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CONGRUENCES ON REGULAR SEMIGROUPS
FRANCIS PASTIJN AND MARIO PETRICH

ABSTRACT. Let S be a regular semigroup and let p be a congruence rela-
tion on S. The kernel of p, in notation kerp, is the union of the idempotent
p-classes. The trace of p, in notation trp, is the restriction of p to the set
of idempotents of S. The pair (kerp,trp) is said to be the congruence pair
associated with p. Congruence pairs can be characterized abstractly, and it
turns out that a congruence is uniquely determined by its associated congru-
ence pair. The triple ((pV £■)/£, kerp, (pV %)/%) is said to be the congruence
triple associated with p. Congruence triples can be characterized abstractly
and again a congruence relation is uniquely determined by its associated triple.

The consideration of the parameters which appear in the above-mentioned
representations of congruence relations gives insight into the structure of the
congruence lattice of S. For congruence relations p and 8, put pT¡0 [pTr8,
pT8] if and only if p V £ = 9 V L [p V R = 8 V £,trp = tröj. Then Th Tr and
T are complete congruences on the congruence lattice of S and T = Ti D Tr.

Introduction and summary. After it was realized by Wagner that a congru-
ence on an inverse semigroup S is uniquely determined by its idempotent classes,
Preston provided an abstract characterization of such a family of subsets of S called
the kernel normal system (see [2, Chapter 10]). This approach was the only usable
means for handling congruences on inverse semigroups for two decades. A new ap-
proach to the problem of describing congruences on inverse semigroups was sparked
by the work of Scheiblich [13] who described congruences in terms of kernels and
traces. A systematic exposition of the achievements of this approach can be found
in [10, Chapter III].

It was recognized by Feigenbaum [3] that every congruence p on a regular semi-
group S is uniquely determined by its kernel, kerp, equal to elements p-equivalent
to idempotents, and its trace, trp, equal to the restriction of p to the set E(S)
of idempotents of S. In the case of an inverse semigroup S, kerp and trp, as
well as their mutual relationship, can be described abstractly by means of simple
conditions on a subset of S and an equivalence on E(S) (see [10, Chapter III]).
Following in the footsteps of Scheiblich, for orthordox and arbitrary regular semi-
groups, Feigenbaum [3] and Trotter [14] adopted the following approach: trp is
characterized abstractly and to each such trp all matching kernels are described.
This unbalances the symmetry of the kernel-trace approach by giving preference to
the trace. Hence a balanced view relative to the kernel and the trace is evidently
called for.

The unqualified success of the kernel-trace approach for inverse semigroups, in-
cluding its diverse ramifications, gave a certain hope that this may also turn out
to be the case for regular semigroups. Judging by the complexity of regular semi-
groups and the attempts made for both orthodox and general regular semigroups,
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the handling of congruences on regular semigroups must of necessity be more com-
plicated, and thus less explicit, than on inverse semigroups. With this pessimistic
forecast, we are actually in for a few pleasant surprises.

After taking care of some preparations in §1, in §2 a number of new concepts
are introduced. These concepts amount to abstract characterizations of the kernel
and the trace of a congruence on a regular semigroup and are used for defining a
congruence pair. The climax of this section represents a description of congruences
in terms of congruence pairs. Contrary to reasonable expectation that the axioms
for a congruence pair ought to be complex, they are actually quite concise but not
what one might call explicit.

Certain results in §2 yield expressions for the least and the greatest congruences
with a given trace or kernel. Unlike in inverse semigroups, these do not seem to
admit simple expressions in closed form. These deliberations lead in §3 to the
concept of a min network whose basis, it turns out, is of lattice-theoretical nature.

In §4, the left and the right traces of a congruence are introduced as well as their
abstract counterparts, the left and the right normal equivalences. Their mutual
relationship and their connection with certain congruences on the congruence lattice
are then explored in some detail. Classes of these congruences are intervals of the
congruence lattice; their minimum and maximum elements are found explicitly. It
is proved that the mapping p —> tr p is a complete homomorphism for several classes
of regular semigroups, but the general case remains open.

Various properties of the intervals mentioned above are explored in §5. Mod-
ularity of some of these intervals and commutativity of certain congruences are
established.

In the final §6, congruence triples are introduced which are then used to describe
an arbitrary congruence. These triples make use of the normal equivalences on the
sets S/C and S/P. as well as a normal subset of S, which is an abstraction of
the kernel. These triples represent a close analogue of admissible triples which are
used for describing congruences on a Rees matrix semigroup. For arbitrary regular
semigroups they seem the natural setting for an elaborate study of congruences.
They admit several natural ramifications thereby providing for unexpected diversity
of congruences associated with a given congruence.

1. Preliminaries. In the following we shall use the notation and terminology
of [2 and 5]. This will be supplemented with the following.

Throughout the entire paper, S stands for an arbitrary regular semigroup. If
aE S, then V(a) denotes the set of inverses of a in S. The set of idempotents of S
is denoted by E(S). On E(S) we shall consider the relations <i, <r and < given
by, for ejEE(S),

e<i / o e/ = e, ■
e <r f ■& fe = e,
e < f ■& ef = e = fe.

The relation <=<i fl <r is the natural partial order on E(S). For e, / 6 E(S),

S(e,f) = fV(ef)e
is the sandwich set of e and /.
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1.1. RESULT [8, THEOREM 1.1, PROPOSITION 2.5]. If e and f are idem-
potents of S, then

S(e, f) = {hE E(S) \fh = h = he and ef = ehf}
= {hE E(S) \fh = h = he andhE V(ef)}.

If p is a congruence on S and h E S(e,f), then hp E S(ep,fp).

The nice behaviour of idempotents in connection with homomorphisms is further
illustrated by the following.

1.2. RESULT [6] (see also [5, LEMMA II.2.7]). If p is a congruence on S,
then ap E S/p is an idempotent if and only if ape for some e E E(S).

The following simple statements will be applied without further mention: for
ejEE(S),

e<i f =>• feE E(S) and eife<f,
e<r f => ef E E(S) and e P. ef < f,

eLf^S(e,f) = {f},
ePf=>S(e,f) = {e}.

For a set X, Eq X is the lattice of equivalence relations on X ordered by inclusion.
Further, Con S is the lattice of congruences on S.   We remark that Con 5 is a
complete sublattice of EqS. The least element of both EqS and Con S is e, the
equality on S, and the greatest element of both EqS and Con S is w, the universal
relation. We shall sometimes use the notation Es,us to avoid confusion.

Let r be a relation on S. The congruence generated by r is denoted by r*: it is
the intersection of all congruences on S which contain r. If 7 is an equivalence on
S, then 70 is the greatest congruence on S contained in 7.

The remaining results in this section are true for arbitrary semigroups.

1.3. RESULT [2, LEMMA 10.3].   If'7 is an equivalence on S, then for a,b E S,
a 70 b •£>• (xay) 7 (xby)     for all x,y E S1.

1.4. RESULT.  If 7 is a family of relations on S, then

V>-(U')'-
te?

If J is a family of equivalences on S, then

rv=(rv)°.
PROOF. The straightforward argument is omitted.
Let K Ç S. A congruence p on S saturates K if a E K implies ap Ç K. The

greatest congruence on S which saturates K is denoted by itk .

1.5. RESULT.   LetKÇS.  Then for a,b E S, a ir Kb if and only if
xay E K & xby E K        (x,y E S1).

Define a relation 6k on S by
a9Kb<$a,bEK or a,b E S\K.

Then 6KEEqS and ttk = 0K.
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PROOF. This follows routinely from Result 1.3.
Let X be a set and a,ß E EqX be such that a Ç ß. We define a relation ß/a

on X/a by
(aa)(ß/a)(ba)&aßb       (a,bEX).

Then ß/a E Eq(X/a).
The following results deal with commuting equivalences.

1.6. Result [6, Proposition III.3.8]. If X,p e ConS are such that
A Ç £ and p Ç Z, then Xp = pX.

1.7. RESULT. Let X be a set and a, ß, 7 E EqX be such that a Ç ß and o Ç 7.
Then

(/?/<*) fr/a) = d/a)(ß/a) o ß1 = 7/?.
If this is the case, then ß V 7 = ^7.

PROOF. The equivalence of the above statements follows easily from the defini-
tions. The final assertion is proved in [2, Lemma 1.4].

2. Congruence pairs. We begin our study of congruences on a regular semi-
group by the consideration of the kernel and the trace of a congruence and their
mutual relationship.

2.1. DEFINITION. For a congruence p on S,
(i) tr p = p|e(s) is the trace of p,
(ii) kerp = {s E S|spe for some e E E(S)} is the kernel of p.
Note that in view of Result 1.2 we have

kerp= {s E S\sps2}
for a congruence p.

We may thus associate to each congruence p on a regular semigroup the ordered
pair (kerp,trp). Our first task is to give an abstract characterization of such
a pair and to prove that the pair (ker p, tr p) uniquely determines p. An abstract
characterization of the trace of a congruence was given in [14]. We adopt a different
approach here. To this end, we first introduce the following basic concepts.

2.2. DEFINITION. An equivalence r on E(S) is normal if r = tr r*. A subset K
of S is normal if K = ker7r¿f.

2.3. LEMMA. An equivalence r on E(S) is normal if and only if t is the trace
of a congruence on S. If this is the case, then r* is the least congruence on S with
trace t.

PROOF. If p is a congruence on S with t = tr p, then r Ç p; thus t* Ç p, whence
trr* Ç trp = r. Since r Ç trr* trivially holds, it follows that trr* = r.

2.4. LEMMA. A subset K of S is normal if and only if K is the kernel of a
congruence on S. If this is the case, then itk is the greatest congruence on S with
kernel K.

PROOF. If p is a congruence on S with kerp = K, then p saturates K. Since
■ïïk is the greatest congruence saturating K we have p Ç itK, whence K = kerp Ç
ker7TK • If k E ker7iK, then kitK e for some e E E(S). Since e E K we also have
k E K since K is a union of -kk-classes. Thus K = keritic

The following simple results show that both the kernel and the trace are com-
patible with intersections.
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2.5. LEMMA.  Let I be a nonempty family of congruences on S. Then
(i)ker(n:0 = fVkerp,
(ii)tr(|V)=fWtrp.
PROOF. For any s G S, we have

s E ker (f| fj &s (f| j) s2 <*■ sps2    for all p G J

«• s G P kerp,
P&7

which proves part (i). Furthermore, for any e, / G Ü^S), we have

etr(f)j) /^e(f)j) /<»ep/   for all p G 7

&e\ p| trp    /,

establishing part (ii).
The next lemma will be used many times.

2.6. LEMMA.  Let p be a congruence on S with t = trp.
(i) (ep) Z (fp) in S/p o e (tZt) f in S (e, / G E(S)).
(ii) (ap) Z (bp) in S/p o a (ZtZtZ) b in S (a,bES).
(iii) pZp = ZtZtZ = p V Z,
(iv) tZtZt = tZt = (pV Z)\Eis) =tV (Z\e(S))-
(v) r = tr(ZrZtZ n ZtZtZ)0 = tLt n tZt.
PROOF, (i) Let e,f E E(S) be such that (ep)Z(fp) in S/p. If h E S(e,f),

then ftp G S(ep,fp) = {ep} by Result 1.1, so eph. Further hf E E(Rh) and
thus (hf)p = (hp)(fp) = (ep)(fp) = fp since (ep)Z(fp). Consequently (hf)pf.
Therefore eThZ(hf)rf holds in S.

If conversely e r g Z k t f in S for some e, g,k,fE E(S), then in S/p,

ep = (0p) £ (fcp) = fp.
(ii) If (ap) je (bp) in S/p for a, 6 G S, then for a' G V(a), 6' G V(b), we have

a Z(aa') = e G £(S),        b Z (bb') = f E E(S)
and

(ap) Z (ep) Z (fp) Z (bp)   in S/p.
Using part (i) we see that e (tZt) f, whence a (ZtZtZ) b.

If conversely aZergZhr f Zb in S for a,b G S and e, f,g,h E E(S), then in
S/p

(op) * (ep) = (gp) Z(hp) = (fp) Z (bp),
and thus (ap) Z (bp).

(iii) If aZrZrZb, then by part (ii) we have (ap)Z(bp). Let e G E(Ra), f E
E(Rb) and /i G S(e, /). From Result 1.1 we have /ip G S(ep,fp) = {ep} and thus
eph, whence ep(eh). If a' G V(a) with aa' = e, then (eha)a' = eh since /ie = /i.
Therefore (eha) Z (eh), where (eh)apea = a. From Result 1.1 and since Z is a left
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congruence, we also have (eh) Z (ehf) = (ef) Z (eb), where 6 = (fb) p (eb). We have
thus proved that ap(eha) Z (eh) Z (eb) pb. We conclude that ZtZtZ Ç pZp.

Conversely, if apcZdpb, then ap = (cp) Z (dp) = (bp), and thus by part (ii),
aZrZrZb.

It follows from part (ii) that pZp is an equivalence relation and thus clearly
pZp = p\l Z inEqS.

(iv) By part (i), we have tZt E EqE(S), so that by transitivity

tZt = (tZt)2 = tZt2Zt = tZtZt.
It is easy to see that tZt = r V (£|e(s)) in Eq7£(S), whereas tZt = (p V Z)\e(s)
is an immediate consequence of parts (i), (ii) and (iii).

(v) Using part (iii) and its dual we have

p Ç (p v Z) n (p v Z) = ítítí n ZtZtZ,
hence

P ç (ZtZtZ n ZtZtZ)0.
Therefore

r = trp Ç tx(£,TÍTÍ n ZtZtZ)0
= tx((ÍTÍTÍ)° n (ZtZtZ)0)    (by Result 1.4)
= ^(ZtZtZ)0 n tv(ZrZTZ)0    (by Lemma 2.5)
C(£r<Cr£)|a(s).n(ÄTÄT.£)|Ä^)
= r/Zr D r£r    (by (iii) and (iv)).

If ergZhrf for some e,f,g,h E E(S), then ep = (gp)Z(hp) = fp, that
is, (ep) £ (/p)- From this and its dual we see that e(rZr D tZt) f implies that
(ep) M (fp), whence ep = fp. We have proved that tZt n tí!t Ç r. Therefore, the
desired equalities hold.

We record two more equivalent characterizations of the equivalence tZt.

2.7. LEMMA. Let r be the trace of a congruence on S. Then for e,f E E(S),
the following are equivalent:

(i) erZrf,
(ii) D ¿ (er)(fr) n E(S) ÇfT,Dji (/r)(cr) n E(S) C er,
(iii)S(e,/)Çer, S(f,e) Ç fr.
PROOF. This is immediate from Lemma 2.6 and [14].

2.8. LEMMA. An equivalence r on E(S) is normal if and only if tZtZt =
tZt, tZtZt = tZt and t = tr(£r£r£ n ZtZtZ)0. If this is the case, then
(ZtZtZ fl ZtZtZ)0 is the greatest congruence on S with trace t.

PROOF. If t is a normal equivalence, then r = trp for some congruence p on S
by Lemma 2.3. By Lemma 2.6(iv), (v), r satisfies the required conditions.

If t E Eq E(S) with tZtZt = tZt, then
(ZtZtZ)2 = ZtZtZ2tZtZ = ZtZtZtZtZ = ZtZtZ

so that ZtZtZ is transitive. It is easy to see that ZtZtZ is in fact an equivalence. If
also tZtZt = tZt is satisfied, then by duality, ZtZtZ is an equivalence. Therefore
ZtZtZ fl ZtZtZ is an equivalence so that it indeed makes sense to consider the
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congruence (ZtZtZ D ZtZtZ)0. If r is the trace of this congruence, then r is
normal by Lemma 2.3.

If p is any congruence with r = trp, then by Lemma 2.6(iii),

P Ç (p v Z) n (p v Z) = ZtZtZ n jeTÄTJe,
and thus

P ç (£t£tí! n ZtZtZ)0.
2.9. LEMMA.  A subset K of S is normal if and only if

K = ker{(x,x2)\xEK}*.

If this is the case, then {(x,x2)|x G K}* is the least congruence on S with kernel
K.

PROOF. If K is a normal subset of S, then K = kerp for some congruence p on
S by Lemma 2.4. Clearly K Ç ker{(x,x2)|x G Tí}*. Further, {(x,x2)|x E K} C p,
and thus {(x, x2)|x G K}* Ç p, whence

ker{(x,x2)|xG7f}* Çkerp = 7i,

and the equality prevails.
If conversely K = ker{(x, x2)|x G K}*, then K is normal by Lemma 2.4.

2.10. LEMMA. For any congruence p on S, K = kerp, r = trp and a,b E S
we have

apb<*a (ZtZtZ n ZtZtZ) b,        ab' E K for some [all] b' G V(b).
PROOF. Necessity. If apb, then Lemma 2.6(ii) and its dual give a(ZrZrZ)b

and a (ZtZtZ) b. Further, if b' E V(b), then ab' pW, so ab' E K.
Sufficiency. Let a (ZtZtZ) b, a, (ZtZtZ) b and ab' E K for some b' E V(b).

Then by Lemma 2.6(h) and its dual, we have (ap) X (bp). Hence b'b E L¡> fl Ry
implies that (b'b)p E Lap D Rb>p so that by [2, Theorem 2.17],

(ab')p = (ap)(b'p) G LVp n Rap = Lh.p D Rbp.

Now ab' E K and the above show that (ab')p is an idempotent in the #-class
Lb'pDRbp. Obviously also (bb')p is an idempotent in that ¿/-class, and thus ab' pbb'.
Therefore,

apab'b    (since (ap) Z(b'b)p)
pbb'b   (since (ab')p(bb'))
= b.

2.11. COROLLARY [3]. A congruence on S is uniquely determined by its kernel
and its trace.

Our next basic concept is the following.
2.12. DEFINITION. A pair (K,t) is a congruence pair for S if
(i) K is a normal subset of S,
(ii) r is a normal equivalence on E(S),
(iii) K Ç ker(ZrZTZ D ZtZtZ)0
(iv) t Ç tritK-
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In such a case we define

P(k,t) = *k n (ZtZtZ n ZtZtZ)0.
Note that

P(K,r) = (ZtZtZ n 0K 0 £t£t£)°
in view of Results 1.4 and 1.5.

We are finally ready for the characterization of congruences on a regular semi-
group in terms of congruence pairs.

2.13. THEOREM. If (K,t) is a congruence pair for S, then P(k,t) is the
unique congruence p on S for which kerp = K and trp = r. Conversely, if p is a
congruence on S, then (kerp, trp) is a congruence pair for S and p = P(kerp.trp)-

PROOF. If (K, r) is a congruence pair for S, then

kexp{K,T) = ker (ttk D (ZtZtZ n ZtZtZ)0)
= ker -nK n ke^ZrZrZ n ZtZtZ)0    (by Lemma 2.5)
= K n ker(ZrZrZ n ZtZtZ)0    (since K is normal)
= 7f    (since K Ç ke^ZrZrZ n ¿r^rS)0),

and
trp(Jf.T) = tr(7TK n (ZtZtZ D ÄrJerÄ)0)

= trTT/f n tr(ZrZTZ D £t£t£)°    (by Lemma 2.5)
= tr7TK fl t    (by Lemma 2.8)

= r    (since r Ç tr^x).

The uniqueness of P(k,t) follows from Corollary 2.11.
If p is a congruence, K = ker p, r = tr p, then 7Í is a normal subset of S by

Lemma 2.4 and r is a normal equivalence on E(S) by Lemma 2.3. Further, p Ç t,k
by Lemma 2.4, so r = trp Ç tr7rK. Also p Ç (ZtZtZ n Är^r^)0 by Lemma 2.8,
and thus Tf = kerp Ç ker(/2r£r£ fl ZtZtZ)0. Hence (7Í, r) is a congruence pair
and by the above kerp = kerp(x,T)! trp = trp>K,T)- From Corollary 2.11 we thus
havep = p(KiT).

Note that the condition t Ç tr ttk can be written more explicitly as follows:

erf,    x^ES1,    xey E K => xfy E K.

A simpler expression for P(k» is provided by the following result.

2.14. COROLLARY.  If (K, r) is a congruence pair for S, then for any a,bE S,

op(/f,r) b & a (ZtZtZ fl ZtZtZ) b,        ab' E K for some [all] b' EV(b).
PROOF. This follows directly from Lemma 2.10 and Theorem 2.13.
We now record an obvious consequence of the above deliberations.

2.15. PROPOSITION. Let Cp S be the poset of all congruence pairs for S under
the partial order given by

(K,t) < (K',t') &KÇK', tC t'.
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Then the mappings

p -> (kerp,trp),        (K,t) -* p(K,T)

are mutually inverse isomorphisms of Con S and CpS.

3. The min network. In this section we show how our consideration of kernels
and traces of congruences on S naturally gives rise to certain sublattices of Con S.

3.1. NOTATION. If p is a congruence on S, kerp = K, trp = t, then we put

Pt = t*,        pT = (ZtZtZ n ZtZtZ)0,
PK = {(X, X2)|X G K}*, pK = nK.

We summarize the main points of Lemmas 2.3, 2.4, 2.8 and 2.9 in

3.2. THEOREM.   Letp be a congruence onS. Thenpr,pT \pk,PK) o,re, respec-
tively, the least and the greatest congruences with trace [kernel\ equal to tr p [ker p].

The same results concerning pr and pK were given in [9, §3], which also contains
another characterization of pT and pK-

3.3. COROLLARY [9, THEOREM 3.2].  If p and 9 are congruences on S, then

tr pCtxd ^ ptÇOt,    pTçeT,

ker p Ç ker 0 => pk Q Ok ■

Recall that a transformation x —> x* on a poset P is a closure operation if for all
x,yEP,

(i) x < y implies x* < y*,
(ii) x* < x,
(iii) (x*)* = x*.

The following result concerns closure operations on lattices.

3.4. LEMMA.   Let L be a lattice and x —> x* and x —► x+ be closure operations
on L such that

x*=y*,    x+=y+=>x = y        (x,y E L).

Then for all x E L,

x* Ax+ = (x*)+ V(x+)*    and   x = x*Vx+.

PROOF.   Since x*  < x, we have (x*)+ < x+.   Also (x+)* < x+ and thus
(x*)+ V (x+)* < x+. Similarly, (x*)+ V (x+)* < x* and hence

(x')+V(x+)*<x*Ax+.

It follows that
(x*)+ < (x*)+ V (x+)* < x* A x+ < x*.

Since + is a closure operation, we obtain

(x*)+ = ((x*)+ V (x+)*)+ = (x* A x+)+.

Also,
(x+)* < (x*)+ V (x+)* < x* A x+ < x+
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and since * is a closure operation,

(»+)• = ((x*) + V (*+)•)• = (x* A x+)*.

Hence (x*)+ V (x+)* = x* A x+.
For x G L, we have x+ < x+ Vx* < x and since we deal with a closure operation,

x+ = (x+ V x*)+. Similarly, we get x* = (x+ V x*)*. Thus x = x+ V x*.
We are now able to give a new proof of [9, Theorems 3.3 and 3.4].

3.5.   THEOREM.   If p is a congruence on S, then

pt^pk = ptkV pkt,   p = ptV pk = pt npK.

PROOF. From Corollary 3.3 it easily follows that p —» pr and p —> pk are closure
operations on the lattice Con S. If p, 6 E Con S, then

pr = Ot, Pk = Ok o trp = trö, kerp = kexO
■& p = 0    (by Corollary 2.11).

We can thus apply Lemma 3.4 to obtain the results involving pr and pk-  That
p = pT C\pK follows from Theorem 2.13.

In view of the foregoing theorem we may, as in [9], consider the sublattice of
Con S which consists of the congruences p,Pt,Pk,Ptk,Pkt,_   This lattice is
called the min network corresponding to p.

4. The left and the right traces. We shall introduce here some relations
on the lattice ConS. They will turn out to be complete congruences induced by
certain complete homomorphisms of ConS into Eqi?(S).

4.1. DEFINITION. For a congruence p on S, ltrp = tr(pV Z)° is the left trace of
p, rtr p = tr(p V Z)° is the right trace of p.

An abstract characterization of left and right traces will be given by means of
the following concepts.

4.2. DEFINITION. An equivalence r on E(S) is
(i) left normal if tZtZt = tZt and r = tr(£r£r/J)°,
(ii) right normal if tZtZt = tZt and r = tx(ZTZrZ)0.
The next result will be used several times.

4.3. LEMMA.   Let p be a congruence on S, r = trp, tj = ltrp and rr = rtr p.
(i) ZtZtZ = p V £ = (p V Z)°V Z = ZttZttZ.
(ii) tZt = ttZtt.
(iii) Tr = tx(ZrZTZ)0 = tx(ZTrZrrZ)° = xtx(ZTZrZ)0 = xtx(ZrrZrrZ)°.
(iv) T = T; fl Tr.

PROOF, (i) In view of Lemma 2.6(iii), it suffices to show that pVZ = (pV#)°v£.
Since obviously pC(pV Z)°, we have p V Z Ç (p V Z)° V Z. On the other hand
(p V Z)° C p V Z and Z Ç p V Z give (p V Z)° V Z Ç p V Z.

(ii) From Theorem 2.6(iv) and part (i), we find that tZt = (p V £)|e(s) =
((pVZ)°VZ)\E(S)=TrZTr.

(iii) This follows directly from part (i).
(iv) From Result 1.4, Lemma 2.5 and Lemma 2.6(v) we have

r = tx(ZrZrZ D ZtZtZ)0
= tx(ZrZrZ)0 n tx(ZTZrZ)0 = r¡ fl Tr.
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4.4. LEMMA. An equivalence rr on E(S) is right normal if and only if it is
the right trace of a congruence on S. If this is the case, then (ZTrZTrZ)° is the
greatest congruence on S with right trace rr.

PROOF. If rr is the right trace of a congruence p, then rr = tr(pV Z)°, so that by
Lemma 2.6(iv), we have TrZTrZTr = ttZtt. Using Lemma 4.3(iii), we may conclude
that rr is a right normal equivalence.

Suppose conversely that rr is a right normal equivalence on E(S). Then TrZTrZTr
= TrZrr so that ZrrZTrZ is an equivalence on S and rr = tx(ZTrZTrZ)°. By Lemma
2.6(iii), we obtain

(ZTrZTrZ)0 V Z = ZttZttZ,
so that

rr = tx((ZrrZTrZ)° V Z)° = xtx(ZTrZTrZ)°.

If p is any congruence with rtrp = rr, then p Q (p\/ Z)° = (ZTrZTrZ)°,
tx(ZrrZTrZ)ü = Tr by Lemma 4.3. Thus (ZTrZTrZ)° is the greatest congruence
with right trace rr.

4.5. COROLLARY. An equivalence t on E(S) is normal if and only if it is the
intersection of a left normal equivalence and a right normal equivalence.

PROOF. If r is a normal equivalence, then by Lemma 2.3 there exists a congru-
ence p on S with trp = r. By Lemma 4.4 and its dual, r¡ = ltrp is a left normal
equivalence and rr = rtrp is a right normal equivalence. By Lemma 4.3(iv), we
have t = ti riTr.

If t = t¡ fl Tr where r¡ is a left normal and rr a right normal equivalence, then
ZtiZtiZ and ZttZttZ are equivalences on S and

T = tx(ZTlZnZ)0 n tx(ZTrZTrZ)°
= tx(ZTif.nH O ZTrZTrZf    (by Result 1.4 and Lemma 2.5),

so that r is a normal equivalence by Lemma 2.3.
We now introduce several relations on Con S.
4.6. NOTATION. For any p, 0 G Con S, let

pT/0-O-ltrp = ltr0,
pTr6 & rtrp = rtr0,
pT6o trp = trö,
p K 0 o ker p = ker 6.

4.7. THEOREM.   The mapping

P^(pvP)\E(S)        (p G ConS)

is a complete lattice homomorphism of ConS into EqE(S) which induces Tr.

PROOF. Let J be a family of congruences on S, and suppose that e, / G E(S)
with e ({\Jpejp) V Z) f. Then e (\Jpe?(pV Z)) f and there exist xo,. •., x„ G S and
Pi,..., pn E 7 such that

e = xo (pi V Z) xi (p2 V Z) ■ ■ ■ x„_i (pn V Z) xn = f.
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For every 1 < i < n we know from Lemma 2.6(iii) that
PiVZ = Z(txPi)Z(txpi)Z,

so there exist idempotents g»-i,/i¿ G E(S) such that
Xi-i Zgi-i (txpi)Z(txpi)hi Zxí

and we find
e£go(trpi)£(trpi)/ii£ai(trp2)£(trp2)

• • • /in_i Z gn-i (txpn)Z(txpn) hn Z f.
Thus e (\Jp€j(txp V (Z\e{S)))) f ■< which by Lemma 2.6(iv) yields

e(\/(pVP)\E(S)\ f-

We have proved that

y p\vp)    = y (pv z)\E{s)
^Pe7 J        J MS)     p€7

and the reverse inclusion obviously holds.
Let e, / G E(S) be such that e (f)p€?(p V Z)) f. Then for every p G 7, we have

e (p V Z) f. Thus, if o G S(e, /) we have from Theorem 2.6(iv) and Theorem 2.7
that gpe for all p G 7. Further, gf E E(Rg) and (gf)p = (gp)(fp) = (ep)(fp) = fp
for all p G 7 since (ep) Z (fp) by Lemma 2.6(h), (iii). Consequently

that is,

Hence

f]p\ VÄj|,(S)/.

V£ 2p|^v*)ks)
y |e(S)     p€7

holds and the reverse inclusion obviously holds.
We have proved that the mapping p —> (p\/ Z)\e(s) 1S a complete lattice homo-

morphism of Con S into Eq E(S). For p,0 E Con S, we have

(pVÄ)|£(S) = (0v£)|E(s)
<* (txp)Z(txp) = (tx6)Z(tx0)    (by Lemma 2.6(iv))
=> tx(Z(txp)Z(txp)Z)° = tx(Z(tx6)Z(tx0)Z)°
=> pTrB   (by Lemma 2.6(iii))
=> (txp)Z(txp) = (txO)Z(txO)    (by Lemma 4.3(h))
<* (P V £)U(s) = (Ö V £)|E(S)    (by Lemma 2.6(iv)).

Hence
(pVA)|E(S) = (0V£)|E(s)^pTr0.
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4.8. COROLLARY.   We have T = T¡ H Tr and

P^{{pV£)\e(S),(pVZ)\e(S))       (p G ConS)

is a complete lattice homomorphism of ConS into (Eq7£(S))2 which induces T.

PROOF. For p,0 G ConS,

pT6 <S> trp = tr0
=> rtrp = tr(£(trp)£(trp)£)°

= tr(£(tr0)£(tr0)£)° = rtr0,
ltrp = tr(£(trp)£(trp)/:)0

= tr(£(tr0)/:(tr0)/:)o = ltr0
(by Lemma 4.3(iii) and its dual)

=>p(Ti nTr)e
=>txp = rtrp n ltrp = rtr0n ltr0 = tr0

(by Lemma 4.3(iv))
=>pT9.

Hence T = T; fl Tr.   The remaining part in the statement of the corollary now
follows easily from Theorem 4.7.

4.9. COROLLARY (CF.   [4,7,12]).   The relations Tt,Tr andT are complete
congruences on ConS.

We will need a result concerning complete congruences on complete lattices.

4.10. LEMMA.   Let L be a complete lattice and p be a complete congruence on
L. For xEL,

x= f\ z
z€xp

is the least element in xp and for any ACL,

\Jx= V x.
x€A x€A

PROOF.   That x is the least element in xp is clear from the fact that p is a
complete congruence. Therefore also

\/ XG Í \/ x)p

and thus

If y E A, then in L/p

y x<y x.
xÇiA xEA

yp< ( y Ap=(y x)
\x€A    / \xeA    /

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



620 FRANCIS PASTIJN AND MARIO PETRICH

so that

It follows that

whence

and the equality

y < 2/A    y x
\x€A

y<y X
x€A

xEA x&A
holds.

The following supplements the notation introduced in 3.1.
4.11. NOTATION. If p is a congruence on S, we put

Pr, = (<rnp)*,      prr = (</np)*,
pT' = (pvf)°,      pr' = (pv£)°.

The next two results describe the classes of the congruences Tr and T.

4.12. THEOREM.  If p E ConS, then pTr is the interval [pTT,PTr] of ConS.
For any family 7 of congruences on S, we have

\7   ) Tr        p€? \p€7   J p€7
PROOF. Clearly (<j dp)* Ç p, so that

((<, np)*vA)|E(s)ç(pv£)|E(s).
Let e, / G E(S) be such that epV Zf. Let hE S(e, f). By Lemmas 2.6(iv) and

2.7, we have h E ep. Thus e(<¡ Dp) h. Further, hZhf < f and
(hf)p=(hp)(fp) = (ep)(fp) = fp

since (ep) Z (fp) by Lemma 2.6(i), (iii). We thus have

e(<i np)hZ(hf)(<i np)f
and hence

e(tr(<, np)*)Ä(tr(<j Hp)*)/,
so by Lemma 2.6(iv), we have

e((<i nP)*vZ)f.
We conclude that the equality

((<j np)*vÄ)U(s) = (pv£)|E(s)
holds. By Theorem 4.7 we have (<¡ np)*Trp. Hence (<¡ rip)* is indeed the
least element in pTr. The remaining statements of the theorem are now clear from
Lemmas 4.3, 4.4, Corollary 4.9 and Lemma 4.10.

With the notation of §3 we obtain in a similar way the following result.
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4.13. THEOREM. 7/p is a congruence on S, then pT is the interval [pr,pT]
of ConS. For any family 7 of congruences on S,

(vp) -V-*.    (f)p) = ÍV-
\p€7   J T      p&r \p&T   J pe7

The following result establishes certain relationships among pr and pT with their
one-sided counterparts.

4.14. THEOREM.  Let p be a congruence on S. Then

Pt = Pt¡ V pTr,        pT = pTl npTr.

PROOF. By Corollaries 4.8 and 4.9, (Con S)/T is a complete lattice and Ti/T,
Tr/T are complete lattice congruences on (ConS)/T such that Ti/TC\Tr/T is the
equality on (ConS)/T. Clearly, for p G ConS, prtT [prrT} is the least element in
the (Ti/T)-class [(Tr/T)-class] of pT.

For p, 0 G Con S, we obtain

pT<6T   in(ConS)/T&(pn6)Tp
=> pTçpr\9ce
=>• pTTr Ç 9tt    (by Theorem 4.12)
=► Ptt Ç 9Tr    (since pr Tr p)

=>> pTrT< 9TrT.

Therefore pT —► prrT is a closure operation on (ConS)/T. Similarly for the map-
ping pT -> pTlT.

If p, 0 G Con S are such that prxT = 9TlT and prrT = 9TrT, then

pTlpTlT9TlTl9,       pTrprTT9TrTr9

and hence pT = 9T since T = T¿ D Tr by Corollary 4.8. We can thus use Lemma
3.4 to obtain

pT = pTlTVPTrT,
so that

(pT^pr^Tp,

and thus by Theorem 4.13 and T Ç Tu T CTr,v/e get

Pt = (pti V prr)r = PTiT V prrr = Pr, V prr.

We further have

pTi npT' = (pv/:)0n(pv£)0
= ((p V £) n (p V £))°    (by Result 1.4)
= pT    (by Lemma 2.6(iii)).

The next two results concern commutativity of certain congruences.
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4.15. THEOREM.   Let p be a congruence on S.   Then every congruence in
[pT,pTl] commutes with every congruence in [pT,pTr].

PROOF.  Let a E [pr,PT'] and ß G [pt,PTt].  We have prTpTr pTr and thus
prTr pTr in view of T Ç Tr. Therefore prTr ß so that, in view of Lemma 4.3(h),

(txpT)Z(txpT) = (txß)Z(txß)

and hence
Z(txpT)Z(txpT)Z = Z(txß)Z(txß)Z.

Consequently Lemma 2.6(h) gives

aßb=>aZ(txß)Z(txß)Zb
&aZ(txpT)Z(txpT)Zb
o- (apT) Z (bpT)

for any a,b E S. Thus ß/pr is a congruence contained in the ^-relation on S/pr-
Dually, a/pT is contained in the ¿-relation on S/pr- By Results 1.6 and 1.7, we
have aß = ßa.

4.16. THEOREM.  Let p be a congruence on S.  Then pTl commutes with pTr
and pr, commutes with prT.

PROOF.  The first statement is a direct consequence of Theorem 4.15.  As we
have seen in the proof of Theorem 4.14, the mappings

pT^pr.T,    pT-+pTrT       (p G ConS)

are closure operations on (Con S)/T which satisfy the conditions of Lemma 3.4.
Thus by Lemma 3.4, we get

Pr,T A prrT = prrT,T A pt¡ttT,

whence
PTTT¡  Ç PT¡ H PTr  Q PTr , PTtTr  Q PT¡ H PTT  Ç PT, ■

Therefore
P7vT,(pr, nprJTrPT,

so that
PTr g [(pT¡ npTrh, (pt, n PTr)Ti)

and dually
Pr, e [(prlnpTr)T,(pTl nprr)Tr]-

The desired result now follows from Theorem 4.15.

4.17. COROLLARY.  Let p be a congruence on S. Then pt = Pt¡Ptt = PTrPTr

PROOF. This is immediate from Theorems 4.14 and 4.16.

4.18. COROLLARY.  An equivalence t on E(S) is normal if and only if

(<i nr)*(<r nr)*(<r nr)*(<, Hr))*

and
r = tr(<¡ nr)*(<r (It)*.
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PROOF. If r is normal, then r = trp for some p G Con S by Lemma 2.3. The
first part of the statement of the corollary holds by Corollary 4.17. Also the second
part follows from Corollary 4.17 since r = tx pr-

Conversely, if r E EqE(S) is such that (<; fir)* and (<r fir)* commute, then
(<i flr)*(<r Dr)* G Con S. If, moreover, r is the trace of this congruence, then
it is normal by Lemma 2.3.

With a congruence p on S we have associated several new ones. The situation
is depicted by Diagram 1.

Diagram 1

4.19. Problem. Obviously
p—> trp        (peConS)

is an order-preserving mapping of Con S into Eq E(S). By Lemma 2.5, this mapping
is a complete fl-homomorphism inducing T on Con S. The question arises whether
this mapping is a complete lattice homomorphism, or equivalently, whether the
normal equivalences on E(S) form a complete sublattice of Eq7£(S). In order for
this to be true it suffices that for every nonempty family 7 of congruences

tr(V^)= Vtr^
P&7

holds, where the latter join is to be taken in Eq7?(S). As we shall see below this
property is satisfied in some large classes of regular semigroups.

Recall that a semigroup S is called group bound if for every a E S there exists
a natural number n such that an belongs to a subgroup of S. We note that group
bound regular semigroups include completely regular semigroups and finite regular
semigroups. A regular semigroup S is said to be locally inverse if for every e G
E(S), eSe is an inverse semigroup.
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4.20. THEOREM. Let S be either locally inverse, group bound or orthodox.
Then

p—>trp       (pGConS)
is a complete homomorphism of Con S into EqTi'(S) which induces T.

PROOF. Let 7 be a family of congruences on S. Clearly Vpe/trP ^ tr Vp€7'9
always holds. If for e, / G E(S) we have e (tr \f &7 p) f, then there exist pi,..., p„ G
7 and xo,..., xn E S such that

e = xo pi xi p2 x2 • • • xn-i p„ xn = /.

We first assume that S is locally inverse. For i = 0,..., n, we choose x¿ G V(x¿).
Since S is locally inverse, sandwich sets are singletons [8, Theorem 7.6]. Thus,
there exist elements hr¡,...,hn such that S(x¿x¿,x¿x¿) = {hi} fox i = 0,...,n. We
note that hr, = e and hn = f. For any i we have x¿_ip¿ = x,p¿, so

((x'i_xXi-i)pi) Z (Xi-lPi) = (XiPi) Z ((x'iXi)pi)
and

((Xi-ix'i_y)Pi) Z (Xi-.ipi) = (XiPi) Z ((Xix'i)pi).
Using Result 1.1 we have

S((x'i_xXi-i)pi,(xi-ix'i_y)pi) = S((x'iXi)pi,(xix'i)pi),
where

hi-ipi E S((x'í_1x¿_i)p¿,(x¿_ix¿_1)p¿)
and

hipx E S^x'iXijpi, (xix'i)pi).
Since locally inverse semigroups are closed for taking homomorphic images, S/pi
is locally inverse.   From [8, Theorem 7.6], it thus follows that in S/pi sandwich
sets are singletons. From the above we infer /i¿_ip¿ = hipi. Hence there exists a
sequence

e = h0 pi hi p2 ■ ■ ■ pn_i hn-i pn hn = f,
thus (e, /) G tr \Jp&j p. We conclude that the equality \f e7 tr p = tr VpeJ P holds.

Suppose next that S is group bound. For i E {0,..., n}, let ra¿ be a positive inte-
ger such that xm' belongs to a maximal subgroup of S. Let m = max{mo,..., mn}.
Then xm belongs to a maximal subgroup of S for every i = 0,..., n, and x™ x pi xm
for each i = 1,..., n. Let e¿ be the identity element of the maximal subgroup to
which xm belongs. Then xm_x pi xm implies e¿_i p¿ e¿. Further en. = x™ = em = e
and en = xm = fm = /. Hence there exists a sequence

e = e0 pi ei p2 e2 • • • p„_i en_i p„ en = /

and we again conclude that VpeT" trP — tr VpeJ P holds.
We finally consider the case where S orthodox. Let x¿ G V(x¿), ¿ = 0,..., n.

Then for 1 < i < n we find (x¿_1x¿_ix'ix¿)p¿ (x^xí-i) since (x'¿_1x¿_i)p¿ and
(x¿x¿)p¿ are ¿-related idempotents in S/pi. Therefore

XqXo Pl x'oXoXiXi p2 XÓXQX1X1X2X2 P3

■ ■ ■ Pn XqXoX!XiX2X2 • • • Xn_2Xn_2Xn_1Xra_iXnXTi

Pn-1 XqXoX1XiX2X2 ■ • ■ Xn_2Xn_2XnXn

• • • p2 x'qXoXiXix^x« pi x'0xQx'nxn
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I        \x'0Xo     y trp    xox0x^xn.
W      )

Dually, from (xi-ix'i_1Xix'i) pi (x¿x¿) for all 1 < i < n we find

XnX'n       y   tTP\   X0x'0Xnx'n.
{pel      )

If in particular x0 = e and x'n = f the above expressions yield

el V trp) e/     V trp    /,

thus e (VpejP) /• We conclude that f?{\Jp&j p) = Vpe/*1/3-
5. Properties of traces and kernels. In this section we investigate the T¡-,

Tr-, T- and Tf-classes of a congruence p. As we shall see, the classes of the first
three congruences exhibit many nice properties. It appears that not much could be
said about Ti-classes. We first consider the traces.

5.1. THEOREM [11, §3]. Let p be a congruence on S. Then pT consists of
commuting congruences.

PROOF. This is immediate from Theorem 4.15.

5.2. COROLLARY [11, THEOREM 3.4]. If p is a congruence on S, then pT
is a complete modular lattice.

PROOF. This is immediate from Theorem 5.1 and [1, Corollary 1 to IV.9].
Later in this section we shall show another way to derive the above result. We

first introduce some new concepts.
5.3. DEFINITION. A regular semigroup S is left [right] fundamental if e is the only

congruence on S contained in Z [Z]; S is fundamental if s is the only congruence
on S contained in M.

5.4. NOTATION. Let

pi = eTl,    pr = eTr,    p = eT.

In order to avoid confusion we shall sometimes use the notation ps,Pis,PrS-

5.5. LEMMA.   The following hold in S.
(i)pi = Z°,   ßr = Z°,   p = X°.
(ii) p = piC\pr.
(iii) S is left [right] fundamental if and only if e = Z° [e = Z0].
(iv) S is fundamental if and only if e = M°.

PROOF. That pi = Z° and pr = Z° follows immediately from Theorem 4.12
and its dual. Theorem 4.14 gives

ß = eT = eT' fl eT- = w n pr = Z° n Z° = (Z n Z)° = H0.
The remaining statements are obvious from the definitions.
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We remark that from Lemma 2.8 it follows that p = M° is the greatest congruence
on S with trace the equality on 7£(S). In other words p is the greatest idempotent
separating congruence on S. Accordingly, S is fundamental if and only if e is the
only idempotent separating congruence on S.

5.6. LEMMA.  For a congruence p on S we have

pTr /p = ßrs/p,        pT/p = ps/p-

PROOF. If apTrb, then aZ(txp)Z(txp)Zb by Lemma 4.3 and Theorem 4.12.
Thus there exist e,f,g,h E E(S) such that aZe(txp) f Zg(txp)hZb, whence
(ap) Z (ep) = (fp) Z (gp) = (hp) Z (bp). We have proved that

(ap)(pT'/p)(bp)=>(ap)Z(bp).

Consequently pTr/p Ç prs/p-
Conversely, if (ap) prs/p(bp), choose e G E(Ra), f E E(Rb) and g G S(e, /).

Then (ep) Z (ap) Z (bp) Z (fp) in S/p and thus

hp E S(e, f)p Ç S(ep, fp) = ep
by Result 1.1 and

(hf)p = (hp)(fp) = (ep)(fp) = fp.
We thus find aZe(txp)hZhf (trp) f Zb. Consequently, if 0 is the congruence on
S given by

a9b& (ap)prS/p(bp),

then 0 Ç Z(txp)Z(txp)Z. It follows that 0 Ç (£(trp)£(trp)£)° = pTr, where the
latter equality follows from Lemma 4.3 and Theorem 4.12. Therefore

ßrS/P = 8/ptpTr/p

and the required equality prevails. Hence also

Ps/p = Ms/p n PrS/p    (by Lemma 5.5(h))
= (pTl /p) fl (pTr /p)    (by the first part of the proof and its dual)

= (pTl n pTr ) /p = PT /p    (by Theorem 4.14).

5.7. COROLLARY. Let p be a congruence on S. Then p = pTr if and only if
S/p is right fundamental; p = pT if and only if S/p is fundamental.

PROOF. This follows easily from Lemmas 5.5 and 5.6.

5.8. PROPOSITION.   For any congruence p on S, the mapping

^.9^9/pTr (0G[pTr,pT1)
is an isomorphism of[pTr,pTr] onto [es/pTr,prs/pTr]•

PROOF. The mapping <p is the restriction to [pTr,PTr\ of the isomorphism 0 ->
9/pr, of [prr,uj] onto ConS/prr. Obviously (prr)Tr = PTt so that by Lemma 5.6,
PTrIPtt = P-rS/pTr- One now shows easily that tp is a bijection of [pTr,PTr] onto
\£s/pt i PrS/pT ] and thus also an isomorphism of complete lattices.

The proof of the next result follows along the same lines.
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5.9. PROPOSITION.   For any congruence p on S the mapping

<p:9^9/pr        (9e[pt,PT])
is an isomorphism of[pT,pT] onto [ss/pTills/pT\-

5.10. PROPOSITION. T^or each e G E(S), let y\e be the lattice of normal
subgroups of He. Then the mapping

<p:p^(ep,eEE(S))       (pE[e,u])

is a complete monomorphism of [e,p\ into rieeß(S) ^e-

PROOF. If p G [e, p], then p Ç M, so ep Ç He for each e G E(S). Since p\h„ is a
congruence on the group He, ep is a normal subgroup of He. Hence

(ep,eG£(S))G    ]J    me.
e€S(S)

Let 7 be a family of congruences in [e,p]. For e G E(S), e(f)p€jp) = Ç\pe7ep,
and it follows that tp is a complete f|-homomorphism. Let x G e(\/' gy p), eG È(S).
Then there exist pi,..., pn G J and xo, • • ■, xn G S such that e = xn pi xi p2 x2 • ■ •
PnX„ = x. Since p¿ Ç # for all i, we have that xo,...,xn G He and e =
xo(pi|fjJxi(p2|ijJx2---(pn|ííe)xn = x in the group He. Consequently x G
VpeJ eP- Conversely if x G Vpejep, then x is (V^gj p)-related to e in the group
7ie and thus also in S. We conclude that for e G ^(S), e(\fpejp) = \Jp&jep.
Hence tp is also a complete \/-homomorphism.

If p and 0 are different congruences in [e,p], then from trp = s\e(S) — tr0 and
Lemma 1.2 it follows that kerp ^ ker0. Consequently there exists e G 75(S) such
that ep t^ e0. Therefore <p is injective.

5.11. COROLLARY. The lattice [e, p] of idempotent separating congruences is
a complete modular lattice.

PROOF. Since the lattice of normal subgroups of a group is modular, and since
by Proposition 5.10 [e, p] is embeddable into the lattice of normal subgroups of a
group, we conclude that [e, p] is modular.

5.12. COROLLARY [ll, THEOREM 3.4]. 7/p is a congruence on S, then
[pr,pT] is a complete modular lattice.

PROOF. This is immediate from Theorem 5.9 and Corollary 5.11.
We now turn to the properties of the congruence K.
5.13. EXAMPLE [9, §3]. Let S be the direct product of a nontrivial group and a

two-element semilattice. Then the relation K on Con S is not a congruence.
We nevertheless have the following.

5.14. PROPOSITION. Let p be a congruence on S. Then pK = [pk,Pk] is a
complete sublattice of Con S.

PROOF. That pK is an interval follows from Lemmas 2.4 and 2.9. The remaining
part in the statement is clear from the fact that an interval of a complete lattice is
a complete sublattice.

5.15. DEFINITION. A congruence p on S is idempotent pure if kerp = E(S).
Furthermore, S is E-disjunctive if e is the only idempotent pure congruence on S.
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5.16. LEMMA.   A congruence p on S is idempotent pure if and only if p E
[e,eK].

PROOF. If p g [e,eK], then kerp Ç kereK = E(S) implies kerp = E(S).
Conversely, if p is idempotent pure, then p Ç eK since eK is the greatest congruence
with kernel kere = E(S) = kerp.

5.17. LEMMA.   For a congruence p on S we have

pK/p = (ss/p)K.
PROOF. If ap E kex(pK/p), then (ap) (pK/p) (ap)2 = a2p and thus apK a2.

From this we infer that a E kerpK = kerp and consequently that ap E E(S/p). We
conclude that ker(pK/p) = E(S/p) = kex(es/p)K and thus pK/p C (ss/p)K■

Let ap, bp E S/p be such that (op) (es/p)k (bp). In view of Lemma 2.4 we have
for all x,y E S1,

(xp)(ap)(yp) G E(S/p) & (xp)(bp)(yp) E E(S/p),
or in other words, because of Result 1.2, we obtain that

xay G ker p & xby E ker p.
Therefore we have

(ap) (eS/P)K (bp) => airkeipb& apKb.

Consequently, (eS/p)K Q PK/p-

5.18. COROLLARY. 7>ei p be a congruence on S. Then p = pK if and only if
S/p is E-disjunctive.

PROOF. This follows easily from Lemmas 5.16 and 5.17.
The proof of the next result follows along the same lines as the proof of Propo-

sition 5.8.
5.19. PROPOSITION.   For any congruence p on S, the mapping

p:9^9/PK        (9e[pk,PK\)
is an isomorphism of[pK,pK] onto [ss/p, (£s/p)K]-

6. Congruence triples. In the light of the results obtained in §4 we are now
able to present a refinement of the concept of congruence pairs of §2. We arrive
here at congruence triples for a regular semigroup which are analogous to admissible
triples used for describing congruences on Rees matrix semigroups (see [5, III.4]).

6.1. NOTATION. Let S be a regular semigroup, 7 G Eq(S/£) and 6 E Eq(S/Z).
For any a, b E S, we put

a^b-Pr-LaiLb,        aSb •& RaèRb-
It is evident that 7, 8 E EqS, where £ Ç 7 and Z Q 6.

We introduce next the following concepts.
6.2. DEFINITION. An equivalence 7 G Eq(S/£) is normal if

7 = (7°V£)/i!
and an equivalence S E Eq(S/£) is normal if

6 = (6°vZ)/Z.
If p is a congruence on S, then (pV Z)/Z [(p V Z)/Z] is the Z-part [Z-part] of p.
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6.3. LEMMA. An equivalence 6 G Eq(S/£) is normal if and only if 6 is the
Z-part of a congruence p on S.

PROOF. If 6 is normal, then 6 is the £-part of the congruence 6°. Suppose
conversely that 6 is the £-part of a congruence p, that is 6 = (p V Z)/Z, or in other
words, 6 = p V Z. Clearly p Ç 6° so that p V Z Ç 6° V Z. On the other hand
6° Ç pV Z and thus 6° V Z Ç pV Z. We therefore have 6 = (pV Z)/Z = (6° V £)/£
and 6 is normal.

Our final basic concept is the following.
6.4. DEFINITION. A triple (7, K, 6) consisting of normal equivalences 7 G

Eq(S/£) and 6 E Eq(S/Z) and a normal subset K Ç S, is a congruence triple
if

(i) 7 = (7 n S)° v Z, 6 = (7 n 6)° v Z,
(ii)A"Çker7°, 7Ç0O-V Z,
(iii) KCkexó0, 6Ç9°KV Z.
If this is the case, we define

Ph,K,s) = (7 n 9K n 5)°.

For the principal result of this section, we prove first an auxiliary result which
is also of independent interest (cf. Theorem 4.7).

6.5. LEMMA.   The mapping

p ^ p V Z        (p E Con S)

is a complete homomorphism of Con S into Eq S which induces Tr.

PROOF. Let 7 be a family of congruences on S. Let a,b E S be such that
a (C\p€AP v #))&- Tt follows that a(pVi?)i) for every p G 7. If e G 7£(7*a) and
/ G E(Rb), then the foregoing implies that e(pV Z) f for every p G 7. Hence
e (DpeT-G0 v £)) /• Applying Theorem 4.7 we have e ((Dpn/ Io) v ^) / and thus also
o ((fine j)p) V Ä) 6. We have proved that

pe? V''67  J
The reverse inclusion is obvious and so the equality prevails. It follows that the
mapping p —* pV Z (p E Con S) is a complete lattice homomorphism of Con S into
EqS.

If p, 0 G Con S are such that pTr 0, then rtr p = rtr 0, so that, by Lemma 4.3(i),

p V Z = Z(xtxp)Z(xtxp)Z = Z(xtx9)Z(txt9)Z = 0 V Z.
Conversely ifpV£ = 0v£, then

rtrp = tr(p V Z)° = tr(0 V Z)° = xtx9.

The next result describes congruences on a regular semigroup in terms of con-
gruence triples. It represents an analogue of Theorem 2.13.
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6.6. THEOREM. If (~i,K,6) is a congruence triple for S, then P(ltK,s) is
the unique congruence p on S such that 7 is the Z-part of p, K = kerp and
8 is the Z-part of p. Conversely, if p is a congruence on S, then (i,K,6) =
((p V Z)/Z,kexp, (p V Z)/Z) is a congruence triple for S and p = P(7,k,6)-

PROOF. Let (7, K, 6) be a congruence triple. Then

ker P{n,K,6) = ker(7 fl BK n ¿>)°
= ker(7° (19K il 6°)    (by Result 1.4)
= ker 70 fl ker 9% fl ker ¿°    (by Lemma 2.5)
= ker 70 fl K (1 ker ¿°    (since K is a normal subset of S)

= 7Í    (since K Ç ker 70 and K Ç ker ¿° ).

Further,

Ph,K,s) v £ = (7 n 0* n ¿)° v £
= ((înê)°n90K)vZ    (by Result 1.4)
= ((7 n S)° V Z) fl (0^ V Z)    (by Lemma 6.5)
= 6 n (0& V £)    (since <5 = (7 fl S)° V £)
= ¿   (since 6 Ç 9K V £),

and thus
(P(7,a-,o) V Z)/Z = <5

is the £-part of P(ltK,8)- Dually, 7 is the £-part of P(-,,x,6)-
Let (7, K, 6) be a congruence triple and 0 G Con S be such that 7 is the £-part

of 0, K = ker0 and 6 is the £-part of 0. Then ker0 = K = kexp(ltK,s)- Further,

tr 9 = ltr 0 fl rtr 0    (by Lemma 4.3(iv))
= tr(6 V Z)° fl tr(0 V Z)° = tr7° fl tr 6°,

and similarly
trp^K.í) =tr7°ntr¿°.

From Lemma 2.10 we may now conclude that 0 = P(lyK,6)-
Let p G Con S and let 7 = (p V Z)/Z, K = kerp'and 6 = (p V £)/£. By

Lemma 6.3 and its dual 7 and 6 are normal equivalences on Eq(S/£) and Eq(S/£),
respectively. By Lemma 2.4, K is a normal subset of S. We note that 7 = p V Z
and I = p y Z.

Since ZÇ6,it follows that (7fl¿)° V Z Ç 6. Further, since p Ç (7flÔ)0 we have
trp Ç (7 fl 6)°. This together with Lemma 2.6(iii) gives

8 = pvZ = Z(txp)Z(txp)Z ç (7 fl S)° V Z.
Therefore <S = (7 fl 6)° V £ and dually, 7 = (7 fl S)° V Z.

From p Ç (pV£)° = 6° it immediately follows that 7Í = kerp Ç ker6°. Further,
kerp = K gives p Q 9K whence ¿ = pV£Ç0(js:v£. A dual reasoning yields
K Ç 7° and 7 Ç 9°K V £

We have proved that (7,7Í, ¿) is a congruence triple. From the first part of the
proof we may now conclude that p = p(ltK,S)-
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6.7. PROPOSITION.  Let Ct S be the poset of all congruence triples for S under
the partial order given by

(7,K,8) C (7',K',i')^7C 7', KÇK', 6Ç 6'.
Then the mappings

p^((pV Z)/Z, ker, p, (p V Z)/Z),    (7, K, 8) -* ph,K,„)
are mutually inverse isomorphisms of Con S and CtS.

PROOF. This follows easily from Theorem 6.6.
As an immediate consequence of Lemma 6.5 and Theorem 6.6 we have

6.8. Corollary.  The mapping
PHK,6)->S       ((1,K,6)ECtS)

is a complete homomorphism of Con S into Eq(S/Z) inducing Tr. The normal
equivalences on S/Z form a complete sublattice ofEq(S/Z).

6.9. PROPOSITION.  Let (7¿,7Í¿,¿\), i = 1,2, be congruence triples for S. Let
Pi = Pi-i^KiA), i = 1,2. Then

P1T1P2 <3>7i =72,
piKp2&Kx =K2,

PlTrPl & ¿1 = 82.
PROOF. We have

PiTrp2 o pi V Z = p2 V Z    (by Theorem 6.5)
& 81 = 82    (by Theorem 6.6)
o ¿1 = 82.

This together with its dual gives the first and the third part in the statement of
the proposition in view of Corollary 4.8. The second part follows immediately from
Theorem 6.6.

A simple expression for p(7lif,5) is provided by the following.

6.10. PROPOSITION.   Let (~i,K,8) be a congruence triple for S.  Then for any
0,6 G S,

ap(~i,K,8) b <=> La 7 ¿6,    Ra8 Rb and ab' E K for some [all] b' E V(b).
PROOF. Let r = txp(1¡K,s)- Then

<*> = P(-t,K,s) V Z    (by Theorem 6.6)
= ZtZtZ    (by Lemma 2.6(iii)).

Consequently, for a,b E S we have

Ra8Rb&a(ZTZTZ)b
and dually

LalLb^a(ZTZrZ)b.
The result now follows from Lemma 2.10.

The following two results relate our representation of congruences by congruence
triples with our findings of §2.
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6.11. PROPOSITION. Let 7 G Eq(S/£) and 6 G Eq(S/£) be normal equiva-
lences such that 6.4(i) is satisfied. Then r = (7 il 8)\E(s) = tr(7 (18)° is a normal
equivalence on E(S) and

7 = (ZtZtZ)/Z,       8 = (ZtZtZ)/Z.
Conversely, if r is a normal equivalence on E(S), then 7 = (ZtZtZ)/Z E

Eq(S/Z) and 8 = (ZtZtZ)/Z E Eq(S/Z) are normal equivalences such that 6.4(i)
is satisfied and r = (7 fl 8)\e(S) ■

PROOF. We first suppose that 7 and 8 axe normal equivalences satisfying 6.4(i).
We put p = (7 fl 8)° and r = tr p. Then

r = tZt n tZt   (by Lemma 2.6(v))
= (P V Z)\E(S) n (p V Z)\E(S)    (by Lemma 2.6(iv))
= Ï\e(S) H 8\e(S)    (since 6.4(i) is satisfied)
= (7n¿)|E(S).

We conclude that r = tr(7fl8)° = (7 il 8)[e(S) ls a normal equivalence on E(S) by
Lemma 2.3.

If, conversely, r is a normal equivalence on E(S), then there exists p G Con S
such that r = trp. By Theorem 6.6 7 = (p V Z)/Z and 8 = (p V £)/r are normal
equivalences on S/Z and S/Z, respectively, such that condition 6.4(i) is satisfied.
By Lemma 2.6(iii) we have 7 = (ZtZtZ)/Z and 8 = (ZtZtZ)/Z. Moreover,

(în8)\Eis) = ((pv Z)n(Pv Z))\E(s)
= ((pv£)|£(S)fi(pv£)|E(S))
= tZt fl tZt   (by Lemma 2.6(iv))
= r    (by Lemma 2.6(v)).

6.12. PROPOSITION. Let (~f,K,8) be a congruence triple. If r = (7fl8)\e{S),
then (K, r) is a congruence pair and P(7,x,0) = P(k,t) ■

Let (K,t) be a congruence pair. 7/7 = (ZtZtZ)/Z and 8 = (ZtZtZ)/Z, then
(7, K, 8) is a congruence triple and P(k,t) — P(~i,k,S)-

PROOF. Let (7, K, 8) be a congruence triple. Then we can show as in the proof
of Theorem 6.6 that

trph,K,e)=tr7°ntr¿°.
By Proposition 6.11 it thus follows that

T = (7 O 8)\E(S) = tr(7 n 8)° = tr p^,K,s)■

On the other hand K = kerp^x,«) by Theorem 6.6.  By Theorem 2.13 we may
conclude that (K,r) is a congruence pair and that P(ltK,s) — P(k,t)-

Conversely, let (K, t) be a congruence pair. Then

7 = (ZtZtZ)/Z
= (Z(txp{K,r))Z(txp{K,T))Z)/Z    (by Theorem 2.13)
= (p(K,r) V I)/L    (by Lemma 2.6(iii))
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and similarly
S = (p{K,r) V Z)/Z,

whereas
K = kexp{K,T)

by Theorem 2.13. By Theorem 6.6 we have that (7, K, 8) is a congruence triple and
that P(-,,k-,¿) = P(k,t)-
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