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CONHARMONIC CURVATURE TENSOR OF A

QUARTER-SYMMETRIC METRIC CONNECTION IN A

KENMOTSU MANIFOLD

Ajit Barman

Abstract. The aim of the present paper is to study Kenmotsu manifolds admitting
a quarter-symmetric metric connection whose conharmonic curvature tensor satisfies
certain curvature conditions.
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1. Introduction

Manifolds known as Kenmotsu manifolds were studied by K. Kenmotsu in 1972
[17]. They set up one of the three classes of almost contact Riemannian manifolds
whose automorphism group attains the maximum dimension [26]. Consider an al-
most contact metric manifoldM2n+1, with the structure (φ, ξ, η, g) given by a tensor
field φ of type (1, 1), a vector field ξ, a 1-form η satisfying φ2 = −I+η⊗ξ, η(ξ) = 1,
and a Riemannian metric g such that g(φX, φY ) = g(X,Y )−η(X)η(Y ) for any vec-
tor field X and Y . The fundamental 2-form Φ is defined by Φ(X,Y ) = g(X,φY ) for
any vector fields X and Y . The normality of an almost contact metric manifold is
expressed by the vanishing of the tensor field N = [φ, φ]+2dη⊗ξ, where [φ, φ] is the
Nijenhuis tensor of φ [6]. For more details we refer to Blair’s books ([6],[7]). A Ken-
motsu manifold can be defined as a normal almost contact metric manifold such that
dη = 0 and dΦ = 2η∧Φ. It is well known that Kenmotsu manifolds can be character-
ized through their Levi-Civita connection, by (∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX ,
for any vector fields X,Y, Z. Moreover, Kenmotsu proved that such a manifold
M2n+1 is locally a warped product ] − ε, ε[×fN

2n, N2n being a Kähler manifold
and f2 = ce2t, c is a positive constant.

More recently in ([18],[21]) and [12], almost contact metric manifolds such that
η is closed and dΦ = 2η ∧ Φ are studied and they are called almost Kenmotsu.
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Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold. Kenmotsu
manifolds have been studied by Barman and De ([4], [5]) Barman [2], Kim and Pak
[18] and many others.

In 1924, Friedmann and Schouten [13] introduced the idea of a semi-symmetric
connection on a differentiable manifold. A linear connection ∇̃ on a differentiable
manifold M is said to be a semi-symmetric connection if the torsion tensor T̃ of the
connection ∇̃ satisfies

T̃ (X,Y ) = u(Y )X − u(X)Y,(1.1)

where u is a 1-form and ρ is a vector field defined by

u(X) = g(X, ρ),(1.2)

for all vector fields X ∈ χ(M), χ(M) is the set of all differentiable vector fields on
M .

In 1932, Hayden [14] introduced the idea of semi-symmetric metric connections
on a Riemannian manifold (M, g). A semi-symmetric connection ∇̃ is said to be a
semi-symmetric metric connection if ∇̃g = 0.

A relation between the semi-symmetric metric connection ∇̃ and the Levi-Civita
connection ∇ of (M, g) was given by Yano [27]: ∇̃XY = ∇XY +u(Y )X−g(X,Y )ρ,
where u(X) = g(X, ρ).

In 1975, Golab [15] defined and studied the quarter-symmetric connection in
differentiable manifolds with affine connections. A linear connection ∇̄ on an n-
dimensional Riemannian manifold (M, g) is called a quarter-symmetric connection
[15] if its torsion tensor T̄ satisfies

T̄ (X,Y ) = η(Y )φX − η(X)φY,(1.3)

where η is a 1-form and φ is a (1,1) tensor field.

In particular, if φX = X , then the quarter-symmetric connection reduces to
the semi-symmetric connection [13]. Thus the notion of the quarter-symmetric
connection generalizes the notion of the semi-symmetric connection.

If, moreover, a quarter-symmetric connection ∇̄ satisfies the condition

(∇̄Xg)(Y, Z) = 0,(1.4)

for all X,Y, Z ∈ χ(M), then the quarter-symmetric connection ∇̄ is said to be
a quarter-symmetric metric connection.

After Golab [15] and Rastogi ([23], [24]) the systematic study of quarter-symmetric
metric connection have been continued by Mishra and Pandey [19], Yano and
Imai [28], Mukhopadhyay, Roy and Barua [20], De and Biswas [10], Taleshian and
Parakasha [25], Barman [3] and many others.
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Let M be a Riemannian manifold of dimension n equipped with two metric
tensors g and g̀. If a transformation of M does not change the angle between two
tangent vectors at a point with respect to g and g̀, then such a transformation is
said to be a conformal transformation of the metrics on the Riemannian manifold.
Under conformal transformation, the length of the curves are changed but the an-
gles made by the curves remain the same.

Let us consider a Riemannian manifold M with two metric tensors g and g̀ such
that they are related by

g̀(X,Y ) = e2σg(X,Y ),(1.5)

where σ is a real function on M.

It is known that a harmonic function is defined as a function whose Laplacian
vanishes. In general, a harmonic function is not transformed into a harmonic func-
tion. The condition under which a harmonic function remains invariant has been
studied by Ishii [16] who introduced the conharmonic transformation as a subgroup
of the conformal transformation (1.5) satisfying the condition

σ,ii +σ,i σ,
i = 0,(1.6)

where the comma denotes the covariant differentiation with respect to the metric
g.

Let C denote the conharmonic curvature tensor of type (1, 3) with respect to
the Levi-Civita connection which is defined by

C(X,Y )Z = R(X,Y )Z −
1

n− 2
[g(Y, Z)QX − g(X,Z)QY

+S(Y, Z)X − S(X,Z)Y ],(1.7)

where S(Y, Z) = g(QY,Z).

Taking the inner product of (1.7) with W , we have

′C(X,Y, Z,W ) =′ R(X,Y, Z,W )−
1

2n− 1
[g(Y, Z)S(X,W )− g(X,Z)S(Y,W )

+S(Y, Z)g(X,W )− S(X,Z)g(Y,W )],(1.8)

where ′C(X,Y, Z,W ) = g(C(X,Y )Z,W ), ′R(X,Y, Z,W ) = g(R(X,Y )Z,W ),
R and S are the curvature tensor and the Ricci tensor with respect to the Levi-
Civita connection, respectively.

A manifold is said to be an Einstein manifold if its Ricci tensor S of the Levi-
Civita connection is of the form S(X,Y ) = a′g(X,Y ), where a′ is a constant on the
manifold.
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A manifold is said to be an η-Einstein manifold if its Ricci tensor S of the Levi-
Civita connection is of the form S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), where a and b

are smooth functions on the manifold.

In this paper we study the conharmonic curvature tensor on Kenmotsu man-
ifolds with respect to the quarter-symmetric metric connection. The paper is or-
ganized as follows. After the introduction in Section 2, we give a brief account of
the Kenmotsu manifolds. In section 3, we express the quarter-symmetric metric
connection on Kenmotsu manifolds. Section 4 is devoted to the study of the semi
φ-conharmonically flat on Kenmotsu manifolds admitting the quarter-symmetric
metric connection and we prove that the manifold is an Einstein manifold with re-
spect to the Levi-Civita connection. Section 5 deals with the ξ-conharmonically flat
on Kenmotsu manifolds with respect to the quarter-symmetric metric connection.
Section 6 contains the φ-conharmonically flat on Kenmotsu manifolds admitting
the quarter-symmetric metric connection. We get the manifold to be an η- Ein-
stein manifold with respect to the Levi-Civita connection. Finally, we construct an
example of a 3-dimensional Kenmotsu manifold admitting the quarter-symmetric
metric connection to support the results obtained in Section 5.

2. Kenmotsu Manifolds

Let M be an (2n+1)-dimensional almost contact metric manifold with an almost
contact metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field
ξ, a 1-form η and the Riemannian metric g on M satisfying [6]

η(ξ) = 1, φ(ξ) = 0, η(φ(X)) = 0, g(X, ξ) = η(X),(2.1)

φ2(X) = −X + η(X)ξ,(2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.3)

for all vector fields X ,Y on χ(M). A manifold with an almost contact metric struc-
ture (φ, ξ, η, g) is an almost Kenmotsu manifold if the following conditions are sat-
isfied

dη = 0; dΩ = 2η ∧ Ω,

where Ω being the 2-form defined by Ω(X,Y ) = g(X,φY ). Any normal almost
Kenmotsu manifold is a Kenmotsu manifold. An almost contact metric structure
(φ, ξ, η, g) is a Kenmotsu manifold [17] if and only if

(∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX.(2.4)

Here we denote the Kenmotsu manifold of dimension (2n + 1) by M . From the
above relations, it follows that

g(X,φY ) = −g(φX, Y ),(2.5)
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∇Xξ = X − η(X)ξ,(2.6)

(∇Xη)(Y ) = g(X,Y )− η(X)η(Y ),(2.7)

R(X,Y )ξ = η(X)Y − η(Y )X,(2.8)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ,(2.9)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X),(2.10)

S(X, ξ) = −2nη(X),(2.11)

where R and S denote the curvature tensor and the Ricci tensor of M,, respectively,
with respect to the Levi-Civita connection.

Let M be a Kenmotsu manifold. M is said to be a η-Einstein manifold if there
exist real valued functions λ1, λ2 such that

S(X,Y ) = λ1g(X,Y ) + λ2η(X)η(Y ).

For λ2 = 0, the manifold M is an Einstein manifold.

Now we state the following:

Lemma 2.1. [17] Let M be an η-Einstein Kenmotsu manifold of the form S(X,Y ) =
λ1g(X,Y ) + λ2η(X)η(Y ). If λ2 = constant (or, λ1 = constant), then M is an Ein-
stein one.

3. Quarter-symmetric metric connection on Kenmotsu manifolds

A relation between the quarter-symmetric metric connection ∇̄ and the Levi-
Civita connection ∇ on (M, g) has been obtained by Sular, Özgür and De [11]
which is given by

∇̄XY = ∇XY − η(X)φY.(3.1)

Analogous to the definitions of the curvature tensor R of M with respect to
the Levi-Civita connection ∇ and the curvature tensor R̄ of M with respect to the
quarter-symmetric metric connection ∇̄ [11] given by

R̄(X,Y )Z = R(X,Y )Z + η(X)g(φY, Z)ξ − η(Y )g(φX,Z)ξ −

η(X)η(Z)φY + η(Y )η(Z)φX(3.2)

and

R̄(X,Y )ξ = η(X)Y − η(Y )X − η(X)φY + η(Y )φX,(3.3)

where X,Y, Z ∈ χ(M), the set of all differentiable vector fields on M .
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The above equation (3.2) yields

R̄(X,Y )Z = −R̄(Y,X)Z.

Taking the inner product of (3.2) with W [11], we have

′R̄(X,Y, Z,W ) =′ R(X,Y, Z,W ) + η(X)η(W )g(φY, Z)

−η(Y )η(W )g(φX,Z)− η(X)η(Z)g(φY,W )

+η(Y )η(Z)g(φX,W ),(3.4)

where ′R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ), ′R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

A relation between the Ricci tensor S̄ of ∇̄ and the Ricci tensors S of ∇ on
(M, g) has been obtained by S [11] which is obtained by

S̄(Y, Z) = S(Y, Z) + g(φY, Z)(3.5)

and also

S̄(Y, ξ) = −2nη(Y ).(3.6)

In view of (3.5) yields

Q̄Y = QY + φY,(3.7)

where S̄(Y, Z) = g(Q̄Y, Z).

Again the scalar curvature tensor r̄ of the quarter-symmetric metric connection
∇̄ and the scalar curvature tensor r of the Levi-Civita connection ∇ on (M, g) is
defined by [11], so we get

r̄ = r,(3.8)

From (2.9), it is implied that

r = −2n(2n+ 1).

4. Semi φ-conharmonically flat Kenmotsu manifolds with respect to

the quarter-symmetric metric connection

Let ′C̄ denote the conharmonic curvature tensor of type (0, 4) with respect to
the quarter-symmetric metric connection which is defined by

′C̄(X,Y, Z,W ) =′ R̄(X,Y, Z,W )−
1

2n− 1
[g(Y, Z)S̄(X,W )− g(X,Z)S̄(Y,W )

+S̄(Y, Z)g(X,W )− S̄(X,Z)g(Y,W )],(4.1)
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where′C̄(X,Y, Z,W ) = g(C̄(X,Y )Z,W ), ′R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ) and
X,Y, Z ∈ χ(M), the set of all differentiable vector fields on M .

Let C be the Weyl conformal curvature tensor of a (2n+ 1)-dimensional man-
ifold M . Since at each point p ∈ M the tangent space χp(M) can be decomposed
into a direct sum χp(M) = φ(χp(M))⊕L(ξp), where L(ξp) is a 1-dimensional linear
subspace of χp(M) generated by ξp. Then we have a map:

C : χp(M)× χp(M)× χp(M) −→ φ(χp(M))⊕ L(ξp).

It may be natural to consider the following particular cases:

(1)C : χp(M) × χp(M) × χp(M) −→ L(ξp), i.e, the projection of the image of
C in φ(χp(M)) is zero.

(2)C : χp(M)× χp(M)× χp(M) −→ φ(χp(M)), i.e, the projection of the image
of C in L(ξp) is zero.

C(X,Y )ξ = 0.

(3)C : φ(χp(M))×φ(χp(M))×φ(χp(M)) −→ L(ξp), i.e, when C is restricted to
φ(χp(M))× φ(χp(M)) × φ(χp(M)), the projection of the image of C in φ(χp(M))
is zero. This condition is equivalent to

φ2C(φX, φY )φZ = 0.

Here the cases 1, 2 and 3 are conformally symmetric, ξ-conformally flat and
φ-conformally flat, respectively. The cases (1) and (2) were considered in [9] and
[29], respectively. The case (3) was considered in [8] for the case M is a K-contact
manifold. Furthermore, in [1], the authors studied contact metric manifolds satis-
fying (3). Analogous to the definition of ξ-conformally flat and φ-conformally flat,
we give the following definitions:

Definition 4.1. A Kenmotsu manifold is said to be semi-φ-conharmonically flat
with respect to the quarter-symmetric metric connection if

g(C̄(φX, Y )Z, φW ) = 0.(4.2)

Definition 4.2. A Kenmotsu manifold is said to be an Einstein manifold if its
Ricci tensor S of the Levi-Civita connection is of the form

S(X,Y ) = a′g(X,Y ),

where a′ is a constant on the manifold.
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Putting X = φX and W = φW in (4.1), we get

′C̄(φX, Y, Z, φW ) =′ R̄(φX, Y, Z, φW )−
1

2n− 1
[g(Y, Z)S̄(φX, φW ) −

g(φX,Z)S̄(Y, φW ) + S̄(Y, Z)g(φX, φW )−

S̄(φX,Z)g(Y, φW )].(4.3)

In view of (2.1), (2.2), (3.4) and (4.3) yields

′C̄(φX, Y, Z, φW ) =′ R(φX, Y, Z, φW )− η(Y )η(Z)g(X,φW )

−
1

2n− 1
[g(Y, Z)S̄(φX, φW ) − g(φX,Z)S̄(Y, φW )

+S̄(Y, Z)g(φX, φW )− S̄(φX,Z)g(Y, φW )].(4.4)

Applying (2.1), (2.2), (2.3), (2.5) and (3.5) in (4.4), it follows that

′C̄(φX, Y, Z, φW ) =′ R(φX, Y, Z, φW )− η(Y )η(Z)g(X,φW )

−
1

2n− 1
[g(Y, Z)S(X,W ) + 2nη(X)η(W )g(Y, Z)− g(Y, Z)g(X,φW )

−g(φX,Z)S(Y, φW ) + g(Y,W )g(X,φZ)− η(Y )η(W )g(X,φZ)

+g(X,W )S(Y, Z)− η(X)η(W )S(Y, Z) + g(X,W )g(φY, Z)

−η(X)η(W )g(φY, Z)− g(Y, φW )S(φX,Z)− g(X,Z)g(φY,W )

+η(X)η(Z)g(φY,W )].(4.5)

Let {e1, ..., e2n, ξ} be a local orthonormal basis of vector fields in M , then
{φe1, ..., φe2n, ξ} is also a local orthonormal basis. Putting X = W = ei in (4.5)
and summing over i = 1 to 2n, we obtain

2n∑

i=1

g(C̄(φei, Y )Z, φei) =

2n∑

i=1

g(R(φei, Y )Z, φei)−

2n∑

i=1

η(Y )η(Z)g(ei, φei)

−
1

2n− 1

2n∑

i=1

[g(Y, Z)S(ei, ei) + 2nη(ei)η(ei)g(Y, Z)− g(Y, Z)g(ei, φei)

−g(φei, Z)S(Y, φei) + g(Y, ei)g(ei, φZ)− η(Y )η(ei)g(ei, φZ)

+g(ei, ei)S(Y, Z)− η(ei)η(ei)S(Y, Z) + g(ei, ei)g(φY, Z)

−η(ei)η(ei)g(φY, Z)− g(Y, φei)S(φei, Z)− g(ei, Z)g(φY, ei)

+η(ei)η(Z)g(φY, ei)].(4.6)

Again using (2.1), (2.2), (2.5) and (4.2) in (4.6), we see that
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S(Y, Z) = −2n2g(Y, Z)− (n−
3

2
)g(Y, φZ).(4.7)

Interchanging Y with Z in (4.7), implies that

S(Y, Z) = −2n2g(Y, Z)− (n−
3

2
)g(Z, φY ).(4.8)

By adding (4.7) and (4.8) and using (2.5), we have

S(Y, Z) = −2n2g(Y, Z).

Therefore, S(Y, Z) = a′g(Y, Z),

where a′ = −2n2.

This means that the manifold is an Einstein manifold with respect to the Levi-
Civita connection.

Summing up we can state the following:

Theorem 4.1. If a Kenmotsu manifold is semi-φ-conharmonically flat with re-
spect to the quarter-symmetric metric connection, then the manifold is an Einstein
manifold.

5. ξ -conharmonically flat Kenmotsu manifolds with respect to the

quarter-symmetric metric connection

Let C̄ denote the conharmonic curvature tensor of type (1, 3) with respect to
the quarter-symmetric metric connection which is defined by

C̄(X,Y )Z = R̄(X,Y )Z −
1

n− 2
[g(Y, Z)Q̄X − g(X,Z)Q̄Y

+S̄(Y, Z)X − S̄(X,Z)Y ],(5.1)

where S̄(Y, Z) = g(Q̄Y, Z) and X,Y, Z ∈ χ(M), the set of all differentiable vector
fields on M .

Definition 5.1. A Kenmotsu manifold with respect to the quarter-symmetric
metric connection is said to be ξ-conharmonically flat if C̄(X,Y )ξ = 0.

Putting Z = ξ in (5.1), it follows that

C̄(X,Y )ξ = R̄(X,Y )ξ −
1

2n− 1
[g(Y, ξ)Q̄X − g(X, ξ)Q̄Y

+S̄(Y, ξ)X − S̄(X, ξ)Y ].(5.2)
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Using (2.1), (2.2), (3.3), (3.6) and (3.7) in (5.2), we get

C̄(X,Y )ξ = C(X,Y )ξ +
2(n− 1)

2n− 1
[η(Y )φX − η(X)φY ].(5.3)

If n = 1, then the above equation (5.3) implies that

C̄(X,Y )ξ = C(X,Y )ξ.

Now, we are in a position to state the following:

Theorem 5.1. A three-dimensional Kenmotsu manifold is ξ -conharmonically flat
with respect to the quarter-symmetric metric connection if the manifold is also ξ -
conharmonically flat with respect to the Levi-Civita connection.

6. φ -conharmonically flat Kenmotsu manifolds with respect to the

quarter-symmetric metric connection

Definition 6.1. A Kenmotsu manifold is said to be φ-conharmonically flat with
respect to the quarter-symmetric metric connection if

g(C̄(φX, φY )φZ, φW ) = 0,(6.1)

where X,Y, Z,W ∈ χ(M), the set of all differentiable vector fields on M .

Definition 6.2. A Kenmotsu manifold is said to be an η-Einstein manifold if its
Ricci tensor S of the Levi-Civita connection is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth functions on the manifold .

Putting Y = φY and Z = φZ in (4.3), we get

′C̄(φX, φY, φZ, φW ) =′ R̄(φX, φY, φZ, φW )

−
1

2n− 1
[g(φY, φZ)S̄(φX, φW ) − g(φX, φZ)S̄(φY, φW )

+S̄(φY, φZ)g(φX, φW )− S̄(φX, φZ)g(φY, φW )].(6.2)

Using (2.1), (2.2) and (3.4) in (6.2), we have

′C̄(φX, φY, φZ, φW ) =′ R(φX, φY, φZ, φW )

−
1

2n− 1
[g(φY, φZ)S̄(φX, φW ) − g(φX, φZ)S̄(φY, φW )

+S̄(φY, φZ)g(φX, φW )− S̄(φX, φZ)g(φY, φW )].(6.3)
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Let {e1, ..., e2n, ξ} be a local orthonormal basis of vector fields in M , then
{φe1, ..., φe2n, ξ} is also a local orthonormal basis. Putting X = W = ei in (6.3)
and summing over i = 1 to 2n, we obtain

2n∑

i=1

g(C̄(φei, φY )φZ, φei) =

2n∑

i=1

g(R(φei, φY, )φZ, φei)

−
1

2n− 1

2n∑

i=1

[g(φY, φZ)S̄(φei, φei)− g(φei, φZ)S̄(φY, φei)

+S̄(φY, φZ)g(φei, φei)− S̄(φei, φZ)g(φY, φei)].(6.4)

In view of (3.8), (3.), (6.1) and (6.4), we take the form

S(φY, φZ)−
1

2n− 1
[−2n(2n+ 1)g(φY, φZ)

+2(n− 1)S̄(φY, φZ)] = 0.(6.5)

Applying (2.1), (2.2) and (3.5) in (6.5), it is implied that

S(φY, φZ) = −2n(2n+ 1)g(φY, φZ)− 2(n− 1)g(Y, φZ).(6.6)

Interchanging Y with Z in (6.6), we get

S(φY, φZ) = −2n(2n+ 1)g(φY, φZ)− 2(n− 1)g(Z, φY ).(6.7)

By adding (6.6) and (6.7) and using (2.5), we have

S(φY, φZ) = −2n(2n+ 1)g(φY, φZ).(6.8)

By virtue of (2.3) and (6.8) we yield

S(Y, Z) = −2n(2n+ 1)g(Y, Z) + 4n2η(Y )η(Z).

Therefore, S(Y, Z) = ag(Y, Z) + bη(Y )η(Z),

where a = −2n(2n+ 1) and b = 4n2.

From which it follows that the manifold is an η-Einstein manifold.

This leads us to state the following:

Theorem 6.1. If a Kenmotsu manifold is φ -conharmonically flat with respect
to the quarter-symmetric metric connection, then the manifold is an η-Einstein
manifold with respect to the Levi-Civita connection.
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Since a and b are both constant, in view of Lemma 2.1, we conclude the following:

Corollary 6.1. If a Kenmotsu manifold is φ -conharmonically flat with respect to
the quarter-symmetric metric connection, then the manifold is an Einstein manifold
one.

7. Example

In this section we construct an example on a Kenmotsu manifold with respect to
the quarter-symmetric metric connection ∇̄ which verify the result in Section 3 and
Section 5 of ∇̄.

We consider a 3-dimensional manifold M = {(x, y, z) ∈ R3}, where (x, y, z) are
the standard coordinates in R3. We choose the vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z

are linearly independent at each point of M .

Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0

and
g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be a 1-form defined by

η(Z) = g(Z, e3)

for any Z ∈ χ(M).

Let φ be a (1, 1)-tensor field defined by

φe1 = −e2, φe2 = e1, φe3 = 0.

Using the linearity of φ and g, we have

η(e3) = 1

φ2(Z) = −Z + η(Z)e3

and
g(φZ, φW ) = g(Z,W )− η(Z)η(W )

for any U,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M. The 1-form η is closed. Therefore, M(φ, ξ, η, g) is an almost Ken-
motsu manifold and is also normal. So, it is a Kenmotsu manifold.
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Then we have
[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The Riemannian connection∇ of the metric tensor g is given by Koszul’s formula
which is given by [22]

2g(∇XY,W ) = Xg(Y,W ) + Y g(X,W )−Wg(X,Y )− g(X, [Y,W ])

−g(Y, [X,W ]) + g(W, [X,Y ]).(7.1)

Using Koszul’s formula we get the following

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Using (3.1) in the above equation, we obtain

∇̄e1e1 = −e3, ∇̄e1e2 = 0, ∇̄e1e3 = e1,

∇̄e2e1 = 0, ∇̄e2e2 = −e3, ∇̄e2e3 = e2,

∇̄e3e1 = e2, ∇̄e3e2 = −e1, ∇̄e3e3 = 0.

By using the above results, we can easily obtain the components of the curvature
tensor as follows:

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3,

and
R̄(e1, e2)e2 = −e1, R̄(e1, e3)e3 = −e2 − e1, R̄(e2, e1)e1 = −e2,

R̄(e2, e3)e3 = e1 − e2, R̄(e3, e1)e1 = −e3, R̄(e3, e2)e2 = −e3.

With the help of the above results we can express the Ricci tensor as follows:

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2

and
S̄(e1, e1) = S̄(e2, e2) = S̄(e3, e3) = −2.

From the above expressions we can easily verify the equation (3.5). Also, it
follows that the scalar curvature with respect to the Levi-Civita connection and
quarter-symmetric metric connection is equal to -6.

Let X and Y be any two vector fields given by
X = a1e1 + a2e2 + a3e3 and Y = b1e1 + b2e2 + b3e3 where ai, bi, for all i = 1, 2, 3
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are all non-zero real numbers.

Using the above curvature tensors and the Ricci tensors of the Levi-Civita con-
nection and quarter-symmetric metric connection, respectively, we obtain

C̄(X,Y )ξ = 3(a1b3 − a3b1)e1 + 3(a2b3 − a3b2)e2 = C(X,Y )ξ.

Hence, the manifold under consideration satisfies the Theorem 5.1 of Section 5.
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