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Abstract We show that there is an inclusion-preserving bijection between the set
of all normal subsemigroups of a semigroup S and the set of all group congruences
on S. We describe also group congruences on E-inversive (E-)semigroups. In par-
ticular, we generalize the result of Meakin (J. Aust. Math. Soc. 13:259–266, 1972)
concerning the description of the least group congruence on an orthodox semigroup,
the result of Howie (Proc. Edinb. Math. Soc. 14:71–79, 1964) concerning the descrip-
tion of ρ ∨ σ in an inverse semigroup S, where ρ is a congruence and σ is the least
group congruence on S, some results of Jones (Semigroup Forum 30:1–16, 1984) and
some results contained in the book of Petrich (Inverse Semigroups, 1984). Also, one
of the main aims of this paper is to study of group congruences on E-unitary semi-
groups. In particular, we prove that in any E-inversive semigroup, H ∩ σ ⊆ κ , where
κ is the least E-unitary congruence. This result is equivalent to the statement that in
an arbitrary E-unitary E-inversive semigroup S, H ∩ σ = 1S .

Keywords Group congruence · E-inversive semigroup · E-semigroup ·
Idempotent-surjective semigroup · Eventually regular semigroup · Idempotent pure
congruence · Idempotent-separating congruence · E-unitary congruence

1 Introduction and preliminaries

Let S be an inverse semigroup with semilattice of idempotents E. Define an inverse
subsemigroup N of S to be normal if it is full (i.e., E ⊆ N ), closed (i.e., Nω = N ,
where ω : 2S → 2S is a closure operator given by Aω = {s ∈ S : ∃a ∈ A [as ∈ A]}
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for all A ⊆ S), and self-conjugate (i.e., s−1Ns ⊆ N for every s ∈ S). It follows from
[11] (see p. 181) that there exists an inclusion-preserving bijection between the set of
normal subsemigroups of S and the set of group congruences on S. In fact, the relation
ρN = {(a, b) ∈ S ×S : ab−1 ∈ N} is a group congruence on S and kerρN = N . These
results were generalized in [9] and [16]. It is easy to see that (a, b) ∈ ρN if and only
if ax, bx ∈ N for some x ∈ S.

The main purpose of the next section is a description of group congruences on
a semigroup S in the terms of some special subsemigroups of S. Our description
is simpler than that of Dubreil (see 10.2 [1]) and a little more general than the de-
scription of Gomes [6] (nota bene our proof is simpler). We apply this description
to determine group congruences (in particular, the least group congruence) on some
special classes of semigroups; namely: E-inversive (E-)semigroups (in particular,
idempotent-surjective (E-)semigroups), eventually regular semigroups.

We divide this paper into seven sections. In Sect. 2 we describe group congru-
ences on an arbitrary semigroup S in the terms of normal subsemigroups of S (see
below for the definition). In Sect. 3 we investigate group congruences on E-inversive
semigroups. In particular, we show that the least group congruence on an E-inversive
semigroup exists (in general, this is false: see Example 1.2). In Sect. 4 and 5 we
study group congruences on E-inversive E-semigroups and E-unitary E-inversive
semigroups, respectively. Further, in Sect. 6 we use the results of Sect. 2 for an easy
description of all group congruences on eventually regular semigroups (in terms of
full, closed and self-conjugate subsemigroups) and we give some remarks on group
congruences on inverse semigroups. Finally, in Sect. 7, some remarks on the hyper-
core of a semigroup are given (see [8]).

Let S be a semigroup. Denote by Reg(S) the set of regular elements of S, that
is, Reg(S) = {a ∈ S : a ∈ aSa} and by V (a) the set of inverses of a ∈ S, i.e., the set
{x ∈ S : a = axa, x = xax}. Note that if a ∈ S is regular, say a = axa for some x ∈ S,
then xax ∈ V (a). Also, S is called regular if V (a) �= ∅ for every a ∈ S. Further, S

is said to be eventually regular if every element a of S has a regular power. In such
a case, by r(a) we shall mean the regular index of a, i.e., the least positive integer n

for which an ∈ Reg(S).
Let S be a semigroup, a ∈ S. The set W(a) = {x ∈ S : x = xax} is called the set

of all weak inverses of a and so the elements of W(a) will be called weak inverse
elements of a. A semigroup S is said to be E-inversive if for every a ∈ S there exists
x ∈ S such that ax ∈ ES , where ES (or briefly E) is the set of idempotents of S (more
generally, if A ⊆ S, then EA denotes the set of idempotents of A). It is easy to see that
a semigroup S is E-inversive if and only if W(a) is nonempty for all a ∈ S. Hence
if S is E-inversive, then for every a ∈ S there is x ∈ S such that ax, xa ∈ ES (see
[19, 20]). Clearly, eventually regular semigroups are E-inversive. We remark that the
class of eventually regular semigroups is very wide and contains the class of regular,
group-bound (in particular, periodic, finite) semigroups. In [7] Hall observed that the
set Reg(S) of a semigroup S with ES �= ∅ forms a regular subsemigroup of S if and
only if the product of any two idempotents of S is regular. In that case, S is said to
be an R-semigroup. Also, we say that S is an E-semigroup if ES is a subsemigroup
of S. Evidently, every E-semigroup is an R-semigroup. Finally, [eventually] regular
E-semigroups are called [eventually] orthodox.
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A generalization of the concept of eventually regular will also prove convenient.
Define a semigroup S to be idempotent-surjective if whenever ρ is a congruence on
S and aρ is an idempotent of S/ρ, then aρ contains some idempotent of S. It is well
known that eventually regular semigroups are idempotent-surjective [2]. Further, we
have the following known result [10] (we include a simple proof for completeness).

Result 1.1 Every idempotent-surjective semigroup S is E-inversive.

Proof Let a ∈ S. From the definition of a Rees congruence on S follows that the
ideal SaS has at least one idempotent, that is, xay = e ∈ ES , where x, y ∈ S. Hence
exaye = e. Thus yex = (yex)a(yex), so yex ∈ W(a), as required. �

A subset A of S is said to be (respectively) full; reflexive and dense if ES ⊆ A;
∀a, b ∈ S [ab ∈ A =⇒ ba ∈ A] and ∀s ∈ S ∃x, y ∈ S [sx, ys ∈ A]. Also, define the
closure operator ω on S by Aω = {s ∈ S : ∃a ∈ A [as ∈ A]} (A ⊆ S). We shall say
that A ⊆ S is closed (in S) if Aω = A. Finally, a subsemigroup N of a semigroup S

is normal if it is full, dense, reflexive and closed (if N is normal, then we shall write
N �S). Moreover, if a subsemigroup of S is full, dense and reflexive, then it is called
seminormal [6].

By the kernel kerρ of a congruence ρ on a semigroup S we shall mean the set
{x ∈ S : (x, x2) ∈ ρ}. Finally, denote by C(S) the complete lattice of all congruences
on a semigroup S.

Example 1.2 Consider the semigroup of positive integers (N,+) (with respect to ad-
dition). It is well known that every group congruence on N is of the following form:
ρn = {(k, l) ∈ N × N : n|(k − l)} (n > 0). Note that EN = ∅, so a semigroup with-
out idempotents possesses group congruences but N has not least group congruence.
Also, kerρn = nρn = {n,2n,3n, . . .}.

2 Group congruences—general case

Let S be a semigroup, ρ ∈ C(S). We say that ρ is a group congruence if S/ρ is a
group. Denote by G C(S) the set of group congruences on S. Clearly, if ρ ∈ G C(S),
then kerρ is the identity of the group S/ρ. Finally, by N (S) we shall mean the set of
all normal subsemigroups of S.

The following two lemmas are almost evident and we omit their easy proofs.

Lemma 2.1 Let ρ be a group congruence on a semigroup S. Then kerρ � S.

Lemma 2.2 Let ρ1, ρ2 be group congruences on a semigroup S. Then ρ1 ⊂ ρ2 if and
only if kerρ1 ⊂ kerρ2.

Let B be a nonempty subset of a semigroup S. Consider four relations on S:

ρ1,B = {
(a, b) ∈ S × S : ∃x ∈ S [ax, bx ∈ B]};
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ρ2,B = {
(a, b) ∈ S × S : ∃x, y ∈ B [ax = yb]};

ρ3,B = {
(a, b) ∈ S × S : ∃x ∈ S [xa, xb ∈ B]};

ρ4,B = {
(a, b) ∈ S × S : ∃x, y ∈ B [xa = by]}.

Lemma 2.3 Let a subsemigroup B of a semigroup S be dense and reflexive. Then
ρ1,B = ρ2,B = ρ3,B = ρ4,B .

Proof Let (a, b) ∈ ρ2,B . Then ax = yb for some x, y ∈ B . Also, as ∈ B for some
s ∈ S, since B is dense and so sa ∈ B , since B is reflexive. Hence asy ∈ B and
so (sy)a ∈ B . It follows that (sy)b = s(yb) = s(ax) = (sa)x ∈ B . Thus (sy)a,
(sy)b ∈ B . We have just shown that ρ2,B ⊂ ρ3,B .

Conversely, if xa, xb ∈ B for some x ∈ S, then ax, bx ∈ B (since B is reflexive),
so a(xb) = (ax)b, where ax, xb ∈ B . Hence (a, b) ∈ ρ2,B . Thus ρ2,B = ρ3,B .

Dually, ρ1,B = ρ4,B . Since B is reflexive, then ρ1,B = ρ3,B . �

If B is a dense, reflexive subsemigroup of S, then we denote the above four rela-
tions by ρB . We have the following theorem.

Theorem 2.4 Let B be a dense and reflexive subsemigroup of a semigroup S. Then
the relation ρB is a group congruence on S. Moreover, B ⊆ Bω = kerρB . If B is
normal, then B = kerρB .

Conversely, if ρ is a group congruence on S, then there exists a normal subsemi-
group N of S such that ρ = ρN (in fact, N = kerρ). Thus there exists an inclusion-
preserving bijection between the set of all normal subsemigroups of S and the set of
all group congruences on S.

Proof Let a ∈ S. Since B is dense, then there exists x ∈ S such that xa ∈ B . Hence
ρB is reflexive. Obviously, ρB is symmetric. Also, since B is a semigroup, then ρB

is transitive. Consequently, ρB is an equivalence relation on S. Moreover, ρB is a
left congruence on S. Indeed, let (a, b) ∈ ρB, c ∈ S. Then ax, bx ∈ B and zc ∈ B for
some x, z ∈ S, so zcax, zcbx ∈ B . It follows that (ca)(xz), (cb)(xz) ∈ B , since B

is reflexive. Therefore (ca, cb) ∈ ρB . By symmetry, ρB is a right congruence on S.
Finally, S/ρB is a group. Indeed, let a ∈ S,b ∈ B and ax, xa ∈ B for some x ∈ S.
Then bax ∈ B . Hence xa, x(ba) ∈ B , so (ba, a) ∈ ρB . Since B is dense, then S/ρB

is a group, as required.
Since b(bb) = (bb)b for every b ∈ B , then B ⊂ kerρB . Also, Bω = kerρB . In-

deed, let s ∈ kerρB . Then (s, b) ∈ ρB for some b ∈ B . Hence b1s = bb2 for some
b1, b2 ∈ B . Thus s ∈ Bω, so kerρB ⊂ Bω. Conversely, let s ∈ Bω. Then bs ∈ B for
some b ∈ B . Since bb ∈ B , then (s, b) ∈ ρB , so s ∈ kerρB . Thus Bω ⊂ kerρB , as
exactly required. Finally, if B is normal, then B = Bω. Hence B = kerρB .

Conversely, let ρ be a group congruence on S. By Lemma 2.1, kerρ � S. Put
kerρ = N . Then by Lemma 2.2, ρ = ρN , since N = kerρN = kerρ. It is now easy
to see that the map φ : N (S) → G C(S), where Nφ = ρN for every N ∈ N (S), is an
inclusion-preserving bijection between the set of all normal subsemigroups of S and
the set of all group congruences on S (with the inverse φ−1 : G C(S) → N (S), where
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ρφ−1 = kerρ for all ρ ∈ G C(S)). Note that φ−1 is an inclusion-preserving mapping,
too. �

Since the first part of Theorem 2.4 is true for an arbitrary dense and reflexive
subsemigroup of S, then we get the following corollary.

Corollary 2.5 Let B be a dense and reflexive subsemigroup of S. Then Bω � S.

Example 2.6 Let S = {a, b, c, e, f } be the semigroup with the multiplication table
given below:

· e f a b c

e e e e b b

f e f a b b

a e a f b b

b b b b e e

c b c c e e

It is easy to see that E is a dense and reflexive subsemigroup of S but E is not closed,
since ea ∈ E and a /∈ E. Also, N = {a, e, f } is normal. Indeed, the group congruence
ρE has two ρE-classes: N and {b, c}, since ae, ee, bb, bc ∈ E and (e, b) /∈ ρE . Note
also that E ⊂ kerρN = N,E �= N and ρE = ρN . It follows that there is no a one-to-
one correspondence between the set of all seminormal subsemigroups of S and the
set of all group congruences on S.

Remark 1 Obviously, every subgroup of a group is full and unitary but not every sub-
group of a group is reflexive (for example: each two element subgroup of the group
of all permutations of the six-element set X is not reflexive). It is well known that a
subgroup H of a group G is normal if and only if the relation ρH is a congruence
on G. We have a corresponding result:

Let A be a closed subsemigroup of a semigroup S. Then A is normal if and only if
ρA ∈ G C(S).

Indeed, let ρA ∈ G C(S). From A = Aω and the second paragraph of the proof of
Theorem 2.4 we obtain that A = kerρA. Thus A � S (Lemma 2.1). The converse of
the result follows from Theorem 2.4.

The set of all group congruences on a semigroup S (in general) does not form a
lattice. Indeed, let (R,+) be the semigroup of real positive numbers with respect to
addition. Put M = N and N = {x,2x,3x, . . .}, where x ∈ R \ Q. Then M,N � S but
M ∩ N = ∅.

We generalize now the results of Howie [12], LaTorre [16] and Hanumantha Rao
and Lakshmi [9].

Theorem 2.7 Let B be a seminormal subsemigroup of a semigroup S,ρ ∈ C(S).
Then:

(i) ρ ∨ ρB = ρBρρB ;
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(ii) ρ ∨ ρB ∈ G C(S);
(iii) (x, y) ∈ ρ ∨ ρB if and only if (ax, yb) ∈ ρ for some a, b ∈ B .

Proof (i). Since ρ,ρB ⊂ ρ ∨ ρB , ρBρρB ⊂ ρ ∨ ρB . Also, ρBρρB is a reflexive,
symmetric and compatible relation on S. We show that ρBρρB is transitive. Then
ρ ∨ ρB = ρBρρB . Indeed, let (r, s), (s, t) ∈ ρBρρB . Then (a) (w, s), (s, x) ∈ ρB ;
(b) (y,w), (x, z) ∈ ρ; (c) (r, y), (z, t) ∈ ρB for some w,x, y, z ∈ S. From (a)
we obtain (w,x) ∈ ρB , so aw = xb for some a, b ∈ B . From (b) follows that
(aw,ay), (xb, zb) ∈ ρ. Hence (ay, zb) ∈ ρ, since aw = xb. Finally, by (c), (r, ay),

(zb, t) ∈ ρB , since B ⊂ kerρB , so (r, ay) ∈ ρB, (ay, zb) ∈ ρ, (zb, t) ∈ ρB . Thus
(r, t) ∈ ρBρρB , as required.

(ii). This is evident.
(iii). Let (x, y) ∈ ρ ∨ ρB . Then (x, r) ∈ ρB, (r, s) ∈ ρ and (s, y) ∈ ρB for some

r, s ∈ S. Hence ax = rb, cs = yd for some elements a, b, c, d of B . Therefore
(ca)x = c(ax) = c(rb) = (crb)ρ(csb) = (cs)b = (yd)b = y(db), where ca, db ∈ B .
Conversely, let (ax, yb) ∈ ρ for some a, b ∈ B . Since (x, ax), (yb, y) ∈ ρB , then
(x, y) ∈ ρBρρB = ρ ∨ ρB (by (i)). �

Let A be a nonempty subset of a semigroup S,ρ ∈ C(S). Put

Aρ = {
s ∈ S : ∃a ∈ A [(s, a) ∈ ρ]}.

Corollary 2.8 Let B be a seminormal subsemigroup of a semigroup S,ρ ∈ C(S).
Then ker(ρ ∨ ρB) = (Bρ)ω. In particular, (Bρ)ω � S.

Proof Let x ∈ ker(ρ ∨ ρB). Then there exists b ∈ B such that (x, b) ∈ ρ ∨ ρB , since
B ⊂ ker(ρ ∨ ρB). Hence (ax, bc) ∈ ρ for some a, c ∈ B (by Theorem 1.6(iii)). Thus
ax ∈ Bρ. It follows that x ∈ (Bρ)ω. Conversely, if x ∈ (Bρ)ω, then ax ∈ Bρ for some
a ∈ Bρ, so (ax, b), (a, c) ∈ ρ for some b, c ∈ B . It follows that (cx, b) ∈ ρ. Hence
((cc)x, cb) ∈ ρ. Thus (x, c) ∈ ρ ∨ ρB . Consequently, x ∈ ker(ρ ∨ ρB). �

Also, by Theorem 1.6(i) and Proposition 2.3(ii) in [15] we obtain the following
(see Corollary 3.2 [15]) corollary.

Corollary 2.9 Every group congruence on a semigroup S is dually right modular
element of C(S).

Corollary 2.10 Let B be a seminormal subsemigroup of a semigroup S,ρ ∈ C(S).
Then ρ ∨ ρB = S × S if and only if (Bρ)ω = S.

Let B be a seminormal subsemigroup of a semigroup S,ρ1, ρ2 ∈ C(S). Suppose
that (x, y) ∈ (ρ1 ∨ ρB) ∩ (ρ2 ∨ ρB). Then (ax)ρ2(yb), where a, b ∈ B . Moreover,
ax(ρ1 ∨ρB)x, x(ρ1 ∨ρB)y, y(ρ1 ∨ρB)yb, so ax(ρ1 ∨ρB)yb. Thus (cax, ybd) ∈ ρ1,
where c, d ∈ B . It follows that (caxd, cybd) ∈ ρ1. Moreover, (caxd, cybd) ∈ ρ2.
Hence (xd, cy) ∈ (ρ1 ∩ ρ2) ∨ ρB . Thus (x, y) ∈ (ρ1 ∩ ρ2) ∨ ρB , since (ρ1 ∩ ρ2) ∨ ρB

is a group congruence on S and c, d ∈ B ⊂ ker((ρ1 ∩ ρ2) ∨ ρB). We have just shown
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that (ρ1 ∨ρB)∩ (ρ2 ∨ρB) ⊂ (ρ1 ∩ρ2)∨ρB . The converse inclusion is evident. Thus
we may conclude that (ρ1 ∨ ρB) ∩ (ρ2 ∨ ρB) = (ρ1 ∩ ρ2) ∨ ρB .

We have the following theorem (see Theorem III.5.6 [21] and Theorem 4 [23]).

Theorem 2.11 Let B be a seminormal subsemigroup of a semigroup S. Then the
mapping φ : C(S) → G C(S), where

ρφ = ρ ∨ ρB

for every ρ ∈ C(S), is a (lattice) homomorphism of C(S) onto the (modular) lattice
[ρB,S × S] of all group congruences on S containing ρB .

Proof We have just proved that (ρ1 ∩ρ2)φ = ρ1φ∩ρ2φ for all ρ1, ρ2 ∈ C(S). Clearly,
(ρ1 ∨ ρ2)φ = ρ1φ ∨ ρ2φ for all ρ1, ρ2 ∈ C(S) and evidently φ is onto [ρB,S × S].

�

We have the following corollary (see Theorem 4.5 [15]).

Corollary 2.12 Let B be a seminormal subsemigroup of a semigroup S. Then ρB

distributes over meet.

Let S be a semigroup, N � S. Put

P (S;N) = {
A ⊆ S : A2 ⊆ A,N ⊆ A,Aω = A

}
.

Also, denote S/ρN by S/N . In particular, P (S/N; {N}) is the set of all subgroups of
the group S/N . Remark that if A ∈ P (S;N), then A is full and dense.

The proofs of the following two propositions are standard and so we omit the
proofs.

Proposition 2.13 Let S be a semigroup, N � S. Then there exists an inclusion-
preserving bijection φ between the set P (S;N) and the set P (S/N; {N}). Moreover,
M ∈ P (S;N) and M � S if and only if Mφ � S/N .

Proposition 2.14 Let φ be an epimorphism of a semigroup S onto a group (G, ·,1).
Then:

(i) Ker(φ) = φφ−1 is a group congruence on S;
(ii) N = {1}φ−1 � S;

(iii) Ker(φ) = ρN .

Conversely, if N � S, then N is the kernel of the canonical homomorphism of S

onto S/N .

Example 2.15 We now describe all normal subsemigroups of the bicyclic semigroup
S = N0 × N0, where (k, l)(m,n) = (k − l + max{l,m}, n − m + max{l,m}). It is
known that every (non-identical) homomorphic image of the bicyclic semigroup is
a cyclic group. Also, it is almost evident that ES = {(0,0), (1,1), (2,2), . . .} � S
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and (k, l)ρE(m,n) if and only if k + n = l + m, so S/ρE
∼= (Z,+). It follows that

(iZ)φ−1 = {(m,n) ∈ S : (m)i = (n)i} for every i ∈ N. The conclusion is that every
cyclic group is a homomorphic image of the bicyclic semigroup.

We have also the following well known proposition (from group theory).

Proposition 2.16 Let S be a semigroup; M,N � S and M ⊆ N . Then:

(i) M � N ;
(ii) N/M � S/M ;

(iii) (S/M)/(N/M) ∼= S/N .

Every full and closed subsemigroup A of an E-inversive semigroup S is itself
E-inversive. Indeed, let a ∈ A. Then ax ∈ ES = EA for some x ∈ S, so x ∈ Aω = A.
Consequently, there is x ∈ A such that ax ∈ EA.

Finally, by way of contrast, we prove in the present section the following proposi-
tion which is valid for the class of all E-inversive semigroups.

Proposition 2.17 Let S be an E-inversive semigroup, N � S. Suppose also that a
subsemigroup M of S is full and closed. Then:

(i) M ∩ N � M ;
(ii) N � (MN)ω;

(iii) M/(M ∩ N) ∼= (MN)ω/N .

Proof (i). It is clear that ES ⊂ M ∩ N , so M ∩ N is a full subsemigroup of M . Let
a, b ∈ M be such that ab ∈ M ∩ N . Then ba ∈ M and ba ∈ N (since N is reflexive
in S). Hence ba ∈ M ∩N . Hence M ∩N is reflexive in M . Further, if x ∈ (M ∩N)ω,
then yx ∈ M ∩N for some y ∈ M ∩N , so x ∈ M ∩N (because N and M are closed).
Since M ∩ N is full and closed, then it is E-inversive, so it is dense in M . Thus
M ∩ N � M .

(ii). We show that (MN)ω is a subsemigroup of S. Let a, b ∈ (MN)ω. Then
m1n1a = m2n2 for some m1,m2 ∈ M,n1, n2 ∈ N . Since S is E-inversive, then
W(m1) �= ∅. Hence mm1,m1m ∈ ES ⊂ M for some m ∈ S. Thus m ∈ M (since M is
closed), (mm1)n1a = (mm2)n2. Therefore (n1a,mm2) ∈ ρN , since mm1 ∈ ES ⊂ N ,
so (a,m3) ∈ ρN (m3 ∈ M). Similarly, (b,m4) ∈ ρN for some m4 ∈ M . It follows
that (ab,m5) ∈ ρN , where m5 ∈ M . Hence n3ab = m5n4 for some n3, n4 ∈ N . Thus
(m5n3)ab = (m5m5)n4. Consequently, ab ∈ (MN)ω. Furthermore, N ⊂ (MN)ω.
Indeed, let n ∈ N . Then n1n = en2 for some e ∈ ES,n1, n2 ∈ N . Hence we have
(en1)n = en2 ∈ MN , so n ∈ (MN)ω. Consequently, N � (MN)ω (since N � S).

The proof of the condition (iii) is standard. �

3 Group congruences on an E-inversive semigroup

Note that if a semigroup S is E-inversive, then every full subsemigroup of S is dense
(since ES is dense), so a subsemigroup A of S is normal if and only if A is full,
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reflexive and closed. It follows that S has a least normal subsemigroup U . Thus the
least group congruence on an arbitrary E-inversive semigroup exists. Denote it by σ

or σS . Then σ = ρU and kerσ = U (Theorem 2.4).
Firstly, we have the following proposition.

Proposition 3.1 Let S be an E-inversive semigroup. Then G C(S) = [σ,S × S]. Thus
G C(S) is a complete sublattice of C(S).

Also, ρM ∨ ρN = ρMρN = ρNρM for all M,N � S. Hence the lattice
(

G C(S),⊆,∩,◦)

is modular.

Proof The first part of the above proposition is clear. We show its second part.
Let a(ρMρN)b. Then (a, c) ∈ ρM, (c, b) ∈ ρN , where c ∈ S. Take any x ∈ W(c).
Then xc, cx ∈ ES, (cxa)ρN(bxa), (bxa)ρM(bxc), so (a, bxa) ∈ ρN, (bxa, b) ∈ ρM .
Hence (a, b) ∈ ρNρM . Therefore ρMρN ⊂ ρNρM . We may equally well show the
opposite inclusion. Consequently, ρM ∨ ρN = ρMρN = ρNρM . In the light of Propo-
sition I.8.5 [11], the lattice (G C(S),⊆,∩,◦) is modular. �

Let M,N be normal subsemigroups of a semigroup S. From Proposition 3.1 and
Corollary 2.8 we obtain that ker(ρMρN) = ker(ρNρM) = (MρN)ω = (NρM)ω. In
fact, if S is E-inversive, then ker(ρMρN) = ker(ρNρM) = MρN = NρM . Indeed,
let x ∈ ker(ρMρN). Then (x, e) ∈ ρMρN for some e ∈ ES . Hence (x,n) ∈ ρM ,
(n, e) ∈ ρN , where n ∈ S (in fact, n ∈ kerρN = N ). Thus x ∈ NρM . Conversely, if
x ∈ NρM , then (x,n) ∈ ρM for some n ∈ N . Hence (x,n) ∈ ρM, (n, e) ∈ ρN , where
e ∈ ES . Thus (x, e) ∈ ρMρN , that is, x ∈ ker(ρMρN), so ker(ρMρN) = NρM . Simi-
larly, ker(ρNρM) = MρN . This implies the required equalities. Also, ker(ρMρN) =
(MN)ω. Indeed, let x ∈ MρN . Then n1x = mn2 for some n1, n2 ∈ N,m ∈ M . Hence
(mn1)x ∈ MN . Thus x ∈ (MN)ω. We have proved that ker(ρMρN) ⊂ (MN)ω. Con-
versely, let x ∈ (MN)ω. Then m1n1x = m2n2 for some m1,m2 ∈ M,n1, n2 ∈ N .
Since S is E-inversive, then mm1 = e ∈ ES ⊂ M for some m ∈ S. It follows
that m ∈ M (since M is closed), so en1x = mm2n2. Hence (x,mm2) ∈ ρN . Thus
x ∈ MρN = ker(ρMρN), so (MN)ω ⊂ ker(ρMρN), as exactly required.

In fact, we have just shown that in an arbitrary E-inversive semigroup S,
ρ(MN)ω = ρMρN = ρNρM = ρ(NM)ω for all M,N � S. Moreover, notice that
ker(ρM ∩ ρN) = kerρM ∩ kerρN = M ∩ N (M,N � S), so ρM ∩ ρN = ρM∩N for
M,N �S. Consequently, the lattice (N (S),⊆,∩,∨), where M ∨N = (MN)ω for all
M,N � S, is isomorphic to the lattice (G C(S),⊆,∩,◦) (by the inclusion-preserving
bijection φ, see the proof of Theorem 2.4). Note also that the lattice (N (S),⊆,∩,∨)

is complete (since it has the greatest element S and the intersection of any nonempty
family of normal subsemigroups of S is a normal subsemigroup of S).

For terminology and elementary facts about lattices the reader is referred to the
book [21] (Sect. I.2). The following result will be useful (see Exercise I.2.15(iii) in
[21]).

Lemma 3.2 Every lattice isomorphism of complete lattices is a complete lattice iso-
morphism.
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From the above consideration we obtain the following theorem.

Theorem 3.3 Let S be an E-inversive semigroup. Then there exists a (lattice) iso-
morphism φ between the lattice (N (S),⊆,∩,∨), where M ∨ N = (MN)ω for all
M,N � S, and the lattice (G C(S),⊆,∩,◦). In fact, φ is defined by Nφ = ρN for
every N ∈ N (S). Moreover, φ is a complete lattice isomorphism.

Finally, we have the following proposition.

Proposition 3.4 Let S be an E-inversive semigroup, N � S. Then (a, b) ∈ ρN if and
only if ab∗ ∈ N for some (all) b∗ ∈ W(b).

Proof (=⇒). Let na = bm, where n,m ∈ N , and b∗ ∈ W(b). Then nab∗ = bmb∗.
Since b∗bm ∈ N and N is reflexive, then nab∗ ∈ N . Hence ab∗ ∈ Nω = N .

(⇐=). Let ab∗ = n ∈ N for some b∗ ∈ W(b). Then a(b∗b) = nb, so (a, b) ∈ ρN

(by Lemma 2.3). �

4 Group congruences on an E-semigroup

First, we “generalize” some results from orthodox semigroups to E-semigroups (see
Theorem VI.1.1 [11]).

Proposition 4.1 Let S be a semigroup. The following conditions are equivalent:

(i) S is an E-semigroup;
(ii) ∀a, b ∈ S [W(b)W(a) ⊆ W(ab)].

Moreover, the condition (i) implies the following condition:

(iii) ∀e ∈ ES [W(e) ⊆ ES].
If in addition S is an R-semigroup, then the conditions (i)–(iii) are equivalent.

Proof The proof is closely similar to the proof of Theorem VI.1.1 [11]. �

Corollary 4.2 Let S be an E-semigroup. Then:

(i) ∀e ∈ ES [W(e),V (e) ⊆ ES];
(ii) ∀a ∈ S,a∗ ∈ W(a), e ∈ ES [aea∗, a∗ea ∈ ES];

(iii) ∀a ∈ S,a∗ ∈ W(a), e, f ∈ ES [ea∗, a∗e, ea∗f ∈ W(a)].

Proof (i). This follows from Proposition 4.1.
(ii). This follows from the proof of Proposition VI.1.4 [11].
(iii). Let a ∈ S,a∗ ∈ W(a), e, f ∈ ES . Since e ∈ W(e) and f ∈ W(f ), then

ea∗ ∈ W(e)W(a) ⊆ W(ae). Hence ea∗ = ea∗aeea∗ = (ea∗)a(ea∗). Therefore
ea∗ ∈ W(a). Similarly, a∗e ∈ W(a). Finally, ea∗f ∈ W(e)W(a)W(f ) ⊆ W(f ae)

and so ea∗f = ea∗ff aeea∗f = (ea∗f )a(ea∗f ). Hence ea∗f ∈ W(a). �



Congruences and group congruences on a semigroup 441

Proposition 4.3 Let S be an E-inversive E-semigroup. Then

ρ1,E = ρ2,E = ρ3,E = ρ4,E.

Proof Let (a, b) ∈ ρ2,E and a∗ ∈ W(a). Then ae = f b for some e, f ∈ E. Moreover,
a∗f ∈ W(a) (Corollary 4.2(iii)), so (a∗f )a, a(a∗f ) ∈ E. Further, a∗f b = a∗ae ∈ E.
We have just shown that xa, ax, xb ∈ E for some x ∈ S. Thus ρ2,E ⊂ ρ4,E .

On the other hand, if xa, xb ∈ E for some x ∈ S, say xa = e, xb = f , then
(ef x)a(ef x) = ef (xa)ef x = ef x, so ef x ∈ W(a). Also, f xbf x = f (xb)f x = f x,
i.e., f x ∈ W(b). Hence ef x ∈ W(b) (Corollary 4.2(iii)). Thus W(a) ∩ W(b) �= ∅.
It follows that ay, by, ya, yb ∈ E for some y ∈ S. Dually, if ax, bx ∈ E for some
x ∈ S, then ay, by, ya, yb ∈ E for some y ∈ S. Thus ρ4,E = ρ1,E . In fact, we get
ρ4,E = ρ1,E = {(a, b) ∈ S × S : W(a) ∩ W(b) �= ∅}. Finally, if x ∈ W(a) ∩ W(b),
then a(xb) = (ax)b and xb, ax ∈ E. Thus ρ2,E = ρ4,E = ρ1,E . We may equally well
show that ρ3,E = ρ4,E = ρ1,E . Consequently, ρ1,E = ρ2,E = ρ3,E = ρ4,E . �

Lemma 4.4 Let S be an E-inversive E-semigroup. Then:

(i) ∀a ∈ S ∃ e, f ∈ ES [ea, af ∈ Reg(S)];
(ii) ∀a ∈ S ∃ r ∈ Reg(S) [W(a) ∩ W(r) �= ∅].

Proof Let a ∈ S,x ∈ W(a). Then (ax)a, a(xa) ∈ Reg(S), where ax, xa ∈ ES , so (i)
holds. Also, r = axa ∈ Reg(S) and xrx = x. Thus x ∈ W(a) ∩ W(r). �

Denote the above four relations from Proposition 4.3 by ρE . Recall that from the
proof of Proposition 4.3 follows that ρE = {(a, b) ∈ S × S : W(a) ∩ W(b) �= ∅}.

Theorem 4.5 In any E-inversive E-semigroup, σ = ρE . Moreover, kerσ = ESω.
Thus ESω � S.

Proof It is clear that ρE is an equivalence relation on S. Let (a, b) ∈ ρE, c ∈ S. Then
x ∈ W(a) ∩ W(b). Take any y ∈ W(c). In the light of Proposition 4.1,

xy ∈ W(a)W(c) ∩ W(b)W(c) ⊆ W(ca) ∩ W(cb).

Hence (ca, cb) ∈ ρE . Thus ρE is a left congruence on S. We may equally well show
that ρE is a right congruence on S. Also, if e, f ∈ ES , then ee, ef ∈ ES . Conse-
quently, (e, f ) ∈ ρE for all e, f ∈ ES . Lemma 4.4(ii) says that every ρE-class of S

contains a regular element. This implies that S/ρE is a group.
Furthermore,

x ∈ kerρE ⇔ ∃ e ∈ ES [(x, e) ∈ ρE] ⇔ ∃ e, f, g ∈ ES [f x = eg] ⇔ x ∈ ESω,

so kerσ = ESω. Thus ESω � S (Theorem 2.4). Finally, ρE ⊆ ρN for ever N � S.
Indeed, ES ⊆ N . Hence ESω ⊆ Nω = N . Thus ρE = ρESω ⊆ ρN (Theorem 2.4).
Consequently, σ = ρE . �
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Corollary 4.6 The least group congruence σ on an E-inversive E-semigroup is given
by

σ = {
(a, b) ∈ S × S : ∃ e ∈ ES [eae = ebe]}.

Remark 2 Note that the condition “∃ e ∈ ES [eae = ebe]” from the above corollary
is equivalent to the apparently weaker condition “∃ s ∈ S [sas = sbs]”.

From Result 1.1 and Theorem 4.5 we obtain the following theorem.

Theorem 4.7 In any idempotent-surjective E-semigroup, σ = ρE .

Let S be a semigroup. A congruence ρ on S is called idempotent pure if eρ ⊆ ES

for every e ∈ ES . Note that if S is idempotent-surjective, then ρ is idempotent pure
if and only if kerρ = ES . Let E be an equivalence relation on S induced by the
partition: {ES,S \ES}. Then E � (defined in [13], see p. 27) is the greatest idempotent
pure congruence on S. Put τ = E �. Then (see [13], p. 28)

τ = {
(a, b) ∈ S × S : ∀x, y ∈ S1 [xay ∈ ES ⇐⇒ xby ∈ ES]}.

Finally, if S is E-inversive, then τ ⊆ σ . Indeed, let (a, b) ∈ τ and b∗ ∈ W(b). Then
bb∗ ∈ ES, (ab∗, bb∗) ∈ τ . Hence ab∗ ∈ ES ⊆ kerσ . In the light of Proposition 3.4,
(a, b) ∈ σ , as exactly required. In the following corollary we give an alternative proof
of this fact.

Corollary 4.8 If ρ is a congruence on an idempotent-surjective E-semigroup S, then
ker(ρ ∨ σ) = (kerρ)ω. In particular, τ ⊆ σ .

Proof By Corollary 2.8, ker(ρ ∨ σ) = (ESρ)ω = (kerρ)ω. In particular,

ker(τ ∨ σ) = ESω ⊆ kerσ.

Hence τ ∨ σ = σ . Thus τ ⊆ σ . �

Let ρ be a congruence on a semigroup S. By the trace trρ of ρ we shall mean
the restriction of ρ to ES . Also, we say that ρ is idempotent-separating if trρ = 1ES

.
Edwards in [3] shows that if S is an eventually regular semigroup, then the relation
θ = {(ρ1, ρ2) ∈ C(S) × C(S) : trρ1 = trρ2} is a complete congruence on C(S) and
proves that every θ -class ρθ is a complete sublattice of C(S) with the maximum
element

μ(ρ) = {
(a, b) ∈ S × S : (aρ, bρ) ∈ μS/ρ

}

and the minimum element 1(ρ). Edwards generalizes some of these results for
the class of all idempotent-surjective semigroups [4]. In fact, if S is an arbitrary
idempotent-surjective semigroup, then every θ -class ρθ is the interval [1(ρ),μ(ρ)],
where μ is the maximum idempotent-separating congruence on S (see [4] for more
details).
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It is easily seen that the class of idempotent-surjective semigroups is closed under
homomorphic images [10]. Using the obvious terminology we show next that every
homomorphism of idempotent-surjective E-semigroups can be factored into a homo-
morphism preserving the maximal group homomorphic images and an idempotent-
separating homomorphism. Firstly, we have need the following lemma.

Lemma 4.9 Let ρ be a congruence on an idempotent-surjective E-semigroup S,
a, b ∈ S. Then (aρ, bρ) ∈ σ in S/ρ implies (a, b) ∈ σ if and only if ρ ⊆ σ .

Proof The proof is closely similar to the proof of Lemma III.5.9 [21]. �

Let S be an idempotent-surjective E-semigroup, ρ ∈ C(S). Clearly, (a, b) ∈ σ

implies (aρ, bρ) ∈ σ . In the light of Lemma 4.9, if ρ ⊆ σ , then (a, b) ∈ σ if and only
if (aρ, bρ) ∈ σ . Hence S/σ ∼= (S/ρ)/σ , that is, S and S/ρ have isomorphic maximal
group homomorphic images. In that case, we may say that ρ preserves the maximal
group homomorphic images. Since for any congruence ρ on S we have 1(ρ) ⊆ ρ,
then we obtain the following factorization:

S → S/1(ρ) → S/ρ ∼= (
S/1(ρ)

)/(
ρ/1(ρ)

)
.

The following proposition generalizes Proposition III.5.10 [21].

Proposition 4.10 Every homomorphism of idempotent-surjective E-semigroups can
be factored into a homomorphism preserving the maximal group homomorphic
images and an idempotent-separating homomorphism.

Proof Let ρ be any congruence on an idempotent-surjective E-semigroup S. Since
ρ ⊆ S × S, then 1(ρ) ⊆ 1(S × S). Clearly, σ ∈ [1(S × S),S × S] and so 1(ρ) ⊆ σ .
It follows that the canonical epimorphism of S onto S/1(ρ) preserves the maximal
group homomorphic images. Finally, an epimorphism φ : S/1(ρ) → S/ρ (defined by
the obvious way) is idempotent-separating, since trρ = tr(1(ρ)). The thesis of the
proposition is a consequence of the above factorization. �

5 Group congruences on an E-unitary semigroup

A nonempty subset A of a semigroup S is called left [right] unitary if as ∈ A [sa ∈ A]
implies s ∈ A for every a ∈ A, s ∈ S. Also, we say that A is unitary if it is both left
and right unitary. Finally, a semigroup S with ES �= ∅ is said to be E-unitary if ES is
unitary.

Proposition 5.1 Let S be a semigroup with ES �= ∅. The following conditions are
equivalent:

(i) S is E-unitary;
(ii) ES is left unitary;

(iii) ES is right unitary.
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Also, if S is an E-unitary E-inversive semigroup, then S is an E-semigroup.

Proof (i) =⇒ (ii). This is trivial.
(ii) =⇒ (iii). Let s ∈ S, e ∈ ES . If se = f ∈ ES , then f sef = f and so we get

(ef s)(ef s) = ef s, that is, ef s ∈ ES . Hence f s ∈ ES . Thus s ∈ ES .
(iii) =⇒ (i). We may equally well show like above that ES is left unitary. Thus

the condition (i) holds.
Finally, let S be an E-unitary E-inversive semigroup. If e, f ∈ ES,x ∈ W(ef ),

then xef ∈ ES . Hence xef, x ∈ ES . Thus ef ∈ ES . �

Corollary 5.2 Let S be an E-inversive semigroup. Then the following conditions are
equivalent:

(i) S is E-unitary;
(ii) kerσ = ES ;

(iii) τ = σ .

In particular, if S is an E-unitary E-inversive semigroup, then ES � S.

Proof (i) =⇒ (ii). In the light of Proposition 5.1 and Theorem 4.5, kerσ = ESω.
Also, S is left unitary, that is, ES is closed. Thus kerσ = ES .

(ii) =⇒ (iii). We have mentioned above that τ ⊆ σ . On the other hand, the main
assumption implies that σ is idempotent pure. Hence σ ⊆ τ . Thus τ = σ .

(iii) =⇒ (i). Let a ∈ S, e, f ∈ ES . If ea = f , then a ∈ kerσ = ker τ = ES , that is,
ES is left unitary. In the light of Proposition 5.1, S is E-unitary. �

Remark 3 Notice that if a semigroup is not E-inversive, then Corollary 5.2 is false.
Indeed, let FX

1 be the free monoid on the set X. Then FX
1 is E-unitary but τ is

induced by the partition {FX, {1}}. Thus τ is not a group congruence.

From Proposition 3.4 and Corollary 5.2 we obtain the following proposition.

Proposition 5.3 Let S be an E-unitary E-inversive semigroup. Then (a, b) ∈ σ if
and only if ab∗ ∈ ES for some (all) b∗ ∈ W(b).

Corollary 5.4 Let A be an E-inversive subsemigroup of an E-unitary E-inversive
semigroup S. Then σA = σS ∩ (A × A).

Proof Clearly, σA ⊂ σS ∩ (A × A). The converse follows from Proposition 5.3. �

In [14] Howie and Lallement showed that σ ∩ H = 1S , when S is an E-unitary
regular semigroup. We prove a corresponding result.

Theorem 5.5 Let S be an E-unitary E-inversive semigroup. Then σ ∩ H = 1S .
Moreover, if in addition ES forms a semilattice, then σ ∩ L = σ ∩ R = 1S .

Proof Let S be an E-unitary E-inversive semigroup. Suppose also that ES forms a
semilattice. Then ES is normal (Corollary 5.2), so if (a, b) ∈ σ ∩ L, then ax = e,
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bx = f ∈ ES for some x ∈ S (see Proposition 5.3) and sa = b, tb = a for some
s, t ∈ S. Hence se = sax = bx = f ∈ ES, tf = tbx = ax = e ∈ ES . Thus s, t ∈ ES

(since ES is unitary), so since idempotents commute and ta = tb,

a = tb = t (sa) = (ts)a = (st)a = s(ta) = s(tb) = sa = b.

We may equally well show that σ ∩ R = 1S .
If S is E-unitary, then ES is normal, too. Let (a, b) ∈ σ ∩ H. By the above proof

and its dual we conclude that a = eb = bf and b = ga = ah for some e, f, g,h ∈ ES .
In the light of Proposition 2 in [18], a = b. �

Remark 4 The assumption that S is an E-inversive semigroup is important. In-
deed, let S = (R0,+) be the semigroup of nonnegative real numbers with respect
to addition. Then S is an E-unitary commutative semigroup. Put M = N0 and
N = {0, x,2x,3x, . . .} (where x ∈ R \ Q). Then M,N � S but M ∩ N = {0} is not
normal, so S has no least group congruence.

The converse of Theorem 4.15 is not valid (in general). Indeed, let S = 〈x〉, where
x = (2 3 4 5 6 7 5) is a mapping of T ({1,2, . . . ,7}). Then S = M(4,3) is the mono-
genic semigroup with index 4 and period 3, say S = {x, x2, . . . , x6}. Also, the cyclic
subgroup Kx of S with the unit e is equal {x4, x5, x6 = e}. Since x3e = x7x2 =
x4x2 = e, then S is not E-unitary. On the other hand, σ is induced by the parti-
tion: {{x, x4}, {x2, x5}, {x3, e}} and H by the partition: {Kx, {x}, {x2}, {x3}}. Thus
σ ∩ H = 1S .

From Theorem 5.5 and Corollary 5.2 we have the following corollary.

Corollary 5.6 Let S be an E-unitary E-inversive semigroup. Then

σ ∩ H = τ ∩ H = 1S.

Moreover, if in addition ES forms a semilattice, then

σ ∩ L = τ ∩ L = σ ∩ R = τ ∩ R = 1S.

Recall that a congruence ρ on a semigroup S is E-unitary if S/ρ is E-unitary. In
[5] the author described the least E-unitary congruence κ on an idempotent-surjective
semigroup. Also, for every congruence ρ on an idempotent-surjective semigroup S

there exists the least E-unitary congruence κρ on S containing ρ [5].
Let S be an idempotent-surjective semigroup, N � S. Define the relation ρ̂N on

C(S) by the following rule: (ρ1, ρ2) ∈ ρ̂N ⇔ ρ1 ∨ ρN = ρ2 ∨ ρN (ρ1, ρ2 ∈ C(S)).
Then ρ̂N is a congruence on C(S), since φφ−1 = ρ̂N (see Theorem 2.11).

Also, we prove the following proposition.

Proposition 5.7 Let S be an idempotent-surjective semigroup, N �S,ρ ∈ C(S). Then
the elements ρ,κρ,ρ ∨ ρN are ρ̂N -equivalent and ρ ⊆ κρ ⊆ ρ ∨ ρN . Moreover, the
element ρ ∨ ρN is the largest in the ρ̂N -class ρρ̂N .
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Proof Since κρ is the least E-unitary congruence containing ρ and clearly ρ ∨ ρN

is E-unitary, then ρ ⊆ κρ ⊆ ρ ∨ ρN . Hence ρ ∨ ρN ⊆ κρ ∨ ρN ⊆ ρ ∨ ρN . Therefore
ρ ∨ρN = κρ ∨ρN . Thus (ρ, κρ) ∈ ρ̂N . Evidently, (ρ,ρ ∨ρN) ∈ ρ̂N . This implies the
first part of the proposition. The second part is clear. �

Remark 5 Recall from [22] that in the class of inverse semigroups not every σ̂ -class
has a least element.

Finally, it is easy to see that the least E-unitary congruence κ on an arbitrary
E-inversive semigroup exists, too. We show that H ∩σ ⊆ κ in any E-inversive semi-
group. Firstly, we have need the following useful proposition.

Proposition 5.8 Let B be the least seminormal subsemigroup of an E-inversive semi-
group S. If φ is an epimorphism of S onto an E-unitary semigroup T , then Bφ ⊆ ET .

Proof Put A = (ET )φ−1. Clearly, A is a full subsemigroup of S, so A is dense.
Further, if xy ∈ A, then ET � (xy)φ = xφ · yφ = yφ · xφ = (yx)φ (since ET is
reflexive), so yx ∈ A. Hence B ⊆ A. Thus Bφ ⊆ Aφ ⊆ ((ET )φ−1)φ ⊆ ET . �

We may now prove the following equivalent theorem to Theorem 5.5.

Theorem 5.9 In any E-inversive semigroup S, H ∩ σ ⊆ κ . If in addition ES forms a
semilattice, then L ∩ σ ⊆ κ and R ∩ σ ⊆ κ .

Proof Indeed, σ = ρB , where B is the least seminormal subsemigroup of S. Let
(a, b) ∈ H ∩ σ . Then clearly (aκ, bκ) ∈ HS/κ . Also, ax = yb for some a, b ∈ B .
In the light of Proposition 5.8, (aκ)(xκ) = (yκ)(bκ), where aκ, bκ ∈ ES/κ . Hence
(aκ, bκ) ∈ HS/κ ∩ σS/κ = 1S/κ (Theorem 5.5). Thus H ∩ σ ⊆ κ , as required. �

6 Group congruences on an eventually regular semigroup

Group congruences on eventually regular semigroups were described in [9] by
Hanumantha Rao and Lakshmi. In the paper [9] the following definition was in-
troduced: a subset A of S is called self-conjugate if xr(x)−1(xr(x))∗Ax ⊆ A and
xAxr(x)−1(xr(x))∗ ⊆ A for all x ∈ S, (xr(x))∗ ∈ V (xr(x)). We say that A is self-
conjugate if the former condition holds.

Lemma 6.1 Let N be a subsemigroup of an eventually regular semigroup S. Then N

is normal if and only if N is full, self-conjugate and closed.

Proof Let N be normal, x ∈ S, (xr(x))∗ ∈ V (xr(x)). Then N is full and closed. Also,
xr(x)(xr(x))∗N ⊆ EN ⊆ N , so xr(x)−1(xr(x))∗Nx ⊆ N , since N is reflexive.

Let N be full, self-conjugate and closed, xy ∈ N, (xr(x))∗ ∈ V (xr(x)). Then
xr(x)−1(xr(x))∗(xy)x ∈ xr(x)−1(xr(x))∗Nx ⊆ N , i.e., (xr(x)−1(xr(x))∗x)(yx) ∈ N ,
where xr(x)−1(xr(x))∗x ∈ ES ⊆ N . Hence yx ∈ Nω = N , so N is reflexive. Thus
N � S. �
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Lemma 6.2 Let S be an eventually regular semigroup, N � S. Then

ρN = {
(a, b) ∈ S × S : ∃ (

br(b)
)∗ ∈ V

(
br(b)

) [
abr(b)−1(br(b)

)∗ ∈ N
]}

.

Proof Let (a, b) ∈ ρN and (br(b))∗ ∈ V (br(b)). Then na = bm for some n,m ∈ N .
Hence nabr(b)−1(br(b))∗ = bmbr(b)−1(br(b))∗. Also, since br(b)−1(br(b))∗b ∈ ES ,
then mbr(b)−1(br(b))∗b ∈ NES ⊆ N , so nabr(b)−1(br(b))∗ = bmbr(b)−1(br(b))∗ ∈ N ,
since N is reflexive. Consequently, abr(b)−1(br(b))∗ ∈ Nω = N .

Conversely, let a, b ∈ S, (br(b))∗ ∈ V (br(b)) and abr(b)−1(br(b))∗ = n ∈ N . Then
a(br(b)−1(br(b))∗b) = nb, where br(b)−1(br(b))∗b ∈ ES ⊆ N . Hence (a, b) ∈ ρN . �

We have the following corollary (see Theorem 1 [9]).

Corollary 6.3 Let S be an eventually regular semigroup, N � S. Then

ρN = {
(a, b) ∈ S × S : ∃ (

br(b)
)∗ ∈ V

(
br(b)

) [
abr(b)−1(br(b)

)∗ ∈ N
]}

is a group congruence on S.

Finally, we give some remarks concerning group congruences on inverse semi-
groups. Firstly, consider the following result (see Exercise 7(ii) [11], p. 181).

Statement 6.4 An inverse subsemigroup N of an inverse semigroup S is normal if
and only if (Nx)ω = (xN)ω for every x ∈ S.

This result is false. Indeed, let S be a Clifford semigroup. Put N = Z(S), where
Z(S) = {s ∈ S : ∀a ∈ S [sa = as]}. Clearly, N is a full subsemigroup of S. Also,
N is self-conjugate. If the result is valid, then N is normal (since Nx = xN for
every x ∈ S). Hence ρN = S × S = ρS , when S = S0. It follows that every Clifford
semigroup is commutative, a contradiction. Consequently, we conclude that the above
result is false. Moreover, the assumptions of the result and the conditions: “N is full”
and “N is self-conjugate” do not imply that (Nx)ω = (xN)ω for every x ∈ S.

It is clear that every subgroup of a group is full and closed. We prove now a correct
version of the above statement.

Proposition 6.5 A full and closed inverse subsemigroup N of an inverse semigroup
S is normal if and only if (Nx)ω = (xN)ω for every x ∈ S.

Proof It is easy to see that if N is normal, then (Nx)ω = (xN)ω for every x ∈ S.
Conversely, let (Nx)ω = (xN)ω for every x ∈ S. It is easy to check that two

relations ρ1 = {(a, b) ∈ S × S : ab−1 ∈ N} and ρ2 = {(a, b) ∈ S × S : a−1b ∈ N} are
equivalences on S and that xρ1 = (Nx)ω, xρ2 = (xN)ω for every x ∈ S. Also, ρ1

is right compatible and ρ2 is left compatible. Indeed, we show first that the equality
(A(Bω))ω = (AB)ω holds for all A,B ⊆ S. Recall from [11] that

Hω = {
s ∈ S : ∃h ∈ H [h ≤ s]} (H ⊆ S),
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where ≤ is the so-called natural partial order on (an inverse semigroup) S (i.e.,
a ≤ b ⇐⇒ ∃ e ∈ ES [a = eb]). Notice that ≤ is compatible. Let x ∈ (A(Bω))ω.
Then ay ≤ x for some a ∈ A,y ∈ Bω (that is, b ≤ y for some b ∈ B). Hence
ab ≤ ay ≤ x. Thus x ∈ (AB)ω. We have just proved that (A(Bω))ω ⊂ (AB)ω.
The opposite inclusion is clear. Let now (a, b) ∈ ρ2, c ∈ S. Then (aN)ω = (bN)ω

and so (c(aN)ω)ω = (c(bN)ω)ω. Therefore (caN)ω = (cbN)ω. Thus ρ2 is a left
congruence on S. We may equally well show that ρ1 is a right congruence on S.
Since (Nx)ω = (xN)ω and xρ1 = (Nx)ω, xρ2 = (xN)ω for every x ∈ S, then
ρ1 = ρ2 is a congruence on S. Put for simplicity ρ = ρ1 = ρ2. Finally, if e ∈ ES ,
then ES ⊆ N = Nω = (eN)ω. Hence ρ is a group congruence on S and kerρ = N .
Thus N � S, as required. �

Corollary 6.6 A Clifford semigroup S is commutative if and only if Z(S) is closed
in S (i.e., if and only if for every s ∈ S there exists z ∈ Z(S) such that z ≤ s).

Lemma 6.7 Let S be a finite inverse semigroup with semilattice of idempotents E.
Then Eω = S if and only if S has zero.

Proof It is clear that if S has zero, then Eω = S. Conversely, let Eω = S. Since E is
finite, then E has the least idempotent with respect to the natural partial order, say 0.
Let s ∈ S = Eω. Then e = f s and e = sg for some e, f, g ∈ E (see Proposition V.2.2
in [11]). Hence 0 = 0s = s0. Thus S = S0, as required. �

By an analogy to groups we may introduce the concept of a σ -simple inverse
semigroup in the class of finite inverse semigroups without 0. From Lemma 6.7 fol-
lows that every finite inverse semigroup S without zero has at least one non-universal
group congruence, so S has exactly one non-universal group congruence if and only if
S/Eω is a simple group. Hence we may say that a finite inverse semigroup S without
zero is σ -simple if S/Eω is a simple group. This definition is equivalent to the fol-
lowing definition: S is σ -simple if S has exactly two normal subsemigroups, namely:
Eω and S.

Example 6.8 Let (E,≤) be a chain with the least element 0. Put S = E ∪ {a}, where
a /∈ E and aaa = a. Assume also that aa = 0. Hence a = aaa = 0a = a0. It is
easy to see that if a binary operation on S is associative, then ea = ae = a for every
e ∈ ES . For example, ea = e(0a) = (e0)a = 0a = a. Conversely, it is straightforward
to verify that such defined binary operation is associative. Thus S is a semigroup.
Since a = a−1, then S is an inverse semigroup. Finally, E = Eω, so S/E = {E, {a}}.

7 The hypercore of a semigroup

In [8] Hall and Munn studied the hypercore of a semigroup. In this section we
give some remarks on the hypercore of E-inversive E-semigroups and inverse semi-
groups.

Let S be a semigroup with ES �= ∅. Denote by ℘S the set of all subsemigroups A

of S such that A has no cancellative congruences except the universal congruence.
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Note that {e} ∈ ℘S for every e ∈ ES . Define the hypercore hyp(S) of S, as follows:
hyp(S) = 〈⋃{A : A ∈ ℘S}〉 [8]. Furthermore, by the core core(S) of an E-inversive
semigroup S we shall mean kerσ .

In [8] the authors showed the following two results.

Result 7.1 Let S be an E-inversive semigroup. Then:

(i) hyp(S) ∈ ℘S ;
(ii) hyp(S) is full and unitary;

(iii) ∀ρ ∈ G C(S) [hyp(S) ⊆ kerρ].

Result 7.2 In any E-inversive semigroup S, hyp(S) is the greatest E-inversive sub-
semigroup of S with no non-universal group congruence.

Let U be the least full unitary subsemigroup of an E-inversive semigroup S.
Clearly, U ⊆ hyp(S) ⊆ core(S).

Finally, we have the following proposition.

Proposition 7.3 Let S be an E-inversive E-semigroup such that 1S /∈ G C(S). Then
U = hyp(S) = core(S) = ESω. In particular, ESω has no non-universal group con-
gruence.

If in addition S is an inverse semigroup and ESω is finite, then ESω is an inverse
semigroup with zero. In particular, every finite inverse semigroup S (which is not a
group) contains exactly one normal inverse subsemigroup with zero.

Proof Let S be an E-inversive E-semigroup. Then core(S) = ESω (Theorem 4.5).
Since ES ⊆ U and U is closed, then ESω ⊆ U , so U = hyp(S) = core(S) = ESω.
In the light of Result 7.2, ESω has no non-universal group congruence.

If S is an inverse semigroup, then obviously U = hyp(S) = core(S) = ESω has
no non-universal group congruence. Finally, if ESω is finite, then ESω has zero
(Lemma 6.7). The rest of the proposition is now immediate. �

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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