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Congestion on Multilane Highways 
July 1, 2002 

J. M. Greenberg' 
A. Klar2 

M. Rascle3 

Abstract 

We present a new model for traffic on a multilane freeway (with n lanes). Our basic 
descriptors are the car density p (in cars/mile) taken across all lanes in the freeway and the 

average car velocity u (in miles/hour). The flux of cars across all lanes is given by pu = c p i u i  

where pi is the car density in the i th lane and ui the velocity of cars in the ith lane. We shall 
only track p and u and not what is going on in each individual lane. 

On such multilane freeways one often observes distinct stable equilibrium relationships 
between auto velocity and density. Prototypical situations involve two equilibria 

n 

i= l  

21 = VI(P) > = ~ ( p )  1 0 I P < Pmax 

where VI(.) and VZ(-) are monotone decreasing and satisfy v1(pmax) = vz(pmax) = 0. The upper 
curve is typically stable for densities satisfying 0 5 p 5 p1 whereas the lower curve is stable for 
densities satisfying p2 5 p 5 Pmax. Our interest is in the situation where 0 < p2 5 p1 < P m U  

In this paper we present a model which incorporates both equilibrium curves and a simple 
switching mechanism which allows cars to transit from one equilibrium curve to the other. 
This switching mechanism, when combined with the continuity equation, produces relaxation 
or self-excited oscillations in the system and these oscillations are what interests us here. 

and V2(P2) 5 Vl(P1). 

1 Introduction 

I n  this paper we present a new model for traffic on a multilane freeway with n lanes. Our basic 
descriptors are the car density p (in cars/mile) taken across all lanes in the freeway and the average 

car velocity u (in miles/hour). The flux of cars across all lanes is given by pu = c p ; u ;  where pi is 

the car density in the ith lane and ui the velocity of cars in the ith lane. We shall only track p and 
u and not what is going on in each individual lane. This model simplification will ultimately yield 
a one-dimensional model. 

n 

i=l 
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On such multilane freeways one often observes distinct stable equilibrium relationships between 
auto velocity and density. Prototypical situations involve two equilibria 

~ = ~ I ( P ) > ~ = w ( ~ )  7 O I p < p m a x  (1.1) 
where VI(.) and Q ( . )  are monotone decreasing and satisfy v l ( p m a x )  = 212(~m=)  = 0. The upper 
curve is typically stable for densities satisfying 0 5 p 5 p1 whereas the lower curve is stable for 
densities satisfying p 2  5 p 5 pmax. Our interest is in the situation where 0 < p 2  5 p 1  < pmax and 
wz(p2) 5 q ( p 1 )  (see Figure 1 below). 

f" 

P 
p2 PI  PmW 

Figure 1 

The explanation for the two curves is quite simple. For high density congested traffic lane 
changing and passing is difficult and dangerous and this yields the slower equilibrium curve. On 
the other hand, when the traffic is less dense, lane changing and passing becomes easier and this 
yields the faster equilibrium curve. 

In this paper we present a model which incorporates both equilibrium curves and a simple 
switching mechanism which allows cars to transit from one equilibrium.curve to the other. 

Once again our basic descriptors are the car density p velocity u. We also track 

a = u - y ( p )  

which represents the discrepancy between the actual car speed and the uncongested equilibrium 
speed. 

Our governing equations are 

aP a 
- + -(pi) = 0 at ax 

and 
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oa oa I = 

7 I - - - -  
€ 

Here, u -+ R(u) is a monotone non-decreasing function defined on 0 5 u and satisfying 

Nu) = p2 , 0 I TJ I d ~ 2 )  and R(u) = PI,  vl(p1) 521. (1.4) 

For experimental data and the choice of the switch curve we refer to the work of B. Kerner [7,8]. 
p2, 0 5 u. In his thesis, Sopasakis [9] gave an argument supporting the choice p2 = p1 and R(u) 

P 

P",.. 

t 

Figure 2 

The motivation for system (1.2), (1.3) is as follows: 
1. When there is no source term ,i.e. the right hand side of (1.3) is set to zero, our model 

is the one introduced in [3]. This model turns out to be the rigorous hydrodynamic limit of the 
microscopic follow the leader system (1.20)-(1.23) with no right hand side, see [2] and also [lo] . 

2. In the case with a source term of the form - l / ~ ( V ( p )  - u)  the above result remains true, for 
details see see [6] and [2]. 

3. .  At least formally the system we propose to study here is the limit of the microscopic system 
(1.23), when the size of cars goes to zero. 
We note that (1.2) and (1.3) imply that u satisfies 

One motivation for the switching mechanism hypothesized here is as follows. We assume there 
are two natural modes in which drivers can to operate. The first is the fast mode and is characterized 
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by the equilibrium curve p + vl(p) and the second is the slow mode characterized by slow curve 
p + v2(p). What we are hypothesizing in (1.5) is that if the current state of traffic, ( u , p ) ,  lies 
below the switch curve p = R(u) drivers preferences will migrate towards the fast curve u = v l (p) ,  
whereas if the traffic state, (u ,p ) ,  lies above p = R(u), their preferences will migrate towards the 
slow curve u = v2(p). 

An alternative approach would be to hypothesize that for all densities 0 5 p I ,omax, the 
preferred state of an average driver is characterized by the homogenized equilibrium curve 

V ( P )  = a b )  * vl(P) + (1 - a(p))  * V 2 ( P )  

where a(0) = l,a'(p) 5 0 for 0 5 p 5 pmm, and a(p,,) = 0. This latter approach has been used 
in multi-class models of traffic flow, see for instance [5], [4] and many other references. 

For 0 < p 5 pmax,  the system (1.2), (1.4), and (1.5) is strictly hyperbolic with distinct wave 
speeds c1 = u + pvi(p)  < 122 = u. Variants of this relaxation model with one equilibrium and 
no switch curve have been studied by Aw and Rascle [3], Greenberg et. al [6, 11, and Aw, Klar, 
Materne, and Rascle [2]. The principal results of those investigations relevant to us here are that 
for any initial data P O ( - )  and u g ( - )  satisfying 

0 I UO(X) i ~I(PO(X)) and 0 I PO(X) I Pmax (1.6) 

the system (1.2), (1.4) and (1.5) has an appropriately defined weak solution satisfying (1.6) for 
all future times. Thus the model presented here has no signals propagating faster than the car 
velocities and yields none of the velocity reversals seen in the Payne-Whitham models. These two 
observations are the basic strength of this class of second order model. 

For simplicity we restrict our attention to spatially periodic solutions - the ring road scenario. 
We shall also work with a Lagrangian reformulation of the system. When discretized this Lagrangian 
system yields a follow-the-leader type model. 

We let 1 be the spatial period of our data PO(.)  > 0 and assume that 

PO(Od< = 

is an integer. For any real number rn E [0, M ]  we let zo(m) be the unique solution of 

m = ~'""' P * ( w t  

and z (m , t )  be the solution of 

(1.9) 
ax &f -(m, t )  = ii(rn, t )  = u(z(m, t ) ,  t )  and z(m, 0) = zo(m). 

Here, p and u are solutions of (1.2), (1.4) and (1.5). The continuity equation (1.2), when combined 
with (1.8) and (1.9) yields 

at 
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and (1.10) in turn implies that 

(1.11) p(m, t )  def p(z(m, t ) ,  t )  and r(m, t )  def = -(m, ax t )  am 
satisfy 

fj(m,t)?(m,t) = 1. 

Additionally (1.9) implies that 7 and ii satisfy 

ar afi -(m,t) = -(m,t). at dm 

(1.12) 

(1.13) 

Finally, if we let 

then (1.3) implies 

afi 

at 
-(m,t) = 

where 

(1.15) 

(1.16) K(7) def ~1(1/7) a d  G(7) = ~2(1/7). 

In what follows we assume the functions & ( e )  and G(-) defined in (1.16) are increasing and concave 
on [L  = l/pmax,co) and satisfy 

&f 

def 

0 = V2(Ls) = h ( L + )  and 0 < I@')(?) < V,@)(y) for L < 7 < 00 and p = 0 , l  (1.17) 

and the limit relations 

lim (K(?), <(*)(?)) = (vi", 0), i and p = 1 , 2  (1.18) 

where w? < UT. The parameter L has the interpretation of the length of a typical car on the 
roadway. 

T-+m 

Equations (1.13) - (1.15) also combine to give 
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The Follow-the-Leader Model 

In [6] Greenberg showed that for the Lagrangian system (1.9) - (1.19) the appropriate stable 
spatial differencing scheme was downwind. Moreover, such differencing, with Am = 1 (recall cars 
are discrete), yields 

and 

dGm 
d t  

This latter system implies that 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

1 - 
a m  

xrn+l-Xrn > - 
E R(Em) 

-- 

(( V2 - Vi) ( z m + 1 -  Zm) - ern) d t  
1 %=I € 

These equations hold for 1 5 m 5 M and z ~ + l ( t )  = zl(t) + 
our original data P O ( . )  and UO(.). The initial positions of the 

(1.25) 
1 

I where again I is the spatial period of 
cars are constrained to satisfy 

def 1 
xm+l(O) - zm(O) 2 L = 

Pmax 

and these numbers are related to PO(. )  by 

6 
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In section 2 we analyze a first-order integration scheme for the system (1.20) - (1.22), (1.24), 
and (1.25). We obtain estimates which guarantee that 

L L zm+l(t) - Z m ( t )  and 0 5 um(t) I K(Zm+l ( t )  - Z m ( t ) )  (1.28) 

for all t 2 0. These estimates guarantee the consistency of the model. In Section 3 we present some 
simulations with the discrete model. Here we see the persistent periodic wave trains separating 
congested regions of slow moving traffic from regions of less dense faster moving traffic. The waves 
separating these regions are analyzed in Section 4. In that section we revert to continuum model 
(1.9) and (1.11) - (1.19) because it is analytically easier to work with. 

2 A Priori Estimates 

In this section we establish a-priori estimates for solutions of (1.20) - (1.22), (1.24) and (1.25). We 
integrate these equations with a first-order Euler Scheme. Specifically, we let At be our time step, 
tn = nAt, and for any function f m ( . )  we let f,?,!, denote the approximate value of fm(.) at t,. Our 
integration scheme is 

where 

and 

0 ,  s < o  

1 ,  s z o .  
H ( s )  = 

These equations hold for 1 5 m I A4 and 

$n+l -Zn+l  
M + 1 -  1 + 1 -  

Throughout, we assume that 

0 <_ AtV;(L) 5 1/2 and 0 5 At/€ 5 1/2.' 

7 



Theorem 1 Suppose (2.8) holds and that for 1 5 m 5 M 

I 

'Recall, in section 1 we assumed Am = 1 in order to obtain the follow-the-leader model. If, instead we had 
/Am and allowed any 0 < Am our equations (2.2) and (2.3) would have been replaced by q:+' = (zkyl - 

modified to s V { ( L )  5 i. 
-n+l = Am/ (Zn+l m+l - z;+'). Our basic integration scheme (2.1) and (2.5) would be the same but (2.8)1, would be Pm 
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Then (2.9) holds for n replaced by n + 1. 
Proof. The identities (2.1) - (2.6) imply that 

= 7; + At (iiL+l - iiz) 

and 

(2.10) 

(2.11) 

imply that 

(2.13) &f - 
Ym -n+l > - F (7;) = 7; - AtVl(7;). 

The fact that At satisfies (2.8) implies that F( . )  is monotone increasing on [ L , m )  and thus (2.9) 
and (2.13) imply 

?;+I 2 F ( L )  = L 

as desired. On the other hand the inequalities 

ii; - V, (7;) 5 0 and (VZ - VI) (7;) l 0 

and (2.11) imply that 

a, -n+l - -urn -n+ l -  I4 (=&+') 5 0. 

The identity (2.11) when combined with (2.10) yields 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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for some 6; 2 min (yk+',fJ 2 L and (2.18) together with (2.6) and (2.8) and uk 2 0, 1 5 m 5 
M ,  implies that E:+' 2 0. This conclude the proof of Theorem 1. 

The estimates contained in Theorem 1 guarantee that the densities 

satisfy 

(2.19) 

0 I P: I Pmax- (2.20) 

These estimates further imply that the approximate solutions defined in (2.1) - (2.7) converge 
to solutions of the follow-the-leader model (1.20) - (1.22), (1.24), and (1.25) as At + O+. This 
concludes Section 2. 

3 Simulations 

All computations in this section were run with the following equilibrium relations: 

(l- 3 Vl(y) = v;" (1 - 5 )  and V2(y) = v y  

. The specific parameter used were where L = - 

v;" = 100 feet/sec = 

1 
Pmax 

= 68.1818.. . mph 
100 x 3600 

5280 

= 27.2727. . . mph 40 x 3600 
5280 

UT = 40 feet/sec = 

and 

L = 15 feet. 

The latter number corresponds to a maximum car density of 

1 5280 
15 15 

Pmax = - cars/foot = - = 352 cars/mile. 

We used the constant switch curve introduced by Sopasakis [9]: 

(3.5) 



with y* = 20 feet. For initial data we chose 3 sets of data: 

for --oo 5 m 5 03 and k = 1 , 2 ,  and 3. The observation that 

~ ~ ~ ~ ( 0 )  (k) = 8000 feet = 1.5151.. . miles 

and 

zm+400(0) (k) = z:)(O) + 8000 (3.10) 

implies we may interpret the data as initial data for a ring-road with 400 cars which is of length 
1.5151.. . miles. We chose constant initial velocities 

or 

ug)(O) = 17.5 feet/sec = 11.931818.. . mph, 1 5 m 5 400. (3.12) 

These data guarantee points on both sides of the switch curve. Simulations were run with relaxation 
times 

E = 1,2 ,4 ,  and 8. (3.13) 

Below, we show the longtime spatially and temporally periodic solutions at time t = 2 hours 
when E = 8 seconds. Figures 3, 4, and 5 correspond to the initial data indexed by k = 1,2 ,  and 
3 respectively. At earlier times the solution indexed by each particular k had k discontinuities per 
period. This phenomena persisted to t = 2 hours for the solution indexed by k = 2 but the solution 
corresponding to the index k = 3 converged, by t = 2 hours, to a solution with one discontinuity 
per period. 

The first two frames in each figure are self-explanatory. In the third frame of each figure we 
plot the curve m + (ym = z,+1 - zm,um). This curve is shown in black. The blue curves are the 
equilibrium curves y + (7, Vl, (7)) and y -+ (7, b(7)) and the red curve is the image of u + (20, ti). 
The red dot - o - is the image of (yl,ul). Complete animations of all of these simulations may be 
found at //www.math.cmu.edu/-plin/congestion/. The discontinuities in the profiles propagate at 
the speed 

c N 227.6 f .1 cars/minute. (3.14) 

An analysis of these solutions may be found in Section 4. 
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4 Travelling Waves 

The wave trains obtained in section 3 are basically discrete approximations to travelling wave 
solutions to the continuum equations (1.9) - (1.19). In this section our goal is to show that the 
continuum system (1.9) - (1.19) actually supports such travelling waves. For definiteness we shall 
assume that the switch curve introduced in (1.4) is the one derived by Sopasakis in [9], namely the 
curve 

R(u) = p *  , 0 5 u. (44 
With this choice of switch curve the Lagrangian equations become 
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Once again 

VI(?) = vl(l/?) and = v2(1/?) (4.3) 
and we assume that both VI and & are increasing and concave on [L, m) and satisfy 

0 = b ( L + )  = Vl(L+) and 0 < v,@)(?) < &@)(y) for L < 7 < 00 and p = 0 , l  (4.4) 
and the limit relations 

~ + c n  lim (vZ(T), L’$)(=f)) = (v?, 0), i and p = 1 , 2  (4.5) 

where 0 < VT < UT. L is related to pmax by L = l/pmax. 

These solutions are functions of 
We start by describing the portion of the wave trains where both 7 and fi are increasing in m. 

<=m+ct 

and are normalized so that 

?(O)  = Y* and &(re) < U. < Vi(?*). (4.7) 
1 

P* 
Once again 3; = - (see (4.1)). Equation (4.2)1, implies that fi = u* + c(7 - -y*) while (4.2)2 yields 

vi(?) - u* - c(? - r*) - , Y’Y* 
E 

c ( c  - Vi(?)) - = (4.8) 
d< h(?) - u* - 47 - 7*) - 

7 7 53;. 
E: 

d7 d7 
dJ d t  

d7 I 
The requirement that 7 is increasing in [ implies that 7 must satisfy -(Ow) 2 0 and - (O+)  2 0. 

Equations (4.7) and (4.8) then imply that these latter inequalities may only be met if 

c = V{(r*>. 

In what follows we let r, > L be the unique solution of 

15 
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u = v,(7*)(y* - Jq 
and note that for V2(y+) < u* < u the equation 

u* + Vi(Y*)(7 - +I*) = V2(3 
has a unique solution y- E ( L , y , )  satisfying 

(4.11) 

(4.12) 

V,l(7*) > W-)* (4.13) 

On the other hand, if I?, < 3; we let yl E (I,,?,) be the unique solution of 

and 

(4.15) 

and note that for V2(y*) < u, < u the equation (4.11) has a unique solution y- E (yl,y*) satisfying 
(4.12). 

In what follows we assume the parameter u* in (4.8) satisfies V2(y+) < u* 5 U where U is defined 
in (4.10) or (4.14) as appropriate. 

We now note that (4.2)2, when combined with (4.8), implies that the profile 7 must satisfy 

Vd7) - u* - h'(7*)(7 - 3;) ;v > y* 
1 E 

VlY(Y*) (K'h*) - W7)) = (4.16) 
h(7) - 21. - vi(7*)(7 - 7*)  - 

I 7 I7*- d5 I € 

Once again, we normalize the profile by insisting that (4.7) holds 
Noting that sign (V{(y*) - V,'(y)) = sign (7 - ?*), that 

where y* < y+ is the unique solution of 

vi(?+) - u* - V,(?*)(?+ - 7*)  = 01 

and finally that 

(4.18) 

V2(9 - u* - V,(7*)(7 - 7*) < 0 , 7- < 7 < 7* (4.19) 

where y- is defined in (4.11) we see that (4.15) and (4.16) has a unique increasing solution defined 
on (--00, m). For [ < 0 the solution is given by the quadrature formula 
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. -  

and for ( > 0 the solution is given by 

Periodic Profiles 

For any 7 E (7-) y*), we let I?(?') > y* be the unique solution of 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

We are now in a position to define the periodic wave trains. For -I(,,/ < 
(4.20) and [tal is given by 

5 0, T(() is given by 

where y- < Ya < y*. For 0 5 E 5 [qTa)) ? ( E )  is given by (4.21) and &(=ja) is given by 

(4.24) 

(4.25) 

We extend these solutions to  all ( via 

T(5) = N< + <r(Ta) + I$al)- (4.26) 

The extended solution is a proper weak solution to (4.2). The relations (4.9) and (4.22) imply that 
the Rankine-Hugoniot relations for (4.2) hold across the discontinuities 

(4.28) 

and thus across these discontinuities the Lax entropy condition is satisfied. Recalling that the 
particular solutions of interest to us must be M periodic, we see that (4.24) and (4.25) imply that 
for some integer IC 2 l ,7a and u* must be such that 
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(4.29) 
The condition that z ( M ,  t )  = z(1,  t )  + 1 implies that ?a and u* must also satisfy 

We conclude this section with an analysis of the equations (4.29) and (4.30). We first note that 
the integer IC 2 1 in these equations is equal to the number of discontinuities of ? ( a )  per period. We 
also note that instead of using u* and ?a as our basic parameters we may instead use 7- and 
With this choice 

and 

and 

(K'(77) - V,l(Y*))r]drl (V,l(Y*> - V ( q h 4  ] = 1 .  

(4.34) 
In what follows we let Ll(y-,T,,,y*) and L ~ ( r - , ? ~ , r * )  be the functions defined by the left hand 
sides of (4.33) and (4.34) respectively. If L < < r, (see (4.9)) the functions L1 and L2 are well 
defined for y- E ( L , y * )  and E (y-,7*) whereas if r, 5 7* these functions are well defined for 
y- E (yl,y*) (see (4:13)) and ?a E (7-,7*). In either case, the observation that lim = y* 

implies that LI(y-,y;,y*) = L2(7-,7;,7*) = 0. We further note that for 7- < ?a < 3; 
7 a - K  
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(4.35) 
d r  dL1 
dTa a?a 

The last identity, together with < 0, implies that -(y-,Ta,y*) < 0. The fact that 

lim Ll(7-,Ta,y*) = +m (4.36) 

then guarantees that for each L < 7* and admissible 7- there is a unique Ta(y-, y*, M )  such that 
(4.33) holds. Thus, solving (4.33) and (4.34) is equivalent to  finding an admissible y- < 3; so that 

7S-t-2 

L2(7-,7a(7-,7*Y+, M ) , y * )  = 1.  (4.37) 
1 The integral mean-value theorem, when combined with the definition of Ta(y-, y*, M ) ,  guarantees 

that 

~ 

M?a('Y-,y*,M) 5 L2(7-,~a(Y-,7*,M),7*) = M9 (4.38) 

for some 9 E (Ta(7-l y*, M ) ,  r (Ta(y- ,  ye, M ) ) .  These observations, together with y- < Ta(y-, y*, M )  
and F(Ta(y-, y*, M ) )  < r(y-), imply that (4.37) has no solutions for 

M L ,  if y* < (see (4.9) and (4.22)) 

Myl ,  if 2 I?, (see (4.9),(4.13), and (4.22)) 
(4.39) 

l and 

M r ( L ) ,  if y* < r, (see (4.9) and 4.22)) 

M r ( y l ) ,  if 2 I',(see (4.9), (4.13), and (4.22)). 
(4.40) 

These estimates on the range of 7- + L2(7-,Ta(7-,7., &f),3;), though not particularly sharp, are 
all we could manage with this degree of generality on the functions VI(.) and V2(.). 
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