closed-loop traffic light control algorithm is proposed by integrating

the traffic turning ratio prediction model with the adaptive traffic light control strategy. As

the turning ratio perdition plays an important role in this strategy, this experiment will explore

if this turning ratio prediction model can increase the efficiency of this traffic light control

strategy in reducing the delay time. And by feeding back the new traffic data, the off-line

traffic turning ratio prediction model will be retrained which enables the prediction model to

be adaptive to the traffic environment.

77

4.1 System setup and problem statement

Since the first experiment aims to figure out the performance of applying traffic light optimal

control strategy locally, the size of the tested traffic network should be large enough. The

traffic network in the Jurong area with 66 junctions is proper to this experiment. While the

second experiment aims to test the performance of the integrated closed-loop traffic control

algorithm. The size of the tested network should not be too large, as it will take long time to

compute the result. Thus, a 3*3 simulated traffic network is selected.

Both experiments are tested on the simulated traffic networks built in VISSIM. The data used

is generated by VISSIM as well. The program runs 3600 second each time and the traffic light

control algorithm adjusts the traffic light for every 15 seconds. Traffic data are collected from

VISSIM.

A. Integration with traffic congestion identification model

The process of this experiment is designed as follows. After running the simulated traffic

network built in VISSIM, for every 15 seconds or one time step, Traffic data (vehicle speed,

vehicle density etc.) will be collected and transferred to the traffic congestion identification

model. Part of the links will be clustered and identified as the most congested region based

on the clustering algorithm proposed above. This result will be further transferred to the

traffic light control module, which computes an optimal traffic light assignment for the next

15 seconds and feedback to the VISSIM. This process is also presented by the block diagram

in figure 38 below:

78

B. Integration with turning ratio perdition model

The process of this experiment is designed as follows. After running the simulated traffic

network built in VISSIM for a certain period, current traffic data together with the historical

data within 5 time steps will be accumulated and transferred to the turning ratio prediction

model. Based on the data provided by VISSIM, the predicted turning ratio at next time step

for each link is calculated. This result will be further transferred to the traffic light control

strategy. After that, new traffic light plan assignments can be computed and fed back to

VISSIM. Then the aforementioned process is repeated for every subsequent time step. The

following block diagram in the figure 39 above also shows the process:

However, this process uses off-line tuned traffic turning ratio prediction model. This model

cannot adaptive to the changing environment. In order to keep the prediction model being

undated, this model needs to be retrained with new data constantly. Generally, this closed-

loop traffic light control strategy is put in use only during daytime. Thus, time in the night can

Figure 38: Block diagram for the first experiment process Figure 39: Block diagram for the second experiment process

79

be utilized to the retrain the model by using the traffic data recorded during the daytime.

New process is shown in the block diagram below:

Figure 40: Improved Block diagram for the second experiment process

80

4.2 Experimental results

A. Integration with traffic congestion identification model

The proposed congestion region identification strategy has been integrated with a traffic light

scheduling algorithm [reference??], which applies different types of traffic light control

schemes in regions according to their congestion levels, where pure local strategies such as

the fixed-time scheme or back-pressure scheme is applied in a least congested region, and a

full-fledged optimization scheme is applied to the most congested regions. The simulation

result is shown in figure 16, where the total queue delay in the traffic network reduces 75%

compared to the situation where only a pre-time (or fixed-time) schedule is assigned. In

conclusion, identifying the congested regions in a traffic network is potentially able to

increase the efficiency of real-time optimal traffic light scheduling algorithms.

Figure 41: Simulation result for the traffic light control algorithm with different method integrated

81

B. Integration with turning ratio perdition model

In this closed-loop traffic light control simulation case study, a traffic network developed in

VISSIM is treated as a ground truth. The traffic light control system constantly generates data,

simulating sensor data collection in a real traffic network, while the link turning ratios used in

the control algorithm are provided by the RNN-based predictor. After sufficient data are

collected, the VISSIM simulation is paused or switched to a fixed-time scheme, while the RNN-

based predictor is re-trained based on newly collected data. Once the re-training is done, the

optimal traffic light controller is back online again, and the procedure repeats. The resulting

network delays are shown in Figure 42 below:

Figure 42: Simulation result for the traffic light control algorithm with different turning ratio prediction model integrated

82

4.3 Comparisons and discussions

From the results of these two experiments, a promising trend of decreasing the delay time can be

observed. Thus, by integrating the congestion identification model and turning ratio prediction model,

the performance of the adaptive traffic control strategy is improved noticeably. Further

improvements could be carried out on implementing the traffic signal controller with genetic

algorithms and predict the turning ratios for multiple steps.

83

Chapter 5: Conclusions and Recommendations

5.1 Conclusions

This research aims to provide solutions for the congestion region identification and traffic network

turning ratio prediction. In the first part, a proper way of determining the congestion level is proposed.

Two different clustering algorithms are used in identifying the congestion regions. Either method

provides a feasible result which helps to reduce the traffic delay time by 4 times. In the second part,

two neural network models are constructed. The FNN could achieve higher prediction accuracy but

with high computational complexity. The RNN is more convenient to use but with relatively low

accuracy. After that, a commonly used ensemble learning method is applied which successfully

increases the prediction accuracy of the RNN model by 9%. Lastly, the RNN model is integrated with a

real-time optimal traffic light control strategy and significantly reduces the overall traffic delay time in

the simulation, when compared to several other methods.

5.2 Recommendations

More detailed and complete literature review needs to be discussed as many state-of-art algorithms

are not included. Those algorithms should also be further applied into above cases with clear and

qualitative comparisons.

The evolution of the traffic congestion regions deserves to be further explored, as such knowledge

could help a network-wise real-time traffic signal control strategy generate timely optimal traffic light

schedules to reduce or eliminate the impact of the traffic congestion.

Furthermore, a self- adaptive RNN model needs to be further developed, which could take the traffic

data collected during the day time, and autonomously update the network parameter in a regular

basis. The self-adaptation could increase the turning ratio prediction accuracy and robustness of the

closed-loop traffic light control system to network changes.

84

Chapter 6: Appendix

6.1 Tuning result for different combination of hidden layers size

• Number of neurons in first hidden layer = 100, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 58.52% 57.61% 62.57% 59.37% 63.55% 61.74% 62.32% 59.10% 63.29%

150 60.36% 68.92% 59.84% 53.32% 59.52% 54.19% 58.97% 61.96% 61.88%

200 54.67% 63.5% 59.7% 66.1% 52.06% 55.89% 50.67% 56.67% 57.24%

250 61.82% 69.67% 64.86% 52.9% 66.43% 64.42% 56.15% 58.3% 54.48%

300 61.09% 60.05% 62.62% 60.21% 62.85% 56.62% 51.15% 66.22% 60.83%

350 57.88% 61.95% 63.56% 51.83% 69.5% 66.91% 67.58% 66.49% 55.48%

400 58.23% 63.92% 55.86% 59.42% 55.84% 64.24% 57.8% 59.23% 63.95%

450 48.21% 59.53% 60.02% 63.54% 64.58% 64.25% 66.32% 59.82% 53.71%

500 56.34% 51.23% 72.49% 63.41% 61.19% 65.79% 54.32% 67.4% 53.36%

• Number of neurons in first hidden layer = 150, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 56.42% 51.12% 63.59% 64.32% 62.85% 64.73% 68.22% 65.12% 53.21%

150 62.41% 64.51% 55.64% 52.63% 55.24% 59.25% 53.34% 63.63% 62.81%

200 64.62% 54.02% 54.23% 64.83% 50.75% 52.53% 54.62% 53.69% 52.2%

250 63.8% 64.35% 58.42% 54.04% 63.26% 65.42% 52.56% 57.2% 51.63%

300 62.74% 69.67% 67.53% 66.51% 72.45% 66.52% 50.1% 68.27% 63.75%

350 54.56% 66.5% 63.42% 61.03% 63.69% 63.41% 65.62% 63.45% 53.44%

400 53.2% 57.95% 64.87% 56.45% 54.04% 69.28% 57.5% 54.33% 63.31%

450 58.01% 53.54% 63.43% 62.56% 63.57% 54.64% 63.65% 56.66% 55.25%

500 57.35% 55.77% 56.75% 65.45% 71.67% 65.64% 52.35% 64.33% 56.63%

• Number of neurons in first hidden layer = 200, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 53.45% 56.11% 63.49% 54.01% 64.33% 54.77% 64.84% 57.8% 64.23%

150 69.86% 63.34% 57.45% 54.64% 50.34% 67.37% 64.34% 64.72% 61.51%

200 61.51% 53.72% 56.65% 62.54% 52.46% 53.43% 58.76% 55.07% 52.56%

250 62.56% 62.3% 50.62% 63.53% 62.72% 63.81% 62.59% 53.62% 53.59%

300 63.04% 68.68% 69.64% 62.62% 68.83% 63.72% 51.34% 64.2% 63.05%

350 56.06% 64.56% 62.62% 63.85% 64.78% 64.63% 65.93% 54.73% 52.98%

400 68.41% 66.31% 59.45% 55.39% 64.03% 69.42% 64.39% 67.02% 64.44%

450 61.26% 67.65% 62.76% 51.54% 67.36% 57.44% 53.05% 52.76% 52.26%

500 61.41% 55.93% 67.72% 60.61% 65.07% 65.17% 51.72% 63.86% 57.54%

85

• Number of neurons in first hidden layer = 250, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 61.18% 63.63% 65.41% 55.42% 55.52% 54.52% 64.51% 52.42% 62.87%

150 62.03% 64.52% 54.36% 53.37% 55.61% 64.14% 70.22% 64.56% 62.16%

200 56.92% 68.23% 54.07% 64.31% 55.83% 54.8% 52.65% 53.53% 63.23%

250 64.42% 62.62% 63.12% 53.05% 62.31% 58.43% 52.04% 63.32% 62.82%

300 58.51% 61.52% 55.63% 57.38% 57.31% 58.53% 62.45% 63.21% 60.38%

350 54.3% 62.09% 62.57% 56.52% 64.05% 63.41% 65.55% 63.16% 54.56%

400 52.04% 57.21% 53.63% 57.51% 54.72% 62.42% 59.42% 65.12% 63.54%

450 61.23% 54.52% 70.02% 63.34% 62.62% 63.51% 62.52% 54.51% 65.12%

500 53.19% 54.52% 66.31% 63.86% 67.84% 65.73% 65.43% 67.52% 59.97%

• Number of neurons in first hidden layer = 300, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 53.45% 55.13% 64.63% 63.63% 62.64% 69.32% 64.66% 65.02% 64.53%

150 63.56% 65.45% 53.1% 55.63% 55.73% 53.75% 63.93% 64.83% 56.34%

200 64.83% 57.83% 57.3% 62.73% 56.92% 53.95% 63.75% 53.65% 53.66%

250 66.05% 62.3% 55.07% 53.76% 63.82% 64.83% 54.83% 55.28% 57.03%

300 61.62% 70.33% 66.53% 66.73% 63.67% 67.54% 50.05% 66.32% 66.45%

350 58.52% 67.52% 63.42% 65.43% 63.42% 66.42% 64.42% 64.42% 54.05%

400 63.04% 56.83% 63.76% 52.77% 54.62% 63.95% 61.12% 55.83% 60.16%

450 63.28% 52.44% 61.31% 58.42% 62.31% 57.63% 63.53% 71.64% 65.28%

500 55.36% 56.34% 52.78% 65.61% 64.37% 65.62% 55.62% 67.31% 61.42%

• Number of neurons in first hidden layer = 350, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 63.61% 57.51% 67.52% 62.98% 60.5% 63.51% 61.61% 63.61% 62.62%

150 61.29% 64.82% 58.66% 57.5% 58.03% 59.41% 59.99% 63.81% 63.63%

200 64.61% 57.53% 56.72% 63.77% 63.5% 55.02% 58.09% 53.51% 64.67%

250 65.4% 52.47% 68.44% 64.44% 63.66% 66.32% 59.08% 53.41% 60.33%

300 66.7% 65.63% 67.31% 64.62% 64.96% 68.55% 63.52% 65.24% 60.52%

350 57.34% 65.72% 62.11% 60.41% 65.61% 62.03% 64.6% 63.99% 63.24%

400 56.12% 58.82% 63.54% 58.42% 59.63% 67.92% 54.03% 52.51% 63.16%

450 59.52% 64.56% 69.44% 62.04% 63.62% 57.72% 65.71% 54.71% 64.73%

500 60.52% 61.94% 65.86% 65.9% 66.72% 66.66% 63.72% 65.72% 63.72%

86

• Number of neurons in first hidden layer = 400, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 63.42% 63.31% 70.12% 62.31% 67.63% 68.34% 66.98% 57.15% 63.63%

150 63.42% 66.73% 63.62% 67.05% 74.34% 62.15% 69.62% 65.81% 63.75%

200 59.42% 70.53% 72.41% 67.42% 66.08% 68.64% 67.53% 72.64% 68.23%

250 71.82% 63.67% 70.86% 66.93% 64.51% 67.84% 64.33% 62.52% 67.42%

300 66.93% 65.73% 66.88% 63.04% 60.36% 63.77% 67.64% 71.64% 66.42%

350 57.8% 65.04% 65.62% 63.84% 70.53% 72.42% 64.75% 66.46% 68.09%

400 73.27% 64.63% 72.06% 65.74% 68.62% 64.53% 70.07% 65.64% 69.35%

450 63.27% 63.57% 59.85% 63.73% 63.56% 64.73% 68.42% 62.52% 67.53%

500 64.63% 67.08% 70.52% 67.66% 67.09% 71.05% 53.53% 67.3% 63.76%

• Number of neurons in first hidden layer = 450, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 63.42% 62.52% 59.04% 65.62% 70.42% 67.31% 65.52% 68.88% 57.32%

150 64.52% 68.21% 64.52% 64.03% 67.23% 71.3% 64.41% 67.63% 65.62%

200 66.73% 65.72% 57.23% 66.72% 65.52% 67.42% 62.77% 67.82% 63.63%

250 63.45% 69.76% 64.73% 64.72% 68.53% 65.53% 68.64% 60.05% 72.73%

300 67.54% 66.67% 67.55% 70.55% 67.85% 65.57% 62.74% 66.82% 65.04%

350 59.74% 64.42% 66.53% 70.05% 67.24% 70.63% 69.82% 68.63% 67.44%

400 58.42% 57.45% 66.82% 63.74% 69.53% 64.26% 63.63% 68.42% 64.82%

450 60.7% 62.86% 57.74% 57.57% 65.64% 59.64% 62.05% 69.66% 67.83%

500 58.42% 56.5% 59.63% 64.52% 62.53% 63.74% 62.73% 63.52% 68.42%

• Number of neurons in first hidden layer = 500, the first row shows the size of the second hidden

layer and the first column shows the size of third hidden layer.

Prediction

Accuracy

100 150 200 250 300 350 400 450 500

100 63.52% 63.62% 65.74% 66.73% 66.72% 67.42% 60.24% 58.42% 62.2%

150 62.04% 63.42% 70.6% 62.53% 63.88% 66.63% 67.73% 57.74% 65.71%

200 69.53% 58.53% 57.42% 63.52% 62.52% 62.78% 69.42% 70.65% 64.56%

250 60.46% 68.62% 63.62% 62.52% 70.73% 63.64% 64.74% 63.83% 62.74%

300 59.42% 62.41% 64.62% 67.41% 64.62% 68.62% 63.62% 60.63% 67.74%

350 58.72% 65.62% 64.5% 64.86% 64.82% 66.55% 60.73% 56.53% 60.63%

400 61.22% 63.65% 63.41% 67.99% 67.92% 69.42% 66.31% 61.62% 63.43%

450 65.73% 60.92% 58.48% 62.85% 62.73% 64.07% 59.83% 63.62% 63.26%

500 67.35% 62.74% 70.23% 68.62% 63.45% 62.67% 63.73% 67.72% 62.84%

87

Bibliography

[1] L.G. Anthopoulos, The rise of the smart city, in: Understanding Smart Cities: A Tool for

Smart Government or an Industrial Trick? Public Administration and Information Technology,

vol. 22, Springer, Cham, 2017.

[2] A. Das, P.K. Dash, B.K. Mishra, An intelligent parking system in smart cities using IoT, in:

Exploring the Convergence of Big Data and the Internet of Things, IGI Global, Hershey, PA,

2018, pp. 155–180.

[3] Y. Zhang, R. Su, and K. Gao, “Urban road traffic light real-time scheduling,” in Decision

and Control (CDC), 2015 IEEE 54th Annual Conference on. IEEE, 2015, pp. 2810–2815.

[4] ECMT (ed.) (1999) The spread of congestion in Europe, Report on the 110th Round Table

on Transport Economics, Paris: OECD Publication Service.

[5] Weisbrod, G., Vary, D., and Treyz, G. (2001) Economic Implications of congestion, NCHRP

Report 463, Washington, DC.: Transportation Research Board.

[6] Victoria Transport Policy Institute (VTPI) (2005) Congestion reduction strategies:

identifying and evaluating strategies to reduce congestion, in: Online TDM Encyclopaedia,

Victoria, British Columbia, Canada: Victoria Transport Policy Institute.

[7] Downs, A. (2004) Still stuck in traffic: coping with peak-hour traffic congestion, Washington,

D.C.: The Brookings Institution.

[8] Turner, S.M. (1992) Examination of indicators of congestion level, Transportation Research

Record: Journal of the Transportation Research Board, No. 1360, pp.150-157.

[9] Turner, S.M., Lomax, T.J. and Levinson, H.S. (1996) Measuring and estimating congestion

using travel time-based procedures, Transportation Research Record: Journal of the

Transportation Research Board, No. 1564, pp. 11-19.

[10] Schrank, D. and Lomax, T. (1997) Urban roadway congestion: 1982-1994, volume 1 &2,

Research Report 1131-9, Texas: Texas Transportation Institute.

[11] https://mobility.tamu.edu/umr/

[12] Texas Transportation Institute (2005) The Keys to Estimating Mobility in Urban Areas

Applying Definitions and Measures That Everyone Understands, The Texas A&M University

System

https://mobility.tamu.edu/umr/

88

[13] Roess, R.P., Messer, C.J., Mcshane, W.R., Fruin, J.J., Levinson, H.S. May, A.D. and

Dudek, C.L. (1985) Highway Capacity Manual, Special Report 209, Washington, D.C.:

Transportation Research Board.

[14] Williams, B.M., Hoel, L.A., 2003. Modelling and forecasting vehicular traffic flow as a

seasonal ARIMA process: theoretical basis and empirical results. Journal of Transportation

Engineering – ASCE 129, 664–672.

[15] Smith, B.L., Williams, B.M., Oswalsd, R.K., 2002. Comparison of parametric and

nonparametric models for traffic flow forecasting. Transportation Research

Part C 10, 303–321.

[16] Ghosh, B., Basu, B., O’Mahony, M.M., 2005. Time-series modelling for forecasting

vehicular traffic flow in Dublin. Transportation Research Board Annual Meeting, Washington,

DC.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol.

9, no. 8, pp. 1735–1780, 1997.

[18] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural

networks,” in Acoustics, speech and signal processing (icassp), 2013 ieee international

conference on. IEEE, 2013, pp. 6645– 6649.

[19] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption

generator,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2015, pp. 3156–3164.

[20] D. Eck and J. Schmidhuber, “A first look at music composition using lstm recurrent neural

networks,” Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, vol. 103, 2002.

[21] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm:

Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 961–971.

[22] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory neural network

for traffic speed prediction using remote microwave sensor data,” Transportation Research

Part C: Emerging Technologies, vol. 54, pp. 187–197, 2015.

[23] Y. Duan, Y. Lv, and F.-Y. Wang, “Travel time prediction with lstm neural network,” in

Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on. IEEE,

2016, pp. 1053–1058. 2

89

[24] Y.-y. Chen, Y. Lv, Z. Li, and F.-Y. Wang, “Long short-term memory model for traffic

congestion prediction with online open data,” in Intelligent Transportation Systems (ITSC),

2016 IEEE 19th International Conference on. IEEE, 2016, pp. 132–137.

[25] Y. Wu and H. Tan, “Short-term traffic flow forecasting with spatial temporal correlation in

a hybrid deep learning framework,” arXiv preprint arXiv:1612.01022, 2016.

[26] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu, “Deep learning: A generic approach

for extreme condition traffic forecasting,” in Proceedings of the 2017 SIAM International

Conference on Data Mining. SIAM, 2017, pp. 777–785.

[27] X. Song, H. Kanasugi, and R. Shibasaki, “Deeptransport: Prediction and simulation of

human mobility and transportation mode at a citywide level.” in IJCAI, 2016, pp. 2618–2624.

[28] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “,” arXiv preprint arXiv:1705.02699, 2017.

[29] R. Fu, Z. Zhang, and L. Li, “Using lstm and gru neural network methods for traffic flow

prediction,” in Chinese Association of Automation (YAC), Youth Academic Annual Conference

of. IEEE, 2016, pp. 324–328.

[30] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “Lstm network: a deep learning approach

for short-term traffic forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75,

2017.

[31] Wang, Wei et al. “STING: A Statistical Information Grid Approach to Spatial Data Mining.”

VLDB (1997).

[32] Agrawal, R., Gehrke, J., Gunopulos, D. & Raghavan, P. (1998). Automatic Subspace

Clustering of High Dimensional Data for Data Mining Applications.. In L. M. Haas & A. Tiwary

(eds.), SIGMOD Conference (p./pp. 94-105), : ACM Press. ISBN: 0-89791-995-5

[33] Jaiwei Han and Micheline Kamber, “Datamining: Concepts and Techniques”, Morg

Kaufman Publishers, 2001.

[34] Ali, K., & Pazzani, M. (1996). Error reduction through learning multiple descriptions.

Machine Learning, 24, 173–202.

[35] Alpaydin, E. (1993). Multiple networks for function learning. In Proceedings of the 1993

IEEE International Conference on Neural Networks, Vol. I, pp. 27–32 San Francisco.

[36] Breiman, L. (1996c). Stacked regressions. Machine Learning, 24(1), 49–64

90

[37] Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In

Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156

Bari, Italy.

[38] S.W. Chiou, TRANSYT derivatives for area traffic control optimisation with network

equilibrium flows, Trans. Res. B. 37 (3) (2003) 263–290.

[39] P. Lowrie, “Scats, sydney co-ordinated adaptive traffic system: A traffic responsive

method of controlling urban traffic,” Roads and Traffic Authority NSW, Darlinghurst, NSW

Australia, 1990.

[40] P. Hunt, D. Robertson, R. Bretherton, and M. C. Royle, “The scoot on-line traffic signal

optimisation technique,” Traffic Engineering & Control, vol. 23, no. 4, 1982.

[41] Rongrong Tian , Xu Zhang, “Design and Evaluation of an Adaptive Traffic Signal Control

System – A Case Study in Hefei”, China 2016 ,International Symposium of Transport

Simulation (ISTS’16 Conference), June 23~25, 2016

[42] Jianhua Guo, Ye Kong, Zongzhi Li, Wei Huang, Jinde Cao, Yun Wei , “A model and

genetic algorithm for area-wide intersection signal optimization under user equilibrium traffic”,

International Association for Mathematics and Computers in Simulation (IMACS), 0378-4754

(2017).

[43] Gustav Nilsson _ Giacomo Como, “On Generalized Proportional Allocation Policies for

Traffic Signal Control”, International Federation of Automatic Control, 50-1 (2017) 9643–9648.

[44] Junchen Jin , Xiaoliang Ma, “A group-based traffic signal control with adaptive learning

ability”, Engineering Applications of Artificial Intelligence 65 (2017) 282–293.

[45] Nasser R. Sabar , Le Minh Kieu , Edward Chung , Takahiro Tsubota , Paulo Eduardo

Maciel de Almeida, “A memetic algorithm for real world multi-intersection traffic signal

optimisation problems”, Engineering Applications of Artificial Intelligence 63 (2017) 45– 53

[46] Mohammad Aslani, Mohammad Saadi Mesgari, Marco Wiering, “Adaptive traffic signal

control with actor-critic methods in a real world traffic network with different traffic disruption

events”, Transportation Research Part C 85 (2017) 732–752

[47] R. P. Roess, E. S. Prassas, and W. R. McShane, Traffic engineering.

[48] Schmitz, J.E., Zemp, R.J., Mendes, M.J., 2006. Artificial neural networks for the solution

of the phase stability problem. Fluid Phase Equilib. 245, 83–87.

91

[49] Chouai, A., Laugier, S., Richon, D., 2002. Modeling of thermodynamic properties using

neural networks: application to refrigerants. Fluid Phase Equilib. 199, 53–62.

[50] Levenberg, K., 1944. A method for the solution of certain problems in least squares. Q.

Appl. Math. 2, 164–168.

[51] Cortes,C.,& Vapnik,V. (1995). Support vector networks.MachineLearning,20,273–297.

[52] Huang,G.B.,Zhou,H.,Ding,X.,&Zhang,R.(2012). Extreme learning machine for regression

and multi class classification. IEEETransactionson Systems, Man, and Cybernetics,

PartB,42(2),513–529.

[53] Breiman,L.(2001).Randomforests.Mach.Learn.,45,5–32.

[54] Friedman,J.H.(2002). Stochastic gradient boosting. Computational Statistics and Data

Analysis, 38(4), 367–37

[55] Ye,J.,Chow,J.-H.,Chen,J.,& Zheng,Z.(2009). Stochastic gradient boosted distributed

decision trees. InD.W.-L.Cheung,I.-Y.Song,W.W.Chu,X.Hu,&J.J.Lin(Eds.),CIKM(pp.2061–

2064).ACM.

[56] Chapelle, O., & Chang,Y. (2011). Yahoo! Learning to rank challenge overview. InO.

Chapelle, Y. Chang, &T.-Y.Liu(Eds.), Yahoo! Learning to rank challenge. In JMLR

Proceedings: 14(pp.1–24).

[57] Dellaert, Frank (2002). "The Expectation Maximization Algorithm".

[58] Brendan J. Frey; Delbert Dueck (2007). "Clustering by passing messages between data

points". Science. 315 (5814): 972–976

