
1

Congestion Location Detection:
Methodology, Algorithm, and Performance

Shao Liu1, Mung Chiang1, Mathias Jourdain2, Jin Li3, and Phil A. Chou3

1Princeton University, 2 Microsoft Corporation, 3 Microsoft Research

Abstract—Can an end-host running multiple TCP sessions
detect not just the occurrence, but also the location of congestion?
This paper answers this question through new analytic results on
the two underlying technical difficulties: synchronization effects
of loss and delay in TCP and distributed hypothesis testing using
only local loss and delay data, as well as practical algorithm
development and extensive simulations. It presents a Congestion
Location Detection algorithm that effectively allows an end host
to distributedly detect whether congestion happens in the local
access link or in more remote links. This further enables the
practical usage of low-priority congestion control protocols.

I. INTRODUCTION

Congestion control relies on the ability to detect the oc-
currence of congestion. What if an end host can also detect
the location of congestion, at least to the degree of detecting
whether congestion happens on a local access link shared only
by TCP sessions from itself or on a more remote link? The
ability to do Congestion Location Detection would provide an
answer to practical questions like the following one.

A. Motivation

Consider two types of Internet applications: 1) high-priority
applications that are quality of service (QoS) sensitive, such as
real-time media streaming, instant messaging, web browsing,
and 2) low-priority applications that are QoS insensitive,
such as peer-to-peer file sharing, FTP file download, software
updates, database synchronization, and file server backup. A
number of proposals have been developed to emulate a low-
priority service by end-to-end congestion control (e.g. TCP-
Nice [1], TCP-LP [2], BATS [3], BITS [4], 4CP [5]). Some
have already been used in end systems, e.g., Windows uses
BATS and Linux uses TCP-LP for automatic software update.
These low-priority flows give up network bandwidth when the
network is congested, and thus benefit high-priority flow.

An issue that hinders the wide deployment of the end-to-
end low-priority TCP protocols is that the low-priority flow
gives up bandwidth whenever the network is congested, no
matter where the congested link is. If the congested link is a
local broadband link, e.g., a DSL or Cable Modem link, from
home gateway to central office, the aggressive back off of the
low-priority applications during congestion benefits the high-
priority applications of the same end host. On the other hand,
if the congested link is a remote link, either in the Internet
core or at the server side, the back off of the low-priority
applications only benefits high-priority flows competing for
that link, which are most probably flows from other users.

This altruism behavior is not desirable for most low-priority
applications.

One way to solve the incentive issue for low-priority TCP
deployment is to provide a mechanism that detects the location
of the congestion, or more specifically, to determine whether
the congested link is a local link shared only by all flows from
a home, or a remote link where the flows from the same home
constitute just a small proportion of the traffic.

Similarly, congestion location detection can allow an ISP
to decide if the links next to a server is often the congestion
location rather than links farther away from the server, all
without using extra bandwidth for probing and measurement.

B. Challenges

Congestion location detection is a very challenging prob-
lems due to the following reasons:
• It is intractable to solve the Congestion Location Detec-

tion problem using traditional estimation and detection
techniques, e.g., [6]. If we think of it as a hypothesis
testing problem, we have to calculate the statistics of each
individual hypothesis (which is complex by its own), and
work through a gigantic number of hypotheses.

• We cannot send probing packets or rely on router sup-
ports. Sending constant stream of probing packets causes
too much overhead, and is impractical in most home
scenario. If we only send probing packets after the
occurrence of congestion, it lead to inaccurate location
detection.

• Without router support, the only congestion related sig-
nals to end applications are packet losses and delays.
If packet losses were completely synchronized, i.e., all
home flows passing a link see packet losses if the link is
congested, then this problem would have been trivial. In
reality, the packet loss pattern is partially synchronized
in general [7]. There are no established results on the
number of flows seeing loss when the shared link is
congested.

• Packet delay cannot give sufficient information on con-
gestion location detection, either. Packet delay measure-
ments are buried with noise [8], and sometimes can be
heavily polluted [9]. There may be extreme or oscillatory
delay samples within one individual flow, and outliers
among the delay statistics of all flows.

Given the enormous challenges above, we ask for less in
the problem of Congestion Location Detection: can an end
host use only local loss and delay information to detect if

2

congestions happen in a local access link shared only by
TCP sessions from itself or in some more remote links? Even
this detection problem is extremely challenging. Indeed, we
can draw an analogy with the much more extensively studied
problem of Congestion Occurrence Detection (COD), where
the underlying reasoning is that events such as 3 duplicated
ACK packets imply packet loss, which in turn implies the
occurrence of congestion (somewhere in the network). Neither
implication relationships is always true, but the resulting de-
sign of TCP has been working well enough. In our approach to
the more difficult problem of Congestion Location Detection
(CLD), the underlying reasoning is that similarities of loss
and delay behaviors across multiple TCP sessions running at
the same end host imply synchronization of congestion across
the sessions, which in turn implies that congestion happens
close to the end host since the sessions will share less and
less common paths farther away they go from the end host.
Again, neither implication relationships is always true. In fact,
the “events” in CLD is much more fuzzily defined than those
in COD, and the implication relationships are much harder to
quantify probabilistically in CLD than those in COD.

C. Main Contributions

There are two major contributions in terms of methodology:
1) the first comprehensive study of the synchronization behav-
ior of packet loss and delay among multiple TCP sessions, and
2) a distributed hypothesis testing theory for TCP. These are
important and under-explored problems in their own right, and
they together lead to the design and performance analysis of an
algorithm for CLD using local packet loss and delay informa-
tion. Through both analytic results and extensive simulations,
we show that our CLD algorithm can effectively allow an end
host to distributedly detect whether congestion happens in the
local access link or in more remote links.

We first introduce the CLD algorithm in Section II. We then
study the synchronization of flow loss events in Section III,
study the synchronization of delay increase and describe
the distributed hypothesis testing in Section IV. Using the
analysis of both loss and delay, we justify the CLD parameter
configuration and analyze the detection accuracy in Section V.
We finally provide extensive ns-2 simulation results to test the
performance of our algorithm in Section VI, and conclude
this paper in Section VII. Without explicit explanation later,
all proofs of our analytical results are given in the Appendix.

II. THE CONGESTION LOCATION DETECTION ALGORITHM

The following key ideas will be used in the construction of
our CLD algorithm, whose description will be provided in this
section and development presented in Sections III and IV.

Each end host sends multiple TCP flows, e.g., from the same
home. Whenever one flow sees a packet loss, we consider a
congestion event occurred in the network, and trigger the CLD
algorithm, which is based on the following ideas: (1) If many
flows “see” congestion (as defined later this section), then the
local link is the congested link. If the congested link is remote,
it is very rare that many flows from this home pass the same
congested remote link and see congestion synchronously, as

it is unlikely for different remote links to be congested at
the same time. (2) If there are only a small number of flows
seeing congestion, we need to make location detection based
queueing delay patterns. If the local link is congested, typically
most flows will experience high delays. Furthermore, as the
queueing delays of all flows are caused by the same link,
queueing delay increases for most flows should be of a similar
level. If the delay patterns satisfy the above conditions, we
declare that the congestion is local, otherwise, we consider the
congestion to be remote. (3) Delay measurements tend to be
polluted and some out of normal range. These outlier samples
should not be used when we compute delay statistics among
all flows. If there are too many outliers, it simply means that
the queuing delay increases differently among the flows, and
this is an indication that the congested link is remote.

With these ideas, we now describe the (CLD) algorithm in
details. Using both loss and delay, CLD periodically queries
loss and delay information of all TCP flows from the transport
layer. This query can be done by kernel level modifications,
or can be obtained through the existing TCP-E-STATS-MIB
(Extended Statistics Management Information Base) module
[10]. The loss and delay query is straight forward at senders,
and at receiver side, the mechanism in [11] is used. The CLD
algorithm updates the total number of loss events, denoted by
L, of all flows, and the moving average of queueing delay
over the last query period, denoted by q, of all flows. By
default, one query period lasts 0.1 second, and a longer query
period is also allowed. It is possible that one congestion event
spans over multiple consecutive query periods. If that occurs,
CLD will combine the statistics over all these consecutive
query periods and generate one single set of loss and delay
counters. Therefore, the more frequent CLD queries, the more
accurate and quick the detection. It is also possible that a query
period is much longer than the duration of a congestion event,
and packet loss occurs at the very beginning of this query
period. If that occurs, most delay samples are taken after the
congestion is alleviated, and the moving average q is much
less than the actual queueing delay caused by this congestion
event. To avoid such underestimation, once we see loss event
spanning over only one query period, we compare the average
delays of the current and previous query periods, and set the
delay counter to be the maximum of the two. Suppose one
home has altogether N flows, indexed by i = 1, 2, · · · , N , we
add subscript i to each variable we introduced above, e.g., Li,
qi, etc. If none of the flows sees an increase in its Li value
compared with the previous query, then there is no congestion
in the network during the last period. Otherwise, congestion
occurs during the last (one or many) query period, and we
use the following three modules or steps to detect congestion
location.

The flow chart and the pseudo code of the CLD algorithm
described below are shown in Figure 1 and Figure 2; and the
parameters, counters and state variables are summarized in
Table I and Table II.

1) Quick Detection (QD) Module: For each flow i, we
say it “sees” congestion if either it experiences packet losses,
or qi is larger than a threshold. As shown in Table II, we
maintain four state variables, µ̂LC , µ̂RC , σ̂LC and σ̂RC , which

3

Update LC est.

Many outliers

or at both sides

congestion by loss

Many flows "see"

or very large delay?

No

Yes

 and large

Large Ave(q)

Ave(q) / Std(q)

Yes

Local congestion

Update LC est.

Yes

Input:

Loss + Delay

of all flows

No No

Congestion Locatinon Detection

Quick Detection Moduel
Outlier Identification
and Removal Moduel

Hypothesis Testing Module

Estimation of

mean and std

of delays for
LC and RC

State Variables:
Local congestion Remote congestion

Update RC est.

congestion

Remote

Update

RC est.

at lower side

Fig. 1. Flow chart of the CLD algorithm.

Parameter κQD κlow κboth β g
Default Value 0.8 0.2 0.3 0.9 2/3/5

Module of usage QD OIR OIR QD OIR
Section of discussions IV-C/D IV-B IV-B V IV-B

TABLE I
SUMMARY OF CLD PARAMETER SETTINGS.

are estimations of the mean and standard deviation of delays
among N flows at one congestion event, for local and remote
congestions. The detailed estimation mechanism is explained
in Section IV-C. With these estimations, we set the threshold
to be β × µ̂LC , where β is a parameter with default value
of 0.9. If more than κLN flows “see” congestion, where
κL is a parameter with default value of 0.8, we detect local
congestion directly, update µ̂LC and σ̂LC , and the algorithm
ends. Otherwise, we enter the next module.

2) Outlier Identification and Removal (OIR) Module:
We use Hampel’s identifier to identify and remove outliers.
For details of the identifier, see Section IV-B. If the number
of the two-side outliers exceeds κbothN , where κboth is a
parameter with default value of 0.3, then the delay samples are
too diversified, and we consider the congestion to be remote.
Furthermore, if it is a local congestion, most delays should
have a large queueing delay, i.e., there should be no or very
few lower side outliers. If the number of lower side outliers
exceed κlowN , where κlow = 0.2 is a parameter, then there
are too many flows with low delay for the congestion to be
local. For either case, we detect remote congestion, update
µ̂RC and σ̂RC , and the algorithm ends. Otherwise, we enter
the next module.

3) Hypothesis Testing (HT) Module: We compute the
mean and standard deviation of the inlier samples, and denote
them by µq and σq , respectively. From hypothesis testing

Queried Counters Estimated Statistics/State Variables
Name Li qi µ̂LC µ̂RC σ̂LC σ̂RC

Meaning Loss Delay Estimation of mean and std of {qi,∀i}
for local and remote congestion

Module QD ALL QD+HT HT HT HT
Section of III IV IV-C
Discussion

TABLE II
SUMMARY OF COUNTERS AND STATE VARIABLES OF CLD ALGORITHM.

Congestion Location Detection Algorithm

Parameters: κQD = 0.8, κlow = 0.2, κboth = 0.3, β = 0.9,

g = 5 if N ≤ 5, g = 3 if 5 < N ≤ 10, and g = 2 otherwise.

Input: ∆Li, qi, ∀i = 1, 2, · · ·N .

State Variables: µ̂LC , µ̂RC , σ̂LC , σ̂RC .

if ∆Li = 0,∀i = 1, 2, · · · , N
Output: “No Congestion”.
goto :END

end if
if N = 1

Output: “Congestion, But No Location Detection”.
goto :END

end if
Enter Quick Detection Module:
Count =

∑N
i=1 1(∆Li>0 or qi>βµ̂LC)

if Count > κQDN
Output: “Local Congestion”. Update µ̂LC and σ̂LC .
goto :END

end if
Enter Outlier Identifier Module:
med ← median(qi, i ∈ 1, · · ·N)
mad ← median(|qi −med|, i ∈ 1, · · ·N)/0.6745

OL ←
∑N

i=1 1qi<med−g×mad

OU ← ∑N
i=1 1qi>med+g×mad

if OL > κlowN or OL + OU > κbothN
Output: “Remote Congestion”. Update µ̂RC and σ̂RC .
goto :END

end if
Enter Hypothesis Testing Module:
µq ← mean(qi : qi ∈ [med− g ×mad, med + g ×mad])
σq ← std(qi : qi ∈ [med− g ×mad, med + g ×mad])

α1 ← 1
2
(µ̂LC + µ̂RC) and α2 ← 1

2

(
µ̂LC
σ̂LC

+ µ̂RC
σ̂RC

)

if µq > α1 and µq/σq > α2

Output: “Local Congestion”. Update µ̂LC and σ̂LC .
else

Output: “Remote Congestion”. Update µ̂RC and σ̂RC .
end if
:END

Fig. 2. Pseudo code for the Congestion Location Detection Algorithm.
The mechanism of updating µ̂LC , σ̂LC , µ̂RC and σ̂RC is explained
in Section IV-C.

analysis in Section IV-C, we check whether µq > α1

and µq/σq > α2

√
(N − 1)/N , where α1 and α2 are two

thresholds that are functions of µ̂LC , µ̂RC , σ̂LC and σ̂RC .
For detailed relationship, see equation (23) or Figure 2. If
both conditions satisfy, then the queueing delays of all inliers
are sufficiently large and close, which is a pattern of local
congestion, and we detect local congestion, update µ̂LC and
σ̂LC . Otherwise, we detect remote congestion, and update µ̂RC

and σ̂RC .

III. SYNCHRONIZATION OF PACKET LOSS PATTERN

From this section to Section V, we justify our algorithm,
study the parameter configuration, and analyze the accuracy
of detection. We focus on packet loss in this section, study

4

delay in Section IV, and derive the detection accuracy and
parameter configuration guideline in Section V. The main
analytical results are summarized in Table III.

Packet loss is used in the Quick Detection Module. If most
flows see congestion either by packet loss or very large delay,
local congestion is detected. To study the parameter setting
of κQD and analyze the false local detection probabilities, we
need to answer the following problem on the synchronization
level of packet losses: Assume a link shared by N TCP flows
is congested, and let H be the number of flows that experience
a loss event (one or more packet losses from this congestion),
what is the statistics of H?

Suppose during one congestion, altogether M packets are
dropped at the link. To derive the statistics of H , we must
know the statistics of M first. Therefore, the synchronization
problem is divided to the following two subproblems: 1) What
is the statistics of M? and 2) what is the statistics of H after
we know the statistics of M? We study the two subproblems
one by one.

A. Total Number of Dropped Packets (M)

1) Homogeneous RTT Users: Consider a link with buffer
size B and capacity C, shared by N users with homogeneous
RTT T = D+q, where D and q are propagation and queueing
delays, respectively. Suppose flow i has quantized integer
value window size Wi, and let S :=

∑N
i=1 Wi be the sum

of all window sizes, then totally there are S packets outgoing
in the network pipe, either along the network path, or in the
buffer of the bottleneck link router. Consider a congestion
event, which starts when the queue becomes full and the next
arrival packet has to be dropped, and ends when one flow
sees packet losses, backs off its window size, and the total
arrival rate at the link drops to below its capacity. We call the
duration of a congestion event a congestion alleviation period,
denoted by Ta. We further denote by W−

i and W+
i the window

sizes of flow i right before and after the congestion event, and
correspondingly, we have S− and S+. Note that Ta is the
sum of the time it takes for the loss propagate to the sender,
and the time it takes for the effect of throughput reduction
to propagate to the router. Therefore, Ta does not depend on
the split of propagation delay between forward and backward
delays, or the location of the router; it only depends on D,
q, and the queueing policy. For simplicity of analysis, we let
the forward delay be zero and the backward delay equal to D,
as depicted in the left figure of Figure 3. The result derived
from this simplified model also holds for general cases. We
first have the follow result for the simplest homogeneous RTT,
Droptail, and randomness free case:

Proposition III.1. If a Droptail router is shared by N flows
with identical RTT, and if there is no randomness caused by
bursty packet arrival process or background traffic, then M =
N .

This result explains the global synchronization phenomena,
which states that if N flows have identical RTTs and if the
network has no randomness, then all or most flows experience
packet losses and back off window sizes synchronously [12],

Dropfront

Senders

Buffer Size: B

Network Path BDP: CD

Droptail

2

Senders

Buffer Size: B

X D

X D

X D

Droptail Dropfront

1

2

33

1

Fig. 3. Homogeneous RTT users (left) Vs heterogeneous RTT users (right).

[13]. However, it is widely observed that global synchroniza-
tion is actually very rare in reality [14], since in real-world
networks, RTTs of all flows are not identical (even if users
are considered to have homogeneous RTT, they usually have
slight RTT differences), the packet arrival process is random,
and typically there are background traffics in reality [15]. For
those realistic cases, M is no longer a constant, and global
synchronization is avoided. Furthermore, if “drop from front”
option (Dropfront) [16] is selected, M is not a constant either.
All these analysis are validated by extensive ns-2 simulations
in Section VI.

We have performed ns-2 simulations showing that M tra-
jectory is constant for simplest case, but even with small back-
ground traffic or slight RTT differences, randomness is brought
into the system and M shows fluctuations. Furthermore, if
“drop from front” option (Dropfront) [16] is selected, M is
not a constant either. All these results are demonstrated in
Figure 4.

0 20 40 60 80 100 120 140 160 180 200
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11
Link Pkt Loss Vs Time. N=10, B=8. Homo RTT

Time (sec)

Li
nk

 P
kt

 L
os

s
#

0 20 40 60 80 100 120 140 160 180 200
8

9

10

11

12

13

14

15

16

17
Link Pkt Loss Vs Time. N=10, B=8. Homo RTT

Time (sec)

Li
nk

 P
kt

 L
os

s
#

0 20 40 60 80 100 120 140 160 180 200
4

6

8

10

12

14

16
Link Pkt Loss Vs Time. N=10, B=8. Homo RTT

Time (sec)

Li
nk

 P
kt

 L
os

s
#

0 20 40 60 80 100 120 140 160 180 200
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
Link Pkt Loss Vs Time. N=10, B=8. Homo RTT

Time (sec)

Li
nk

 P
kt

 L
os

s
#

Fig. 4. Global synchronization and its avoidance Top left: N identical
RTT TCP flows pass a Droptail queue without background traffic, where
N = 10, propagation delay D = 60, capacity C = 20 Mbps, and buffer
size B = 160 packets. Top right: same as top left, but with background
traffic: we add N = 10 Pareto ON-OFF UDP flows, each with a rate of
100 kbps. Left bottom: same as top left, but with slight RTT differences:
Di = 60+(i− 1)× 0.4, ∀i = 1, 2, · · · , 10. Right bottom: same as top left,
but use Dropfront queue. From this figure, M is constant in the radical case,
but becomes a variable if there is background traffic, or if the RTTs are not
exactly the same, or Dropfront queue is used.

With randomness brought in, we have the following result:

Proposition III.2. If a link shared by N homogeneous RTT

5

users is congested, then M , the number of packet dropped
at this congestion event, is a random variable, and E[M] =
ηN , where η = 1 for Droptail, η = D/T = D/(D + q) =
CD/(CD + B) for Dropfront. Furthermore, Std(M) is also
proportional to N .

The reason that Dropfront queue reduces E[M] is that, with
a packet at the front of queue dropped, its sender realizes the
congestion occurrence earlier than if the packet at the end of
queue is dropped, and the congestion event lasts a shorter time.
Consider the congestion alleviation period Ta: E[Ta] = T for
Droptail, but E[Ta] = D for Dropfront, since the propagation
of loss does not need to wait at the queueing delay. This
advantage of Dropfront has been qualitatively stated in [16],
but not quantitatively studied before.

2) Heterogeneous RTT Users: We next consider heteroge-
neous users case, where user i has propagation delay Di and
RTT Ti, as shown in the right figure of Figure 3. Suppose
there are Bi packets in the buffer from flow i, and flow
i has throughput xi, then Wi = xiDi + Bi. During each
congestion event, we have

∑N
i=1 xi = C,

∑N
i=1 Bi = B,

q = B/C = Bi/xi, and Ti = Di + q, ∀i.
The key difference between heterogeneous and homoge-

neous RTT flows is that, a congestion event lasts a fixed
duration for homogeneous RTT case, but has a variable length
for heterogeneous RTT case: the length could be any value
between the minimum and maximum of all RTTs (or prop-
agation delays for Dropfront), depending on the packet loss
pattern. Consider a simple example of two flows: flow 1 has
10 milliseconds (ms) delay (RTT for Droptail and propagation
delay for Dropfront) and flow 2 has 12 ms delay. When
congestion occurs, multiple packets are dropped. If the first
dropped packet belongs to flow 1, then Ta = 10 ms. However,
if the first dropped packet belongs to flow 2, then there are
two possibilities: if there is a flow 1 packet dropped within
2 ms after the first packet drop (say, after ψ < 2 ms), then
Ta = 10 + ψ ms, as the effect of throughput reduction from
flow 1 propagate to the link first; on the other hand, if there
is no flow 1 packet loss, or all flow 1 packet drops occur
more than 2 ms later than the first flow 2 packet drop, then
Ta = 12 ms. Therefore, Ta could be any value between 10
ms and 12 ms, and the distribution of Ta is very complicated,
depending on the modeling of packet arrival process and
the quantization of window size of each flow. We make the
following assumption on the packet loss pattern [7]:

Assumption 1. The probability of each dropped packet be-
longs to flow i, is Bi/B = xi/C.

This assumption comes from the following reasoning: the
probability that a random packet in the queue or a random
incoming packet belongs to flow i is Bi/B = xi/C, so is the
probability for the dropped packet. From Assumption 1, we
can prove the following result:

Proposition III.3. For heterogeneous RTT case, still E[M] =
N for Droptail queue, and for Dropfront queue,

ηminN ≤ E[M] ≤ ηmaxN , (1)

where

ηmin := min
i

Di/Ti and ηmax := max
i

Di/Ti . (2)

Furthermore, Std(M) is also proportional to N , and Std(M)
for heterogeneous RTT case is much larger than that for
homogeneous RTT case.

The reason that heterogeneous RTT has higher variance
than homogeneous is that the distribution of M depends
on the distribution of Ta, while Ta has high variance for
heterogeneous RTT case than homogeneous RTT case.

From Proposition III.2 and III.3, both E[M] and Std(M)
are always proportional to N , no matter homogeneous or
heterogeneous RTT, no matter Droptail or Dropfront queue,
and thus we can always write

E[M] = ηN and Std(M) = γN , (3)

where η = 1 for Droptail queue, η = D/T for homogeneous
RTT with Dropfront, η ∈ [ηmin, ηmax] for heterogeneous
RTT with Dropfront, and ηmin and ηmax are defined in (2).
As for γ, its value cannot be analytically derived, but can
be empirically studied through simulations, and we know
that γ ¿ 1 for homogeneous RTT case and γ / 1 for
heterogeneous RTT case.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
Droptail Vs Dropfront of E[M](N), Homo RTT

N

M

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12
Droptail Vs Dropfront of Std[M](N), Homo RTT

N

M

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60
Droptail Vs Dropfront of E[M](N), Hetero RTT

N

M

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50
Droptail Vs Dropfront of Std[M](N), Hetero RTT

N

M

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

Fig. 5. E[M] and Std(M) as functions of N , B. Top row: homogeneous
RTT. Bottom row: heterogeneous RTT. Left column: Ave(M). Right column
Std(M). For all simulations, we vary N from 2 to 40, set C = 2N Mbps,
set B = 2bN packets and vary b from 2 to 20, set D1 = 60 Mbps, and set
DN = 140 ms for heterogeneous RTT case.

B. Number of Flows Seeing Loss (H)

We now study the first and second order statistics of H by
first considering the conditional statistics of H given M , then
extending to unconditional statistics of H .

6

Proposition III.2 III.3 III.4 III.5 IV.1 V.1
Section of Discussions III-A1 III-A2 III-B1 III-B2 IV-C V

Results on E[M] and Std(M) E[H|M] and Std(H|M) E[H] and Std(H) Hypothesis Testing Detection Accuracy
Major Equations (3) (5-7) (10-14) (22)

TABLE III
SUMMARY OF ALL ANALYTICAL RESULTS.

Homogeneous RTT, Droptail Homogenous RTT, Dropfront Heterogenous RTT, Droptail Heterogenous RTT, Dropfront
E[M] N D

T
N N ηN , where mini

Di
Ti
≤ η ≤ maxi

Di
Ti

Std(M) γN , where γ ¿ 1 γN , where γ ¿ 1 γN , where γ / 1 γN , where γ / 1

E[H] 0.21N ≤ E[H] ≤ 0.632N see right, with α = 1 see right, with η = 1 N(1− eη/(2α) − e−η

2
) ≤ E[H] ≤ N(1− eη)

Std(H)
Std(M)

' 0.271 ' min(e
− η

2
2

, 2e−2η) see right, with η = 1 ' min(1
2αmax

e
− η

2αmax , 2
αmin

e
− 2η

αmin)

TABLE IV
SUMMARY OF RESULTS ON M AND H .

1) Conditional statistics of H given M : From Assump-
tion 1, we know that, at one particular congestion event, the
probability that each dropped packet belonging to flow i is λi,
where λi = Bi/B = xi/C and

∑N
i=1 λi = 1. Define Ai = 1

if flow i sees packet losses, and Ai = 0 otherwise, then we
have H =

∑N
i=1 Ai. Given M = m, we have

Ai =
{

1 w.p. 1− (1− λi)m ,
0 w.p. (1− λi)m .

Let f(m) := E[H|H = m] and g(m) := V ar(H|M = m),
then it is easy to see that f(m) =

∑N
i=1 P (Ai = 1). For

variance, it is not that straight-forward: since
∑N

i=1 Ai ≥
1, Ai’s are not independent, and thus g(m) depends on
Cov(Ai, Aj),∀i 6= j. However, as N and m become large,
the probability that Ai = 0, ∀i is very small even if we
assume that they are independent. Therefore, we can ignore
the correlation of Ai’s, and assume g(m) ≈ ∑N

i=1 V ar(Ai).
We further define{

ξmin := N mini λi = N mini xi/C ,
ξmax := N maxi λi = N maxi xi/C .

(4)

We have the following result:

Proposition III.4. For the conditional expectation, we have

f(m) =
N∑

i=1

(1− (1− λi)m) , (5)

and

N(1− (1− ξmin

N
)m) ≤ f(m) ≤ N(1− (1− 1

N
)m) . (6)

Furthermore, for conditional variance, we have

g(m) ≈
N∑

i=1

(1− λi)m(1− (1− λi)m) . (7)

2) Unconditional Statistics of H: For unconditional statis-
tics, we have the following equations:

E[H] = E[f(M)] ,
V ar(H) = V ar(E[H|M]) + E[V ar(H|M)]

= V ar(f(M)) + E[g(M)] .
(8)

From Jensen’s inequality, E[f(M)] ≤ f(E[M]), since f(m)
is concave over m. As E[f(M)], V ar(f(M)) and E[g(M)]
appear in (8), and their exact formula are unknown, we choose
the Taylor expansions for the moments of functions of random
variables [17]. Then, we have the following approximations:

E[f(M)] ≈ f(E[M]) + f ′′(E[M])
2 V ar(M) ,

E[g(M)] ≈ g(E[M]) + g′′(E[M])
2 V ar(M) ,

V ar(f(M)) ≈ (f ′(E[M]))2V ar(M) .

(9)

Plugging the results of Proposition III.2, Proposition III.3 and
Proposition III.4 to (8) and (9), we have the following result:

Proposition III.5. The unconditional expectation of H has
the following bounds:

N(1− e−ηξmin − γ2 e−η

2
) ≤ E[H] ≤ N(1− e−η) , (10)

where η and γ are defined in (3), and ξmin is defined in (4).
Numerically, for all case, we have the following upper bound:

E[H] ≤ N(1− e−1) ≈ 0.632N . (11)

and for the special homogeneous RTT flows and Droptail
queue case, we have the following lower bound:

E[H] ≥ 0.21N ≈ N(1− e−
1
2 − e−1

2
) (12)

Furthermore, for the standard deviation of H ,

Std(H)
Std(M)

' min(ξmine−ηξmin , ξmaxe−ηξmax) , (13)

where ξmin and ξmax are defined in (4). For the special case
of homogeneous RTT flows and Droptail queue, we have the
following numerical results:

Std(H) ' min(e−
1
2

2 , 2e−2)Std(M)
≈ 0.271Std(M) ≈ 0.271 · γ ·N .

(14)

The results on M and H from all above analysis are
summarized in Table IV, and αmin and αmax in Table IV
are defined as

αmax :=
1
N

N∑

j=1

Tmax

Tj
and αmin :=

1
N

N∑

j=1

Tmin

Tj
. (15)

7

Note that the most important implications of M and H
analysis are: 1) E[H] is proportional to N , which means that
we can get a rough idea on N if we do not know N but can
observe H; and 2) Std(H) is also proportional to N , and thus
Std(H)/E[H] does not diminish as N → ∞, which means
that if we only use loss to detect congestion location, the false
detection probability does not go to 0 as N →∞.

0 5 10 15 20 25 30 35 40
0

5

10

15
Droptail Vs Dropfront of E[H](N), Homo RTT

N

H

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9
Droptail Vs Dropfront of Std[H](N), Homo RTT

N

H

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16
Droptail Vs Dropfront of E[H](N), Hetero RTT

N

H

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12
Droptail Vs Dropfront of Std[H](N), Hetero RTT

N

H

Droptail, b=2
Droptail, b=5
Droptail, b=10
Droptail, b=20
Dropfront, b=2
Dropfront, b=5
Dropfront, b=10
Dropfront, b=20

Fig. 6. E[H] and Std(H) as functions of N and B. Top row: homogeneous
RTT users. Bottom row: heterogeneous RTT users. Left column: E[M]. Right
column: Std(M). Simulation setups are the same as those in Figure 5

C. Simulation Validations on M and H Analysis

We have performed extensive ns-2 simulations to validate
our analysis of M and H , for both homogeneous and hetero-
geneous RTT users, for both Droptail and Dropfront queue.
For our simulations, we pick a dumbbell network topology,
vary N from 2 to 50, vary C from 5 to 200 Mbps, vary B
from 10 to 1000 packets, vary background traffic volume, and
test both Droptail and Dropfront. For homogeneous RTT case,
we choose slightly different RTTs to introduce randomness
by setting Di = D1 + (i − 1) × 0.4, and vary D1 from
60 ms to 220 ms. For heterogeneous RTT case, we set
Di = D1 +(i−1)×DN/(N −1), and vary the ratio between
DN/D1 from 2 to 5. For each simulation corresponding to
a particular combination of N , C, B, D1, DN , background
traffic volume, and queueing policy, we run 400 seconds, and
for each congestion event, we measure M at the router and
measure H at the senders. After each simulation finishes, we
compute Ave(M), Std(M), Ave(H) and Std(H) over all
congestion events. Due to space limitation, we cannot show
all the simulation results, and for some examples, we plot M
in Figure 5 and H in Figure 6. The simulation results in these
figures validate our analysis on M and H: 1) E[M], Std(M),
E[H], and Std(H) are all proportional to N ; 2) For Droptail
queue, E[M]/N ≈ 1, and for Dropfront queue, E[M]/N < 1,
is a decreasing function of buffer size B (large B means

small D/T ratio), and is less dependent on B as D becomes
large; 3) E[H]/N is between 0.632 and 0.21; 4) Std(M) for
heterogeneous RTT is much larger than that of homogeneous
RTT case; and 5) the ratio of Std(H)/Std(M) is larger than
0.271, and this ratio is smaller for heterogeneous RTT than
that for homogeneous RTT. We further add background traffics
which are Pareto On-OFF UDP flows, and vary their volumes.
The result is plotted in Figure 7, which shows that the result
on M and H are independent of background traffics.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60
Ave(M) Vs N, for diff U. DT or DF. Homo RTT. b=8

N

A
v
e
(M

)

DT, U=0
DT, U=1
DT, U=2
DT, U=4
DF, U=0
DF, U=1
DF, U=2
DF, U=4

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16
Std(M) Vs N, for diff U. DT or DF. Homo RTT. b=8

N

S
td

(M
)

DT, U=0
DT, U=1
DT, U=2
DT, U=4
DF, U=0
DF, U=1
DF, U=2
DF, U=4

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60
Ave(M) Vs N, for diff U. DT or DF. Hetero RTT. b=8

N

A
v
e
(M

)

DT, U=0
DT, U=1
DT, U=2
DT, U=4
DF, U=0
DF, U=1
DF, U=2
DF, U=4

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40
Std(M) Vs N, for diff U. DT or DF. Hetero RTT. b=8

N

S
td

(M
)

DT, U=0
DT, U=1
DT, U=2
DT, U=4
DF, U=0
DF, U=1
DF, U=2
DF, U=4

Fig. 7. E[M] and Std(M) as functions of N and background traffic.
Top row: homogeneous RTT. Bottom row: heterogeneous RTT. Left column:
E[M]. Right column: Std(M). For all simulations, D1 = 60 ms, C = 2N
Mbps, B = 16N packets.

IV. SYNCHRONIZATION OF DELAY INCREASE

A. Modeling on Queueing Delays

Traditional queueing theory results cannot be directly ap-
plied to TCP flows, as feedbacks play an important role and
the packet arrival process of TCP flows is unknown. There
has been several modeling work [18]–[20] and measurement
studies [8], [9], [21], [22] on TCP RTTs, but there is no
widely acceptable modeling for TCP RTTs from the mea-
surement studies, and the following properties of TCP RTTs
are observed: 1) the variation of TCP RTTs can be very
large, where the variation can be either inter-session, or intra-
session; 2) there might be extreme values of RTT samples,
which have abnormally large RTTs. Therefore, we model the
measured queueing delay to be sum of the real queueing
delay and a noise term. As the instant noisy delay samples
fluctuate significantly, a common technique is to compute the
moving average of sample delays over a certain period, like
one RTT or one query period, and call this average value the
current delay. Assume that the distributions of delays within
one moving window do not change and the queueing delay

8

sequence is Martingale, and assume that the moving window
contains sufficiently large number of samples, from Martingale
Central Limit Theorem, we can model the current delays to
be Gaussian random variables:

qi = ni + si , (16)

where ni ∼ N (µn, σn) is a Gaussian noise, ni’s of all flows
are i.i.d., and si is the real queueing delay signal, which is zero
if the flow does not experience congestion, and si ∼ N (µi, σi)
otherwise.

If one delay sample is abnormally large, there is a third
term beyond real queueing delay and Gaussian noise:

qi = ni + si + ωi , (17)

where ωi is a random variable whose expectation is much
larger than µi and µn. We assume that the extreme values are
very rare, and at one query periods, at most a small proportion
of flows yield extreme values.

We now study how to use {qi,∀i} to detection congestion
location. Assume all qi’s have the same distribution, conges-
tion location detection becomes a hypothesis testing problem.
As we will show in Section IV-C, we can use the sample mean
and standard deviation to do hypothesis testing. However, qi’s
are not of the same distribution in general: if the congestion is
remote, some flows have si ∼ N (µi, σi) and some flows have
si = 0; even if the congestion is local, there might be extreme
values as in (17). We model the sample set to consist of inliers
and outliers, where the inliers have the same distribution and
the outliers have different distributions. With this model, we
divide the location detection using delay into two modules:
Outlier Identification and Removal Module and Hypothesis
Testing Module.

B. Outlier Identification and Removal

There has been a lot of algorithms for outlier identification
and removal, like Chauvenet’s criterion [23], Grubbs’ test
[24], Peirce’s criterion [25], Hampel’s identifier [26], [27],
etc. Some use functions of sample mean and variance as
break down points, and some use functions of quartiles,
medians, and median absolute deviations (MAD) as break
down points. Major metrics for outlier identifer are masking
(miss) and swamping (false positive) probabilities [27]. It is
widely known that identifiers based on sample mean and
variance are more prone to the masking effect than those based
on medians, MADs, and quartiles, as extreme outlier samples
alter the sample mean and standard deviation significantly
[27]. Therefore, we pick Hampel’s identifier and modify it
to accommodate our special case that “swamping” effect is
not bad as long as the number of false positives is not too
large.

1) Hampel’s Identifier: We now briefly introduce Ham-
pel’s Identifer. Suppose we have N samples, where N − k
samples are regular observations (inliers) with common dis-
tribution N (µ, σ), and k non-regular observations (outliers).
Neither µ, σ nor k is known. Denote the samples by XN =
(X1, · · · , XN), denote by med(XN) the median of XN ,

and let mad(XN) be the normalized median of the absolute
sample deviation from the median:

mad(XN) :=
1

0.6745
median(|Xi −med(XN)|, ∀i) ,

where 1/0.6745 is a renormalization factor to make the MAD
value Fisher consistent, which means that med(XN) and
mad(XN) are unbiased estimations of µ and σ [26]. Using
median and MAD to estimate µ and σ is less sensitive to
extreme outlier values than using sample mean and standard
deviation. Hampel’s identifier states that: Xi is an outlier if

|Xi −med(XN)| ≥ g(N, αN)mad(XN) , (18)

where g(N, αN) is a critical value that is picked such that
even if all the samples are inliers, the swamping probability is
upper bounded by α = 1−(1−αN)N . Here, α typically picks
values like 0.01, 0.05 or 0.1. The critical value g(N, αN) can
be analytically derived for some special values of N and α,
or computed by Monte Carlo method in general [26], [27].

2) Our Modification: The standard Hampel’s identifier
picks the critical value to upper bound the swamping prob-
ability. For our problem, we actually allow the existence of
swamps (false outlier detection), as long as the number of
swamps is upper bounded. Recall our detection rule: we detect
remote congestion only if the number of two-side outliers
exceeds κbothN , or the number of lower-side outliers exceeds
κlowN . This suggests that we should pick a different critical
value:

g(N,κboth, κlow, α) = max(g1(N, κboth, α), g2(N, κlow, α)) ,

where g1(·) and g2(·) are such that:

P
(
(
∑N

i=1 1|qi−med|>g1(N,κboth,α)mad) > κbothN
)

< α ,

P
(
(
∑N

i=1 1qi<med−g2(N,κlow,α)mad) > κlowN
)

< α .

(19)
We call the two probabilities in (19) “strong two-side swamp-
ing probability” and “strong lower-side swamping probabil-
ity”.

We have used Monte Carlo method to find g1(N, κboth, α)
and g2(N,κlow, α) curve for κboth = 0.3, κlow = 0.2, and
α = 0.01, 0.05, or 0.1. The results are shown in the left plot
of Figure 8. From the plot, we see that if we set g = 5 if
N ≤ 5, g = 3 if 5 < N ≤ 10, and g = 2 otherwise, then
none of the two strong swamping probabilities exceed 0.05.
We further verify that conclusion by fixing g value by the
above rule, and use Monte Carlo method to find the two strong
swamping probabilities. The results are shown in the right plot
of Figure 8. From the analysis and the Monte Carlo results,
if the congested link is local, the false remote probability is
upper bounded by 0.05 for small N values and is negligible
for large N values.

C. Hypothesis Testing with Delay Statistics

We consider the outcome after the OIR Module. For local
congestion, extreme values are removed as outliers, and the
inliers have identical distribution N (µLC , σLC). For remote
congestion, suppose Nc flows are congested. If κbothN <

9

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

N

g
1
 a

n
d

 g
2

g
1
(α,κ

both
,N) and g

2
(α,κ

low
,N) Vs N for different α and κ

both
 values

g

2
(N,α=0.01,κ

low
=0.2)

g
2
(N,α=0.05,κ

low
=0.2)

g
2
(N,α=0.1,κ

low
=0.2)

g
1
(N,α=0.01,κ

both
=0.3)

g
1
(N,α=0.05,κ

both
=0.3)

g
1
(N,α=0.1,κ

both
=0.3)

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

N

P
ro

b

Prob of too many outliers Vs N. κ
low

=0.2,κ
total

=0.3

Prob(# lower outliers>0.2N
Prob(# total outliers>0.3N

Fig. 8. g(N, κboth, κlow, α) and P (Number Outliers > κN) versus N .
Left: g1(N, κboth, α) and g2(N, κlow, α) versus N , for α = 0.01, 0.05, or
α = 0.1, with κboth = 0.3 or κlow = 0.2. Right: The probability that the
number of lower outliers exceeds κlowN and the probability that the number
of both side outliers exceeds κbothN versus N , for fixed g choice: g = 5 if
N ≤ 5, g = 3 if 5 < N ≤ 10 and g = 2 otherwise.

Nc < (1 − κlow)N , then remote congestion is detected due
to many outliers. If Nc > κQDN , or Nc > (1 − κlow)N ,
then there are too many congested flows to distinguish remote
from local congestion: either it is detected as local congestion
at the QD module, or the non-congested samples are removed
as outliers, and the inliers yield a local congestion pattern. If
Nc < κbothN , then the large delay samples are removed, and
the inliers have identical distribution N (µn, σn). Therefore,
after the OIR Module, if Nc < κbothN , we translate the
location detection to the following two hypotheses testing
problem:

H0 : qi ∼ N (µn, σn) , ∀i ∈ I ,
H1 : qi ∼ N (µLC , σLC) , ∀i ∈ I ,

(20)

where I is the set of inliers, H0 represents remote congestion,
and H1 represents local congestion.

This two hypotheses testing is a composite problem, as both
θn := (µn, σn) and θLC := (µLC , σLC) are unknown. We
need to identify the parameter regions Γ0 and Γ1 under the
two hypothesis. We make the following assumption:

Assumption 2. µLC À µn, σn ∼ µn, and σLC ¿ µLC .

From Assumption 2, we have the following modeling on
the parameter region:

{
Γ1 = {µ > α1 and µ > α2σ} ,
Γ0 = {µ < α1 or µ < α2σ} ,

(21)

where α1 and α2 are constant threshold values.
It is easy to verify that there is no UMP solution for this

composite hypothesis testing problem, and the LMP approach
does not apply either. However, we can use the general
likelihood ratio (GLR) approach [6], which gives the following
result:

Proposition IV.1. Given a set of inlier delay samples {qi,∀i ∈
I}, denote by µq and σq the sample mean and standard
deviation. Then, the optimal detection rule from GLR with
equal cost of false local and remote detections is:

µq > α1 and µq

σq
>

√
N−1

N α2 ⇒ H1 ,

µq ≤ α1 or µq

σq
≤

√
N−1

N α2 ⇒ H0 .
(22)

With the detection rule at hand, we only need to find
the proper α1 and α2 values. For the first few congestion
events (initial stage), we set α1 to be half of the maximum
experienced queueing delay, and set α2 to be 1/2 (this number
comes from Assumption 2). For each congestion event, we
compute the mean of the queueing delays over the samples
between the 25% percentile and the 75% percentile, denote it
by µ̂k, compute the sample standard deviation over all inlier
samples, and denote it by σ̂k, where k indexes this congestion
event. As k goes by, we average µ̂k and σ̂k over all past local
(respectively, remote) congestion events to estimate µLC and
σLC (respectively, µn and σn), and denotes the estimations by
µ̂LC and σ̂LC (respectively, µ̂RC and σ̂RC). After we make
several local and congestion detections, we set

{
α1 = (µ̂LC + µ̂RC)/2 ,
α2 = (µ̂LC/σ̂LC + µ̂RC/σ̂RC)/2 .

(23)

With the study of both loss and delay at hand, we derive
the following result on CLD detection accuracy:

V. CONFIGURATION, PERFORMANCE, AND DISCUSSIONS

In this section, we study the parameter configurations and
detection accuracy of the CLD algorithm. We altogether have
5 parameters: g, κboth, κlow, κQD, and β. The first three
parameters are discussed in Section IV-B, we now discuss the
settings of κQD and β.

A. Discussions on κQD

Suppose a home has altogether N flows, and Nc ≤ N
flows experience congestion. For local congestion, Nc = N
all the time, and for remote congestion 1 ≤ Nc ≤ N . As Nc

increases close to N , the end users can no longer distinguish
remote congestion from local congestion. Typically, there is
a threshold, denoted by Nth, such that once Nc ≥ Nth,
CLD cannot distinguish remote from local congestions. The
parameter κQD determines this threshold Nth. If Nc ≥ κQD,
then local congestion detection might be made by the Quick
Detection Module no matter the real congested link is local
or remote. On the other hand, if Nc < κQDN , the probability
that wildcard makes false local detection is negligible: both the
probability of H = Nc and the probability that κQDN − H
non-congested users experience large delays are very small,
and their product is negligible. We wish to successfully
distinguish local and remote congestion as long as Nc < N/2,
so we require κQD > 0.5, and we set its default value to
be 0.8. The dependence of Nc on κQD will be derived in
Section V-C

B. Discussions on β

We now check β. Consider the probability that a non-
congested TCP session sees queueing delay larger than βµ̄LC ,
and call it false positive probability. Suppose our estimation
µ̄LC is accurate, and µ̄LC = µ1 = µs + µ1. Then, we have

P1 := P (One false positive) = 1− Φ(
βµs

σn
) ,

10

where Φ(·) is the CDF function of a standard normal distri-
bution. From our analysis in Section IV, µs À σs > σn, we
know that P1 is actually very small.

For a false detection, we need at least Nd := (κQDN −H)
false detections. From our analysis in Section III, we know that
with high probability, H is less than N/2 even for local con-
gestion, and H would be even smaller for remote congestion,
so as an approximation study, we assume Nd ' (κQD−0.5)N ,
and for our standard setting on κQD, Nd ' 0.3N . With this
assumption, we have

P (false detection) ≤ 1−
0.3N∑

i=1

(
n
k

)
pk
1(1− p1)N−k .

C. False Detection and Miss Probabilities

With all the above analysis on loss, delay, parameter config-
uration, we have the following result on the detection accuracy:

Proposition V.1. Both the false remote and false local de-
tection probabilities of the CLD algorithms approach 0 as
N → ∞, as long as Nc < min(1 − κlow, κQD)N and
β > µn/µLC , where Nc is the number of congested flows for
a remote congestion, and µn and µLC are the expectations
of noise term and local link queueing delay. Furthermore, for
fixed N and parameter configuration, the accuracy improves
as B, the local link buffer size, increases.

Proposition V.1 gives both the parameter configuration
guideline and asymptotical result on detection accuracy. From
our simulations, we see that the performance of CLD is
insensitive to parameter configurations as long as they are set
within a wide reasonable range, and all over this range, CLD
has accurate detection.

VI. NS-2 SIMULATIONS AND VALIDATION

We validated the performance of CLD algorithm by exten-
sive ns-2 simulations.

A. Network Topology and Simulation Scenario

We perform simulations for the following network scenario
illustrated in Figure 9. As shown in the left plot, the network
has three links L1, L2 and L3, N1 + N2 persistent flows, 3
groups of on-off flows, which has the following on-off pattern:
one cycle has 6 phases; all the three groups of flows are off at
odd phases; one of the three groups are on at one even phase.
The link capacities and the receiver window sizes are picked
such that, each link is not congested if its corresponding on-off
flows are off, and is congested if they are on. For this setup,
L1 mimics the home access local link, as all flows pass L1,
and L2 and L3 mimics remote links, as only part of flows pass
them.

Since the real-world delay samples are buried with noises,
which is not included in ns-2, we manually add noise into
each RTT measurement, which is either Gaussian or uniformly
distributed. For our simulations, We pick a variety of values
for N1 and N2, link capacities C, router buffer size B, RTT
T , noise level n, and check the performance of the CLD
algorithm.

L3

R1 R2

R4

R3

N1

N2
M

M

M

L1
L2

tD 6D

L2 On−OFF Flows

L3 On−OFF Flows

L1 On−OFF Flows

t

t

Fig. 9. Simulations Scenario. (Left) topology of simulations: three links,
N1 and N2 two-hop flows, and M single-hop ON-OFF flows passing each
individual link. (Right) Pattern of On-Off flows: second, fourth and sixth
phases are on phases for L1, L2, and L3 on-off flows, respectively.

0 20 40 60 80 100 120
−30

−25

−20

−15

−10

−5

0

5

10

15

20
CLD Alg. Res: N=9, C0=2 (Mbps), Mean noise=8 (ms)

Time (100ms)
C

L
D

 D
e

te
ct

io
n

:
lo

ca
l>

0
,

re
m

o
te

<
0

,
0

=
n

o
t

co
n

g
e

st
e

d
0 20 40 60 80 100 120

−30

−25

−20

−15

−10

−5

0

5

10

15

20
CLD Alg. Res: N=2, C0=2 (Mbps), Mean noise=3 (ms)

Time (100ms)

C
L

D
 D

e
te

ct
io

n
:

lo
ca

l>
0

,
re

m
o

te
<

0
,

0
=

n
o

t
co

n
g

e
st

e
d

Fig. 10. Examples of CLD Detection Result. (Left) Detection of one
simulation with N1 = N2 = 9 and noise level = 8 ms. The x-axis is time,
and y-axis gives the detection result: 0 for no congestion, positive values for
local congestion and negative values for remote congestion. (Right) same as
left, but N1 = N2 = 2 and noise level is 3 ms.

B. Detection Accuracy

We plot the detection results for several representative
settings with different network scenarios in Figure 10. For the
figures, the x-axis is time, and y-axis is the detection result:
0 means no link is congested (no packet loss), positive values
mean local congestion detection, and negative values mean
remote congestion detection. For all these figures, in phase 2,
most detections are local congestion, and in phase 4 and 6,
most detections are remote congestion, and the miss and false
alarm probabilities are both small.

We now check the detection result as N1 and N2 varies,
or in another word, as the actual number of congested link,
denoted by Nc varies. The result is shown in Figure 11. From

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Detection Vs Real Congested Link Number, TotalN=6

Real Congested Link Num

P
ro

b
a

b
ili

tie
s

LC, noise=1 ms
LC, noise=5 ms
LC, noise=9 ms
LC, noise=1 ms
LC, noise=5 ms
LC, noise=9 ms

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Detection Vs Real Congested Link Number, TotalN=10

Real Congested Link Num

P
ro

b
a

b
ili

tie
s

LC, noise=1 ms
LC, noise=5 ms
LC, noise=9 ms
LC, noise=1 ms
LC, noise=5 ms
LC, noise=9 ms

Fig. 11. Detection Result Vs Number of Congested Links. (Left) 6 total
flows. (Right) 10 total flows. The x-axis is Nc and y-axis is the probability
of local and remote congestion corresponding to Nc congested links. Since
κboth = 0.3, as long as Nc ≤ 0.7N , the detection is very accurate.

11

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
False detection prob Vs Noise Level

Noise level (ms)

F
a

ls
e

 d
e

te
ct

io
n

 p
ro

b

N1=N2=2
N1=N2=3
N1=N2=5
N1=N2=9

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Miss Prob Vs Noise Level

Noise level (ms)

M
is

s
P

ro
b

N1=N2=2
N1=N2=3
N1=N2=5
N1=N2=9

Fig. 12. Detection Result Vs Noise Level. The x-axis is the noise level,
and the y-axis gives false detection probabilities. (Left) False local detection
probability. (Right) False remote detection probability. As long as N1 =
N2 ≥ 3, the detection is accurate.

this figure, as long as Nc < min(1 − κlow, κQD)N = 0.8N ,
the detection is accurate. The right figure also shows that the
detection is less accurate if N1 = N2. This is because for this
special case, the OIR Module is less likely to remove outliers,
and the hypothesis testing assumption of identical inlier dis-
tributions no long holds. Even though, the performance is still
pretty accurate.

For the worse case of N1 = N2 = N/2, we test its
performance against noise levels by varying N and n. The
result is demonstrated in Figure 12, which shows that the
detection is pretty accurate for the worst N1 = N2 case,
and the false detection probabilities increase as n increases,
decrease as N increases.

C. Robustness and Insensitivity

We then verify that CLD works for a large range of network
scenarios. We vary D1 from 60ms to 100 ms, set Di = D1 +
δ(i − 1) and vary δ from 0 to 5, set B = bC and vary b
from 5 to 20, set C = Nc and vary from c from 1 to 5
Mbps, and for each of the above network scenario, we vary the
queueing policy from Dropfront to Droptail. Our simulations
show that CLD algorithm performs well for all these wide
range of network scenarios, and the result for some examples
are plotted in the left plot of Figure 13.

We further test the parameter sensitivity of CLD algorithm.
CLD algorithm has 5 parameters: κQD, κboth, κlow, and β and
g. The choice of g is given by the Hampel identifier analysis
in Section IV. We now test the other parameter choices. We
choose the same simulation scenario as that for Figure 11,
with fixed N1 +N2 = 10 and varying N1 = 1, · · · , 9. For this
fixed simulation scenario, we vary our parameter settings:

κL = 0.6 0.7 0.8 0.9
κboth = 0.2 0.25 0.3 0.35 0.4
κlow = κboth

2
2κboth

3
3κboth

4
4κboth

5
β = 0.7 0.75 0.8 0.85 0.9 0.95 1.0

(24)
We have all together 4 × 5 × 4 × 7 = 560 combinations
of parameter settings, and we plot the detection results for
all combinations in the right plot of Figure 13. From the
figures, it is clear that κL, κboth and κlow do not affect the
performance as long as they lie in their reasonable ranges.
β value has slight influence on CLD detection result: if the

number of flows sharing one remote link exceeds a threshold,
CLD cannot distinguish it from a local congestion. This
threshold is determined by β. If below this threshold, β has no
other influence on the performance of CLD algorithm. From
these simulations, we have shown that CLD is robust against
network scenario variations and is insensitive to parameter
setting choices, as long as they are chosen from a wide
reasonable range.

Baseline Hetero Vary C Vary Q Vary RTT Droptail
0

0.2

0.4

0.6

0.8

1
False and Miss Probs for Misc Scenarios

false,noise=2
miss,noise=2
false,noise=6
miss,noise=6

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 13. Robustness of the CLD Algorithm. (Left) Robust against network
scenario variations. For all simulations, we set N1 = N2 = 6, and vary the
noise level to be 2 ms and 6 ms. For “Baseline”, we pick Dropfront queue
and homogeneous RTT users. For “Hetero”, we choose heterogeneous RTT
users. For “Vary C”, “Vary Q”, “Vary RTT”, and “Vary Queue Policy”, we
pick alternative C, B, D values or pick Droptail. For all these variations,
the performance of CLD is good. (Right) Robust against parameter settings.
κQD ∈ {0.6, 0.7, · · · , 0.9}, κboth ∈ {0.2, 0.25, · · · , 0.4}, κlow ∈
{κboth/2, 2κboth/3, 3κboth/4, 4κboth/5}, and β ∈ {0.7, 0.75, · · · , 1.0}.
CLD has good performance for all these 4 × 5 × 4 × 7 = 560 combi-
nations of parameter settings. Furthermore, the performance only depends
on min(1 − κboth, κQD), and as this value is fixed, the variation of other
parameters makes negligible differences.

VII. CONCLUSION AND FUTURE WORK

We proposed CLD, a user end Congestion Location De-
tection algorithm, that is crucial for the deployment of low
priority TCP protocols. We described the algorithm in details,
showed that it can accurately detect whether the congested link
is local or remote, and validated our analysis with extensive
simulations. In developing the CLD algorithm, we also proved
a series of analytic results on two issues important in their own
right: synchronization of packet loss and delay increase across
TCP sessions and distributed hypothesis testing in TCP.

ACKNOWLEDGMENTS

We are grateful to Osama Mazahir, Alvin Tan, Minghua
Chen, and Vincent Poor for helpful discussions.

REFERENCES

[1] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: a mechanism
for background transfer,” in Proc. OSDI’02, 2002, pp. 329–343.

[2] A. Kuzmanović and E. Knightly, “TCP-LP: a distributed algorithm for
low priority data transfer,” in Proc. IEEE Infocom 2003, San Francisco,
CA, USA, March 2003.

[3] P. Key, L. Massoulié, and B. Wang, “Emulating low-priority transport
at the application layer: a background transfer service,” in Proc. ACM
SIGMETRICS 2004, 2004, pp. 118–129.

[4] Microsoft, “Background intelligent transfer service,” description avail-
able at http://msdn.microsoft.com/en-gb/library/aa362827.aspx.

[5] S. Liu, M. Vojnović, and D. Gunawardena, “Competitive and considerate
congestion control for bulk data transfers,” in Proc. IWQOS, 2007.

12

[6] H. V. Poor, An Introduction to Signal Detection and Estimation.
Springer Texts in Electrical Engineering, 1998.

[7] S. Liu, T. Başar, and R. Srikant, “TCP-Illinois: A loss and delay-based
congestion control algorithm for high-speed networks,” Special Issues
of Performance Evaluations, June 2008.

[8] S. Biaz, “Is the round-trip time correlated with the number of packets
in flight,” in In Proc. Internet Measurement Conference, 2003, pp. 273–
278.

[9] J. Aikat, J. Kaur, F. Smith, and K. Jeffay, “Variability in tcp round-trip
times,” Miami Beach, FL, October 2003.

[10] M. Mathis, J. Heffner, and R. Raghunarayan, “Tcp extended statistics
mib,” RFC 4898, available at ftp://ftp.rfc-editor.org/in-notes/rfc4898.txt.

[11] P. Key, L. Massoulie, G. Dinan, R. Black, and
G. OŚhea, “Round trip time estimation,” available at
http://www.freepatentsonline.com/EP1744495.html.

[12] L. Zhang and D. Clark, “Oscillating behavior of network traffic: A case
study simulation,” Internetwork: Research and Experience, vol. 1, no. 2,
1990.

[13] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. on Networking, vol. 1, no. 4,
pp. 397–413, August 1993.

[14] T. V. Lakshman and U. Madhow, “The performance of tcp/ip for
networks with high bandwidth-delay products and random loss.”

[15] S. Ha, L. Le, I. Rhee, and L. Xu, “Impact of background traffic
on performance of high-speed tcp variant protocols,” Comput. Netw.,
vol. 51, no. 7, pp. 1748–1762, 2007.

[16] T. V. Lakshman, A. Neidhardt, and T. J. Ott, “The drop from front
strategy in tcp and in tcp over atm,” in IEEE INFOCOM, March 1996.

[17] G. Casella and R. L. Berger, Statistical Inference, 2nd ed. Duxbury
Press, 2002.

[18] S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, and K. Claffy, “The
rtt distribution of tcp flows in the internet and its impact on tcp-based
flow control.”

[19] S. H. Low, “A duality model of tcp and queue management algorithms,”
IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 525–536, 2003.

[20] D. Gunawardena, P. Key, and L. Massouli, “Network characteristics:
modelling, measurements and admission control,” in Proc. IWQoS, 2003.

[21] H. Jiang and C. Dovrolis, “Passive estimation of tcp round-trip times,”
ACM Computer Communication Review, vol. 32, pp. 75–88, 2002.

[22] P. Sessini and A. Mahanti, “Observations on round-trip times of tcp
connections,” in Proc. of SCS SPECTS, Calgary, Canada, July 2006.

[23] J. R. Taylor, An Introduction to Error Analysis. Sausolito, California:
University Science Books, 1997.

[24] F. Grubbs, “Procedures for detecting outlying observations in samples,”
Technometrics, vol. 11, no. 1, pp. 1–21, Febrary 1969.

[25] S. Ross, “Peirce’s criterion for the elimination of suspect experimental
data,” J. Engr. Technology, 2003.

[26] F. R. Hampel, “The breakdown point of the mean combined with some
rejectio rules,” Technometrics, vol. 27, 1985.

[27] L. Davies and U. Gather, “The identification of multiple outliers,” J.
American Statistical Association, vol. 88, no. 423, pp. 782–792, 1993.

APPENDIX

A. Proof of Proposition III.1

Since the network pipe can hold at most CD + B packets,
it is easy to see that S− = CD + B, and once S exceeds
this value, packet drop occurs. As the router uses Droptail
queue, the congestion alleviation period lasts exactly one RTT,
and during this period, exactly W−

i positive ACKs are feeded
back to the senders. Here, for modeling simplicity, we ignore
the triple duplicate acknowledgement mechanism of TCP, and
assume that the negative ACK of a packet loss arrives at the
sender in sequence with the positive ACKs. The difference
between this simplified model and the triple duplicate ac-
knowledgement mechanism is negligible if W−

i is sufficiently
large. With these W−

i positive ACKs received before the
sender realizes the network congestion, each individual flow

increases its window size by 1, and we have

S+ =
N∑

i=1

W+
i =

N∑

i=1

W−
i + N = CD + B + N . (25)

As the congestion alleviation period lasts one RTT, the number
of packet losses is

M = S+ − (CD + B) = N . (26)

2

B. Proof of Proposition III.2

For the practical cases where M is a variable, we rewrite
(25) as

S− =
N∑

i=1

W−
i = CD + B + ε . (27)

where ε is a random variable representing the burstness of
the packet arrival and effective capacity fluctuation due to
background traffic, and we have E[ε] = 0. Let Vi be the
number of positive ACKs feeded back to flow i during the
congestion alleviation period, we have

E[W+
i |Vi,W

−
i] = W−

i +
Vi

W−
i

With the randomness caused by slight RTT difference and
bursty packet arrival process, Ta is not a constant, but a
variable, and we have E[Ta] = T for Droptail and E[Ta] = D
for Dropfront. We also denote by $ the standard deviation
of Ta. As Ta is a random variable, so is Vi, which is no
longer exactly W−

i . Since in average, W−
i ACKS per RTT,

we have E[Vi|Ta] = W−
i Ta/T . Therefore, E[Vi] = ηW−

i ,
where η = 1 for Droptail, and η = D/T = CD/(CD + B)
for Dropfront. We then have

E[W+
i |W−

i] = W−
i +

ηW−
i

W−
i

= W−
i + η ,

which means

E[M] =
∑N

i=1 E[W+
i]− (CD + B)

= E[S−] + Nη − (CD + B) = ηN .
(28)

We now check the variance of M . Assume V ar[M |Ta] is
negligible, then V ar(M) = N2V ar(Ta) = N2$2, which
means Std(M) = N$. Even if V ar[M |Ta] 6= 0, its effect
does not scale with N2, and for asymptotic analysis, its effect
is always ignorable. The proportionality of Std(M) and N is
also validated by extensive ns-2 simulations in Section III-C.

2

C. Proof of Proposition III.3

Suppose all flows use the standard TCP, then, at steady-state,
E[xi] is inversely proportional to Ti. From Assumption 1, we
have

Pi := P (dropped packet ∈ i)
xi

C
≈ 1/Ti∑N

j=1 1/Tj

(29)

Next, we ignore the possibility that the flow of a later dropped
packet has shorter RTT than the flow of the first dropped

13

packet and the throughput reduction of the later flow propagate
faster than that of the first flow. With the simplification, we
have Ta ≈ Ti (or Di for Dropfront) if the first dropped packet
belongs to i, and therefore,

E[Ta] ≈

∑N
i=1 PiTi ≈ N∑N

j=1
1

Tj

for Droptail,
∑N

i=1 PiDi ≈ ηN∑N
j=1

1
Tj

for Dropfront,
(30)

where ηmin := mini Di/Ti ≤ η ≤ ηmax := maxi Di/Ti.
Following similar steps as the homogeneous RTT case, we
have E[M] = N for Droptail queue, and for Dropfront queue,

ηminN ≤ E[M] ≤ ηmaxN , (31)

Furthermore, from our analysis on Ta, we know that
V ar(Ta) is much larger than that for homogeneous RTT case.
Therefore, Std(M) is still proportional to N , but much larger
than that for the homogeneous RTT case. 2

D. Proof of Proposition III.4

The equalities of f(m) and g(m) are straight-forward from
our modeling assumptions and approximations. We now prove
the inequalities in (6).Define h(x) := 1− (1− x)m , then

f(m) =
N∑

i=1

h(λi) . (32)

Since h(x) is concave over x, from Jensen’s inequality, we
have

f(m) ≤ Nh(
N∑

i=1

λi/N) = N(1− (1− 1
N

)m) . (33)

Furthermore, define λmin := mini λi = mini xi/C, define
ξi := Nλi and ξmin := Nλmin, then

f(m) ≥ N(1− (1−λmin)m) = N(1− (1− ξmin

N
)m) . (34)

So we have proved (6).
2

E. Proof of Proposition III.5

For the unconditional expectation of H , we have

E[H] = EM [f(M)] .

As f(m) is concave over m, from Jensen’s inequality, we have

E[H] ≤ f(E[M]) ≤ N(1− (1− 1
N

)E[M]) .

From our analysis on M , we can write E[M] = ηN for all
cases,, where η = 1 for Droptail, η = D/T for Dropfront and
homogeneous RTT flows, and η ∈ [ηmin, ηmax] for Dropfront
and heterogeneous RTT flows. Therefore, for all cases, we
have

E[H] ≤ N(1− (1− 1
N

)ηN) ≈ N(1− e−η) . (35)

Since η ≤ 1, we have E[H] ≤≤ N(1− e−1) ≈ 0.632N .
We have found an upper bound for E[H]. Next we seek

the lower bound for E[H]. From Taylor expansions for the

moments of functions of random variables [17], we have the
following approximation:

E[H] = E[f(M)] ≈ f(E[M]) +
f ′′(E[M])

2
V ar(M) . (36)

From the formula of f(m) in (5) and E[M] = ηN , we have

f ′′(E[M]) = −∑N
i=1(log(1− λi))2(1− λi)ηN

≈ −∑N
i=1 λ2

i (1− λi)ηN .
(37)

It is easy to verify that x2(1−x)ηN is concave over x for any
0 < η ≤ 1. Then, from Jensen’s inequality,

f ′′(E[M]) ≈ −∑N
i=1 λ2

i (1− λi)ηN

≥ −N 1
N2 (1− 1

N)ηN ≈ 1
N2 e−η

≈ − e−η

N .

(38)

From (3), V ar(M) = γ2N2. Plugging (6) and (38) into (36),
we have

E[H] ≥ N(1− (1− ξmin

N)ηN)− e−η

2N γ2N2

≈ N(1− e−ηξmin − γ2 e−η

2) .
(39)

The lower bound of E[H] in (39) depends on ξmin and γ.
For γ, we know that γ ≤ 1 in general. For ξmin = mini xi/x̄,
where x̄ := C/N , it also depends on the RTT distribution.
For homogeneous RTT case, E[xi] = x̄ = C/N, ∀i, and due
to the AIMD nature of TCP, at steady state, ξmin ≥ 1/2. For
heterogeneous RTT case,

E[xi/C] =
1
Ti∑N

j=1
1
Tj

,

and at steady state,

ξmin ≥ N

2
∑N

j=1
Tmax

Tj

.

Plugging into (39), we have

E[H] ≥ N(1− e−η/(2α) − e−η

2
) , (40)

where α := Tmax(
∑N

j=1 1/Tj)/N . We now check the lower
bound of E[H] for a special case of homogeneous RTT and
Droptail, where η = 1 and α = 1. Under that case,

E[H] ≥ N(1− e−1/2 − e−1

2
) ≈ 0.21N .

We next consider the standard deviation of H . From Taylor
expansions for the moments,

E[g(M)] = g(E[M]) +
g′′(E[M])

2
V ar(M) .

In the above equaiton, g(E[M]) is proportional to N from (7),
V ar(M) is proportional to N2 from (3). It is easy to verify
that g′′(E[M]) << 1. So for asymptotical analysis, we can
write

E[g(M)] = εN2 + O(N) ,

where ε := g′′(E[M])/2 << 1. We know that

V ar(H) = V ar(E[H|M]) + E[V ar(H|M)]
= V ar(f(M)) + E[g(M)] . (41)

14

Plugging (5) into (41), and use the Taylor expansions for the
second moment, we have

V ar(f(M)) ≈ (f ′(E[M]))2V ar(M)
= (

∑N
i=1(−) log(1− λi)(1− λi)E[M])2V ar(M)

≈ (
∑N

i=1 λi(1− λi)ηN)2V ar(M)

Clearly, V ar(f(M)) dominates E[g(M)] for large N values,
and we have

V ar(H) ' V ar(f(M)) ≈ (
N∑

i=1

λi(1− λi)ηN)2V ar(M) ,

which means

Std(H) ' (
N∑

i=1

λi(1− λi)ηN)Std(M) .

We now check the ratio between Std(H) and Std(M). If
λi ≡ 1/N, ∀i,

Std(H)
Std(M)

' (1− 1
N

)ηN ≈ e−η .

For heterogeneous λi case, since x(1 − x)m has maximum
value at x∗ = 1/(1 + m) and decreases as x moves far from
x∗ in both directions, we know that

λi(1− λi)m ≥ min(λmin(1− λmin)m, λmax(1− λmax)m) ,

and

λi(1− λi)ηN ≥ min(
ξmin

N
e−ηξmin ,

ξmax

N
e−ηξmax) .

Henceforth,

Std(H)
Std(M)

' min(ξmine−ηξmin , ξmaxe−ηξmax)

Since xe−x has the maximum value at x = 1, we know that
the ratio between Std(H) and Std(M) is the largest if λi ≡
1/N,∀i, and it becomes smaller if xi’s are more diversified.
This indicates that the ratio is smaller for heterogeneous RTT
case, which is consistence with the result that Std(M) is much
larger in heterogeneous RTT case than in homogeneous RTT
case.

Numerically, from the AIMD behavior, at steady state, we
can assume that ξmin ≥ 1/(2αmax) and ξmax ≤ 2/αmin,
where

αmax := Tmax(
N∑

j=1

1/Tj)/N and αmin := Tmin(
N∑

j=1

1/Tj)/N ,

(42)
and therefore,

Std(H)
Std(M)

' min(
1

2αmax
e−

η
2αmax ,

2
αmin

e
− 2η

αmin) .

For the special case of homogeneous RTT with Droptail,
αmin = αmax = 1 and η = 1, then

Std(H)
Std(M)

' min(
e
−1
2

2
, 2e−2) = 0.271

2

F. Proof of Proposition IV.1

.
Proof: From GLR [6], define general likelihood ratio

ρ :=
maxθ=(µ,σ)∈Γ1 Pθ(Q)
maxθ=(µ,σ)∈Γ0 Pθ(Q)

,

where Q := {q1, · · · , qN} is the vector of all qi’s. Then,
we detect H1 if ρ is larger than a threshold, and detect H0

otherwise.
We now check maxθPθ(Q):

Pθ(Q) = Πi
1√
2πσ

exp(−qi − µ)2

2σ2
) ,

and

log(Pθ(Q)) =
∑N

i=1(− (qi−µ)2

2σ2 − log σ − log
√

2π)
= −∑N

i=1(
(qi−µq+µq−µ)2

2σ2 + log σ + log
√

2π)
= −∑N

i=1(
(qi−µq)2+(µq−µ)2

2σ2 + log σ + log
√

2π)

= −((N − 1) σ2
q

2σ2 + N
(µq−µ)2

2σ2 + Nlogσ + N log
√

2π) ,

where µq and σq are the sample mean and standard deviation
of Q. It is easy to verify that Pθ(Q) is maximized if

µ = µ∗ = µq and σ = σ∗ =

√
N − 1

N
σq

If we assign equal cost to false detection and miss, the
threshold in the GLR test is 1, then we have the following
detection rule:

(µ∗, σ∗) ∈ Γ1 ⇔ µq > α1 and µq

σq
>

√
N−1

N α2 ⇒ H1 ,

(µ∗, σ∗) ∈ Γ0 ⇔ µq ≤ α1 or µq

sigmaq
≤

√
N−1

N α2 ⇒ H0 .

2

G. Proof of Proposition V.1

We first consider false detection probability. There are
altogether two possibilities for false detections: 1) in Quick
Detection Module and 2) in hypothesis testing module. Sup-
pose the false detection probabilities for the two modules
are denoted by P f

w and P f
ht, then the total false detection

probability P f < P f
w + P f

ht. We already know P f
w , and we

now check P f
ht.

Assume after removing outliers, we have Ni samples left,
and they all are N(µn, σn) distributed. After finding the av-
erage, µq is N(µn, σn/Ni) distributed. As number of outliers
is less than N/2, we have Ni > N/2, and therefore, the
standard deviation of µq is at most σ∗ := 2σn/N . Suppose
the estimations on µ̄LC and µ̄RC are accurate. Then, we have

P f
ht < 1− Φ(

µs−µn

2
2σn

N

) = 1− Φ(
N(µs − µn)

4σn

Assume that µs ≥ 2µn ≥ σn, then

P f
ht < 1− Φ(

N

4
) .

Therefore, if N > 8, P f
ht < 2.5% and if N > 12, P f

ht <
0.15%. Furthermore, for any value of µs, µn, and σn, as long

15

as µs > µn, which is typically true, we have P f
ht → 0 as

N →∞.
We then consider the miss probabilities, which is the sum

of the miss probabilities at the outlier removal module and
hypothesis testing module, and denote these probabilities by
Pm = Pm

o + Pm
ht . From our choice of g, κboth and κlow,

Pm
o < 0.05 for all N , and Pm

o < 0.01 if N > 20 (see right
plot of Figure 8).

For Pm
mt, it has the similar formula as P f

mt except that we
replace σn by σ1 =

√
σ2

n + σ2
s . Similarly, we have Pm

mt → 0
as N →∞. 2

