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CONGRUENCES

FOR THE SECOND-ORDER CATALAN NUMBERS

LI-LU ZHAO, HAO PAN, AND ZHI-WEI SUN

(Communicated by Ken Ono)

Abstract. Let p be any odd prime. We mainly show that

p−1∑
k=1

2k

k

(3k
k

)
≡ 0 (mod p)

and
p−1∑
k=1

2k−1C
(2)
k ≡ (−1)(p−1)/2 − 1 (mod p),

where C
(2)
k =

(3k
k

)
/(2k + 1) is the kth Catalan number of order 2.

1. Introduction

The well-known Catalan numbers are those integers

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
(n = 0, 1, 2, . . .).

(As usual we regard
(

x
−k

)
as 0 for k = 1, 2, . . . .) There are many combinatorial

interpretations for these important numbers (see, e.g., [St, pp. 219-229]). With the
help of a sophisticated binomial identity, H. Pan and Z. W. Sun [PS] obtained some
congruences on sums of Catalan numbers; in particular, by [PS, (1.16) and (1.8)],
for any prime p > 3 we have

(1.0)

p−1∑
k=0

Ck ≡
3( p3 )− 1

2
(mod p) and

p−1∑
k=1

Ck

k
≡ 3

2

(
1−

(p
3

))
(mod p),

where the Legendre symbol (a3 ) ∈ {0,±1} satisfies the congruence a ≡ (a3 ) (mod 3).
Recently Z. W. Sun and R. Tauraso [ST1, ST2] obtained some further congruences
concerning sums involving Catalan numbers.

For m,n ∈ N = {0, 1, 2, . . .}, we define

C(m)
n =

1

mn+ 1

(
mn+ n

n

)
=

(
mn+ n

n

)
−m

(
mn+ n

n− 1

)
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and call it the nth Catalan number of order m. Clearly

C(1)
n = Cn and C(2)

n =
1

2n+ 1

(
3n

n

)
.

In contrast with (1.0), we have the following result involving the second-order Cata-
lan numbers.

Theorem 1.1. Let p be an odd prime. Then

(1.1)

p−1∑
k=1

2kC
(2)
k ≡ 2

(
(−1)(p−1)/2 − 1

)
(mod p)

and

(1.2)

p−1∑
k=1

2kC
(2)
k

k
≡ 4

(
1− (−1)(p−1)/2

)
(mod p).

Actually Theorem 1.1 follows from our next two theorems.

Theorem 1.2. Let p > 5 be a prime. Then

p−1∑
k=0

2k
(
3k

k

)
≡ 6(−1)(p−1)/2 − 1

5
(mod p),(1.3)

p−1∑
k=0

2k
(
3k + 1

k

)
≡ 4(−1)(p−1)/2 + 1

5
(mod p).(1.4)

Theorem 1.3. For any prime p we have

(1.5)

p−1∑
k=1

2k

k

(
3k

k

)
≡ 0 (mod p).

For any odd prime p we can also prove the following congruences:

5

p−1∑
k=1

2k
(
3k + 2

k

)
≡ (−1)(p−1)/2 − 1 (mod p),

p−1∑
k=1

2k−1

k

(
3k + 1

k

)
≡ (−1)(p−1)/2 − 1 (mod p),

p−1∑
k=1

2k−1

k

(
3k + 2

k

)
≡ 3

2

(
(−1)(p−1)/2 − 1

)
(mod p).

We omit their proofs, which are similar to those of Theorems 1.2 and 1.3.
With the help of Theorems 1.2 and 1.3, we can easily deduce Theorem 1.1.

Proof of Theorem 1.1 via Theorems 1.2 and 1.3. Clearly (1.1) and (1.2) hold for
p = 3, 5. Assume p > 5. By (1.3) and (1.4),

p−1∑
k=0

2k

2k + 1

(
3k

k

)
= 3

p−1∑
k=0

2k
(
3k

k

)
− 2

p−1∑
k=0

2k
(
3k + 1

k

)

≡ 2(−1)(p−1)/2 − 1 (mod p).
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This proves (1.1). For (1.2) it suffices to note that

p−1∑
k=1

2k

k(2k + 1)

(
3k

k

)
=

p−1∑
k=1

2k

k

(
3k

k

)
− 2

p−1∑
k=1

2k

2k + 1

(
3k

k

)
.

This concludes the proof. �

We are going to provide two lemmas in the next section. Theorems 1.2 and 1.3
will be proved in Sections 3 and 4 respectively.

2. Some lemmas

Lemma 2.1. For m,n ∈ N we have

2n
�m/3�∑
k=0

(−2)k
(

n

m− 3k

)(
3k −m+ n

k

)

= (−1)m
n∑

j=0

(
n

j

) m∑
k=0

(−2)k
(

n

m− k

)(
2j

k

)
.

(2.1)

Proof. Let P (x) = (2+ 2x− 4x3)n, and denote by [xk]P (x) the coefficient of xk in
the expansion of P (x). Then

2−n[xm]P (x) = [xm]((1 + x)− 2x3)n

=

�m/3�∑
k=0

(
n

k

)
(−2)k[xm−3k](1 + x)n−k

=

�m/3�∑
k=0

(−2)k
(
n

k

)(
n− k

m− 3k

)

=

�m/3�∑
k=0

(−2)k
(

n

m− 3k

)(
3k −m+ n

k

)
.

Since

P (x) = (1− x)n((2x+ 1)2 + 1)n =

n∑
j=0

(
n

j

)
(1− x)n(2x+ 1)2j ,

we also have

[xm]P (x) =

n∑
j=0

(
n

j

) m∑
k=0

2k
(
2j

k

)
(−1)m−k

(
n

m− k

)
.

Therefore (2.1) is valid.
For any prime p, if n, k ∈ N and s, t ∈ {0, 1, . . . , p − 1}, then we have the well-

known Lucas congruence (cf. [Gr] or [HS]),
(
pn+s
pk+t

)
≡

(
n
k

)(
s
t

)
(mod p). This will be

used in the proof of the following lemma. �

Lemma 2.2. Let p > 5 be a prime. Then we have

(2.2)

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(
2s

t

)
≡ 3(−1)(p−1)/2 + 2

5
(mod p)
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and

(2.3)

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(

2s

p+ t

)
≡ 3

10

(
1− (−1)(p−1)/2

)
(mod p).

Proof. Observe that

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(
2s

t

)

=

(p−1)/2∑
s=0

(−1)s
2s∑
t=0

2t
(
2s

t

)
+

p−1∑
s=(p+1)/2

(−1)s
p−1∑
t=0

2t
(
2s

t

)

=

(p−1)/2∑
s=0

(−1)s32s +

p−1∑
s=(p+1)/2

(−1)s
p−1∑
t=0

2t
(
2s

t

)

=

(p−1)/2∑
s=0

(−1)s32s +

p−1∑
s=(p+1)/2

(−1)s
( 2s∑

t=0

2t
(
2s

t

)
−

2s∑
t=p

2t
(
2s

t

))

=

p−1∑
s=0

(−1)s32s −
p−1∑

s=(p+1)/2

(−1)s
2s∑
t=p

2t
(
2s

t

)

=

p−1∑
s=0

(−9)s −
p−1∑

s=(p+1)/2

(−1)s
2s−p∑
r=0

2p+r

(
2s

p+ r

)
.

For s = (p+ 1)/2, . . . , p− 1, by Lucas’ congruence we have

2s−p∑
r=0

2r
(
p+ (2s− p)

p+ r

)
≡

2s−p∑
r=0

2r
(
2s− p

r

)
= 32s−p (mod p).

Thus, with the help of Fermat’s little theorem, we get

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(
2s

t

)
≡ 1− (−9)p

10
−

p−1∑
s=(p+1)/2

(−1)s
2

3
· 9s

≡ 1− 2

3
(−9)

p+1
2

1− (−9)(p−1)/2

10

≡ 3(−1)(p−1)/2 + 2

5
(mod p).

This proves (2.2).
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In view of Lucas’ congruence and Fermat’s little theorem, we also have

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(

2s

p+ t

)

≡
p−1∑

s=(p+1)/2

(−1)s
p−1∑
t=0

2t
(
2s− p

t

)
=

p−1∑
s=(p+1)/2

(−1)s32s−p

= 3−p(−9)(p+1)/2 1− (−9)(p−1)/2

10
= (−1)(p+1)/2 3

10

(
1 + (−1)(p+1)/23p−1

)

≡ 3

10

(
1− (−1)(p−1)/2

)
(mod p).

So (2.3) is also valid. We are done. �

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first present an auxiliary result.

Theorem 3.1. Let p > 5 be a prime, and let d, δ ∈ {0, 1}. Then

(−1)d+δ

2δ

∑
δp−d�3k�δp+p−1−d

2k
(
3k + d

k

)

≡ 4− δ

10
+

(3δ − 2)(5d− 3)

10
(−1)(p−1)/2 (mod p).

(3.1)

Proof. Applying (2.1) with n = p− 1 and m = δp+ p− 1− d, we get

2p−1

�(δp+p−1−d)/3�∑
k=0

(−2)k
(

p− 1

δp+ p− 1− d− 3k

)(
3k + d− δp

k

)

= (−1)δp+p−1−d

p−1∑
j=0

(
p− 1

j

) δp+p−1−d∑
k=0

(−2)k
(

p− 1

δp+ p− 1− d− k

)(
2j

k

)
.

Observe that

�(δp+p−1−d)/3�∑
k=0

(−2)k
(

p− 1

δp+ p− 1− d− 3k

)(
3k + d− δp

k

)

=
∑

δp−d�3k�δp+p−1−d

(−2)k
(

p− 1

p+ δp− 1− d− 3k

)(
3k + d− δp

k

)

≡
∑

δp−d�3k�δp+p−1−d

(−2)k(−1)δp+p−1−d−3k

(
3k + d

k

)

≡ (−1)d+δ
∑

δp−d�3k�δp+p−1−d

2k
(
3k + d

k

)
(mod p)
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and

(−1)δp+p−1−d

p−1∑
j=0

(
p− 1

j

) δp+p−1−d∑
k=0

(−2)k
(

p− 1

δp+ p− 1− d− k

)(
2j

k

)

≡
p−1∑
j=0

(−1)j
∑

δp−d�k<δp+p−d

2k
(
2j

k

)
=

p−1∑
j=0

(−1)j
p−1∑
t=0

2δp−d+t

(
2j

δp− d+ t

)

≡ 2δ−d

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(

2s

δp− d+ t

)
(mod p).

Therefore

∑
δp−d�3k�δp+p−1−d

2k
(
3k + d

k

)

≡ (−2)δ−d

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(

2s

δp− d+ t

)
(mod p).

Recall that d ∈ {0, 1}. We have

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(

2s

δp− d+ t

)

=

p−1∑
s=0

(−1)s
p−1−d∑
t=−d

2d+t

(
2s

δp+ t

)

=

p−1∑
s=0

(−1)s
( p−1∑

t=0

2d+t

(
2s

δp+ t

)
+ d

((
2s

δp− 1

)
− 2p

(
2s

δp+ p− 1

)))

= 2d
p−1∑
s=0

p−1∑
t=0

(−1)s2t
(

2s

δp+ t

)
+ d

p−1∑
s=0

(−1)s
((

2s

δp− 1

)
− 2p

(
2s

δp+ p− 1

))

and hence

(−1)d+δ
∑

δp−d�3k�δp+p−1−d

2k
(
3k + d

k

)
− 2δ

p−1∑
s=0

p−1∑
t=0

(−1)s2t
(

2s

δp+ t

)

≡ d2δ−d

p−1∑
s=0

(−1)s
((

2s

δp− 1

)
− 2

(
2s

δp+ p− 1

))

≡ d2δ−1(3δ − 2)

p−1∑
s=0

(−1)s
(

2s

p− 1

)
≡ d(3δ − 2)2δ−1(−1)(p−1)/2 (mod p).

Since

p−1∑
s=0

(−1)s
p−1∑
t=0

2t
(

2s

δp+ t

)
≡ 4− δ

10
+

3

10
(2− 3δ)(−1)(p−1)/2 (mod p)
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by Lemma 2.2, we finally get

(−1)d+δ

2δ

∑
δp−d�3k�δp+p−1−d

2k
(
3k + d

k

)

≡ 4− δ

10
+

3

10
(2− 3δ)(−1)(p−1)/2 +

d

2
(3δ − 2)(−1)(p−1)/2

≡ 4− δ

10
+

(3δ − 2)(5d− 3)

10
(−1)(p−1)/2 (mod p).

This proves (3.1). �

Proof of Theorem 1.2. Let d ∈ {0, 1}. If (2p− d)/3 � k � p− 1, then 2k+ d+ 1 �
2k + 2 � 2p � 3k + d and hence

(
3k + d

k

)
=

(3k + d) · · · (2k + d+ 1)

k!
≡ 0 (mod p).

Therefore

∑
2p−d�3k�3p−3

2k
(
3k + d

k

)
≡ 0 (mod p).

With the help of Theorem 3.1, we have

p−1∑
k=0

2k
(
3k + d

k

)
≡

∑
−d�3k�2p−1−d

2k
(
3k + d

k

)

≡
1∑

δ=0

∑
δp−d�3k�δp+p−1−d

2k
(
3k + d

k

)

≡
1∑

δ=0

(−1)d(−2)δ
(
4− δ

10
+

(3δ − 2)(5d− 3)

10
(−1)(p−1)/2

)

≡ (−1)d−1

5

(
1 + (10d− 6)(−1)(p−1)/2

)
(mod p).

This yields (1.3) and (1.4). We are done. �

4. Proof of Theorem 1.3

Proof of Theorem 1.3. Obviously (1.5) holds for p = 2, 3. Below we assume p > 3.
Let δ ∈ {0, 1}. Applying (2.1) with m = p+ δp and n = p we get

2p
p∑

k=0

(−2)k
(

p

p+ δp− 3k

)(
3k − δp

k

)

= (−1)δ+1

p∑
j=0

(
p

j

) p+δp∑
k=0

(−2)k
(

p

p+ δp− k

)(
2j

k

)
.

(4.1)
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Observe that

p∑
k=0

(−2)k
(

p

p+ δp− 3k

)(
3k − δp

k

)

=
∑

δp�3k�p+δp−1

(−2)k
(

p

3k − δp

)(
3k − δp

k

)

= 1− δ +
∑

δp<3k<p+δp

(−2)k
(

p

3k − δp

)(
3k − δp

k

)
.

For j = 1, . . . , p− 1 clearly

(
p

j

)
=

p

j

(
p− 1

j − 1

)
≡ p

(−1)j−1

j
(mod p2).

Thus

∑
δp<3k<p+δp

(−2)k
(

p

3k − δp

)(
3k − δp

k

)

≡
∑

δp<3k<p+δp

(−2)kp
(−1)3k−δp−1

3k − δp

(
3k − δp

k

)

≡ (−1)δ+1
∑

δp<3k<p+δp

(−2)kp
(−1)k

3k

(
(3k − δp) + δp

k

)

(by Lucas’ congruence)

≡ (−1)δ+1 p

3

∑
δp<3k<p+δp

2k

k

(
3k

k

)
(mod p2).

Notice that

p∑
j=0

(
p

j

) p+δp∑
k=0

(−2)k
(

p

p+ δp− k

)(
2j

k

)

=
∑

δp�2j�2p

(
p

j

) p+δp∑
k=δp

(−2)k
(

p

k − δp

)(
2j

k

)

=
∑

δp<2j<2p

(
p

j

) p+δp∑
k=δp

(−2)k
(

p

k − δp

)(
2j

k

)

+
∑

2j∈{δp,2p}

(
p

j

) p+δp∑
k=δp

(−2)k
(

p

k − δp

)(
2j

k

)
.
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Clearly

∑
δp<2j<2p

(
p

j

) p+δp∑
k=δp

(−2)k
(

p

k − δp

)(
2j

k

)

≡
∑

δp<2j<2p

(
p

j

)(
(−2)δp

(
p

0

)(
2j

δp

)
+ (−2)p+δp

(
p

p

)(
2j

p+ δp

))

≡
∑

δp<2j<2p

(
p

j

)
(−2)δp

(
2j − δp

0

)

+ (1− δ)
∑

p<2j<2p

(
p

j

)
(−2)p+δp

(
2j − p

p− p

)
(by Lucas’ congruence)

≡ (−2)δ21−δ(2p−1 − 1) + (1− δ)(−2)1+δ(2p−1 − 1)

≡ (−1)δδ(2p − 2) = −δ(2p − 2) (mod p2).

(Note that δ ∈ {0, 1} and 2
∑

p/2<j<p

(
p
j

)
=

∑p−1
j=1

(
p
j

)
= 2p − 2.) Also,

∑
2j=δp

(
p

j

) p+δp∑
k=δp

(−2)k
(

p

k − δp

)(
2j

k

)
= (1− δ)

p∑
k=0

(−2)k
(
p

k

)(
0

k

)
= 1− δ

and

∑
2j=2p

(
p

j

) p+δp∑
k=δp

(−2)k
(

p

k − δp

)(
2j

k

)

≡
∑

k∈{δp,p+δp}
(−2)k

(
p

k − δp

)(
2p

k

)

≡ (−2)δp
(
2

δ

)
+ (−2)p+δp

(
2

1 + δ

)
= 4δp − 2p+1 (mod p2).

(Recall that 1
2

(
2p
p

)
=

(
2p−1
p−1

)
≡ 1 (mod p3) by the Wolstenholme congruence (cf.

[Gr] or [HT]).)
Combining the above with (4.1), we have

2p
(
1− δ + (−1)δ+1 p

3

∑
δp<3k<p+δp

2k

k

(
3k

k

))

≡ (−1)δ+1
(
δ(2− 2p) + 1− δ + 4δp − 2p+1

)
(mod p2).

Setting δ = 0 and δ = 1 respectively, we obtain

2p − 2p
p

3

∑
0<3k<p

2k

k

(
3k

k

)
≡ 2p+1 − 2 (mod p2)

and

2p
p

3

∑
p<3k<2p

2k

k

(
3k

k

)
≡ 2− 2p + 4p − 2p+1 (mod p2).

It follows that

2

3
p

∑
0<3k<2p

2k

k

(
3k

k

)
≡ 4p − 4 · 2p + 4 = (2p − 2)2 ≡ 0 (mod p2).
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If 2p � 3k < 3p, then (
3k

k

)
=

3k · · · (2k + 1)

k!
≡ 0 (mod p).

Therefore
p−1∑
k=1

2k

k

(
3k

k

)
=

∑
0<3k<2p

2k

k

(
3k

k

)
+

∑
2p�3k<3p

2k

k

(
3k

k

)
≡ 0 (mod p).

This completes the proof of Theorem 1.3. �
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