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A semigroup is said to be congruence-free if it has only two congruences, the
identity congruence and the universal congruence. It is almost immediate that a
congruence-free semigroup of order greater than two must either be simple or
0-simple. In this paper we describe the semilattices of congruence-free inverse semi-
groups with zero. Further, congruence-free inverse semigroups with zero are
characterized in terms of partial isomorphisms of their semilattices. A general dis-
cussion of congruence-free inverse semigroups, with and without zero, is given by
Munn (to appear).

Let S = S° be a semigroup with zero. For x e S w e define As(x) as follows:

As(x) = {(a.fOeS1 x Sl\axb = 0}.

When there is no possibility of confusion we shall write A(x) = /4s(x).

DEFINITION. A semigroup S = S° is said to be disjunctive if A(x) = A(y)
implies that x = y.

Thus a semigroup S = S° is disjunctive if the principal congruence ^ { 0 }

(Clifford and Preston (1961, 1967), Chapter 10) determined by the subset {0}
of S is the identity congruence on S. The starting point of our discussion is the
following result due to Schein.

THEOREM 1. (Schein (1966), Corollary 6.2.1) A 0-simple semigroup S = S°
free {h-simple in Schein's terminology) if and only if S is a disjunctive semi-
group.

THEOREM 2. Let S = S° be a regular semigroup and E the set of idem-
potents of S. Further, suppose that S is disjunctive. Then <£>, the semigroup
generated by the idempotents of S, is disjunctive.

PROOF. Let x, y e <£> and suppose that A<E>(x) = A<E>(y). We are required
to prove x = y. Take (a, b) e A^x). Then axb = 0 and so a*axbb* = 0, where
a* is an inverse of a and b* is an inverse of b. Hence {a*a, bb*) e A<E>(x) and so by
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assumption (a*a, bb*) e A<E>(y). Thus a*aybb* = 0 and so aa*aybb*b = 0, that
is, ayb = 0. Hence (a, b) e As(y) and ^s(x) £ ,4SQ/). Similarly, ^4S(» £ Ag(x) and
so ^s(x) = As(y). Since S is disjunctive x = y and our proof is complete.

A non-trivial group with zero ajoined provides a counterexample to the con-
verse of Theorem 2.

Let us recall that an idempotent semigroup is a semilattice of rectangular
bands (Clifford and Preston (1961), page 129 Ex. 1).

LEMMA 1. Let E = £° be a disjunctive idempotent semigroup. Then E is
commutative i.e., E is a semilattice.

PROOF. Let E = |Jy e r Ej be a decomposition of E into a semilattice F of
rectangular bands Epj e F. Then r has a least element a> and Em = {0}. Since
£a£M£p s £aMp for a, 0 e F and £m = {0} it follows that, for a, b e E and x, y e £„,
axb = 0 if and only if ayb = 0. But E is disjunctive and so x = y. Hence | £M | = 1
for all n e F and so E is commutative.

Evidently a semilattice £ = £° is disjunctive if and only if for all e,fe E,
e ^ / , there exists g e £ such that eg = 0 and fg^O OR eg ^ 0 and / # = 0.
It is thus an easy matter to decide whether a semilattice is disjunctive or not.

Following Munn (1970) we say that a semigroup is fundamental if and only if
the only congruence contained in Green's equivalence Jf is the identity con-
gruence. It follows from Lallement (1966) that a regular semigroup S is funda-
mental if and only if the maximal idempotent-separating congruence on S is the
identity congruence.

THEOREM 3. Let S = S° be a 0-simple regular semigroup and E the set of
idempotents ofS. Further, suppose that S is fundamental and that <£>, the semi-
group generated by the idempotents of S, is disjunctive. Then S is a congruence-
free semigroup.

PROOF. Let a be a non-identical congruence on S. Then there exist idempotents
e,fe S, e # / , such that (e,f) e a. Otherwise, a is idempotent-separating and so
the identity congruence by hypothesis, a contradiction. Since <£> is disjunctive
•̂ <£>(e) 9̂  A<E>(f) and so we may assume without loss of generality that there
exists (a, b) e A<E>(e) such that (a, b) $ A<E>(J). By compatibility we have
(aeb, afb) e a i.e., (0, afb) e a with afb ^ 0. However, the congruence class con-
taining 0 is a two sided ideal. We conclude that 0c = S, since S is 0-simple. Thus
a = S x S and so S is congruence-free.

We now recall some results of Munn (1970). Let Jx denote the symmetric
inverse semigroup on a set X. We denote the domain, XOL~1, and range, Xct, of an
element a of Jx by A(a) and V(a) respectively. Let £ be a semilattice and let TE be
the subset of JE consisting of all a in JE such that A(a) and V(a) are principal
ideals of £ and a is an isomorphism of A(a) upon V(a). TE is an inverse subsemi-
group of Jr

£.
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DEFINITION. A semilattice E — E° is 0-uniform if and only if Ee s Ef for
alle,feE\{0}.

DEFINITION. A semilattice E = E° is O-subuniform if and only if for all
e,fe£\{0} there exists geE such that g tkf and Ee = Eg.

DEFINITION. Let E = E° be a semilattice. An inverse subsemigroup S of TE is
called O-subtransitive [O-transitive] if and only if the following two conditions
are satisfied.

(i) S contains the zero of TE, and
(ii) to each pair of non-zero elements e,feE there corresponds yeS such

that Ee = A(y) and V(y) £ Ef[V(y) = Ef].

THEOREM 4. (Munn (1970), Theorems 3.1 and 3.2) (i) Let S be an 0-simple
[0-simple] inverse semigroup with semilattice E. Then E is O-subuniform.
[0-uniform]. Furthermore, ifS is fundamental, then it is isomorphic to a O-sub-
transitive [O-transitive] inverse subsemigroup of TE.

(ii) Let E = E° be a O-subuniform [0-uniform] semilattice and let S be a
O-subtransitive [O-transitive] inverse subsemigroup of TE. Then S is a funda-
mental 0-simple [O-bisimple\ inverse semigroup with semilattice isomorphic
toE.

The next theorem characterizes all congruence-free inverse semigroups with
zero.

THEOREM 5. (i) Let S be a congruence-free inverse semigroup [congruence
free 0-bisimple inverse semigroup] with zero whose semilattice is E. Then E is
disjunctive and O-subuniform [0-uniform]. Furthermore, S is isomorphic to a
O-subtransitive [O-transitive] inverse subsemigroup ofTE.

(ii) Let E = E° be a disjunctive and O-subuniform [0-uniform] semilattice
and let S be a O-subtransitive [O-transitive] inverse subsemigroup of TE. Then S
is a congruence-free inverse semigroup [congruence free 0-bisimple inverse semi-
group] with semilattice isomorphic to E.

PROOF, (i) Suppose S is a congruence-free inverse semigroup with zero. Clearly
S is 0-simple and fundamental and our result follows from theorems 1,2 and 4 (i).
The alternative reading follows similarly.

(ii) Let E = E° be a disjunctive O-subuniform semilattice and let S be a
O-subtransitive inverse semigroup of TE. It follows from theorems 3 and 4 (ii) that
S is a congruence free inverse semigroup. The alternative reading follows similarly.

To conclude we exhibit the two simplest types of disjunctive 0-uniform semi-
lattices.

A semilattice E = E° is called an M-semilattice [M for matrix, see below] if
ef = 0 for e,fe E, e =£ f. An M-semilattice with n elements can be represented
diagrammatically as follows:
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n — 1 elements

113

It can be easily verified that a congruence-free inverse semigroup whose idempo-
tents form an M-semilattice is isomorphic to a semigroup of matrix units (Clifford
and Preston (1961), page 83, Ex. 7); conversely, every semigroup of matrix units
is a congruence-free inverse semigroup whose idempotents form an M-semilattice.

A semilattice E with unit, 1, and zero, 0, is called a hanging tree if it satisfies
the following conditions;

(i) E is uniform,
(ii) for each ee£\{0} there exists a unique finite subset {e1,e2,---,ek} of £

such that 1 = et > e2 > ••• > e*-i > ek = e, where et covers ei+l for
i = 1,2, •••,k — 1, and,

(iii) there exist e,feE\{0} such that ef = 0.
The cardinality of the set of elements covered by the identity of a hanging tree

E is called the degree of E. Condition (iii) implies that the degree of a hanging tree
E is always strictly greater than 1. It is easy to show that a hanging tree E is deter-
mined up to isomorphism by its degree. A hanging tree of degree 2 can be rep-
resented diagrammatically as follows:

1
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We now provide examples of congruence-free inverse semigroups whose idem-

potents form hanging trees. Let X be a set of cardinality a. Let 3F\ be the free

semigroup with identity on X and put Px = ^kx^x U {0}. Define multiplica-

tion on Pa as follows:

o •(/,<?) = (f,g)-o = o

if.hg') if g = hf

0 otherwise

Then, if a > 1, Pa is a congruence-free inverse semigroup whose idempotents form

a hanging tree of degree a. The semigroups, Pa, are the polycyclic monoids of

Nivat and Perrot (1970).
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