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Abstract

While studying the specification of the operational semantics of different programming
languages and formalisms, one can observe the following three facts. Firstly, Plotkin’s style
of Structured Operational Semantics (SOS) has become a standard in defining operational
semantics. Secondly, congruence with respect to some notion of bisimilarity is an interest-
ing property for such languages and it is essential in reasoning about them. Thirdly, there
are numerous languages that contain an explicit data part in the state of the operational
semantics.

The first two facts, have resulted in a line of research exploring syntactic formats of
operational rules to derive the desired congruence property for free. However, the third point
(in combination with the first two) is not sufficiently addressed and there is no standard
congruence format for operational semantics with an explicit data state. In this paper, we
address this problem by studying the implications of the presence of a data state on the notion
of bisimilarity. Furthermore, we propose a number of formats for congruence.

1 Introduction

Structured Operational Semantics (called SOS for short) [23] has been very popular in defining
operational semantics for different formalisms and programming languages. Moreover, congruence
properties of notions of (bi-)simulation have been investigated in many of these languages as a
key property for compositional reasoning and refinement. Congruence simply means that if one
replaces a component in an arbitrary system with a (bi-)similar counterpart, the resulting system
is (bi-)similar to the original one. Proofs of congruence for SOS semantics are usually standard but
very tedious involving several pages. This has resulted in a line of research for defining standard
syntactical formats for different types of SOS semantics in order to obtain the congruence property
for a given notion of bisimilarity automatically.

From the early beginning, SOS has been used for languages with data as an integrated part of
their operational state (e.g., the original report on SOS contains several examples of state-bearing
transition system specifications [23]). As systems get more complex, the integration of a data state
in their semantics becomes more vital. Besides the systems that have an explicit notion of data
such as [4] and [9], real-time languages [15, 2, 18, 8] and hybrid languages [11] are other typical
examples of systems in which a data state shows itself in the operational semantics in one way or
another. However, the introduction of data turns out not to be as trivial as it seems and leads to
new semantical issues such as adapted notions of bisimilarity [15, 11, 8, 21].

To the best of our knowledge, no standard congruence format for these different notions of
bisimilarity with a data state has been proposed so far. Henceforth, most of the congruence proofs
are done manually [21] or are just neglected by making a reference to a standard format that does
not cover the data state [8]. The proposal that comes closest ([7]) is unfinished and encodes rules
for state-bearing processes into rules without a state, for which a format is given.

1



In this paper, we address the implications of the presence of a data state on notions of bisim-
ilarity and propose standard formats that induce congruence with respect to these notions of
bisimilarity.

The rest of this paper is structured as follows. In Section 2, we review the related work
in the area of congruence formats for SOS semantics. Then, in Section 3, we set the scene by
defining transition system specifications with data and several notions of bisimilarity. In this
section, we also sketch the relationship between these notions of bisimilarity and point out their
application areas. The main contribution of this paper is introduced in Section 4, where we
define standard syntactic formats for proving congruence with respect to the defined notions of
bisimilarity. Furthermore, we give a full comparison between congruence results for the notions
of bisimilarity with data. Subsequently, Section 5 presents applications of the proposed theory on
a number of transition system specifications from the literature. Finally, Section 6 concludes the
paper and presents possible extensions of the proposed approach.

2 Related Work

The first standard format for congruence was proposed by De Simone in [12]. The De Simone
format allows for deduction rules of the following form:

{xi
li→ yi|i ∈ I}

f(x0, . . . , xn−1)
l
→ t

P(
−→
li , l).

where xi and yi are variables ranging over process terms, f is an n-ary function from the signature
(e.g., sequential composition, parallel composition, etc.), I is a subset of the set {0, . . . , n − 1}
(indices of arguments of f), t is an arbitrary process term and P is a predicate stating the
relationship between the labels of the premises and the label of the conclusion. (It turns out that
side conditions of this kind do not play any role on the congruence result and thus we do not
mention them in the remainder.)

Bloom, Istrail and Meyer, in their study of the relationship between bisimilarity and trace
congruence [6], define an extension of the De Simone format, called GSOS, to capture reasonable
language definitions. GSOS extends the De Simone format to cover negative premises. In other
words, it allows for deduction rules of the following form:

{xi
lij

→ yij |i ∈ I, j ≤ m} ∪ {xj
ljk

9 |j ∈ J, k ≤ n}

f(x0, . . . , xn−1)
l
→ t

.

All common notations in the rule above have the same intuition as those of the De Simone format,
J is a subset of indices of f (similar to I) and m and n are two natural numbers (to set an upper
bound on the number of premises).

Another orthogonal extension of the De Simone format, called tyft/tyxt, is proposed in [17].
This format allows for arbitrary terms in the left-hand-sides of the premises and in the right-
hand-side of the conclusion but requires the left-hand-side of the conclusion to be a variable or a
function applied to variables only, the right-hand-sides of premises to be variables and all these
variables to be distinct. In other words, it allows for the following forms of deduction rules:

{ti
li→ yi|i ∈ I}

f(x0, . . . , xn−1)
l
→ t

,
{ti

li→ yi|i ∈ I}

x
l
→ t

.

All notations again share the same intuition with those of the De Simone format, apart from I,
which is now an arbitrary (possibly infinite) set. The only further restriction on the set of premises,
imposed for proving the congruence theorem in [17], is the acyclicity of a variable dependency graph.
A variable dependency graph has variables as its nodes and there exists an edge from one variable
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to another if the former appears in the left-hand-side and the latter in the right-hand-side of a
premise. Later, in [13] it is shown that the acyclicity constraint can be relaxed and that for every
tyft/tyxt rule with a non-well-founded set of premises (with respect to the variable dependency
ordering) there exists a rule that induces the same transition relation and is indeed well-founded.

The merits of the two extensions were merged in [14] where negative premises were added
to the tyft/tyxt format, resulting in the ntyft/ntyxt format. In the premises of ntyft/ntyxt rules

negative transition relations of the form ti
li
9 can appear as well, provided that the transition

system specification can be stratified. Stratification is concerned with defining a measure that
decreases from the conclusion to negative premises and that does not increase from the conclusion
to positive premises.

Finally, the PATH format [3] and the PANTH format [25] extend tyft/tyxt and ntyft/ntyxt
with predicates, respectively. A deduction rule in PANTH format may have predicates, negative
predicates, transitions and negative transitions in its premises and a predicate or a transition in
its conclusion.

In [19], the PANTH format is extended for multi-sorted variable binding. This covers the
problem of operators such as recursion or choice over a time domain. The issue of binding operators
for multi-sorted process terms is also briefly introduced in [1]. In an unpublished note [7], the
issue of state-bearing processes and multi-sorted transition system specifications is treated and
three congruence formats are proposed (Super-SOS, Data-SOS, and Special-SOS). The approach
of [7] relies on transforming state-bearing processes to multi-sorted ones and thus, state-bearing
transition system specifications cannot be dealt with in their original representation (whilst this
is possible in our approach). The notion of bisimilarity in [7] seems to be what we call stateless
bisimilarity in this paper. However, the formats they propose for this notion of bisimilarity are
not proved to induce congruence and moreover they impose some unneeded restrictions that are
not present in our format for stateless bisimilarity. Furthermore, the formats in [7] do not induce
congruence with respect to the other notions of bisimilarity that we discuss in this paper.

We recognize the problem of multi-sorted process terms and admit that it is an interesting
problem in itself. However, we address a different issue in this paper, that is, the issue of states
having a particular structure (possibly from different sorts). In the above works, the data state
is coded into process terms (either naturally due to the definition of operators like time-choice
operators, e.g., in [19, 24] or artificially by transforming a multi-sorted state to a single-sorted
one, e.g., in [7]). Thus, the transition system specification as well as the notion of equivalence
are confined to look at the behavior of process terms (since standard formats allow defining only
one function symbol at a time in the conclusion of a deduction rule). However, if the data state
is made explicit as a part of the state in the transition system specification, then the transition
system specification may not only address process composition operators, but also data compo-
sition operators. This allows both for more expressivity in the specification of SOS and for the
possibility of introducing new notions of equivalence (w.r.t. the relationship between data and
process terms).

In [5], an extension of the tyft/tyxt format is proposed to cover the semantics of higher order
languages. The extended format, called promoted tyft/tyxt, allows for putting (open) terms on the
labels as well as on the two sides of the transition relation specification. Since labels are assumed
to be of the same sort as process terms, their results do not apply to our problem domain directly
(in which we have at least two different signatures for processes and data). However, by assuming
two disjoint parts of the same signature as data and process signatures we may get a weaker
result for the case of stateless bisimilarity in Section 4 (i.e., the resulting format would be more
restrictive than ours). For the more involved notions of bisimilarity, however, we have to move to
a multi-sorted state paradigm in order to define our criteria for the standard format and thus the
format of [5] is not applicable.

In [11], to prove congruence for a specification language with a data state, the transition system
specification is partially transformed to another transition system specification that is isomorphic
to the original one and does not contain a data state. Furthermore, it is shown that the original
notion of bisimilarity corresponds to strong bisimilarity [20, 22] in the new specification. Since the
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resulting transition system specification is in PATH format, it is deduced that the original notion
of bisimilarity is a congruence. Although, the formal proof for these steps is not given there
in detail, the proof sketch seems to be convincing for this particular notion of bisimilarity (i.e.,
stateless bisimilarity). We combine all these steps here in one theorem and prove it so that such
transformations and proofs are not necessary anymore. Furthermore, we give standard formats
for other notions of bisimilarity for which such a straightforward transformation does not exist.

3 Preliminaries

3.1 Basic Definitions

We assume infinite and disjoint sets of process variables Vp (with typical members x, y, x′, y′, x0,
y0 . . .) and data variables Vd (with typical members v and v′). A process signature Σp is a set of
function symbols with their fixed arity. Functions with zero arity are called constants. A process
term t ∈ T (Σp) is defined inductively as follows: a variable x ∈ Vp is a process term, if t0, . . . , tn−1

are process terms then for all f ∈ Σp with arity n, f(t0, . . . , tn−1) is a process term, as well
(i.e., constants are indeed process terms). Process terms are typically denoted by t, t′, ti, t

′
i, . . ..

Similarly, data terms u ∈ T (Σd) are defined based on a data signature Σd and the set of variables
Vd and typically denoted by u, u′, ui, u

′
i, . . .. Closed terms C(Σx) in each of these contexts are

defined as expected (closed process terms are typically denoted by p, q, p′, q′, p0, q0, p
′
0, q

′
0 . . .). A

substitution σ replaces a variable in an open term with another (possibly open) term. The set of
variables appearing in term t is denoted by vars(t).

Definition 3.1 (Transition System Specification) A transition system specification with data
is a tuple (Σp,Σd, L,D(Rel)) where Σp is a process signature, Σd is a data signature, L is a set
of labels (with typical members l, l′, l0, . . .), and D(Rel) is a set of deduction rules, where Rel is a
set of (ternary) relation symbols. For all r ∈ Rel , l ∈ L and s, s′ ∈ T (Σp) × T (Σd) we define that
(s, l, s′) ∈ r is a formula. A deduction rule dr ∈ D, is defined as a tuple (H, c) where H is a set of
formulas and c is a formula. The formula c is called the conclusion and the formulas from H are
called premises.

Notions of open and closed and the concept of substitution are lifted to formulas in the natural

way. A formula (s, l, s′) ∈ r is denoted by the more intuitive notation s
l
→r s

′, as well. A deduction

rule is mostly denoted by
H

c
.

A proof of a formula φ is a well-founded upwardly branching tree of which the nodes are
labelled by formulas such that

• the root node is labelled by φ, and

• if ψ is the label of a node q and {ψi | i ∈ I} is the set of labels of the nodes directly above q,

then there is a deduction rule
{χi | i ∈ I}

χ
, a process substitution σ and a data substitution

υ such that application of these substitutions to χ gives the formula ψ, and for all i ∈ I,
application of the substitutions to χi gives the formula ψi.

3.2 Notions of Bisimilarity

The introduction of data to the state adds a new dimension to the notion of bisimilarity. One
might think that we can easily deal with data states by imposing the original notion of strong
bisimilarity [20, 22] to the extended state. Our survey of the literature has revealed that such
a notion of strong bisimilarity is not used at all. It is clear that a format that respects strong
bisimilarity as a congruence must necessarily be very restricted. Therefore, in this paper, we
restrict ourselves to comparing processes with respect to the same data state. In this way, we get
to what we call a statebased bisimilarity, depicted in Figure 1.
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(p1, d1) (p2, d2)

(p′0, d0)

(p′1, d1) (p′2, d2)

Rsb

Rsb

Rsb

Figure 1: Statebased Bisimilarity

Definition 3.2 (Statebased Bisimilarity) A relation Rsb ⊆ (C(Σp)×C(Σd))×(C(Σp)×C(Σd))
is a statebased bisimulation relation if and only if ∀p0,p1,d ((p0, d), (p1, d)) ∈ Rsb ⇒ ∀r

1. ∀l0,p′

0
,d′ (p0, d)

l0→r (p′0, d
′) ⇒ ∃p′

1
(p1, d)

l0→r (p′1, d
′) ∧((p′0, d

′), (p′1, d
′)) ∈ Rsb;

2. ∀l1,p′

1
,d′ (p1, d)

l1→r (p′1, d
′) ⇒ ∃p′

0
(p0, d)

l1→r (p′0, d
′) ∧((p′0, d

′), (p′1, d
′)) ∈ Rsb.

Two closed state terms (p, d) and (q, d) are statebased bisimilar, denoted by (p, d) ↔sb (q, d), if
and only if there exists a statebased bisimulation relation Rsb such that ((p, d), (q, d)) ∈ Rsb.

Definition 3.3 (Process-congruence) For ∼⊆ (C(Σp)×C(Σd))×(C(Σp)×C(Σd)), ∼ is called
a process-congruence w.r.t. an n-ary process function f ∈ Σp if and only if for all pi, qi ∈ C(Σp)
(0 ≤ i < n), for all d ∈ C(Σd), if (pi, d) ∼ (qi, d) then (f(p0, . . . , pn−1), d) ∼ (f(q0, . . . , qn−1), d).
Furthermore, ∼ is called a process-congruence for a transition system specification if and only if
it is a process-congruence w.r.t. all process functions of the process signature.

Example 3.4 Consider a transition system specification, where the signature consists of three
(distinct) process constants a, b and c, one binary process function f , and three (distinct) data
constants d, d′ and d′′, and the deduction rules are the following:

(1)
(a, d)

l
→ (a, d′′)

(2)
(a, d′)

l
→ (a, d′)

(3)
(b, d)

l
→ (b, d′′)

(4)
(c, d)

l
→ (a, d′′)

(5)
(x0, v)

l
→ (y, v′)

(f(x0, x1), v)
l
→ (x1, d

′)

Then, the following statebased bisimilarities hold: (a, d) ↔sb (b, d) and (b, d) ↔sb (c, d). However,
the following statebased bisimilarities do not hold: (a, d′) ↔sb (b, d′) and (f(c, a), d) ↔sb (f(c, b), d).
From the latter case, we can observe that statebased bisimilarity is not a process-congruence for
the above transition system specification.

Statebased bisimilarity is a rather weak notion of bisimilarity for most practical examples. The
problem lies in the fact that in this notion of bisimilarity the process parts are only related with
respect to a particular data state. Thus, if the common initial data state is not known (e.g., if
the components have to start their execution on the result of an unknown or non-deterministic
process), then statebased bisimilarity is not useful.

This problem leads to the introduction of a new notion of bisimilarity which takes all possible
initial states into account [16, 15]. We call this notion initially stateless bisimilarity (see Figure 2).
This notion of bisimilarity is very useful for the case where components are composed sequentially.
In such cases, when we prove that two components are bisimilar, we do not rely on the initial
starting state and thus, we allow for sequential composition with any other component.
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p0

(p0, d0)

(p1, d
′
0)

(p0, d1)

(p2, d
′
1)

p′0

(p′0, d0)

(p′1, d
′
0)

(p′0, d1)

(p′2, d
′
1)

↔isl

Rsb

Rsb

Rsb

Rsb

Figure 2: Initially Stateless Bisimilarity

Definition 3.5 (Initially Stateless Bisimilarity) Two closed process terms p and q are ini-
tially stateless bisimilar, denoted by p ↔isl q, if and only if there exists a statebased bisimulation
relation Rsb such that ((p, d), (q, d)) ∈ Rsb for all d ∈ C(Σd).

For initially stateless bisimilarity (and also for stateless bisimilarity), congruence is defined as
expected in the following definition.

Definition 3.6 (Congruence) For arbitrary ∼⊆ C(Σp)×C(Σp), ∼ is called a congruence w.r.t.
an n-ary process function f ∈ Σp if and only if for all pi, qi ∈ C(Σp) (0 ≤ i < n), if pi ∼ qi then
f(p0, . . . , pn−1) ∼ f(q0, . . . , qn−1). Furthermore, ∼ is called a congruence for a transition system
specification if and only if it is a congruence w.r.t. all process functions of the process signature.

Example 3.7 Consider the transition system specification of Example 3.4. The following initially
stateless bisimilarities hold b ↔isl c and f(b, c) ↔isl f(c, c) but the following initially stateless
bisimilarities do not hold a ↔isl b and f(c, a) ↔isl f(c, b). We observe that the previous problem
of congruence does not exist anymore for initially stateless bisimilarity. Later on, in Example
4.25, we show that for this transition system specification, initially stateless bisimilarity is indeed
a congruence.

However, initially stateless bisimilarity does not solve all problems, either. If there is a pos-
sibility of change in the intermediate data states (by an outside process), then initially stateless
bisimilarity is not preserved in such an environment. This, for instance, happens in open concur-
rent systems.

Stateless bisimilarity [16, 8, 21, 11], shown in Figure 3, is the solution to this problem and the
finest notion of bisimilarity for state-bearing processes that that one can find in the literature.
Two process terms are stateless bisimilar if, for all identical data states, they satisfy the same
predicates and they can mimic transitions of each other and the resulting process terms are again
stateless bisimilar. In other words, we compare process terms for all identical data states and
allow all sorts of change (interference) in the data part after each transition.

Definition 3.8 (Stateless Bisimilarity) A relation Rsl ⊆ C(Σp) × C(Σp) is a stateless bisim-
ulation relation if and only if ∀p0,p1

(p0, p1) ∈ Rsl ⇒ ∀r

1. ∀d0,l0,p′

0
,d′

0
(p0, d0)

l0→r (p′0, d
′
0) ⇒ ∃p′

1
(p1, d0)

l0→r (p′1, d
′
0) ∧(p′0, p

′
1) ∈ Rsl;

2. ∀d1,l1,p′

1
,d′

1
(p1, d1)

l1→r (p′1, d
′
1) ⇒ ∃p′

0
(p0, d1)

l1→r (p′0, d
′
1) ∧(p′0, p

′
1) ∈ Rsl.
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′
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p′0

(p′0, d0)

(p′1, d
′
0)

p′1

(p′0, d1)

(p′2, d
′
1)

p′2

Rsl

Rsl

Rsl

Figure 3: Stateless Bisimilarity

Two closed process terms p and q are stateless bisimilar, denoted by p ↔sl q, if and only if there
exists a stateless bisimulation relation Rsl such that (p, q) ∈ Rsl.

Example 3.9 Consider the transition system specification of Example 3.4. None of the non-
trivial examples of bisimilarity hold anymore for stateless bisimilarity. Namely, it does not hold
that a ↔sl b, a ↔sl c or b ↔sl c. From these one may conclude that stateless bisimilarity is a
congruence for the above transition system specification. We prove this formally in Example 4.5.

one of the three notions of bisimilarity is the perfect notion. Statebased bisimilarity is the
easiest one to check and establish but is not very robust in application. It is most suitable
for closed deterministic sequential systems. Initially stateless bisimilarity is a bit more difficult to
check and establish but is more robust and suitable for closed nondeterministic sequential systems.
Finally, stateless bisimilarity is the hardest one to establish but it is considered the most robust
one for open concurrent systems. In general, a compromise has to be made in order to find the
right level of robustness and strength and as a result the most suitable notion of bisimilarity has
to be determined for each language / application separately.

A common practice in establishing bisimulation relations for concurrent systems is to trans-
form them to nondeterministic sequential systems preserving stateless bisimilarity and then using
initially stateless bisimilarity in that setting [16]. Another option for open systems with a limited
possibility of intervention from the environment is to parameterize the notion of bisimilarity with
an interference relation [16, 10, 11]. Our congruence format for statebased bisimilarity can easily
be adapted to the parameterized notion of bisimilarity.

Next, we compare the above three notions of bisimilarity.

3.3 Comparing the Notions of Bisimilarity

The following corollary states that stateless bisimilarity implies statebased bisimilarity with respect
to all data states.

Corollary 3.10 If p ↔sl q, then (p, d) ↔sb (q, d) for all d ∈ C(Σd).

In Examples 3.4 and 3.9, we have shown that two processes b and c are statebased bisimilar
(w.r.t. data state d) but stateless bisimilarity fails to hold between them. Thus, we may infer
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that stateless bisimilarity is finer than statebased bisimilarity (w.r.t. a particular data state). The
following corollary states that if a statebased bisimilarity relation is closed under the change of
data state then it induces a stateless bisimulation relation.

Corollary 3.11 Consider a statebased bisimulation relation R. If for ∀p,q,d ((p, d), (q, d)) ∈ R⇒
∀d′ ((p, d′), (q, d′)) ∈ R then ∀p,q (∃d ((p, d), (q, d)) ∈ R) ⇒ p ↔sl q.

Finally, the following lemma positions initially stateless bisimilarity in between the two other
notions of bisimilarity we have discussed so far.

Corollary 3.12 For two arbitrary closed process terms p and q and an arbitrary closed data term
d, we have

1. if p ↔sl q, then p ↔isl q;

2. p ↔isl q if and only if, (p, d) ↔sb (q, d) for all d.

Again, in Examples 3.4 and 3.7, we have shown that a and b are statebased bisimilar with
respect to d but they are not initially stateless bisimilar. Thus, statebased bisimilarity (with
respect to a particular data state) is strictly weaker than initially stateless bisimilarity.

4 Standard Formats for Congruence

In this section we present standard formats and prove congruence results with respect to afore-
mentioned notions of bisimilarity. To do this, we extend the tyft format of [15] with data in three
steps for stateless, statebased, and initially stateless bisimilarity. Finally, we present how our
formats can be extended to cover tyxt rules and rules containing predicates and negative premises
(thus, extending the PANTH format [25] with data).

4.1 Congruence Format for Stateless Bisimilarity

In this paper, we allow for deduction rules that adhere to the tyft-format with respect to the
process terms and are not restricted in the data terms. This format is called process-tyft.

Definition 4.1 (Process-tyft) Let (Σp,Σd, L,D(Rel)) be a transition system specification. A
deduction rule dr ∈ D(Rel) is in process-tyft format if it is of the form

(dr)
{(ti, ui)

li→ri
(yi, u

′
i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l
→r (t′, u′)

,

where I is a set of indices, →r ∈ Rel , l ∈ L, f ∈ Σp is a process function of arity n, the variables
x0, . . . , xn−1 and yi (i ∈ I) are all distinct variables from Vp, and, for all i ∈ I: →ri

∈ Rel , li ∈ L,
ti, t

′ ∈ T (Σp) and u, u′, ui, u
′
i ∈ T (Σd).

We name the set of process variables appearing in the left-hand-side of the conclusion Xp and
in the right-hand-side of the premises Yp. The two sets Xp and Yp are obviously disjoint following
the requirements of the format. The above deduction rule is called an f -defining deduction rule.

A transition system specification is in process-tyft format if all its deduction rules are in process-
tyft format.

It turns out that for any transition system specification in process-tyft format, stateless bisim-
ilarity is a congruence.

Theorem 4.2 If a transition system specification is in process-tyft format, then stateless bisimi-
larity is a congruence for that transition system specification.
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Before we prove this theorem, we first define the closure of a relation under stateless congruence
and give and prove a lemma that is very useful in the proof of Theorem 4.2.

Definition 4.3 (Closure under stateless congruence) Let R ⊆ C(Σp) × C(Σp). We define

the relation R̃ ⊆ C(Σp) × C(Σp) to be the smallest reflexive congruence on C(Σp) such that the

relation R is contained in R̃. Formally, R̃ is defined to be the smallest relation that satisfies:

1. R̃ is reflexive;

2. R ⊆ R̃;

3. (f(p0, . . . , pn−1), f(q0, . . . , qn−1)) ∈ R̃ for all n-ary f ∈ Σp, and all p0, . . . , pn−1, q0, . . . , qn−1 ∈

C(Σp) such that (pi, qi) ∈ R̃ for all 0 ≤ i < n.

Lemma 4.4 Let R ⊆ C(Σp) × C(Σp) and t ∈ T (Σp). For any two substitutions σ and σ′ such

that (σ(x), σ′(x)) ∈ R̃ for all x ∈ vars(t), we have (σ(t), σ′(t)) ∈ R̃.

Proof. By induction on the structure of process term t. First observe that as the relation R is
on closed process terms only, necessarily the substitutions σ and σ′ must be such that application
of them to any process term with only variables from vars(t) results in a closed process term. In
case t is a variable, say x, we obtain σ(t) = σ(x) and σ′(t) = σ′(x). As x ∈ vars(t), we have
(σ(x), σ′(x)) ∈ R̃ and hence (σ(t), σ′(t)) ∈ R̃.

In case t is a constant, say c, we obtain σ(t) = σ(c) = c = σ′(c) = σ′(t). Then (σ(t), σ′(t)) ∈ R̃
follows immediately from the fact that R̃ is reflexive.

Finally, consider the case where t = f(t0, . . . , tn−1) for some n-ary function symbol f ∈ Σp

(n > 0) and ti ∈ T (Σp) for 0 ≤ i < n. Then, as vars(ti) ⊆ vars(t) for all 0 ≤ i < n, we obtain, by

the induction hypothesis, (σ(ti), σ
′(ti)) ∈ R̃ for all 0 ≤ i < n. Since σ(t) = σ(f(t0, . . . , tn−1)) =

f(σ(t0), . . . , σ(tn−1)) and σ′(t) = σ′(f(t0, . . . , tn−1)) = f(σ′(t0), . . . , σ
′(tn−1)), and the relation R̃

is closed under congruence, we obtain (σ(t), σ′(t)) ∈ R̃. �

Proof. (Theorem 4.2) It suffices to prove that stateless bisimilarity is a congruence for each of the
process functions of Σp. Let f ∈ Σp be an n-ary process function. Let pi and qi be closed process
terms for 0 ≤ i < n. Suppose that pi ↔sl qi for 0 ≤ i < n. This means that there are stateless
bisimulation relations Ri (for 0 ≤ i < n) that witness these stateless bisimilarities. Let R be the
union of these relations Ri: R =

⋃n
i=0Ri. Obviously R is also a stateless bisimulation relation.

We prove that the relation R̃ contains the pair (f(p0, . . . , pn−1), f(q0, . . . , qn−1)) and that it is a
stateless bisimulation relation. The first part is obvious from the definition of R̃.

So, we only have to prove the following for any (p, q) ∈ R̃: if for arbitrary →r , l, p′, d and d′,

(p, d)
l
→r (p′, d′), then there exists a q′ such that (q, d)

l
→r (q′, d′) and (p′, q′) ∈ R̃ and vice versa

for transitions of q. Due to symmetry, it suffices to provide the proofs for the transitions of p only.
We prove this by induction on the depth of the proof of a transition. We do not show the proof

for the induction base as it is an instance of the proof of the induction step where there are no
premises.

For the induction step, we distinguish three cases based on the structure of the definition of
R̃. In case the pair (p, q) is contained in R̃ due to reflexivity of R̃ or due to the requirement that
R̃ contains R, the proof is obvious (and requires no induction at all). For the remaining case,
we find p = f(p0, . . . , pn−1) and q = f(q0, . . . , qn−1) for some p0, . . . , pn−1, q0, . . . , qn−1 such that
(pi, qi) ∈ R̃ for all 0 ≤ i < n. The last step of the proof of the transition of p is due to the
application of a deduction rule of the following form:

{(ti, ui)
li→ri

(yi, u
′
i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l
→r (t′, u′)

.
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This means that there are substitutions σ and υ such that σ(xi) = pi for all 0 ≤ i < n,
υ(u) = d, σ(t′) = p′ and υ(u′) = d′. Furthermore, for each i ∈ I, there exist a proof of

(σ(ti), υ(ui))
li→ri

(σ(yi), υ(u
′
i)) with smaller depth.

Since we have assumed acyclicity of the variable dependency graph, we can define a rank,
rank(x), for each variable x, as the maximum length of a backward chain starting from x in the
variable dependency graph. The rank of a premise is the rank of its right-hand-side variable.

Then, for each x ∈ vars(ti) of each premise (ti, ui)
li→ri

(yi, u
′
i) of the deduction rule, it holds that

rank(x) < rank(yi).
We define the substitution σ′ as follows:

σ′(x) =

{
qi if x = xi,

σ(x) if x /∈ Xp ∪ Yp.

Note that thus far this substitution is not defined for variables from Yp. We extend the definition
while proving, by induction on the rank of a premise r, three essential properties: for all r, for all
i ∈ I such that rank(yi) = r,

1. (σ(ti), σ
′(ti)) ∈ R̃;

2. (σ′(ti), υ(ui))
li→ri

(σ′(yi), υ(u
′
i));

3. (σ(yi), σ
′(yi)) ∈ R̃.

Again, we do not show the proof of the induction base (r = 0) as it is an instance of the proof of
the induction step.

For the induction step, suppose r ≥ 1. Let (ti, ui)
li→ri

(yi, u
′
i) for some i ∈ I be a premise of

rank r. First, we prove property (1). Let x ∈ vars(ti). We distinguish three cases:

1. x ∈ Xp. Then x = xi for some 0 ≤ i < n. From the definition of σ′ we have that

σ(x) = σ(xi) = pi and σ′(xi) = qi and we already know that (pi, qi) ∈ R̃. Thus, we have
(σ(x), σ′(x)) ∈ R̃.

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained in R̃ obviously

(σ(x), σ′(x)) ∈ R̃.

3. x ∈ Yp. Then x = yj for some j ∈ I. Obviously, also rank(yj) < rank(yi). Thus by the

induction hypothesis (property (3)) we have, (σ(yj), σ
′(yj)) ∈ R̃. But, as x = yj , we also

have (σ(x), σ′(x)) ∈ R̃.

From the fact that (σ(x), σ′(x)) ∈ R̃ for all x ∈ vars(ti), we have, by Lemma 4.4, that (σ(ti), σ
′(ti))

∈ R̃; which proves property (1).

As we have a proof of smaller depth for (σ(ti), υ(ui))
li→ri

(σ(yi), υ(u
′
i)), by the induction hy-

pothesis, we have the existence of a process term q′i such that (σ′(ti), υ(ui))
li→ri

(q′i, υ(u
′
i)) and

(σ(yi), q
′
i) ∈ R̃. We choose σ′(yi) to be q′i. Observe that this proves existence of an appropriate

process term σ′(yi). Then, we also have (σ′(ti), υ(ui))
li→ri

(σ′(yi), υ(u
′
i)) and (σ(yi), σ

′(yi)) ∈ R̃,
which prove properties (2) and (3).

Now, we finish our reasoning using process substitution σ′ and the same data substitution and
deduction rule. Observe that indeed σ′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q. By property (2)
we have proven that there are proofs for all premises using the substitutions σ′ and υ. Then, accord-

ing to the same deduction rule and using σ′ instead of σ, we have (σ′(f(x0, . . . , xn−1)), υ(u))
l
→r

(σ′(t′), υ(u′)). Since σ′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q, υ(u) = d and υ(u′) = d′ we obtain

(q, d)
l
→r (σ′(t′), d′).

We only have to show that (σ(t′), σ′(t′)) ∈ R̃. By Lemma 4.4, it suffices to show that
(σ(x), σ′(x)) ∈ R̃ for all x ∈ vars(t′). Three cases can be distinguished:
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1. x ∈ Xp. Then x = xi for some 0 ≤ i < n. We have that σ(xi) = pi and σ′(xi) = qi and we

already know that (pi, qi) ∈ R̃ and xi = x. Thus, we have (σ(x), σ′(x)) ∈ R̃.

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained in R̃ obviously

(σ(x), σ′(x)) ∈ R̃.

3. x ∈ Yp. Then x = yj for some j ∈ I. By property (3) we have, (σ(yj), σ
′(yj)) ∈ R̃. But, as

x = yj , we also have (σ(x), σ′(x)) ∈ R̃.

So this concludes the proof of Theorem 4.2. �

Example 4.5 Consider the transition system specification of Example 3.4. Obviously, all deduc-
tion rules are in process-tyft format, hence, by Theorem 4.2, stateless bisimilarity is a congruence
for all process functions from the signature of this transition system specification.

4.2 Congruence Format for Statebased Bisimilarity

In this section, we introduce a format for establishing congruence of statebased bisimilarity. First,
we show that we cannot simply use the previously introduced process-tyft format.

Example 4.6 Consider a transition system specification in process-tyft format, where the signa-
ture consists of three process constants a, b, and c, one unary process function f , and two data
constants d and d′ and the deduction rules are the following:

(1)
(a, v)

l
→ (c, d′)

(2)
(b, d)

l
→ (c, d′)

(3)
(f(x), v)

l′
→ (x, d′)

Then, we have (a, d) ↔sb (b, d). On the other hand, it does not hold that (f(a), d) ↔sb (f(b), d),
since (f(a), d) has an l′ transition to (a, d′), while (f(b), d) only has an l′ transition to (b, d′) and
these two states are not statebased bisimilar as the first one has an l transition due to deduction
rule (1), while the second one does not. Hence, statebased bisimilarity is not a process-congruence
(for f).

In deduction rules (1) and (3) of the above example, we have transitions that (potentially)
change the data state while keeping the process variable. That is the reason why we fail to have
that state-based bisimilarity is a process-congruence.

We remedy this shortcoming by adding more constraints to the format. We define the binding
between process variables and data terms and force it to remain consistent in each of the deduction
rules.

Definition 4.7 A state (t, u) satisfies the data dependency x V u′, denoted by (t, u) |= x V u′,
if and only if x ∈ vars(t) and u′ = u.

Example 4.8 Consider once more the transition system specification from Example 4.6. The
left-hand-side of the conclusion of deduction rule (3) has a data dependency (f(x), v) |= x V v
and the right-hand-side of the conclusion has a data dependency (x, d′) |= xV d′.

Definition 4.9 (Sfsb) A deduction rule (dr) is in sfsb format if it is in process-tyft format and
satisfies the following data-dependency constraints:

1. If a data dependency on a variable x ∈ Xp is satisfied in the right-hand-side of the conclusion,
the dependency is satisfied in the left-hand-side of the conclusion, that is,

∀x∈Xp
(t′, u′) |= xV u′ ⇒ (f(x0, . . . , xn−1), u) |= xV u′.
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2. If a data dependency on a variable y ∈ Yp is satisfied in the right-hand-side of the conclusion,
the dependency is satisfied in the right-hand-side of a premise, that is,

∀y∈Yp
(t′, u′) |= y V u′ ⇒ ∃i∈I (yi, u

′
i) |= y V u′.

3. If a data dependency on a variable x ∈ Xp is satisfied in the left-hand-side of a premise, the
dependency is satisfied in the left-hand-side of the conclusion:

∀i∈I,x∈Xp
(ti, ui) |= xV ui ⇒ (f(x0, . . . , xn−1), u) |= xV ui.

4. If a data dependency on a variable y ∈ Yp is satisfied in the left-hand-side of a premise, the
dependency is satisfied in the right-hand-side of a premise:

∀i∈I,y∈Yp
(ti, ui) |= y V ui ⇒ ∃j∈I (yj , u

′
j) |= y V ui.

A transition system specification is in sfsb format if and only if all its deduction rules are.

Informally speaking, we foresee a flow of binding between process variables and data terms
from the left-hand-side of the conclusion to the left-hand-side of the premises and the right-hand-
side of the conclusion and from the right-hand-side of the premises to the left-hand-sides of other
premises and finally, to the right-hand-side of the conclusion. For simplicity in proofs, we require
the acyclicity of the variable dependency graph, as well. However, this requirement can be removed
using the result of [13].

Theorem 4.10 If a transition system specification is in sfsb format, then statebased bisimilarity
is a process-congruence for that transition system specification.

Before we prove this theorem, we first define the closure of a relation under statebased con-
gruence and give and prove a lemma that is very useful in the proof of Theorem 4.10.

Definition 4.11 Let R ⊆ (C(Σp) × C(Σd)) × (C(Σp) × C(Σd)). We define the relation R̂ ⊆
(C(Σp)×C(Σd))× (C(Σp)×C(Σd)) to be the smallest reflexive process-congruence that contains

R. Formally, R̂ is defined to be the smallest relation that satisfies:

1. R̂ is reflexive;

2. R ⊆ R̂;

3. ((f(p0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ R̂ for all n-ary f ∈ Σp, d ∈ C(Σd), and all

p0, . . . , pn−1, q0, . . . , qn−1 ∈ C(Σp) such that ((pi, d), (qi, d)) ∈ R̂ for all 0 ≤ i < n.

Lemma 4.12 Let R ⊆ (C(Σp) × C(Σd)) × (C(Σp) × C(Σd)), t ∈ T (Σp), d ∈ C(Σd). For any

two substitutions σ and σ′ such that ((σ(x), d), (σ′(x), d)) ∈ R̂ for all x ∈ vars(t), we have

((σ(t), d), (σ′(t), d)) ∈ R̂.

Proof. By induction on the structure of process term t. First observe that, as the relation R is
on closed state terms only, necessarily the substitutions σ and σ′ must be such that application
of them to any process term with only variables from vars(t) results in a closed process term. In
case t is a variable, say x, we obtain σ(t) = σ(x) and σ′(t) = σ′(x). As x ∈ vars(t), we have

((σ(x), d), (σ′(x), d)) ∈ R̂ and hence ((σ(t), d), (σ′(t), d)) ∈ R̂.
In case t is a constant, say c, we obtain σ(t) = σ(c) = c = σ′(c) = σ′(t). Then, from the fact

that R̂ is reflexive, it follows immediately that ((σ(t), d), (σ′(t), d)) ∈ R̂.
Finally, consider the case where t = f(t0, . . . , tn−1) for some n-ary function symbol f ∈ Σp

(n > 0) and ti ∈ T (Σp). Then, as vars(ti) ⊆ vars(t) for all 0 ≤ i < n, we obtain, by the induc-

tion hypothesis, ((σ(ti), d), (σ
′(ti), d)) ∈ R̂ for all 0 ≤ i < n. Since σ(t) = σ(f(t0, . . . , tn−1)) =
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f(σ(t0), . . . , σ(tn−1)) and σ′(t) = σ′(f(t0, . . . , tn−1)) = f(σ′(t0), . . . , σ
′(tn−1)), and the relation R̂

is closed under process-congruence, we obtain ((σ(t), d), (σ′(t), d)) ∈ R̂. �

Proof. (Theorem 4.10) It suffices to prove that statebased bisimilarity is a process-congruence
for each of the process functions of Σp. Let f ∈ Σp be an n-ary process function. Let pi and
qi be closed process terms for 0 ≤ i < n and let d ∈ C(Σd). Suppose that (pi, d) ↔sb (qi, d) for
0 ≤ i < n. This means that there are statebased bisimulation relations Ri (for 0 ≤ i < n) that
witness these statebased bisimilarities. Let R be the union of these relations Ri: R =

⋃n
i=0Ri.

Obviously R is also a statebased bisimulation relation. We prove that the relation R̂ contains the
pair ((f(p0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) and that it is a statebased bisimulation relation.

The first part is obvious from the definition of R̂.
So, we only have to prove the following for any ((p, d), (q, d)) ∈ R̂: if for an arbitrary →r , l,

p′ and d′, (p, d)
l
→r (p′, d′), then there exists a q′ such that (q, d)

l
→r (q′, d′) and ((p′, d′), (q′, d′))

∈ R̂ and vice versa for transitions of q. Due to symmetry, it suffices to provide the proofs for the
transitions of p only.

We prove this by induction on the depth of the proof of a transition. We do not show the proof
for the induction base as it is an instance of the proof of the induction step where there are no
premises.

For the induction step, we distinguish three cases based on the structure of the definition of
R̂. In case the pair ((p, d), (q, d)) is contained in the identity relation or the relation R, the proof
is obvious (and requires no induction at all). For the remaining case, we find p = f(p0, . . . , pn−1)

and q = f(q0, . . . , qn−1) for some p0, . . . , pn−1, q0, . . . , qn−1 such that ((pi, d), (qi, d)) ∈ R̂ for all
0 ≤ i < n. The last step of the proof of the transition of p is due to the application of a deduction
rule of the following form:

{(ti, ui)
li→ri

(yi, u
′
i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l
→r (t′, u′)

.

This means that there are substitutions σ and υ such that σ(xi) = pi for all 0 ≤ i < n,
υ(u) = d, σ(t′) = p′ and υ(u′) = d′. Furthermore, for each i ∈ I, there exist a proof of

(σ(ti), υ(ui))
li→ri

(σ(yi), υ(u
′
i)) with smaller depth.

Since we have assumed acyclicity of the variable dependency graph, we can define a rank,
rank(x), for each variable x, as the maximum length of a backward chain starting from x in the
variable dependency graph. The rank of a premise is the rank of its right-hand-side variable.

Then, for each x ∈ vars(ti) of each premise (ti, ui)
li→ri

(yi, u
′
i) of the deduction rule, it holds that

rank(x) < rank(yi).
We define the substitution σ′ as follows:

σ′(x) =

{
qi if x = xi,

σ(x) if x /∈ Xp ∪ Yp.

Note that thus far this substitution is not defined for variables from Yp. We extend the definition
while proving, by induction on the rank of a premise r, three essential properties: for all r, for all
i ∈ I such that rank(yi) = r,

1. ((σ(ti), υ(ui)), (σ
′(ti), υ(ui))) ∈ R̂;

2. (σ′(ti), υ(ui))
li→ri

(σ′(yi), υ(u
′
i));

3. ((σ(yi), υ(u
′
i)), (σ

′(yi), υ(u
′
i))) ∈ R̂.

Again, we do not show the proof of the induction base (r = 0) as it is an instance of the proof of
the induction step.

For the induction step, suppose r ≥ 1. Let (ti, ui)
li→ri

(yi, u
′
i) for some i ∈ I be a premise of

rank r. First, we prove property (1). Let x ∈ vars(ti). We distinguish three cases:
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1. x ∈ Xp. Then x = xi for some 0 ≤ i < n. The left-hand-side of the premise has a data
dependency xi V ui. Hence, by data-dependency constraint 3, this dependency also has
to be satisfied in the left-hand-side of the conclusion. Hence, ui = u. We also have that
σ(xi) = pi and σ′(xi) = qi and we already know that ((pi, d), (qi, d)) ∈ R̂ and υ(u) = d.

Thus, we have ((σ(xi), υ(ui)), (σ
′(xi), υ(ui))) ∈ R̂, i.e., ((σ(x), υ(ui)), (σ

′(x), υ(ui))) ∈ R̂.

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained in R̂ obviously

((σ(x), υ(u′)), (σ′(x), υ(u′))) ∈ R̂.

3. x ∈ Yp. Then x = yj for some j ∈ I. The left-hand-side of the premise has a data dependency
yj V ui. Hence, by data-dependency constraint 4, this dependency also has to be satisfied
in the right-hand-side of a premise. Only the premise with index j is a candidate. Hence,
(yj , u

′
j) |= x V ui. Hence u′j = ui. Obviously, also rank(yj) < rank(yi). Thus by the

induction hypothesis(property (2)) we have, ((σ(yj), υ(u
′
j)), (σ

′(yj), υ(u
′
j))) ∈ R̂. But, as

x = yj , and u′j = ui, we also have ((σ(x), υ(ui)), (σ
′(x), υ(ui))) ∈ R̂.

From the fact that ((σ(x), υ(ui)), (σ
′(x), υ(ui))) ∈ R̂ for all x ∈ vars(ti), by Lemma 4.12, we have

((σ(ti), υ(ui)), (σ
′(ti), υ(ui))) ∈ R̂; which proves property (1).

As we have a proof of smaller depth for (σ(ti), υ(ui))
li→ri

(σ(yi), υ(u
′
i)), by the induction

hypothesis, we have the existence of a process term q′i such that (σ′(ti), υ(ui))
li→ri

(q′i, υ(u
′
i))

and ((σ(yi), υ(u
′
i)), (q

′
i, υ(u

′
i))) ∈ R̂. We choose σ′(yi) to be q′i. Observe that this proves exis-

tence of an appropriate process term σ′(yi). Then, we also have (σ′(ti), υ(ui))
li→ri

(σ′(yi), υ(u
′
i))

((σ(yi), υ(u
′
i)), (σ

′(yi), υ(u
′
i))) ∈ R̂, which prove properties (2) and (3).

Now, we finish our reasoning using process substitution σ′ and the same data substitution and
deduction rule. Observe that indeed σ′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q. By property (2)
we have proven that there are proofs for all premises using the substitutions σ′ and υ. Then, accord-

ing to the same deduction rule and using σ′ instead of σ, we have (σ′(f(x0, . . . , xn−1)), υ(u))
l
→r

(σ′(t′), υ(u′)). Since σ′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q, υ(u) = d and υ(u′) = d′ we obtain

(q, d)
l
→r (σ′(t′), d′).

We only have to show that ((σ(t′), d′), (σ′(t′), d′)) ∈ R̂. By Lemma 4.12, it suffices to show

that ((σ(x), d′), (σ′(x), d′)) ∈ R̂ for all x ∈ vars(t′). Three cases can be distinguished:

1. x ∈ Xp. Then x = xi for some 0 ≤ i < n. The right-hand-side of the conclusion of
the deduction rule has a data dependency (t′, u′) |= x V u′. Hence, by data-dependency
constraint 1, this data dependency has to be satisfied in the left-hand-side of the conclusion.
Therefore, necessarily (f(x0, . . . , xn−1), u) |= x V u′, and thus u = u′. Hence d = υ(u) =
υ(u′) = d′. We also have that σ(xi) = pi and σ′(xi) = qi and we already know that

((pi, d), (qi, d)) ∈ R̂, xi = x, and d = d′. Thus, we have ((σ(x), d′), (σ′(x), d′)) ∈ R̂.

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained in R̂ obviously

((σ(x), d′), (σ′(x), d′)) ∈ R̂.

3. x ∈ Yp. Then x = yj for some j ∈ I. The right-hand-side of the conclusion has a data
dependency yj V u′. Hence, by data-dependency constraint 2, this dependency also has
to be satisfied in the right-hand-side of a premise. Only the premise with index j is a
candidate. Hence, (yj , u

′
j) |= x V u′. This can only be the case if u′j = u′. We obtain

d′ = υ(u′) = υ(u′j). By property (3) we have, ((σ(yj), υ(u
′
j)), (σ

′(yj), υ(u
′
j))) ∈ R̂. But, as

x = yj , and υ(u′j) = d′, we also have ((σ(x), d′), (σ′(x), d′)) ∈ R̂.

So this concludes the proof of Theorem 4.10. �

Next, we show that if the proposed format is relaxed in any conceivable way, the congruence
result is lost. The first example shows that we cannot remove data-dependency constraint 1.
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Example 4.13 Consider a transition system specification, where the process signature consists
of process constants a and b, and a unary function symbol f ; the data signature consists of data
constants d and d′; and the following deduction rules:

(1)
(a, d′)

l
→ (a, d′)

, (2)
(f(x), d)

l
→ (x, d′)

.

These deduction rules are in process-tyft format. Data-dependency constraint 1 is not satisfied
by deduction rule (2) as the data dependency x V d′ that is satisfied in the right-hand-side of
the conclusion (i.e., state (x, d′)) is not satisfied in the left-hand-side of the conclusion. The other
data-dependency constraints are satisfied.

The process-congruence result fails on the above specification. We have (a, d) ↔sb (b, d) (both
cannot perform any transitions). However, it does not hold that (f(a), d) ↔sb (f(b), d) since the
former state can perform a transition due to deduction rule (2) to (a, d′), while the latter is forced
to make the same transition to (b, d′) and it clearly does not hold that (a, d′) ↔sb (b, d′) (see
deduction rule (1)).

The next example shows that we cannot remove data-dependency constraint 2.

Example 4.14 Consider a process signature consisting of process constants a and b and a unary
process function f ; a data signature consisting of data constants d and d′; and a transition system
specification with the following deduction rules:

(1)
(a, v)

l
→ (a, v)

, (2)
(b, d)

l
→ (b, d)

, (3)
(x, d)

l
→ (y, d)

(f(x), d)
l
→ (y, d′)

.

These deduction rules are in process-tyft format and all data-dependency constraints, except for
constraint 2, which is violated by deduction rule (3). This violation results in breaking the process-
congruence result. Two states (a, d) and (b, d) are statebased bisimilar. However, (f(a), d) is not
statebased bisimilar to (f(b), d) since the former can perform a transition using deduction rule
(3) to (a, d′), while the latter performs a similar transition to (b, d′). These two states are not
statebased bisimilar as the former performs an l-transition and the latter deadlocks.

The next example shows that we cannot remove data-dependency constraint 3.

Example 4.15 Consider a transition system specification, where the process signature consists
of process constants a and b, and a unary function symbol f ; the data signature consists of data
constants d and d′; and the following deduction rules:

(1)
(a, d′)

l
→ (a, d′)

, (2)
(x, d′)

l
→ (y, v′)

(f(x), v)
l
→ (x, v)

.

The above deduction rules are in process-tyft format and satisfy data-dependency constraints 1, 2,
and 4. Data-dependency constraint 3 is violated in deduction rule (3) since the data dependency
xV d′ that is satisfied in the left-hand-side of the premise is not satisfied in the left-hand-side of
the conclusion.

For this transition system specification, statebased bisimilarity is not a process-congruence.
We have (a, d) ↔sb (b, d) (both states deadlock). However, (f(a), d) ↔sb (f(b), d) does not hold,
since the former state can make a transition due to deduction rule (2) while the latter cannot
make any transition.

The next example shows that we cannot remove data-dependency constraint 4.

Example 4.16 Consider a process signature consisting of process constants a and b and a unary
process function f ; a data signature consisting of data constants d and d′; and a transition system
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specification with the following deduction rules:

(1)
(a, v)

l
→ (a, v)

, (2)
(b, d)

l
→ (b, d)

, (3)
(x, d)

l
→ (y, d) (y, d′)

l
→ (y′, d′)

(f(x), d)
l
→ (y′, d′)

.

The above deduction rules are in process-tyft format and satisfy all data-dependency constraints
apart from constraint 4. Deduction rule (3) breaks this constraint in the left-hand-side of its
second premise. This also turns out to be harmful for the congruence property, since we have
(a, d) ↔sb (b, d) but not (f(a), d) ↔sb (f(b), d) because deduction rule (3) allows for a transition
of the former but not the latter.

4.3 Congruence Format for Initially Stateless Bisimilarity

Later, when comparing congruence conditions for the different notions of bisimilarity, we show
that the sfsb format works perfectly well for initially stateless bisimilarity. However, it may turn
out to be too restrictive in application. The following example shows a common problem in this
regard.

Example 4.17 Consider the following transition system specification (with process constants a
and b, unary process function f , and data constants d and d′) and the following deduction rules:

(1)
(a, v)

l
→ (a, v)

, (2)
(b, d)

l
→ (b, d)

, (3)
(x0, v)

l
→ (y, v)

(f(x0, x1), v)
l
→ (x1, d

′)
.

This transition system specification does not satisfy the sfsb format and statebased bisimilarity
is not a congruence (since (a, d) ↔sb (b, d), but it does not hold that (f(b, a), d) ↔sb (f(b, b), d)).
However, it can be checked that initially stateless bisimilarity is indeed a congruence. The reason
is that the change in the data state in deduction rule (3) is harmless since x1’s are now related
using all data states including d′ (e.g., the above counterexample does not work anymore since it
does not hold that a ↔isl b).

This gives us some clue that for initially stateless bisimilarity, we may weaken the data-
dependency constraints.

Definition 4.18 (Sfisl) A deduction rule (dr) is in sfisl format if it is in process-tyft format and
satisfies the following local (relaxed) data-dependency constraints:

1. If a data dependency on a variable y ∈ Yp is satisfied in the right-hand-side of the conclusion,
the dependency is satisfied in the right-hand-side of a premise, that is,

∀y∈Yp
(t′, u′) |= y V u′ ⇒ ∃i∈I (yi, u

′
i) |= y V u′.

2. If a data dependency on a variable y ∈ Yp is satisfied in the left-hand-side of a premise, the
dependency is satisfied in the right-hand-side of a premise:

∀i∈I,y∈Yp
(ti, ui) |= y V ui ⇒ ∃j∈I (yj , u

′
j) |= y V ui.

The data-dependency constraints that were required for variables from the set Xp for con-
gruence of statebased bisimilarity, need not be satisfied for this format anymore. The reason of
violating these constraints is that we rely on the fact that certain positions are instantiated by
process terms that are related for all possible data. To formalize this concept, first we define
positions for which the two constraints are violated and then we check the global consequences of
this violation.
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Definition 4.19 A variable x ∈ Xp is called unresolved if

∃i∈I x ∈ vars(ti) ⇒ (ti, ui) 6|= xV u
∨
x ∈ vars(t′) ⇒ (t′, u′) 6|= xV u.

We define Xu
p to be the set of unresolved variables.

For each process function f , we define a set IV f that contains indices of f for which we need
initially stateless bisimilarity because a data-dependency is violated with respect to the variable
that occurs in that position in the left-hand-side of the conclusion. The set IV f contains at least
the indices of the unresolved variables of the f -defining deduction rules, but it may contain more
indices due to the use of f in other deduction rules in the right-hand-side of the conclusion or the
left-hand-side of a premise.

Definition 4.20 For a given transition system specification in process-tyft format, we define, for
all f ∈ Σp, the sets IV f as the smallest sets that satisfy, for all f -defining deduction rules dr:

1. the indices of unresolved variables (i.e., variables from Xu
p ) of dr are in IV f ;

2. for all n-ary process functions g ∈ Σp: for each occurrence of a process term g(t0, . . . , tn−1)
in the left-hand-side of a premise or the right-hand-side of the conclusion of dr:

∀i∈IV g
∀x∈vars(ti) ∃j∈IV f

x = xj .

Note that with the above definition, it is possible that such a set does not exist. In such cases,
the global data-dependency constraint given below cannot be established.

Definition 4.21 (Sfisl) A transition system specification is in sfisl format if all its deduction
rules are in sfisl format and furthermore for each process function f the set IV f exists.

Informally, this means that a deduction rule may change the data state associated with a
process term (arbitrarily) if according to the other rules, the process term is guaranteed to be
among the initial argument of the topmost process function (thus, benefitting from the initially
stateless bisimilarity assumption). The positions of a process function f benefitting from the
initially stateless bisimilarity assumption are thus denoted by IV f .

Theorem 4.22 If a transition system specification is in sfisl format, then initially stateless bisim-
ilarity is a congruence for that transition system specification.

Before we prove this theorem, we first define the closure of a relation under initially stateless
congruence and give and prove a lemma that is very useful in the proof of Theorem 4.22.

Definition 4.23 (Closure With Initially Stateless Congruence) Let R ⊆ (C(Σp)×C(Σd))
× (C(Σp) × C(Σd)). We define the relation R ⊆ (C(Σp) × C(Σd)) × (C(Σp) × C(Σd)) to be the
smallest relation that satisfies:

1. R is reflexive;

2. R ⊆ R;

3. ((f(p0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ R for all n-ary f ∈ Σp, d ∈ C(Σd), and all
p0, . . . , pn−1, q0, . . . , qn−1 ∈ C(Σp) such that

(a) ∀i/∈IV f
((pi, d), (qi, d)) ∈ R;

(b) ∀i∈IV f ,d′∈C(Σd) ((pi, d
′), (qi, d

′)) ∈ R.
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For a process term t, we define the set V (t) to be the set of variables that appear in the places
indicated by the sets IV f (for all f).

V (x) = ∅,
V (f(t0, . . . , tn−1)) =

⋃
0≤i<n,i∈IV f

vars(ti) ∪
⋃

0≤i<n,i/∈IV f

V (ti).

Lemma 4.24 Let R ⊆ (C(Σp)×C(Σd))× (C(Σp)×C(Σd)), t ∈ T (Σp), d ∈ C(Σd). For any two
substitutions σ and σ′ such that

1. ((σ(x), d′), (σ′(x), d′)) ∈ R for all x ∈ V (t), d′ ∈ C(Σd), and

2. ((σ(x), d), (σ′(x), d)) ∈ R for all x ∈ vars(t) \ V (t);

we have ((σ(t), d), (σ′(t), d)) ∈ R.

Proof. By induction on the structure of process term t. In case t is a variable, say x, we
obtain σ(t) = σ(x) and σ′(t) = σ′(x) and V (t) = V (x) = ∅. As x ∈ vars(t) \ V (t), we have
((σ(x), d), (σ′(x), d)) ∈ R and therefore ((σ(t), d), (σ′(t), d)) ∈ R as well.

In case t is a constant, say c, we obtain σ(t) = σ(c) = c = σ′(c) = σ′(t). Then, from reflexivity
of R, it follows immediately that ((σ(t), d), (σ′(t), d)) ∈ R.

Finally, consider the case where t = f(t0, . . . , tn−1) for some n-ary (n ≥ 1) function symbol
f ∈ Σp and ti ∈ T (Σp) (0 ≤ i < n). If we prove

((σ(ti), d), (σ
′(ti), d)) ∈ R (1)

for all i /∈ IV f , and
((σ(ti), d

′), (σ′(ti), d
′)) ∈ R (2)

for all i ∈ IV f and d′ ∈ C(Σd), then ((σ(t), d), (σ′(t), d)) ∈ R according to Definition 4.23.
For the first part, assume that i 6∈ IV f . Then, by definition of V , we have V (ti) ⊆ V (t).

Therefore, by the first assumption on σ and σ′ of Lemma 4.24, we have ((σ(x), d′), (σ′(x), d′)) ∈
R for all x ∈ V (ti) and d′ ∈ C(Σd). By the first and second assumption and the fact that
vars(ti) \ V (ti) ⊆ vars(t), we have ((σ(x), d), (σ′(x), d)) ∈ R for all x ∈ vars(ti) \ V (ti). Thus, by
the induction hypothesis, we have ((σ(ti), d), (σ

′(ti), d)) ∈ R.
For the second part, assume that i ∈ IV f and that d′ ∈ C(Σd). From the definition of V

we obtain vars(ti) ⊆ V (t). Hence, by the first assumption on σ and σ′ of Lemma 4.24, we
have ((σ(x), d′), (σ′(x), d′)) ∈ R for all x ∈ vars(ti). Thus, by the induction hypothesis, we have
((σ(ti), d

′), (σ′(ti), d
′)) ∈ R. �

Proof. (Theorem 4.22) It suffices to prove that initially stateless bisimilarity is a congruence
for each of the process functions of Σp. Let f ∈ Σp be an n-ary process function. Let pi and
qi be closed process terms for 0 ≤ i < n and let d ∈ C(Σd). Suppose that pi ↔isl qi for 0 ≤
i < n. This means that there are statebased bisimulation relations Ri (for 0 ≤ i < n) such that
((pi, d), (qi, d)) ∈ Ri for all d ∈ C(Σd). Let R be the union of these relations Ri: R =

⋃n
i=0Ri.

Obviously R is also a statebased bisimulation relation. We prove that the relation R contains
the pair ((f(p0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)), for all d ∈ C(Σd), and that it is a statebased
bisimulation relation.

As ((pi, d), (qi, d)) ∈ Ri and Ri ⊆ R ⊆ R, for all 0 ≤ i < n and all d ∈ C(Σd), it follows that
((pi, d), (qi, d)) ∈ R, for all 0 ≤ i < n and all d ∈ C(Σd). Hence, by the definition of R obviously
also ((f(p0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ R, for d ∈ C(Σd).

So, we only have to prove the following for any ((p, d), (q, d)) ∈ R: if for arbitrary →r , l, p′

and d′, (p, d)
l
→r (p′, d′), then there exists a q′ such that (q, d)

l
→r (q′, d′) and ((p′, d′), (q′, d′))

∈ R and vice versa for transitions of q. Due to symmetry, it suffices to provide the proofs for the
transitions of p only.
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We prove this by induction on the depth of the proof of a transition. We do not show the proof
for the induction base as it is an instance of the proof of the induction step where there are no
premises.

For the induction step, we distinguish three cases based on the structure of the definition of R.
In case the pair ((p, d), (q, d)) is contained in R due to reflexivity of R or due to the requirement
that R contains R, the proof is obvious (and requires no induction at all). For the remaining case,
we find p = f(p0, . . . , pn−1) and q = f(q0, . . . , qn−1) for some p0, . . . , pn−1, q0, . . . , qn−1 such that

∀i6∈IV f
((pi, d), (qi, d)) ∈ R, (3)

and
∀i∈IV f ,d′∈C(Σd) ((pi, d

′), (qi, d
′)) ∈ R. (4)

The last step of the proof of the transition of p is due to the application of a deduction rule of the
following form:

{(ti, ui)
li→ri

(yi, u
′
i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l
→r (t′, u′)

.

This means that there are substitutions σ and υ such that σ(xi) = pi for all 0 ≤ i < n,
υ(u) = d, σ(t′) = p′ and υ(u′) = d′. Furthermore, for each i ∈ I, there exist a proof of

(σ(ti), υ(ui))
li→ri

(σ(yi), υ(u
′
i)) with smaller depth.

Since we have assumed acyclicity of the variable dependency graph, we can define a rank,
rank(x), for each variable x, as the maximum length of a backward chain starting from x in the
variable dependency graph. The rank of a premise is the rank of its right-hand-side variable.

Then, for each x ∈ vars(ti) of each premise (ti, ui)
li→ri

(yi, u
′
i) of the deduction rule, it holds that

rank(x) < rank(yi).
We define the substitution σ′ as follows:

σ′(x) =

{
qi if x = xi,

σ(x) if x /∈ Xp ∪ Yp.

Note that thus far this substitution is not defined for variables from Yp. We extend this definition
while proving, by induction on the rank of a premise r, three essential properties: for all r, for all
i ∈ I such that rank(yi) = r,

1. ((σ(ti), υ(ui)), (σ
′(ti), υ(ui))) ∈ R;

2. (σ′(ti), υ(ui))
li→ri

(σ′(yi), υ(u
′
i));

3. ((σ(yi), υ(u
′
i)), (σ

′(yi), υ(u
′
i))) ∈ R.

Again, we do not show the proof of the induction base (r = 0) as it is an instance of the proof of
the induction step.

For the induction step, suppose r ≥ 1. Let (ti, ui)
li→ri

(yi, u
′
i) for some i ∈ I be a premise of

rank r. First, we prove property (1). We aim at using Lemma 4.24. Hence we prove

∀x∈vars(ti)\V (ti) ((σ(x), υ(ui)), (σ
′(x), υ(ui))) ∈ R (5)

and
∀x∈V (ti),d′′∈C(Σd) ((σ(x), d′′), (σ′(x), d′′)) ∈ R (6)

by induction on the structure of term ti.

1. Suppose that ti is a variable, say x. Then vars(ti) \ V (ti) = {x} \ ∅ = {x}. For the first
property, we distinguish three cases:
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• x /∈ Xp and x /∈ Yp. Then, we have σ(ti) = σ′(ti). Since R is reflexive we obtain
((σ(x), υ(ui)), (σ

′(x), υ(ui))) ∈ R.

• x ∈ Yp. Then x = yj for some j ∈ I. The left-hand-side of the premise has a data
dependency yj V ui. Hence, by local data-dependency constraint 2, this dependency
also has to be satisfied in the right-hand-side of a premise. Only the premise with index j
is a candidate. Hence, (yj , u

′
j) |= yj V uj . So, ui = u′j . Observe that rank(yj) < r. By

the induction hypothesis (property (3)), we then have ((σ(yj), υ(u
′
j)), (σ

′(yj), υ(u
′
j))) ∈

R. Hence, as yj = x and υ(uj) = υ(ui), we have ((σ(x), υ(ui)), (σ
′(x), υ(ui))) ∈ R.

• x ∈ Xp. Then, x = xj for some 0 ≤ j < n. We distinguish two cases: (1) If j ∈ IV f ,
then we use assumption (4) to obtain ((σ(x), υ(uj)), (σ

′(x), υ(uj))) ∈ R; (2) If j /∈ IV f ,
then by assumption (3) we have ((pj , d), (qj , d)) ∈ R. By definition of IV we obtain
that xj is not an unresolved variable. Hence, by definition of unresolved variables, we
have the data-dependency (ti, ui) |= xj V u; and thus ui = u. Hence d = υ(u) = υ(ui).
Thus, we have ((σ(x), υ(ui)), (σ

′(x), υ(ui))) ∈ R.

The second property holds trivially, as V (ti) = ∅.

2. Suppose that ti is a process constant, say c. Then both properties hold trivially, as vars(ti) =
∅ and V (ti) = ∅.

3. Suppose that ti = g(t′0, . . . , t
′
n′−1) for some n′-ary process function g ∈ Σp and t′j ∈ T (Σp)

for 0 ≤ j < n′. For the first property observe that x ∈ vars(ti) \ V (ti) implies that
x ∈ vars(t′j)\V (t′j) for some j 6∈ IV g. By the induction hypothesis (first property), we then

have ((σ(x), υ(ui)), (σ
′(x), υ(ui))) ∈ R.

For the second property observe that x ∈ V (ti) implies (1) x ∈ vars(t′j) for some 0 ≤ j < n′

such that j ∈ IV g; or (2) x ∈ V (t′j) for some j 6∈ IV g. In the first case, the global data-
dependency constraint requires that x = xk for some 0 ≤ k < n such that k ∈ IV f . We have
σ(x) = pk and σ′(x) = qk. Using assumption (4) we then obtain ((σ(x), d′′), (σ′(x), d′′)) ∈ R
for all d′′ ∈ C(Σd). In the second case, by the induction hypothesis (second property), we
have ((σ(x), d′′), (σ′(x), d′′)) ∈ R for all d′′ ∈ C(Σd).

From property (1), we have that ((σ(ti), υ(ui)), (σ
′(ti), υ(ui))) ∈ R. We also have a proof of

smaller depth for (σ(ti), υ(ui))
li→ri

(σ(yi), υ(u
′
i)). Then, by the induction hypothesis, we have the

existence of a process term q′i such that (σ′(ti), υ(ui))
li→ri

(q′i, υ(u
′
i)) and ((σ(yi), υ(u

′
i)), (q

′
i, υ(u

′
i)))

∈ R. We choose σ′(yi) to be q′i. Observe that this proves existence of an appropriate process term

σ′(yi). Then, we also have (σ′(ti), υ(ui))
li→ri

(σ′(yi), υ(u
′
i)) ((σ(yi), υ(u

′
i)), (σ

′(yi), υ(u
′
i))) ∈ R,

which prove properties (2) and (3).
Now, we finish our reasoning using process substitution σ′ and the same data substitution and

deduction rule. Observe that indeed σ′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q. By property (2)
we have proven that there exist proofs for all premises using the substitutions σ′ and υ. Then, ac-

cording to the same deduction rule and using σ′ instead of σ, we have (σ′(f(x0, . . . , xn−1)), υ(u))
l
→r

(σ′(t′), υ(u′)). Since σ′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q, υ(u) = d and υ(u′) = d′ we obtain

(q, d)
l
→r (σ′(t′), d′).

We only have to show that ((σ(t′), d′), (σ′(t′), d′)) ∈ R. We aim at using Lemma 4.24. Hence
we prove

∀x∈vars(t′)\V (t′) ((σ(x), d′), (σ′(x), d′)) ∈ R (7)

and
∀x∈V (t′),d′′∈C(Σd) ((σ(x), d′′), (σ′(x), d′′)) ∈ R (8)

by induction on the structure of term t′.

1. Suppose that t′ is a variable, say x. Then vars(t′) \ V (t′) = {x} \ ∅ = {x}. For the first
property, we distinguish three cases:
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• x /∈ Xp and x /∈ Yp. Then, we have σ(ti) = σ′(ti). Since R is reflexive we obtain
((σ(x), d′), (σ′(x), d′)) ∈ R.

• x ∈ Yp. Then x = yj for some j ∈ I. The right-hand-side of the conclusion has a data
dependency yj V u′. Hence, by local data-dependency constraint 1, this dependency
also has to be satisfied in the right-hand-side of a premise. Only the premise with index
j is a candidate. Hence, (yj , u

′
j) |= yj V uj . So, u′ = u′j . By property (3), we have

((σ(yj), υ(u
′
j)), (σ

′(yj), υ(u
′
j))) ∈ R. Hence, as yj = x and υ(uj) = υ(u′) = d′, we have

((σ(x), d′), (σ′(x), d′)) ∈ R.

• x ∈ Xp. Then, x = xj for some 0 ≤ j < n. We distinguish two cases: (1) If j ∈ IV f ,
then we use assumption (4) to obtain ((σ(x), d′)), (σ′(x), d′)) ∈ R; (2) If j /∈ IV f , then
by assumption (3) we have ((pj , d), (qj , d)) ∈ R. By definition of IV we obtain that xj

is not an unresolved variable. Hence, by definition of unresolved variables, we have the
data-dependency (t′, u′) |= xj V u; and thus u′ = u. Hence d = υ(u) = υ(u′) = d′.
Thus, we have ((σ(x), d′), (σ′(x), d′)) ∈ R.

The second property holds trivially, as V (t′) = ∅.

2. Suppose that t′ is a process constant, say c. Then both properties hold trivially, as vars(t′) =
∅ and V (t′) = ∅.

3. t′ = g(t′0, . . . , t
′
n′−1) for some n′-ary process function g ∈ Σp and t′j ∈ T (Σp) for 0 ≤ j <

n′. For the first property observe that x ∈ vars(t′) \ V (t′) implies that x ∈ vars(t′j) \
V (t′j) for some j 6∈ IV g. By the induction hypothesis (first property), we then have

((σ(x), d′), (σ′(x), d′)) ∈ R.

For the second property observe that x ∈ V (t′) implies (1) x ∈ vars(t′j) for some 0 ≤ j < n′

such that j ∈ IV g; or (2) x ∈ V (t′j) for some j 6∈ IV g. In the first case, the global data-
dependency constraint requires that x = xk for some 0 ≤ k < n such that k ∈ IV f . We have
σ(x) = pk and σ′(x) = qk. Using assumption (4) we then obtain ((σ(x), d′′), (σ′(x), d′′)) ∈ R
for all d′′ ∈ C(Σd). In the second case, by the induction hypothesis (second property), we
have ((σ(x), d′′), (σ′(x), d′′)) ∈ R for all d′′ ∈ C(Σd).

So this concludes the proof of Theorem 4.22. �

Example 4.25 Consider the transition system specification of Example 3.4. Obviously the deduc-
tion rules are in process-tyft format. They also satisfy the sfisl format as no variables introduced
in the right-hand-side of any premise are used in the left-hand-side of a premise or in the right-
hand-side of the conclusion. Variable x1 in deduction rule (5) is unresolved. Hence, we obtain
IV f ⊇ {1}. As the process function f is not used in any other deduction rule we find IV f = {1}.
Obviously, for all process constants we find that the set IV is empty: IV a = IV b = IV c = ∅.
Hence, the transition system specification is also in sfisl format. From this we conclude that
initially stateless bisimilarity is a congruence.

In the next two examples, we show that none of the two constraints of sfisl can be relaxed in
any conceivable way.

Example 4.26 Consider the following transition system specification (with process constants a,
b, c, and c′, unary process function f , and data constants d and d′) and the following deduction
rules:

(1)
(a, d)

l
→ (c, d)

, (2)
(b, d)

l
→ (c′, d)

,

(3)
(c, d′)

l
→ (c, d′)

, (4)
(x, v)

l
→ (y, d)

(f(x), v)
l
→ (y, d′)

.
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The deduction rules (1)-(3) are in sfisl format, trivially. Deduction rule (4) does not satisfy local
data-dependency constraint 1, since y V d′ is satisfied in the right-hand-side of the conclusion
but not in the right-hand-side of the premise. Local data-dependency constraint 2 and the global
data-dependency constraint are satisfied (with IV f = ∅).

That initially stateless bisimilarity is not a congruence w.r.t. f can be seen as follows: we
have that a ↔isl b, but not that f(a) ↔isl f(b) since (f(a), d) can perform a transition to (c, d′)
while (f(b), d) is forced to perform the same transition to (c′, d′) and it does not hold that
(c, d′) ↔sb (c′, d′).

Example 4.27 Consider the transition system specification from Example 4.26 with deduction
rule (4) replaced by

(4)
(x, v)

l
→ (y, v′) (y, d′)

l
→ (y′, v′′)

(f(x), v)
l
→ (y′, v′′)

.

The deduction rules (1)-(3) are in sfisl format, trivially. Deduction rule (4) satisfies local data-
dependency constraint 1 of sfisl, but not local data-dependency constraint 2 as y V d′ is satisfied
in the left-hand-side of a premise but not in the right-hand-side of a premise. Also, the global
data-dependency constraint is satisfied by this transition system specification.

That initially stateless bisimilarity is not a congruence w.r.t. f can be seen as follows: a ↔isl b
holds, but it does not hold that f(a) ↔isl f(b) since (f(a), d) is able to perform an l transition
(due to rules (4), (3) and (1)) while (f(b), d) deadlocks.

4.4 Comparing Congruence Results

When motivating different notions of bisimilarity, we stated that statebased bisimilarity is con-
sidered the weakest (least distinguishing) and least robust notion of bisimilarity with respect to
data change. This statement, especially the least robust part, may suggest that if for a transition
system specification statebased bisimilairty is a congruence, stateless and initially stateless bisimi-
larity are trivially congruences, as well. This conjecture can be supported by the standard formats
that we gave in this section where the statebased format is the most restrictive and stateless is the
most relaxed one. Surprisingly, this conclusion is not entirely true. It turns out that congruence
for statabased bisimilarity is indeed stronger than congruence for initially stateless bisimilarity
but incomparable to congruence for stateless bisimilarity. A similar incomparability result holds
for congruence for initially stateless bisimilarity versus stateless bisimilarity, as well.

The following two examples show that congruence results for statebased bisimilarity and state-
less bisimilarity are incomparable. In other words, there are both cases in which one of the two
notions is a congruence and the other is not.

Example 4.28 Consider the following transition system specification (with process constants a
and b, unary process function f , and data constants d and d′) and the following deduction rules:

(1)
(a, d′)

l
→ (a, d′)

, (2)
(f(a), d)

l
→ (a, d′)

.

In the above transition system specification, the process constants a and b are not stateless bisimilar
and hence, congruence of stateless bisimilarity follows trivially. However, we have (a, d) ↔sb (b, d),
but not (f(a), d) ↔sb (f(b), d).

Example 4.29 Consider the following transition system specification (with process constants a,
b, and c, unary process function f , and data constants d and d′) and the following deduction rules:

(1)
(c, d′)

l′
→ (c, d′)

, (2)
(f(a), d)

l
→ (b, d)

,

(3)
(f(b), d)

l
→ (c, d)

, (4)
(f(c), d)

l
→ (a, d)

.
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Statebased bisimilarity is obviously a congruence though the transition system specification does
not satisfy the proposed format. Now, consider the processes a and b. These two processes are
stateless bisimilar, however, f(a) and f(b) are not stateless bisimilar, since (f(a), d) can make a
transition to (b, d), then (f(b), d) is forced to make a transition to (c, d) while b and c are clearly
not stateless bisimilar (due to their difference w.r.t. data d′).

The following lemma states that if statebased bisimilarity is a congruence, then initially state-
less bisimilarity is a congruence as well.

Lemma 4.30 For a transition system specification, if statebased bisimilarity is a congruence,
then initially stateless bisimilarity is a congruence, as well.

Proof. Suppose that pi ↔isl qi for 0 ≤ i < n. By definition this means that there ex-
ist statebased bisimulation relations Ri such that ((pi, d), (qi, d)) ∈ Ri for all d. Since state-
based bisimilarity is a congruence (by assumption), we have, for each d, the existence of a
statebased bisimulation relation Sd such that ((f(p0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ Sd.
Let S =

⋃
d Sd, and observe that S is a statebased bisimulation relation such that, for all d,

((f(p0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ S. This, in turn, means that f(p0, . . . , pn−1) ↔isl

f(q0, . . . , qn−1). �

Corollary 4.31 If a transition system specification is in sfsb format, then initially stateless bisim-
ilarity is a congruence for it.

Lemma 4.30 shows that congruence for initially stateless bisimilarity is either stronger than
or incomparable to congruence for stateless bisimilarity (since in Example 4.29, we have already
shown that there exists a case were statebased bisimilarity, thus initially stateless bisimilarity,
is a congruence but stateless bisimilarity is not). To prove the incomparability result, we need
a counter example where stateless bisimilarity is a congruence but initially stateless bisimilarity
is not (the counter-examples of Example 4.28 do not work in this case). The following example
establishes this fact.

Example 4.32 Consider the following transition system specification (with process constants a,
b, and c, unary process function f , and data constants d and d′) and the following deduction rules:

(1)
(a, d′)

l
→ (a, d)

, (2)
(b, d′)

l
→ (c, d′)

, (3)
(c, d)

l
→ (c, d)

,

(4)
(f(a), d)

l
→ (c, d)

, (5)
(f(b), d′)

l
→ (c, d′)

.

According to the above transition system specification, none of the three constants a, b and c are
stateless bisimilar, thus congruence of stateless bisimilarity is obvious. However, we have a ↔isl b
but not f(a) ↔isl f(b).

So, to conclude, we have proved in this section, that congruence for statebased bisimilarity
implies congruence for initially stateless bisimilarity (and not vice versa). However, proving con-
gruence for stateless bisimilarity does not necessarily mean anything for congruence for the two
other notions.

4.5 Seasoning the Process-tyft Format

The deduction rules in all three proposed formats are of the following form:

{(ti, ui)
li→ri

(yi, u
′
i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l
→r (t, u′)

.
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Using this form we cannot go far with proving congruence properties of existing theories since
there are many other constructs and patterns that are not present in the above format. In this
section, we show how to exploit the format in presence of such constructs. A common type of
deduction rules used in transition system specifications is the tyxt form which has the following
structure:

(dr)
{(ti, ui)

li→ri
(yi, u

′
i)|i ∈ I}

(x, u)
l
→r (t, u′)

.

Rules of the above form fit within the tyft form if we copy the above rule for all function symbols
f ∈ Σp with (arbitrary) arity n and substitute all occurrences of x with f(x0, . . . , xn−1).

Another common phenomenon is the presence of predicates. Predicates of the form Pred(t, u)
may be present in the premises or the conclusion of a deduction rule. Predicates can be dealt with
in the above formats, as if they are left-hand-side of a transition relation (this can be formally
proved by introducing fresh dummy transition relations for each predicate that always have a fresh
dummy variable in their right-hand-side [3]).

Regarding negative premises, if we can define a measure on formulas over the signature Σp that,
for each deduction rule of the transition system specification, does not increase from conclusion
to all positive premises and strictly decreases from conclusion to negative premises (i.e., if a
stratification for all rules exists) then the congruence results can be used safely. Note that an
extension to negative premises requires another definition of what a proof of a transition is (see
[14, 25]).

5 Case-Studies and Comparison

In this section, some process languages from literature for which an operational semantics is
provided by means of a transition system specification with a data state are considered.

For each of these languages, we establish which of the bisimilarities introduced in this paper,
are used (possibly with a different formulation) and whether the deduction rules are in the cor-
responding format. Also, the other notions of bisimilarity defined in this paper are discussed for
these process languages.

5.1 HyPA

In [11], a process algebra is presented for the description of hybrid systems, i.e., systems with both
discrete events and continuous change of variables. The process signature of HyPA consists of the
following process constants and functions:

• process constants: δ, ε, (a)a∈A, (c)c∈C ;

• unary process functions: (d� )d∈D, (∂H ( ))H⊆A;

• binary process functions: ⊕ , � , I , B , ‖ , ‖ , and | .

The data state consists of mappings from model variables to values, denoted by V al. The data
signature is not made explicit.

The transition system specification defines the following predicate and relations:

• a ‘termination’-predicate X;

• a family of ‘action-transition’ relations
(

l
→

)

l∈A×V al
;

• a family of ‘flow-transition’ relations
(

σ
 

)

σ∈T→V al
.

The deduction rules are given in Table 1 and Table 2.
On HyPA process terms, a notion of bisimilarity is defined that coincides with our definition

of stateless bisimilarity.
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Table 1: Operational semantics of HyPA

〈 ε, ν 〉X
(1)

〈 a, ν 〉
a,ν
→ 〈 ε, ν 〉

(2)
(ν, σ) |=f c, dom(σ) = [0, t]

〈 c, ν 〉
σ
 〈 c, σ(t) 〉

(3)

(ν, ν′) |=r d, 〈x, ν
′ 〉X

〈 d� x, ν 〉X
(4)

(ν, ν′) |=r d, 〈x, ν
′ 〉

l
→〈 y, ν′′ 〉

〈 d� x, ν 〉
l
→〈 y, ν′′ 〉

(5)

〈x0, ν 〉X

〈x0 ⊕ x1, ν 〉X
〈x1 ⊕ x0, ν 〉X

(6)
〈x0, ν 〉

l
→〈 y, ν′ 〉

〈x0 ⊕ x1, ν 〉
l
→〈 y, ν′ 〉

〈x1 ⊕ x0, ν 〉
l
→〈 y, ν′ 〉

(7)
〈x0, ν 〉X, 〈 y0, ν 〉X

〈x0 � y0, ν 〉X
(8)

〈x0, ν 〉
l
→〈 y, ν′ 〉

〈x0 � x1, ν 〉
l
→〈 y � x1, ν

′ 〉
(9)

〈x0, ν 〉X, 〈x1, ν 〉
l
→〈 y, ν′ 〉

〈x0 � x1, ν 〉
l
→〈 y, ν′ 〉

(10)

〈x0, ν 〉X

〈x0 I x1, ν 〉X
〈x0 B x1, ν 〉X

(11)
〈x0, ν 〉

l
→〈 y, ν′ 〉

〈x0 I x1, ν 〉
l
→〈 y I x1, ν

′ 〉

〈x0 B x1, ν 〉
l
→〈 y I x1, ν

′ 〉

(12)

〈x1, ν 〉X

〈x0 I x1, ν 〉X
(13)

〈x1, ν 〉
l
→〈 y, ν′ 〉

〈x0 I x1, ν 〉
l
→〈 y, ν′ 〉

(14)

〈x, ν 〉
a,ν′

→ 〈 y, ν′′ 〉, a 6∈ H

〈 ∂H (x) , ν 〉
a,ν′

→ 〈 ∂H (y) , ν′′ 〉
(20)

〈x, ν 〉
σ
 〈 y, ν′ 〉

〈 ∂H (x) , ν 〉
σ
 〈 ∂H (y) , ν′ 〉

(21)
〈x, ν 〉X

〈 ∂H (x) , ν 〉X
(22)
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Table 2: Operational semantics of HyPA, parallel composition

〈x0, ν 〉X, 〈x1, ν 〉X

〈x0 ‖x1, ν 〉X
〈x0 |x1, ν 〉X

(15)
〈x0, ν 〉

σ
 〈 y0, ν

′ 〉, 〈x1, ν 〉
σ
 〈 y1, ν

′ 〉

〈x0 ‖x1, ν 〉
σ
 〈 y0 ‖ y1, ν

′ 〉

〈x0 |x1, ν 〉
σ
 〈 y0 ‖ y1, ν

′ 〉

(16)

〈x0, ν 〉
σ
 〈 y, ν′ 〉, 〈x1, ν 〉X

〈x0 ‖x1, ν 〉
σ
 〈 y, ν′ 〉

〈x1 ‖x0, ν 〉
σ
 〈 y, ν′ 〉

〈x0 |x1, ν 〉
σ
 〈 y, ν′ 〉

〈x1 |x0, ν 〉
σ
 〈 y, ν′ 〉

(17)
〈x0, ν 〉

a,ν′

→ 〈 y, ν′′ 〉

〈x0 ‖x1, ν 〉
a,ν′

→ 〈 y ‖x1, ν
′′ 〉

〈x1 ‖x0, ν 〉
a,ν′

→ 〈x1 ‖ y, ν
′′ 〉

〈x0 ‖ x1, ν 〉
a,ν′

→ 〈 y ‖x1, ν
′′ 〉

(18)

〈x0, ν 〉
a,ν′

→ 〈 y0, ν
′′ 〉, 〈x1, ν 〉

a′,ν′

→ 〈 y1, ν
′′ 〉, a′′ = a γ a′

〈x0 ‖x1, ν 〉
a′′,ν′

→ 〈 y0 ‖ y1, ν
′′ 〉

〈x0 |x1, ν 〉
a′′,ν′

→ 〈 y0 ‖ y1, ν
′′ 〉

(19)

Stateless bisimilarity One can easily observe that all deduction rules of HyPA are in sfsl-
format. Hence, stateless bisimilarity is a congruence for all constant and function symbols from
the process signature of HyPA.

Statebased bisimilarity With respect to the notion of statebased bisimilarity, as defined in this
paper, it can be established that statebased bisimilarity is a process-congruence for the constants of
HyPA, the alternative composition operator (⊕ ), and the encapsulation operator ∂H (), based on
the format of the deduction rules. For the other operators however, this is not the case. Deduction
rules (4) (after unseasoning) and (5) violate data-dependency constraint 3. The data dependency
xV ν′ that is satisfied in the left-hand-side of the premise is not satisfied in the left-hand-side of
the conclusion.

Deduction rules (9), (12), and (18) for sequential composition (� ), disrupt (I ) and left-
disrupt (B ), and the parallel composition operators ( ‖ , ‖ , and | ) all violate data-dependency
constraint 1 as the data dependency for variable y in the right-hand-side of the conclusion has no
base in the left-hand side of the conclusion.

One might wonder whether this means that our format for statebased bisimilarity is too re-
strictive in the sense that process-congruence cannot be concluded for many operators. This is
not the case, for none of these operators statebased bisimilarity a process-congruence!

Initially stateless bisimilarity In case we consider initially stateless bisimilarity, it turns out
that the deduction rules are all in sfisl. Hence, what remains is to check whether the global
constraints are satisfied. For this, we need to compute the sets IV f for each process function f
of HyPA. For alternative composition and encapsulation, we obtain IV ⊕ = IV ∂H() = ∅ as there
are no unresolved variables in the deduction rules defining these process functions and there are
no process functions used in left-hand-sides of premises or right-hand-sides of conclusions.

For re-initialization, due to the unresolvedness of variable x (at position 0) in deduction rules
(4) and (5), and the fact that no process functions are used in left-hand-sides of premises or
right-hand-sides of conclusions of re-initialization defining deduction rules, we have IV d� = {0}.

For sequential composition IV � ⊇ {1} since x1 is unresolved in deduction rule (9). Also
note that in the same deduction rule sequential composition is used in the right-hand-side of
the conclusion. The term occurring as argument 1 of this use, x1, is the index 1 variable from
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the left-hand-side of the conclusion and hence this occurrence of sequential composition does
not add to the set IV � . As there are no other process functions used in � -defining deduction
rules, we have IV � = {1}. Using a similar reasoning as for sequential composition, we obtain
IV I = IV B = {1}.

For the parallel composition operators, based on the unresolvedness of variables in deduction
rule (18) we need IV ‖ ⊇ {0, 1} and IV ‖ ⊇ {1}. All parallel composition operators use parallel

composition in the right-hand-side of at least one of their defining deduction rules. This leads to
the additional requirement that all variables occurring in the use of parallel composition are from
the set Xp. That this is not the case can be seen easily by considering the deduction rules (18)
and (19). Hence, it turns out that the sets IV ‖ , IV ‖ , and IV | are not defined.

The transition system specification though does not respect the global constraints imposed by
sfisl. However, if we restrict to the part of HyPA without parallel composition operators, i.e.,
sequential HyPA, then we can conclude that initially stateless bisimilarity is a congruence.

The fact that we cannot derive that initially stateless bisimilarity is a congruence w.r.t. the
parallel composition operators is not a weakness of our format. Also in this case, initially stateless
bisimilarity is not a congruence w.r.t. parallel composition.

5.2 Timed µCRL

In [15], a timed extension of the language µCRL is defined. In this section, we consider a fragment
of this language consisting of the following process constants and functions:

• process constants: δ, (a)a∈A;

• unary process functions:

(∑
x

)

x∈V

, ( ↪t)t∈T ;

• binary process functions: +, ·, ( C bB )b∈B , ‖ .

The process functions that we do not consider here, are either only introduced for axiomatization
purposes (‖ , | , �) or renaming of actions (∂H , ρR, τI). The transition system specification
defines the following predicates and relations:

• a delay predicate U ;

• a family of action-termination predicates
(

a
→X

)

a∈A
;

• a family of action-transition relations
(

a
→

)

a∈A
;

• a time-transition relation
ι
→ .

In [15], U(p, t) is written as U(t, p) and 〈 p, t 〉
a
→X is written as 〈 p, t 〉

a
→〈X, t 〉. In this section,

we use the notations U(p, t) and 〈 p, t 〉
a
→X. The deduction rules are given in Tables 3 and 4.

The equivalence used in [15] for timed µCRL process terms is timed bisimilarity, which coincides
with our notion of initially stateless bisimilarity. The definition of timed bisimilarity in [15] does
not require the delay predicate to be transferred between related processes. The notion of initially
stateless bisimilarity presented in this paper is based on transferring all predicates and relations
used in the transition system specification. This difference is not problematic as it can easily be
proved that any two timed bisimilar process terms are also initially stateless bisimilar and vice
versa. Congruence of timed bisimilarity is claimed without proof.

Before we discuss the three notions of bisimilarity in more detail we emphasize that deduction
rule (22) needs to be unseasoned before the formats can be applied. Generally, deduction rule (22)
maps to a collection of deduction rules of the form

U(f(x0, . . . , xn−1), t
′) t < t′

〈 f(x0, . . . , xn−1), t 〉
ι
→〈 f(x0, . . . , xn−1), t

′ 〉
(22f)
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Table 3: Operational semantics of Timed µCRL

〈 a, t 〉
a
→X

(1)
U(a, t)

(2)
U(δ, t)

(3)

〈x0, t 〉
l
→X

〈x0 + x1, t 〉
l
→X

〈x1 + x0, t 〉
l
→X

(4)
〈x0, t 〉

l
→〈 y, t 〉

〈x0 + x1, t 〉
l
→〈 y, t 〉

〈x1 + x0, t 〉
l
→〈 y, t 〉

(5)
U(x0, t)

U(x0 + x1, t)
U(x1 + x0, t)

(6)

〈x0, t 〉
l
→X

〈x0 · x1, t 〉
l
→〈x1, t 〉

(7)
〈x0, t 〉

l
→〈 y, t 〉

〈x0 · x1, t 〉
l
→〈 y · x1, t 〉

(8)
U(x0, t)

U(x0 · x1, t)
(9)

〈x0, t 〉
l
→X |= b

〈x0 C bB x1, t 〉
l
→X

(10)
〈x0, t 〉

l
→〈 y, t 〉 |= b

〈x0 C bB x1, t 〉
l
→〈 y, t 〉

(11)
U(x0, t) |= b

U(x0 C bB x1, t)
(12)

〈x1, t 〉
l
→X 6|= b

〈x0 C bB x1, t 〉
l
→X

(13)
〈x1, t 〉

l
→〈 y, t 〉 6|= b

〈x0 C bB x1, t 〉
l
→〈 y, t 〉

(14)
U(x1, t) 6|= b

U(x0 C bB x1, t)
(15)

〈x[e/v], t 〉
l
→X

〈
∑
v
x, t 〉

l
→X

(16)
〈x[e/v], t 〉

l
→〈 y, t 〉

〈
∑
v
x, t 〉

l
→〈 y, t 〉

(17)
U(x[e/v], t)

U(
∑
v
x, t)

(18)

〈x, t 〉
l
→X

〈x↪t, t 〉
l
→X

(19)
〈x, t 〉

l
→〈 y, t 〉

〈x↪t, t 〉
l
→〈 y, t 〉

(20)
U(x, t) t ≤ t′

U(x↪t′, t)
(21)

U(x, t′) t < t′

〈x, t 〉
ι
→〈x, t′ 〉

(22)
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Table 4: Operational semantics of Timed µCRL, parallelism

〈x0, t 〉
l
→X 〈x1, t 〉

l′
→X γ(l, l′) = l′′

〈x0 ‖x1, t 〉
l′′
→X

(23)

〈x0, t 〉
l
→X

〈x0 ‖x1, t 〉
l
→〈x1, t 〉

〈x1 ‖x0, t 〉
l
→〈x1, t 〉

(24)
〈x0, t 〉

l
→〈 y, t 〉

〈x0 ‖x1, t 〉
l
→〈 y ‖x1, t 〉

〈x1 ‖x0, t 〉
l
→〈x1 ‖ y, t 〉

(25)

〈x0, t 〉
l
→X 〈x1, t 〉

l′
→〈 y, t 〉 γ(l, l′) = l′′

〈x0 ‖x1, t 〉
l′′
→〈 y, t 〉 〈x1 ‖x0, t 〉

l′′
→〈 y, t 〉

(26)

〈x0, t 〉
l
→〈 y0, t 〉 〈x1, t 〉

l′
→〈 y1, t 〉 γ(l, l′) = l′′

〈x0 ‖x1, t 〉
l′′
→〈 y0 ‖ y1, t 〉

(27)

U(x0, t) U(x1, t)

U(x0 ‖x1, t)
(28)

one for each n-ary process function f in the signature of timed µCRL. Strictly speaking, also all
deduction rules involving predicates need to be transformed, though, as this kind of transformation
is less involved, it is omitted.

Stateless bisimilarity Note that although stateless bisimilarity is not considered in [15], from
the format of the deduction rules, congruence for this equivalence follows easily.

State-based bisimilarity All deduction rules of timed µCRL are in sfsb-format except for those
obtained from deduction rule (22) for process functions with arity at least 1 by the previously
described unseasoning. For these, the data dependency x0 V t′ is satisfied in the right-hand-
side of the conclusion, but it is not satisfied in the left-hand-side of the conclusion. Hence, such
deduction rules do not satisfy local data-dependency constraint 1 of sfsb. Hence, state-based
bisimilarity cannot be concluded to be a congruence for any of the non-nullary process functions
of timed µCRL.

Nevertheless, using traditional means one can quite easily establish that state-based bisimilarity
is a congruence for some of the operators, for example alternative composition.

Initially stateless bisimilarity As mentioned before, all deduction rules of timed µCRL except
for deduction rules derived from deduction rule (22) for non-nullary process functions are in sfsb-
format. Thus, with respect to the local constraints of sfisl, only those derived deduction rules have
to be considered.

Note that the set of variables Yp is empty for such a deduction rule. Hence, the local data-
dependency constraints of sfisl are satisfied trivially.

For an arbitrary function symbol f with arity n, the set of unresolved variables consists of
the indices of all arguments. As a consequence, IVf ⊇ {0, . . . , n − 1}. For all process functions,
except for sequential and parallel composition, the defining deduction rules do not contain any
occurrences of process functions in the left-hand-side of a premise or in the right-hand-side of the
conclusion. Hence, for all those process functions, we obtain IV f is the set of all indices of f .
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For sequential composition (deduction rule (8)) and parallel composition (deduction rules (25)
and (27)) the occurrences of y, y0 and y1 in the use of the process functions do not satisfy the
requirement that these should be initial variables (∈ Xp). Hence, for those process functions, the
set IV does not exist. Therefore, congruence of initially stateless bisimilarity w.r.t. those process
functions cannot be concluded. For the other process functions, as they are independently defined
operationally, congruence can be concluded.

We claim that a reformulation of the operational semantics of timed µCRL without the predi-
cate U along the following lines results in an ‘equivalent’ transition system specification for which
the sfisl format can be applied to obtain congruence:

〈x0, t 〉
ι
→〈 y, t′ 〉

〈x0 · x1, t 〉
ι
→〈 y · x1, t 〉

,
〈x0, t 〉

ι
→〈 y0, t

′ 〉 〈x1, t 〉
ι
→〈 y1, t

′ 〉

〈x0 ‖x1, t 〉
ι
→〈 y0 ‖ y1, t

′ 〉
.

The reason is that the first argument of sequential composition and both arguments of parallel
composition are no longer forced to be part of the set IV which avoids the problem with y, y0 and
y1 not being initial variables. Calculation of the sets IV · and IV ‖ gives: IV · = ∅ and IV ‖ = ∅.

5.3 Discrete-event χ

In [8], the process language χσ is presented. This language is used for the specification, simulation
and validation of discrete-event systems.

The signature of χσ consists of the following constant and function symbols:

• process constants: δ, ε, skip, (∆t)t∈T , (x := e)x∈V,e∈E , (c!e)c∈C,e∈E , (c?x)c∈C,x∈V ;

• unary process functions: (b→ )b∈B , ∗, (|[s | ]|)s∈S , (∂H)H⊆A, π, (τI)I⊆A

• binary process functions: �, ;, ‖

In the transition system specification of this language both predicates and relations are used.
For both types of formulas negative occurrences as a premise occur.

The notion of equivalence that is considered in [8] is stateless bisimilarity. They prove that
this equivalence is a congruence for the constant and function symbols of χσ by using the so-called
relaxed PANTH format [19, 2]. We have serious doubts as to the applicability of this format to
the given transition system specification due to the presence of a data state in χσ. Nevertheless,
stateless bisimilarity is a congruence since all deduction rules of the transition system specification
are in sfsl format.

6 Conclusion

In this paper, we investigated the impact of the presence of a data state on notions of bisimilarity
and standard congruence formats. To do this, we defined three notions of bisimilarity with data
and elaborated on their existing and possible uses. Then, we proposed three standard formats
that provide congruence results for these three notions. Furthermore, we briefly pointed out the
relationships between these notions and between the corresponding congruences. The proposed
formats are applied to several examples from the literature successfully. In this paper, we illus-
trated the use of our format using a data coordination language, called Linda.

Extending the format for a parameterized notion of bisimilarity (with an explicit interference
relation or a symbolic / logical representation of interference possibilities) is another interesting
extension which should follow the same line as our relaxation of statebased constraints to initially
stateless. Furthermore, we may extend the theory to bisimulation relations which allow for different
data states but so far we have seen no practical application of such a bisimilarity notion.
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