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Abstract. We consider the problem of computing geometric transformations (rota- 

tion, translation, reflexion) that map a point set A exactly or approximately into a 

point set B. We derive efficient algorithms for various cases (Euclidean or maximum 

metric, translation or rotation, or general congruence). 

I. Introduction 

We consider the problem of deciding whether two geometric objects A, B in •d 

are congruent or similar and, if they are, of  finding the geometric transformation 

(rotation, translation, reflection, stretch) that maps B into A. Important  practical 

applications are, for example,  determining how to move an object from one given 

position into another one (robotics), recognition of patterns and of written text, 

and determining speed and direction of moving objects out of  pictures taken at 

different times. The second problem we consider is finding all the symmetries of  

a given geometric object, i.e., its symmetry group. Important  applications are 

within pattern recognition and some areas of  biology and crystallography. 

We consider only the basic case of  A and B consisting of  n points in R d. In 

many cases the algorithms p~esented here can be extended to more general 

geometric objects, where the points are connected by lines, curves, or surfaces 

described, for example,  by algebraic equations (see also [Atal]  and [Ata2]). 

By a straightforward reduction of the set equality problem of real numbers it 

can be shown that each of the problems mentioned above has an f l (n log n) 
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lower bound even in the one-dimensional case [Atk], [H]. Optimal algorithms 

in the two-dimensional case have been found by Highnam [H] for symmetry and 

by Atallah [Atal]  for congruence, and in the three-dimensional case by Atkinson 

[Atk] for congruence. Here we first give an alternative optimal algorithm for 

three-dimensional congruence which then can be used to find the symmetry group 

of  three-dimensional point sets in O(n  log n) time. Then we extend the result to 

get O ( n  a-2 log n)-time congruence algorithms for arbitrary dimension d->3. 

These results are contained in Section 2. 

Unfortunately, the problem of  deciding congruence, similarity, and symmetry 

exactly is not realistic in practice. In fact, small perturbations in the input data, 

e.g., due to inaccuracies in physical measurements, will usually destroy these 

properties. We therefore introduce the notion of  approximate congruence, i.e., 

congruence within a certain tolerance e > 0 .  The problem of approximate 

congruence will be dealt with in Section 3. 

Our model of computation is the Random Access Machine. In Section 2 we 

assume that the machine can represent arbitrary real numbers and can perform 

all the geometric computations involved (e.g., determining angles, distances, etc.) 

exactly without roundoff-errors. Since Section 2 is of mainly theoretical interest 

anyway, we feel that this standpoint, which is customary in computational 

geometry, is justified. In Section 3, on the approximate congruence, we are more 

careful. We only assume that the machines can represent integers of  a length of 

at most L bits, whe're L is some constant, and can perform additions, subtractions, 

and multiplications on such integers in constant time. We refer to integers of 

length of at most L bits as single precision integers. The input data are given in 

the form p / q  where p and q are single precision integers. All intermediate results 

of  our algorithms result from constantly many applications of  arithmetic 

operations to the input data and can without loss of  generality therefore also be 

considered as single precision integers. Note that L is treated as a constant and 

does not show up in the running time bounds. A thorough discussion of  the case 

of variable L can be found in [Sch]. 

We close with some notation which will be relevant for Sections 2 and 3. A 

congruence (isometric mapping) M of R d is any mapping which preserves 

Euclidean distances. Any congruence M can be written in the form M: x ~ , A x  + t 

where A is a d x d orthonormal real matrix, i.e., A r = A -~, and t is any d-vector. 

A congruence is called of  the first (second) kind if det A = + I  ( -1) .  Any con- 

gruence M of  the second kind can be written as x ~-~ A J x  + t where J(x l  . . . . .  Xd ) = 

(--Xl, X2, . . - ,  xa), A r = A -~ and det A = +1. A mapping x~--~hx for some A ~ 0 

is called a dilation (stretching). A similarity is a congruence followed by a dilation. 

Two point sets A and B are congruent (similar) if there is a congruence (similarity) 

M mapping A onto B. The centroid CA (center of mass) of  a finite point set A 

is defined by cA = (~,~,~ a)/ lAI .  Clearly, any similarity between A and B must 

map CA onto ca. 

2. The Exact Case 

We first observe that the similarity problem for n-point sets in any dimension is 

reducible to the congruence problem in O ( n )  time. In fact, in O ( n )  time it is 
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possible to determine the centroids cA, ca of the input sets A, B and the maximum 

distances mA, ma of ca, ca to the points of  A, B, respectively. Then mA/mn is 

the factor by which B is "stretched" around ca. Clearly, the set B' obtained this 

way is congruent to A exactly if B is similar to A. Therefore from now on we 

will not mention similarity anymore, but any result on congruence also holds for 

similarity. 

These results are summarized in the following theorem: 

Theorem 1. 

(a) For any d >-3 the congruence of  two n-point sets in R ~ can be decided in 

O(n a-2 log n) time. 

(b) The symmetry group of  an n-point set in R 3 can be determined in O( n log n) 

time. 

Proof of (a) (Congruence). In [Atk] an O(n log n) algorithm for d = 3 is given. 

We give an alternative one which can be applied to prove (b). 

Given input sets A, B our algorithm for determining a congruence of the first 

kind consists of  the following steps; a congruence of the second kind can be 

determined by applying the algorithm to A and J (B) :  

Algorithm 1. 

Step 1. Determine the centroids CA, Ca. If  CA C A, then check if ca ~ B. If  not, 

give a negative answer, otherwise remove CA, Ca from A, B, respectively. 

Step 2. Project all points of  A (B) onto the unit sphere using CA (Ca) as an 

origin. Mark the points in the sets A' (B') obtained this way with the distances 

of  the original points from CA (Ca). Observe, that one point of  the sphere can be 

the image of several points of  A (B) and, thus, be marked with several distances. 

In this case, sort these distances. 

Step 3. Construct the convex hulls of  A', B'. Observe that all points in A', B' 

are extreme and therefore vertices of  the convex hulls. Let v be any such vertex, 

and let Vo, v~ . . . . .  /.)k-I be the vertices adjacent to v listed in clockwise fashion 

about v. For 0-< i-< k -  1 let l~ be the length of the arc from v to v~ and ~pi the 

angle on the sphere between v~, v, and /)(i+l)modk (see Fig. 1). In addition to the 

Fig. I 



240 H. AIt, K. Mehlhorn, H. Wagener, and E. Welzt 

information attached in step 2 mark v with the lexicographically smallest cyclic 

shift of the sequence ('Po, lo) . . . .  , (,Pk-~, lk-~). 

Step 4. The convex hulls together with the labels attached in steps 2 and 3 can 

be considered as labeled planar graphs [PS]. It is easy to see that the two input 

sets are exactly congruent of  the first kind if the two labeled graphs are isomorphic. 

We decide this isomorphism using the O(n log n) partitioning algorithm of 

Hopcroft  [AHU, Section 4.13] as follows. Consider a finite automaton whose 

states are the directed edges (each undirected edge of the planar graph gives rise 

to two directed edges) of the planar graph and which has input alphabet {a, b}. 

If edge (v, w) is the current state and the input symbol is a (b) then the next 

state is (v, z) where edge (v, z) follows the edge (v, w) in the clockwise order of 

edges about v ((z, w) where (z, w) follows the edge (v, w) in the clockwise order 

of edges about w). Finally, let P be the following partition of the edges. Two 

edges (v, w) and (z, y) belong to the same block of P iff v and x are labeled the 

same and w and y are labeled the same. The partitioning algorithm computes 

the coarsest refinement of  P which is compatible with the state transitions of the 

automaton. This partition is clearly identical to the automorphism partition of 

the union of  the two graphs. Consequently the two graphs are exactly isomorphic 

if one of the classes in the partition contains edges of both. 

Analysis. Step 1 clearly can be done in O(n) time. Constructing the sets A', B' 

in step 2 takes time O(n). However, sorting of  the labels attached to one point 

may take time O(n log n). The construction of  the convex hull in step 3 can be 

done in O(n log n) time [PSI [El. 

For each vertex v sorting the adjacent vertices v 0 , . . . ,  Vk-~ in a clockwise 

fashion takes time O(k log k). Also, in step 3 the lexicographically smallest cyclic 

shift can be computed in time O(klog k) as follows. We first sort the pairs 

(,pi, ii), 0 -  < i < k, in increasing order and then replace each pair by its rank. This 

yields a word WoWs'" Wk-~ with 0 < w~< k. Let I ={io< i~ < . . . }  be the set of 

occurrences of  letter 0. We next consider the pairs (io, i~), (i2, i3), • • • in turn. For 

each pair, say (i:~, i21+~), we compare the subwords of length i21÷~- i2t starting 

in i21 and i21+~, respectively. If the subword starting at index i2t is not larger 

lexicographically than the subword starting at i2~+~ then we delete i21+~ from I 

and we delete i21 otherwise. Thus in time O(k) we can reduce the size of I by 

half and the time bound follows. However, the sum of the run times for all 

vertices does not exceed O(n log n), since the total number of adjacent vertices 

considered is twice the number of edges which is O(n). 

Algorithm 2. If d--<3 Algorithm 1 is applied, otherwise the d-dimensional 

problem is reduced to n problems of dimension ( d -  1) in the following way: 

Step I. Construct the labeled sets A', B' as in step 2 of algorithm 1. 

Step 2. For some point a ~ A' intersect the d-dimensional unit sphere SA around 

cA with some hyperplane which orthogonally bisects the line segment c-~ff. The 

intersection will be some ( d - D - d i m e n s i o n a l  sphere S on the surface of SA. 

Project each point x ~ A ' -  {a} onto S along the arc from x to a on the surface 
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Fig. 2 

of SA. This yields a new set A" (see Fig. 2). To each x" ~ A" attach the following 

information: from each x' ~ A', which was projected onto x", the label obtained 

in previous steps of the algorithm and, additionally, the length of  the arc from 

a to x'. If there are several points in A' which are projected onto x", list their 

labels sorted with respect to the lengths of the arcs. A" still contains all the 

geometric information necessary to identify the original set A. 

Step 3. Do the same construction as in step 2 for all points of B, yielding labeled 

point sets B ' ( , . . . ,  B~. 

Step 4. The sets A", B',' (i = 1 . . . . .  n) are subsets of (d - 1)-dimensional hyper- 

planes. Transform them by an isometric mapping into subsets A'", B'i" (i= 

1 , . . . ,  n) of R d ~ and apply this algorithm recursively to each pair A'", BI" 

(i = 1 , . . . ,  n). It is easy to see that the original sets A, B are exactly congruent 

if there is a label preserving congruence from A" into at least one of the sets 

B~",. " . . , l n .  

Analysis. Steps 1 and 2 may take O(n log n) time because of the sorting of 

labels. Step 3 takes time O(n log n) for each B'i' (i = 1 , . . . ,  n), i.e., O(n 2 log n) 

altogether. The transformations in step 4 take linear time, the recursive calls take 

n times the run time of  the ( d -  1)-dimensional problem. This is, certainly for 

d-->4, the most significant term and, since Algorithm 1 runs in time O(n log n) 

for d = 3, we get a total run time of O(n d-2 log n). 

Proof of (b) (Symmetry). Our algorithm for determining the symmetry group 

of three-dimensional point sets makes use of the following theorem by Hessel 

(1830) which states that there are only finitely many types of such groups: 

T h eorem  2 (Hessel's Theorem) (see [Ma]). Any finite symmetry group for a 

subset of R 3 is one of the following groups: 

(a) The rotation groups T, C, I of the platonic solids tetrahedron, cube, and 

icosahedron, respectively. 

(b) The cyclic groups Cn, n = 1, 2 , . . . ,  and the dihedral groups D,,  n = 2, 3 , . . . .  

(c) The groups T, C, I ;  C~, (~2,. . .  ; /)2, / ) 3 , - . - ,  where t~ means the group 

generated by G and a reflection at some point (inversion). 
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Fig. 3 

(d) The groups CT, C2,C,, D2,D~, D,C,,  n = 2, 3 . . . . .  where GH means 

H u ( G -  H)o i where i is an inversion. 

For example, the sets in Fig. 3(a) and (b) have rotation groups (?6, D4 and 

symmetry groups D6C6, /)4, respectively. 

In any case the actual set of  transformations that map a set of  points into 

itself is determined by the symmetry group and the set of  rotation axes. I f  the 

symmetry group is not one of  the finitely many derived from the platonic solids, 

there will be n + 1 rotation axes for some n ~ N. As in Fig. 3 n of  those axes lie 

in a plane, the (n + 1)st is perpendicular to that plane. Our algorithm to determine 

the symmetry group of  a set A of  n points proceeds as follows: 

Algorithm 3. 

Step 1. Apply Algorithm 1 to the input pairs A, A and A, J(A). Hopcroft ' s  

partitioning algorithm partitions the set of  points into equivalence classes of  

"indistinguishable" ones, i.e., points which can be mapped into each other by 

some congruence (in this case symmetry) transformation. In other words, we get 

the orbits o f  all points under  the symmetry group. 

Step 2. First we check if the symmetry group is one of  T, C, I, T, C, /, CT. A 

detailed analysis shows that for each of  these symmetry groups the size of  the 

orbit of any point is bounded by some constant (e.g., 48 for t~). In addition the 

set of  rotation axes can be determined uniquely from any nontrivial (i.e., non- 

singleton) orbit. Therefore, the algorithm for each of the above symmetry groups 

checks if the orbits satisfy the size bound. I f  that is the case the set of  possible 

rotation axes is determined from one orbit. As mentioned before this determines 

the set of  transformations. Each of  these is applied to all points in A and it is 

checked if the image set is A again. I f  so, the symmetry group has been found. 

Step 3. I f  step 2 has failed the symmetry group of  A must be one of Cm, Din, 

C,,,/)m, C2mCm, D2mDm, or DmCm for some m e N. It can be shown that in this 
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case each orbit has size 1, 2, m, 2m, or 4m. So, by inspecting one orbit of size 

>2 the value of m and, thus, the number of  symmetry groups is restricted to 

constantly many possibilities. The possible rotation axes are determined and all 

possibilities of  groups are tested like in step 2. 

Analysis. Step 1 takes O(n log n) time. Determining the possible sets of  transfor- 

mations by inspecting one orbit in step 2 takes constant time, the test to determine 

if this set of transformations really maps A into itself takes time O(n log n) 

(comparison of two n-element sets). Determhaing the possible transformations 

in step 3 takes time O(n), testing if they map A into itself takes time O(n log n). 

3. The Approximate Case 

The major drawback of the congruence and symmetry problems considered in 

the previous section and previous papers [Atal ], [Ata2], [Atk], [HI is that they 

are ill-posed. In fact, arbitrary small perturbations in the input data will turn 

pairs of congruent sets into noncongruent ones and destroy symmetries. The 

symmetry problem even becomes trivial if we assume that input data are represen- 

ted by, say, rational Cartesian coordinates. Namely, in this case only finitely 

many different symmetry groups are possible at all, consisting of rotations by 

multiples of  90 ° angles possibly combined with reflections. 

This shows that the exact versions of  these problems are unrealistic. We 

therefore define the approximate congruence problem with tolerance e: 
Given two sets A, B of n points each, decide if there exists a congruence 

which maps in a 1-to-1 fashion the points of B into the e-neighborhood of points 

of A, i.e., if there is a bijection l: B ~  A and a congruence M such that M(x)c 
U~(I(x)) for all x~  B. Here U~(a) denotes the closed e-neighborhood of a. 

We believe that the approximate congruence problem is interesting by itself. 

Namely, many geometric objects occurring in practice (biology, crystallography) 

are not perfectly congruent or symmetric but only within a certain tolerance. In 

fact, the minimum possible tolerance can be considered as a quantitative measure 

for the degree of symmetry or congruence. 

We next describe a series of results solving various cases of the approximate 

congruence problem in two dimensions. We classify these results according to 

the following criteria. 

Type of congruence: 

T translation, i.e., M:x~--->x+t, for.some t c R  2. 

R-- ro ta t ion  around a center which is known, i.e., M: x~--~A~(x-c)+c, 
where c is the center of the rotation, ¢ is the angle of  rotation, and 

A = ( c o s ¢  - s i n e /  

, , s ine  c o s ¢ /  

is the rotation matrix. 

/ - -arb i t rary  isometric mapping, consisting of a combination of transla- 

tion, rotation, and reflexion. 
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Knowledge of some bijective labeling !: B--, A telling, for any point in B, into 

whose neighborhood it should be mapped:  

/ - -known.  

u - -unknown,  determine if such a labeling exists. 

Specification of e: 

D--e is given (decision problem). 

E(~)--e is given and the set A is ~-disjoint, i.e., U~(x)c~ U ~ ( y ) = O  for all 

x, y c A where U~(x) is the 8-neighborhood of x with respect to the 

underlying metric. 

O- - f ind  the smallest e such that an approximative congruence exists 

(optimization problem). 

Metric: 

e - -Eucl idean  metric. 

m - - m a x i m u m  metric. 

So, for example,  T/Oe means the problem: given two sets of  n points, A, B _ R 2, 

and a labeling l: B ~ A, find the smallest e > 0 such that there exists a translation 

M:  R2~R 2 with M(x)~ U,(l(x)) for all x ~ B. We obtained the following upper  

bounds: 

Theorem 3. 

Problem Solvable in time 

TI[ D[ e O(n) 
(OLm 

TuO{ e O(n 6) 

TuO{em O(n61ogn) 

TuE(e)e O(n log n) 

TuE(ae)m O(n log n) 

RID{ e O( n log n ) 

RIO{ e O( n 2) 

liD{ e O( n3 log n ) 

IuD{ e O(n 8) 

for any fixed a > 1 
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Proof Let A = { a l , . . .  , a.}, B = {b~ . . . .  , b.} be such that in the labeled cases 

l(b~) = at for 1-< i -  < n. We use C~ to denote the circle of  radius e ( = b o u n d a r y  

of  U,(ai))  around a .  l<-i<-n.  

m 

Let r e  R 2 be some fixed point, called the reference point. Let K~, 1-< i---n, be 

the set of  images of  r under all translations mapping b~ into U~(a~). It is easy to 

see that the decision problem has a positive answer, exactly if the intersection 

K l ~ ' " .  c~ K,  # Q. 

In fact, each translation mapping the reference point into this intersection, will 

map each b~ into U~(a~), 1 <-i < - n. In the Euclidean case each K~ is in a closed 

disk, so the question whether the intersection is nonempty is equivalent to the 

question whether there exists a circle of the same radius, namely e, enclosing the 

centers. The optimization problem is thus equivalent to finding the smallest 

enclosing circle of  n points, which can be solved in O(n)  time by an algorithm 

due to Megiddo [Me] (see also [PSI). 

In the case of the maximum metric the K~ ( 1 - < i -  < n) are squares (orthogonal 

to the axes) instead of disks and there is a straightforward O(n)  algorithm to 

find the smallest enclosing square of n points. Thus we obtain O(n)  algorithms 

for the optimization and, consequently, the decision problem. 

Algorithm 4. We present the algorithm for the Euclidean case but it works for 

the maximum metric, as well. It uses the following ideas: 

Step 1. An easy geometric argument shows that if there is any solution at all, 

then there must be one where some point bj lies directly on the circle C, of 

radius e around the assigned point ai (1-< i , j  <- n). We check this property for 

all pairs i, j. 

For fixed i , j  describe any position of bj on the circle Ci by the polar coordinate 

using at as the origin and, for example, the ray parallel to the x-axis in the 

positive direction through a~ as the ~0 = 0 ray (see Fig. 4). 

Step 2. For any l # j  consider the circle Kt onto which bt is mapped by 

translations which map b~ onto C~. For any m # i we determine the set Io,  of 

angles ¢ e [0, 2~r[ such that if the image of bj on C~ has polar coordinate ¢, then 

bt lies within U~(a,,). For example,  in Fig. 4 It.r, = [q~, ~o2]. In any case lt, m is a 

(circular) interval of  [0, 2¢r[ whose endpoints are given by the cutpoints of  Kt 

and C,,. We determine all these intervals and sort their endpoints. (A detailed 
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Fig. 4 

description of  how this is done is given in step 5 of  this algorithm.) This gives a 

partition of the interval [0, 2zr[ into subintervals, each of which is contained in 

some of the It.,, (1 -< l, m -< n; l ~ j ,  m ~ i) and is disjoint from the others. 

Step 3. We assign to each such subinterval I a bipartite graph GI = ( V, E~), 

where V is the disjoint union of two sets { u l , . . . , u ~ _ ~ , u ~ + l , . . . , u , }  and 

{v~ , . . . ,  vj_~, vj+~,.. . ,  vn} of nodes and E~ ={(ul, vm); I c  It,,,}. Now suppose 

that the graph Gt for some interval I contains a perfect matching, namely edges 

(ui,, vji), • . . ,  (u~ . . . .  vj,._l). This means that I c li, j, n .  • • n Ii,._,.j,,_,. Therefore any 

translation mapping b~ onto Ci such that the polar coordinate of  the image of bj 

is in I will map bj, into Uv(a~,), l < - k < - n - 1 ,  i.e., there exists an assignment 

which shows that A and B are approximately congruent. First we determine the 

graph for the subinterval containing ~ = 0. This can be done by checking, for 

each pair l, m, if the image of bf lies within U,(am). We then determine the 

maximum matching of the graph (see [M]) and, if it is perfect, give a positive 

answer. 

Step 4. Starting from the maximum matching of the graph for the first subinterval 

I~ determined in the previous step we proceed to neighboring intervals using the 

sorted sequence of endpoints. Clearly, each time we proceed from one interval 

I k to its neighbor lk+l, a n  edge has to be deleted from the corresponding graph 

or a new one has to be added. In the first case the maximum matching of GI~+, 

can be determined from the one of G~ in the following way: if the edge deleted 

was not part  of  the maximum matching then it stays the same for G~+,. Otherwise, 

check if there is an augmenting path and, if so, use it to enlarge the matching. 

I f  G~,+, results from G~ by adding a new edge, determine if an augmenting path 

exists. If  so, use it to enlarge the matching. There is an approximate congruence 

of  A and B exactly if one of  the maximum matchings is perfect. 

Step 5. We now describe in detail how step 2 is realized. We start with the 

observation that expressions of  the form A + Bx/-C can be compared using only 

elementary arithmetic operations. Note first that the sign of an expression A +  

Bv/C - is easily computed. Assume next that we want to compare A + Bx/-C and 

D + Ex/"ff. Then A + Bx/-C <- D + Ex/ff if[ A - D + Bx/C-< Ex/'-ff. I f  the signs of  

the two sides are now different then we are done. I f  the signs are the same, say 
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positive, then A+  Bv/-C- < D +  Ex/-ff iff (A - D ) 2 +  B2C + 2 ( A -  D)Bv/C~ E2F. 

This we already know how to check. We summarize in: 

Fact A. Let A, B, C, D, E, and F be elements of Q given as quotients of integers 

of  bounded precision. Then the test A + B-fC = (<,  -<)D + E x/F can be carried 

out using only O(1) additions, subtractions, and multiplications on single 

precision integers. 

We described step 2 for ease of  description in terms of polar coordinates; the 

actual computations are better carried out in Cartesian coordinates. Let (x, y) be 

the Cartesian coordinates of the image of  bj with respect to a Cartesian coordinate 

system with origin a,. Let (x~, y~) be the vector b~-bj and let (urn, vm) be the 

Cartesian coordinates of a,,. Then b~ is mapped onto G and b~ is mapped onto 

c, , ,  iff 

X 2 + y  2 = e 2 

and 

(X + Xt--U,,,)2 +(y+ yl--Vm)2=e 2. 

This system has solutions 

where 

x = R + , / - - O ,  

R = -a /2 ,  

Q = (4b2e 2 - b2(a2 + b2))/4(a2+ b2), 

and a = xt - u,, and b = yt - v,,. If there are no real solutions for x we are done, 

otherwise the two solutions for x determine four points on the circle G;  two of 

them are the endpoints of  the circular interval we are looking for. We find these 

endpoints by checking which of the four points (0, e), (R,x/ee-R2),  

( 0 , - e ) ,  (R,-x/e2--TL-~) lie in the interval, i.e., if b~ is mapped onto the point 

under consideration then b~ is mapped into U~ (a,,). Note that the latter condition 

is easily checked by Fact A. 

Let p~,,, p2,,, be the endpoints obtained in this way such that [P~m, p2m] is the 

circular interval in counterclockwise traversal of C,. We now sort these endpoints 

according to their circular order on G using any O(n log n) sorting algorithm. 

The comparisons take O(1) elementary arithmetic operations by Fact A. This 

finishes the detailed description of step 2. 

Analysis. Step 1 states that steps 2-4 are repeated n 2 times for all pairs i, j, 1-< 

i,j<_ n. In step 2 all cutpoints of  circles Kr and C,,, 1 ~ l, m -< n; l # j ,  m # i, are 

determined and sorted with respect to their angular polar coordinate. This takes 

time O(n 2log n) by the discussion above. In step 3 determining the graph 

belonging to ~ = 0 takes O(n2), determining its maximum matching O(n ~5) time, 

(see [M, Section IV.9.2]). In step 4 we check, for each of the O(n 2) subintervals, 
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if the corresponding graph together with the previous matching contains an 

augmenting path, which takes O(n 2) time. So the total run time of one iteration 

of  step 4 is O(n4), which asymptotically exceeds the run times of steps 2 and 3. 

The total run time of the algorithm is thus O(/16).  

Algorithm 5. 

Step 1. For l<--i l , j l ,  i2,j2, i3 , J3  ~ n  let e ( i l , j l ,  i 2 , j 2 ,  i3, j3)  be the smallest e 

such that there is a translation mapping bi, into U, (at,), 1 -< l -< 3. An easy geometric 

argument shows that the optimal value Cop t of  e is equal to one of  the /I 6 values 

e ( i ~ , . . .  ,j3). Each such value can be computed in constant time as follows. Let 

r denote the image of bi,. Then e ( i~ , . . .  ,J3) is defined by 

minimize e 

subject to la~,-(b~,+(r-b, ,)) l  2 <- e 2. 

Thus r is the center and e is the radius of  the smallest circle containing the three 

points at, - b~,, ! = 1, 2, 3. I f  the triangle formed by these three points is obtuse 

(this can be checked by computing the sign of three scalar products) then r is 

the midpoint of the longest edge of the triangle and e is half the length of this 

edge and if the triangle is right or acute then r is the center of  the circumcircle 

and e is the radius of  that circle. In the latter case r is the intersection of 

the bisectors of  the edges of  the triangle and hence the coordinates of  r are 

quotients of  linear functions in the coordinates of the endpoints. Thus in 

either case e = ~ where R is a rational function in the coordinates of  b;, and 

ai,, 1 -< l < - 3. 

Step 2. We sort the n 6 values computed in step 1 (time O(n 610g n)) and 

determine eop t by binary search on these values. In each step of the binary 

search we invoke Algorithm 4 to decide whether a solution exists for the given 

values. (Note that Algorithm 4 uses only the value e 2 in its computations; 

this is always a rational function of  the inputs here.) The binary search takes 

time O(n 6 log n). 

TuE(e )e  

Algorithm 6. 

Step 1. We first want to argue that the labeling used in a solution (if there 

is any) is unique. Assume otherwise, say li is a labeling under translation 

T~: x ~ x  + ti, i = 1, 2. We may assume without loss of  generality that / [~(a j )  = bj, 
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Fig. 5 

121(aj)=bj+l, and lf~(ak)=bl for l<- j<k  and some k. Since T~ is a solution 

with respect to labeling li, we have 

bj+heU, (a j )  for l<-j<-k, 

bj+t2~ U~(aj_l) for 2<-j<-k, 

bl + t2c U~(ak). 

Let v = h - t 2 .  Then (aj-a~_~).v>_O, as can be seen from Fig. 5. Since 

~kj=2(aj-aj_~)+(at-ak)=O we conclude v = 0 .  This contradicts the fact that 

U~(aj) c~ U~(a~_l)= O for all j.  Thus there is at most one labeling which can be 

used in an approximate congruence. 

Step. 2. It can easily be shown that any translation which is an approximate 

congruence between B and A must also map the centroid cn into U~(cA). We 

cover U~ (cA) by circles which have sufficiently small radius eo so that they cannot 

intersect more than two circles of radius e around points of A. Figure 6 shows 

that eo = (32-~/'3 - 1)e will do. 

For each small circle C of this cover (there are constantly many of  them) we 

decide if there exists a translation mapping c8 into C and satisfying the conditions 

for an approximate congruence between A and B. 

Step 3. Let K .  1 -< i-< n, be the set of images of b~ under translations mapping 

cn into C, i.e., the circle of  radius eo around b'i := bi + c - cn, where c is the center 

of  C. For the set A we construct the first- and second-order Voronoi diagrams. 

(Note that the coordinates of the vertices of these diagrams are rational functions 

of hounded degree of  the coordinates of the input and, therefore, cause no 

problems for our single precision model of computation.) Then we locate each 

Fig. 6 
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b~ in order ' to  determine the two points in A closest to it. For the ones which are 

at a distance less than e + eo from b',  i.e., K~ intersects their e-neighborhoods, 

we introduce an edge in an undirected graph G of the same form as in 

Algorithm 4. 

Step 4. In the graph G constructed in step 3 any node in the set {v~ , . . . ,  v,} 
has degree -<2. We determine if G has a perfect matching in the following way: 

if  there is any node of  degree 0, no perfect matching exists. Otherwise, if there 

is some node which has degree 1 we add the incident edge e to the matching, 

and remove e, its endpoints, and all other edges incident to them from the graph. 

We repeat this until there are no more edges of  degree 1 left. Now all remaining 

edges in U and in V must have degree 2 and hence each connected component  

is a cycle. For each cycle there are only two possible matchings. We check both 

matchings by the linear-time algorithm for the labeled case. By the argument at 

the beginning of  the p roof  at most one of  the labelings can yield an approximate 

congruence. Once we have checked each cycle only one labeling is left. We check 

this labeling by the linear-time algorithm. 

Analysis. Step 2 states that steps 3-4 have to be executed for each circle in the 

cover, i.e., a constant number  of  times. Constructing the Voronoi diagrams and 

locating the points b~ in them takes O( n log n ) time (see [PSI or [ M]). Determining 

the matchings in step 3 takes O(n) ,  testing the two matchings for a cycle of  length 

c takes time O(c) for a total of  O(n) over all cycles. The final test also takes 

t ime O(n). 

TuE(ae)m 

Algorithm 7. We proceed as in Algorithm 6. Here we have squares instead of 

circles. Let 8 = 2ae, i.e., any two points in A have a distance of at least & In step 

1 we cover the square of  "radius"  e and center CA by small squares of  radius 

8 - 2 e  which can intersect at most one of  the e-neighborhoods of the points of  

A. This makes the matching problem in step 4 even easier. The total run time is 

clearly O(n log n). 

RID{ e 
m 

Algorithm 8. Let c be the center of  the rotation and Ii c [0, 27r[ the set of  angles 

under which a rotation around c maps bi into U~(a~), 1 -< i-< n. 
In the case of  the Euclidean metric each I~ is an interval on the unit circle, 

which can be computed as follows. We may assume without loss of  generality 

that c is the origin of  our underlying Cartesian coordinate system. Then /~ has 

endpoints ~0o-tpt, ~Oo+¢~ where ~Oo and tp~ are given by (see Fig. 7) 

cos ~'o = A/~/C and cos ~, = B/x/-(, 
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x \ \  

Fig. 7 

where A = air" b,, B = (lla, tl=+ ]]b, ll 2 -  e2)/2, and C = Ila, ll=llb, II 2. Here  a [ -  b, is 

the scalar p roduc t  o f  ai and  b~ and ][x[] is the norm x / ~ f :  x of  x. Hence  c o s ( c o ±  

~ )  = ( A B ) / C  :~ (1 /C)x / I (C  - A2)(C - B2)[ and we can compare  the cosine values 

o f  the interval endpoin t s  in t ime O(1) by Fact  A. Clearly,  the p rob lem instance 

has a posit ive answer  exact ly if I~ c~. • • c~ In ~ Q. We sort the boundar ies  of  the 

intervals I~, i = 1 , . . . ,  n (O(n  log n) time). Then we count  how m a n y  bi are within 

U~(a~) (i.e., within the correct  e -ne ighborhood  when a rotat ion of  0 ° is per formed) .  

We traverse the sequence  o f  interval boundar ies ,  and increment  (decrement)  our  

count  by 1 for  each left (right) interval boundary .  Whenever  the count  becomes  

n, we have found  a rotat ion of  the desired form. 

In case of  the m a x i m u m  metric  each li consists o f  at most  four  intervals, 

namely  the set o f  intervals on a circle, which are within a given square. Again 

we sort the boundar ies  o f  all these intervals and  proceed as in the Eucl idean case. 

The  remaining  a lgor i thms are described for the Eucl idean metric but  they work 

for  the m a x i m u m  metr ic  as well. 

e 

Algorithm 9. We assume again  that the center  c o f  the rotation is the origin. 

Let ~ be the  angle o f  a rota t ion satisfying approx imate  congruence for  a min imum 

value of  e. An easy geometr ic  a rgument  shows that  only two situations are 

possible:  

1. The image o f  some bi has distance e~ f rom a~ where e~ is the minimal  

poss ible  dis tance o f  bi f rom a~ under  rotations.  

2. There  is a pair  i , j  ( I < - i < j < - n )  such that  bi and b i are m a p p e d  onto the 

circles C ,  C~ respect ively o f  radius e a round ai, a~, see Fig. 8. 

Si tuat ion 1 yields n possible  values of  e, namely  III a~ 11 - tt b, III for  1 -< i -< n, and  

si tuat ion 2 yields O(ll 2) values o f  e. This can be seen as follows. For  fixed i and  

j, s i tuat ion 2 can be descr ibed by two equat ions  in the unknowns  9(  = angle of  

rotat ion)  and e, namely  IIA~b~-a~ll2=e 2 and ]lA~bj-a~ll2=e 2. Solving these 



252 H. AIt, K. Mehlhorn, H. Wagener, and E. Welzl 

C ~ b j  

]Fig. 8 

equations for sin ¢ and cos ~p yield sin ~p and cos ~p as linear functions in e 2 and 

substitution into sin 2 ~ +cos  2 ~p = 1 yields a quadratic equation Ae2+ Be + C = 0 

for e; here A, B, and C are rational functions in the coordinates of ai, b~, as, 

and b s. Thus each such equation yields at most two values of e and solutions of 

such equations can be compared by Fact A. We determine the set E of all these 

values. The solution e of  the optimization problem must be one of  them, and we 

determine it by a variant of  binary search. First we determine the median eM of 

E and apply Algorithm 8 to find out if there is a solution with tolerance eM. 

Note that eM is o f the  form D +  Ev/-f, where D, E, and F are rational functions 

of  the coordinates of four points. Thus the cosines of the interval endpoints in 

Algorithm 8 are of  the form G + Hx/I  + Jx/K,  where (3, H, /, J, K are rational 

functions of  the coordinates of  six points. More precisely, G, / 4 , . . . ,  K are 

quotients of  O(1) precision integers (recall that we assume that the coordinates 

are given as single precision integers). Expressions of  this form cannot be 

compared on the basis of  Fact A. However, Mignotte's [Mi] results imply that 

two such expressions can be compared by comparing numerical approximations 

of  bounded precision. Such approximations can be computed in O(1) time. If  

there is a solution with tolerance eM, we apply the algorithm recursively to the 

set E~ of  elements of E less than eM, otherwise to the set E: of elements greater 

than eM until the smallest element of E for which a solution exists, is found. 

The time to compute the set E is O(n2). The first step of the binary search takes 

time O(n:)  to find e~ by fast median finding [M, Section II.4], O(n 2) to split 

E with respect to eM, and O(n log n) to apply Algorithm 8. It follows that the 

total run time is O(n2). 

Algorithm 10. Any isometric mapping consists either of  a rigid motion, i.e., a 

combination of  translation and rotation, or a reflexion (at some straight line in 

the two-dimensional case), which can be chosen arbitrarily, followed by a rigid 

motion. We give an algorithm which tests if B can be mapped onto A with 

tolerance e by a rigid motion. We consider both versions of  isometric mappings 
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image of b i ~ 

t images of bj 

Fig. 9 

by applying this algorithm once to the pair A, B and once to A, B', where B' is 

obtained from B by reflecting it at some arbitrary straight line. 

A simple geometric argument shows that there exists a rigid motion mapping 

any b~ into U~(a~), 1 < - i < - n, exactly if there exists a rigid motion of that kind 

which maps at least two points b~, b~ of B onto the borders of their corresponding 

e-neighborhoods, i.e., the circles C~, Cj. Our algorithm tests this property for all 

O ( n  2) possible pairs ( i , j ) .  Given such a pair we denote by (xt, y~) the coordinates 

of  the image of bt and by (a}', a y) the coordinates of at with respect to a coordinate 

system with origin a~. We check for the existence of the desired rigid motion by 

checking four cases separately: y~ ~ 0  and a t lies left (right) of  the oriented 

line from (x ,  y~) to the image of bj, i.e., (yj  - y~, x~ - x~) r .  ( a ]  - x~, a~ - y~) ~ O, 

see Fig. 9. We show how to treat the case where both quantities are positive, the 

other cases are symmetric. Note that the parameter xi completely determines the 

rigid motion in this case. Thus there exists a rigid motion of the desired form iff 

the following system of  algebraic equalities and inequalities has a solution: 

(1) The point (x~,y~) lies on C~ and yi->0: 

x2 + y2 = e 2, yi  >_ O. 

(2) The point ( x j ,  y j )  lies on Cj,  (x j ,  y j )  has distance IIb~-b, II from (x~,y~) ,  

and (xj - xi, y~ _y~)r .  ( a f  - - x i ,  a f - -Y i )  >- 0: 

(xj - a])2+ (yj - aY) 2 = e 2, 

(xj - x,)2 + (yj _y,)2 = IIb~ - b, II =, 

(Yi -Y' ,  x , - x j )  r" ( a ] - x i ,  a~ - y , ) > - O .  

(3p) For all p ~ i , j  the image of  bp lies in U~(ap) ,  it has the correct distance 

from the image of  bi, and the angle defined by the images of bj, bi, and 

bp is the same as the angle defined by the original points bj, b~, and bp: 

(xp - a~) 2 + (yp - ap) 2 -< e 2, 

(xp - x,) 2 + (yp - y,)2 = II b, - b, II z, 

(xp - x , ,  yp _ y , )  r .  (Xj -- X,, yj -- y , )  = ( bp - b,) r '  (bj - b,) 
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Fig. I0 

We check the satisfiability of this system as follows. For p # i,j  let S~ (S~) be 

the system consisting of  (1), (2), and (3p) ((3p) with -< replaced by =) .  The 

system S~ has either all x/s ,  -1  -< x~ <- 1, as solutions or it has at most 12 different 

solutions. This follows from the fact that the image of bp moves on an algebraic 

curve Kp of degree 6 as the image of b~ moves on Ci (see [W, p. 68]; Fig. 10 

illustrates the curve Kp) and that this curve intersects Cp in at most 12 points. 

We can determine the exact number by checking the validity of  the following 

formulae using Collins's procedure [C] (l = 1, 2 , . . . ,  13): 

3 Z i , . . . , l t :  - - l < - - Z l < Z 2 < ' ' ' < l t < - - l A S p ( Z , ) A ' ' ' A S p ( Z t ) .  

This takes time O(1) since the formulae have size O(1). Let lp denote the number 

of  distinct solutions found. If lp = 13 then all xi's, - 1  -< xi - 1, are solutions and 

we can drop bp from further consideration. If l p - 1 2  then let Z ~ , . . . ,  ZPp be 

variables for the different solutions. We next check whether S~( -1 ) ,  S~(+1), 

S~((Zj + Zj+0/2) ,  1-<j < lp, hold. The latter is equivalent to 

3 Z , , . . . , Z I :  -1 - -<Zl<"  • "<Zip--< 1 

A S ; ( Z , )  A ' ' '  A S;(Z, , )  ^ S~((Zj + Zj+,)/2). 

We have now computed, for each p # i,j, a union lp of at most six intervals for 

xi within which bp is mapped into U, (ap). We sort the endpoints of  these intervals 

using any O(n log n) sorting algorithm. A comparison of Z~, with Z~ is performed 

in O(1) time by evaluating 

S Z ; , . . . , Z L Z ; , . . . , Z ~ :  - I _ < Z ~ < . . . < Z [ - < I  

A S;(Z~,)  A ' ' '  A S T ( Z D  A --1<-- Z', < ' ' "  < Z~,<-- 1 

^ s~(z~) A . . .  ^ S T(ZD A Z~ ~ Zl.  
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Thus sorting takes O(n log n) time. It is now a simple matter to scan the endpoints 

and to determine whether the intersection of  the I / s ,  p # i,j, is nonempty. 

The algorithm takes time O(n log n) for each pair i, j, so the total run time is 

O( n 3 log n). 

Algorithm 11. As in the labeled case, if there is a solution, there must be one 

which maps at least two points b~, bj onto circles Ck, C~. We test this property 

for all quadruples i, j, k, / e { 1 , . . . ,  n}. The coordinate xi is defined as in the 

labeled case, only that now the image of bi lies on Ck instead o f  C ,  Let 

Ip.m, 1 -~ m --~ n, be the set of  values of x~, such that the image of bp lies within 

U~ (a,,). As before, Ip.m is the union of  at most six intervals. We sort the boundaries 

of all the intervals obtained this way and proceed exactly as in Algorithm 4. 

Whenever we find a perfect matching, the problem has a solution. 

Steps 2-4 of  Algorithm 4 are executed O(n 4) times, one execution takes O(n 4) 

time, so we get an upper bound of O(nS). 

4. Conclusion 

We presented algorithms for computing exact and approximate congruences and 

symmetries. We believe that the approximate version of the problem has more 

practical relevance than the exact version. Although we have found some answers 

we also left a large number of questions unresolved. Can our results on approxi- 

mate congruence be transferred to higher dimensions? How do the time bounds 

change if we drop the assumption that the inputs are given as single precision 

rational numbers? [Sch] contains answers to that question. Can the running times 

of our  algorithms be improved? Can they be improved if we allow our algorithms 

to make mistakes? A possible scenario is as follows: for point sets A and B let 

eopt(A, B) be the minimal value of  e for which an approximate congruence exists. 

Suppose now that we require a correct answer on input (A, B, e) only if 

e/eopt(A, B)~ [½, 2] and do not care about the answer if e/eop~(A, B)e [½, 2]. 

This problem can be solved in time O(n zS) for translations and time O(n 4) for 

general congruences [Sch]. 
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