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The object of the present paper is to characterize N(k)-contact metric manifolds satisfying certain
curvature conditions on the conharmonic curvature tensor. In this paperwe study conharmonically
symmetric, ξ-conharmonically flat, and φ-conharmonically flat N(k)-contact metric manifolds.

1. Introduction

Let M and M be two Riemannian manifolds with g and g being their respective metric
tensors related through

g(X,Y ) = e2σg(X,Y ), (1.1)

where σ is a real function. Then M and M are called conformally related manifolds and the

correspondence between M and M is known as conformal transformation [1].
It is known that a harmonic function is defined as a functionwhose Laplacian vanishes.

A harmonic function is not invariant, in general. The condition under which a harmonic
function remains invariant have been studied by Ishii [2] who introduced the conharmonic
transformation as a subgroup of the conformal transformation (1.1) satisfying the condition

σi
,i + σ,iσ

i
, = 0, (1.2)

where comma denotes the covariant differentiation with respect to the metric g.
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A rank-four tensor C̃ that remains invariant under conharmonic transformation for a
(2n + 1)-dimensional Riemannian manifold M is given by

C̃(X,Y,Z,W) = R̃(X,Y,Z,W)

− 1

2n − 1

[
g(Y,Z)S(X,W) − g(X,Z)S(Y,W)

+S(Y,Z)g(X,W) − S(X,Z)g(Y,W)
]
,

(1.3)

where R̃ denotes the Riemannian curvature tensor of type (0, 4) defined by

R̃(X,Y,Z,W) = g(R(X, Y )Z,W), (1.4)

where R is the Riemannian curvature tensor of type (1, 3) and S denotes Ricci tensor of type
(0, 2), respectively.

The curvature tensor defined by (1.3) is known as conharmonic curvature tensor. A
manifold whose conharmonic curvature vanishes at every point of the manifold is called
conharmonically flat manifold. Thus this tensor represents the deviation of the manifold
from conharmonic flatness. It satisfies all the symmetric properties of the Riemannian

curvature tensor R̃. There are many physical applications of the tensor C̃. For example, in
[3], Abdussattar showed that sufficient condition for a space-time to be conharmonic to

a flat space-time is that the tensor C̃ vanishes identically. A conharmonically flat space-
time is either empty in which case it is flat or filled with a distribution represented by
energy momentum tensor T possessing the algebraic structure of an electromagnetic field
and conformal to a flat space-time [3]. Also he described the gravitational field due to a
distribution of pure radiation in presence of disordered radiation by means of spherically
symmetric conharmonically flat space-time. Conharmonic curvature tensor have been
studied by Siddiqui and Ahsan [4], Özgür [5], and many others.

Let M be an almost contact metric manifold equipped with an almost contact metric
structure (φ, ξ, η, g). At each point p ∈ M, decompose the tangent space TpM into direct sum
TpM = φ(TpM) ⊕ {ξp}, where {ξp} is the 1-dimensional linear subspace of TpM generated by
{ξp}. Thus the conformal curvature tensor C is a map

C : TpM × TpM × TpM −→ φ
(
TpM

)
⊕
{
ξp
}
, p ∈ M. (1.5)

It may be natural to consider the following particular cases:

(1) C : Tp(M) × Tp(M) × Tp(M) → L(ξp), that is, the projection of the image of C in
φ(Tp(M)) is zero;

(2) C : Tp(M) × Tp(M) × Tp(M) → φ(Tp(M)), that is, the projection of the image of C
in L(ξp) is zero;

(3) C : φ(Tp(M)) × φ(Tp(M)) × φ(Tp(M)) → L(ξp), that is, when C is restricted to
φ(Tp(M)) × φ(Tp(M)) × φ(Tp(M)), the projection of the image of C in φ(Tp(M)) is
zero. This condition is equivalent to

φ2C
(
φX, φY, φZ

)
= 0. (1.6)
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Here cases 1, 2, and 3 are synonymous to conformally symmetric, ξ-conformally flat,
and φ-conformally flat.

In [6], it is proved that a conformally symmetric K-contact manifold is locally iso-
metric to the unit sphere. In [7], it is proved that a K-contact manifold is ξ-conformally flat

if and only if it is an η-Einstein Sasakian manifold. In [8], some necessary conditions for a

K-contact manifold to be φ-conformally flat are proved. In [9], a necessary and sufficient

condition for a Sasakian manifold to be φ-conformally flat is obtained. In [10], projective

curvature tensor in K-contact and Sasakian manifolds has been studied. Moreover, the

author [11] considered some conditions on conharmonic curvature tensor C̃, which has many

applications in physics and mathematics, on a hypersurface in the semi-Euclidean space

En+1
s . He proved that every conharmonically Ricci-symmetric hypersurface M satisfying the

condition C̃ · R = 0 is pseudosymmetric. He also considered the condition C̃ · C̃ = LC̃Q(g, C̃)

on hypersurfaces of the semi-Euclidean space En+1
s .

Motivated by the studies of conformal curvature tensor in (see [6–9]) and the studies
of projective curvature tensor in K-contact and Sasakian manifolds in [10] and Lorentzian

para-Sasakian manifolds in [5], in this paper we study conharmonic curvature tensor in

N(k)-contact metric manifolds.

Analogous to the considerations of conformal curvature tensor, we give following
definitions.

Definition 1.1. A (2n+1)-dimensionalN(k)-contact metric manifold is said to be conharmon-

ically symmetric if (∇W C̃)(X,Y )Z = 0, where X,Y,Z,W ∈ TM.

Definition 1.2. A (2n + 1)-dimensional N(k)-contact metric manifold is said to be ξ-

conharmonically flat if C̃(X,Y )ξ = 0 for X,Y ∈ TM.

Definition 1.3. A (2n + 1)-dimensional N(k)-contact metric manifold is said to be φ-

conharmonically flat if C̃(φX, φY, φZ, φW) = 0, where X,Y,Z,W ∈ TM.

The paper is organized as follows. After preliminaries in Section 2, in Section 3 we
consider conharmonically symmetricN(k)-contact metric manifolds. In this sectionwe prove

that if an n-dimensional N(k)-contact metric manifold is conharmonically symmetric, then

it is locally isometric to the product E(n+1)(0) × Sn(4). Section 4 deals with ξ-conharmonically

flatN(k)-contact metric manifolds and we prove that an n-dimensional N(k)-contact metric

manifold is ξ-conharmonically flat if and only if it is an η-Einstein manifold. Besides these

some important corollaries are given in this section. Finally, in Section 5, we prove that a φ-

conharmonically flat N(k)-contact metric manifold is a Sasakian manifold with vanishing
scalar curvature.

2. Preliminaries

A (2n+1)-dimensional differentiable manifoldM is said to admit an almost contact structure

if it admits a tensor field φ of type (1, 1), a vector field ξ, and a 1-form η satisfying (see [12, 13])

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0. (2.1)
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An almost contact metric structure is said to be normal if the almost induced complex
structure J on the product manifold M × R defined by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
(2.2)

is integrable, where X is tangent toM, t is the coordinate of R, and f is a smooth function on
M × R. Let g be the compatible Riemannian metric with almost contact structure (φ, ξ, η),
that is,

g
(
φX, φY

)
= g(X,Y ) − η(X)η(Y ). (2.3)

ThenM becomes an almost contact metric manifold equipped with an almost contact metric
structure (φ, ξ, η, g). From (2.1) it can be easily seen that

g
(
X,φY

)
= −g

(
φX, Y

)
, g(X, ξ) = η(X), (2.4)

for any vector fields X,Y on the manifold. An almost contact metric structure becomes a
contact metric structure if g(X,φY ) = dη(X,Y ), for all vector fields X,Y .

A contact metric manifold is said to be Einstein if S(X,Y ) = λg(X,Y ), where λ is
a constant and η-Einstein if S(X,Y ) = αg(X,Y ) + βη(X)η(Y ), where α and β are smooth
functions.

A normal contact metric manifold is a Sasakian manifold. An almost contact metric
manifold is Sasakian if and only if

(
∇Xφ

)
Y = g(X,Y )ξ − η(Y )X, (2.5)

X,Y ∈ TM, where ∇ is the Levi-Civita connection of the Riemannian metric g. A contact
metric manifold M2n+1(φ, ξ, η, g) for which ξ is a Killing vector field is said to be a K-
contact metric manifold. A Sasakian manifold is K-contact but not conversely. However a
3-dimensional K-contact manifold is Sasakian [14].

It is well known that the tangent sphere bundle of a flat Riemannian manifold admits
a contact metric structure satisfying R(X,Y )ξ = 0 [15]. Again on a Sasakian manifold [16]we
have

R(X,Y )ξ = η(Y )X − η(X)Y. (2.6)

As a generalization of both R(X,Y )ξ = 0 and the Sasakian case, Blair et al. [17]
introduced the (k, µ)-nullity distribution on a contact metric manifold and gave several
reasons for studying it. The (k, µ)-nullity distribution N(k, µ) [17] of a contact metric
manifold M is defined by

N
(
k, µ

)
: p −→ Np

(
k, µ

)

=
{
W ∈ TpM : R(X,Y )W =

(
kI + µh

)(
g(Y,W)X − g(X,W)Y

)}
,

(2.7)
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for all X,Y ∈ TM, where (k, µ) ∈ R
2. A contact metric manifold M with ξ ∈ N(k, µ) is called

a (k, µ)-contact metric manifold. If µ = 0, the (k, µ)-nullity distribution reduces to k-nullity

distribution [18]. The k-nullity distribution N(k) of a Riemannian manifold is defined by

[18]

N(k) : p −→ Np(k) =
{
Z ∈ TpM : R(X,Y )Z = k

[
g(Y,Z)X − g(X,Z)Y

]}
, (2.8)

with k being a constant. If the characteristic vector field ξ ∈ N(k), thenwe call a contact metric

manifold asN(k)-contact metric manifold [19]. If k = 1, then the manifold is Sasakian, and if

k = 0, then the manifold is locally isometric to the product En+1(0) × Sn(4) for n > 1 and flat

for n = 1 [15].

Given a non-Sasakian (k, µ)-contact manifoldM, Boeckx [20] introduced an invariant

IM =
1 − µ/2
√
1 − k

(2.9)

and showed that, for two non-Sasakian (k, µ)-manifolds M1 and M2, we have IM1
= IM2

if

and only if, up to a D-homothetic deformation, the two manifolds are locally isometric as

contact metric manifolds.

Thus we see that from all non-Sasakian (k, µ)-manifolds of dimension (2n + 1) and for
every possible value of the invariant I, one (k, µ)-manifold M can be obtained with IM = 1.

For I > −1 such examples may be found from the standard contact metric structure on the

tangent sphere bundle of a manifold of constant curvature c, where we have I = (1+c)/|1−c|.
Boeckx also gives a Lie algebra construction for any odd dimension and value of I < −1.

Using this invariant, Blair et al. [19] constructed an example of a (2n + 1)-dimensional
N(1 − 1/n)-contact metric manifold, n > 1. The example is given in the following.

Since the Boeckx invariant for a (1 − 1/n, 0)-manifold is
√
n > −1, we consider the

tangent sphere bundle of an (n+1)-dimensional manifold of constant curvature c so choosing

that the resulting D-homothetic deformation will be a (1 − 1/n, 0)-manifold. That is, for k =

c(2 − c) and µ = −2c we solve

1 − 1

n
=

k + a2 − 1

a2
, 0 =

µ + 2a − 2

a
(2.10)

for a and c. The result is

c =

√
n ± 1

n − 1
, a = 1 + c, (2.11)

and taking c and a to be these values we obtain N(1 − 1/n)-contact metric manifold.

However, for a N(k)-contact metric manifold M of dimension (2n + 1), we have [19]

(
∇Xφ

)
Y = g(X + hX, Y )ξ − η(Y )(X + hX), (2.12)
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where h = (1/2)£ξφ,

h2 = (k − 1)φ2, (2.13)

R(X,Y )ξ = k
[
η(Y )X − η(X)Y

]
, (2.14)

S(X,Y ) = 2(n − 1)g(X,Y ) + 2(n − 1)g(hX, Y )

+ [2nk − 2(n − 1)]η(X)η(Y ), n ≥ 1,

(2.15)

S(Y, ξ) = 2nkη(X), (2.16)

(
∇Xη

)
(Y ) = g

(
X + hX, φY

)
, (2.17)

(∇Xh)(Y ) =
{
(1 − k)g

(
X,φY

)
+ g

(
X, hφY

)}
ξ + η(Y )

[
h
(
φX + φhX

)]
, (2.18)

In a (2n + 1)-dimensional almost contact metric manifold, if {e1, . . . , e2n, ξ} is a local
orthonormal basis of the tangent space of the manifold, then {φe1, . . . , φe2n, ξ} is also a local
orthonormal basis. It is easy to verify that

2n∑

i=1

g(ei, ei) =
2n∑

i=1

g
(
φei, φei

)
= 2n, (2.19)

2n∑

i=1

S(ei, ei) =
2n∑

i=1

S
(
φei, φei

)
= r − 2nk, (2.20)

2n∑

i=1

g(ei, Z)S(Y, ei) =
2n∑

i=1

g
(
φei, Z

)
S
(
Y, φei

)
= S(Y,Z) − 2nkη(Z), (2.21)

for Y,Z ∈ T(M). In particular in view of η ◦ φ = 0, we get

2n∑

i=1

g
(
ei, φZ

)
S(Y, ei) =

2n∑

i=1

g
(
φei, φZ

)
S
(
Y, φei

)
= S

(
Y, φZ

)
. (2.22)

Here we state a lemma due to Baikoussis and Koufogiorgos [21]which will be used in
this paper.

Lemma 2.1. Let M2n+1 be an η-Einstein manifold of dimension (2n + 1)(n ≥ 1). If ξ belongs to the
k-nullity distribution, then k = 1 and the structure is Sasakian.
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3. Conharmonically Symmetric N(k)-Contact Metric Manifolds

In this section we study conharmonically symmetric N(k)-contact metric manifolds. Differ-
entiating (1.3) covariantly with respect toW , we obtain

(
∇W C̃

)
(X,Y )Z

= (∇WR)(X,Y )Z

− 1

2n − 1

[
g(Y,Z)(∇WQ)X − g(X,Z)(∇WQ)Y + (∇WS)(Y,Z)X − (∇WS)(X,Z)Y

]
.

(3.1)

Therefore for conharmonically symmetric N(k)-contact metric manifolds we have

(∇WR)(X,Y )Z =
1

2n − 1

[
g(Y,Z)(∇WQ)X − g(X,Z)(∇WQ)Y + (∇WS)(Y,Z)X

−(∇WS)(X,Z)Y ].

(3.2)

Differentiating (2.12) covariantly with respect toW and using (2.15) we obtain

(∇WR)(X,Y )ξ = k
[
g
(
W,φY

)
X + g

(
hW,φY

)
X − g

(
W,φX

)
Y − g

(
hW,φX

)
Y
]
. (3.3)

Again, differentiating (2.14) covariantly with respect toW and using (2.16) and (2.17)
we have

(∇WS)(Y,Z) = 2(n − 1)
[
(1 − k)g

(
W,φY

)
η(Z) + g

(
W,hφY

)
η(Z) + g

(
hφW,Z

)
η(Y )

+g
(
hφhW,Z

)
η(Y )

]

+ {2(1 − n) + 2nk}
[
g
(
W,φY

)
η(Z) + g

(
hW,φY

)
η(Z) + g

(
W,φZ

)
η(Y )

+g
(
hW,φZ

)
η(Y )

]
.

(3.4)

Therefore we have

(∇WQ)(Y ) = 2k
[
g
(
W,φY

)
ξ −

(
φW

)
η(Y )

]
+ 2nk

[
g
(
W,hφY

)
+
(
hφW

)
η(Y )

]
. (3.5)

Putting Z = ξ in (3.2) and using (3.3), (3.4), and (3.5)we obtain

(2n − 1)k
[
g
(
W,φY

)
X + g

(
hW,φY

)
X − g

(
W,φX

)
Y − g

(
hW,φX

)
Y
]

= 2k
[
g
(
W,φX

)
φ2Y − g

(
W,φY

)
φ2X

]

+ 2nk
[
g
(
W,hφX

)
φ2Y − g

(
W,hφY

)
φ2X

]
.

(3.6)
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Taking inner product of (3.6)with ξ and using (2.1) we obtain

(2n − 1)k
[
g
(
W,φY

)
η(X) + g

(
hW,φY

)
η(X) − g

(
W,φX

)
η(Y ) − g

(
hW,φX

)
η(Y )

]
= 0. (3.7)

From (3.7)we get, either k = 0 or

g
(
W,φY

)
η(X) + g

(
hW,φY

)
η(X) − g

(
W,φX

)
η(Y ) − g

(
hW,φX

)
η(Y )

]
= 0. (3.8)

Putting hY instead of Y in (3.8) and using (2.12)we obtain

g
(
W,φhY

)
η(X) = (k − 1)g

(
W,φY

)
η(X). (3.9)

Using (3.9) in (3.7) yields

k
[
g
(
W,φY

)
η(X) − g

(
W,φX

)
η(Y )

]
= 0. (3.10)

The relation (3.10) gives k = 0, since g(W,φY )η(X) − g(W,φX)η(Y ) = 0 gives g(W,φY ) = 0
(by putting X = ξ), which is not the case for a N(k)-contact metric manifold, in general.

Therefore in either case we obtain k = 0.
Hence we have the following.

Theorem 3.1. A conharmonically symmetric n-dimensionalN(k)-contact metric manifold is locally
isometric to the product E(n+1)(0) × Sn(4).

Remark 3.2. The converse of the above theorem is not true in general. However if k = 0, then
we get R(X,Y )ξ = 0, and hence from the definition of the conharmonic curvature tensor

we obtain C̃(X,Y )ξ = 0, that is, the manifold under consideration is ξ-conharmonically flat.
Thus if an N(k)-contact manifold is locally isometric to E(n+1)(0) × Sn(4), then the manifold
is ξ-conharmonically flat.

4. ξ-Conharmonically Flat N(k)-Contact Metric Manifolds

In this section we consider a (2n+1)-dimensional ξ-conharmonically flatN(k)-contact metric
manifolds. Then from (1.3) we obtain

R(X,Y )ξ =
1

2n − 1

[
g(Y, ξ)QX − g(X, ξ)QY + S(Y, ξ)X − S(X, ξ)Y

]
. (4.1)

Using (2.1), (2.13), and (2.15) in (4.1)we obtain

[
η(Y )QX − η(X)QY

]
+ k

[
η(Y )X − η(X)Y

]
= 0. (4.2)

Putting Y = ξ in (4.2) and using (2.1) and (2.15)we get

QX = −kX + (2n + 1)kη(X)ξ. (4.3)
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Taking inner product withW of (4.3) yields

S(X,W) = −kg(X,W) + (2n + 1)kη(X)η(W). (4.4)

From relation (4.4), we conclude that the manifold is an η-Einstein manifold.
Conversely, we assume that a (2n+1)-dimensionalN(k)-contact manifold satisfies the

relation (4.4). Then we easily obtain from (1.3) that C̃(X,Y )ξ = 0.
In view of the above discussions we state the following.

Theorem 4.1. A (2n+1)-dimensionalN(k)-contact metric manifold is ξ-conharmonically flat if and
only if it is an η-Einstein manifold.

Hence in view of Lemma 2.1 we state the following.

Corollary 4.2. Let M be a (2n + 1)-dimensional ξ-conharmonically flat N(k)-contact metric mani-
fold, then k = 1 and the structure is Sasakian.

Let {e1, e2, . . . , en, en+1, . . . e2n, e2n+1 = ξ} be a local orthonormal basis of the tangent
space of the manifold. Putting X = W = ei in (4.4) and summing up from 1 to 2n + 1 we
obtain in view of (2.18) and (2.19) that

r = 0. (4.5)

Therefore we have the following corollary.

Corollary 4.3. In a (2n + 1)-dimensional ξ-conharmonically flat N(k)-contact metric manifold, the
scalar curvature r vanishes.

5. φ-Conharmonically Flat N(k)-Contact Metric Manifolds

This section deals with a (2n + 1)-dimensional φ-conharmonically flat N(k)-contact metric
manifold. Then we have from (1.3) that

R̃
(
φX, φY, φZ, φW

)

=
1

2n − 1

[
g
(
φY, φZ

)
S
(
φX, φW

)
− g

(
φX, φZ

)
S
(
φY, φW

)
+ S

(
φY, φZ

)
g
(
φX, φW

)

−S
(
φX, φZ

)
g
(
φY, φW

)]
.

(5.1)
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Let {e1, e2, . . . , e2n, ξ} be a local orthonormal basis of the tangent space of the manifold.
Then {φe1, φe2, . . . , φe2n, ξ} is also a local orthonormal basis of the tangent space. Putting
X = W = ei in (5.1) and summing up from 1 to 2n we have

2n∑

i=1

R̃
(
φei, φY, φZ, φei

)

=
1

2n − 1

2n∑

i=1

[
g
(
φY, φZ

)
S
(
φei, φei

)
− g

(
φei, φZ

)
S
(
φY, φei

)
+ S

(
φY, φZ

)
g
(
φei, φei

)

−S
(
φei, φZ

)
g
(
φY, φei

)]
. (5.2)

Using (2.18), (2.19), (2.20), and (2.21) in (5.2) we obtain

S
(
φY, φZ

)
= (r − k)g

(
φY, φZ

)
. (5.3)

Replacing Y and Z by φY and φZ in (5.3) and using (2.1)we have

S(Y,Z) = (r − k)g(Y,Z) + [(2n + 1)k − r]η(Y )η(Z). (5.4)

Putting Y = Z = ei in (5.4) and taking summation over i = 1 to 2n + 1 we get by using
(2.18) and (2.19) that

r = 0. (5.5)

In view of the above discussions we have the following.

Proposition 5.1. A (2n + 1)-dimensional φ-conharmonically flat N(k)-contact metric manifold is
an η-Einstein manifold with vanishing scalar curvature.

Therefore in view of the Lemma 2.1 we state the following theorem.

Theorem 5.2. A (2n + 1)-dimensional φ-conharmonically flat N(k)-contact metric manifold is a
Sasakian manifold with vanishing scalar curvature.

Definition 5.3. In a (2n + 1)-dimensional N(k)-contact metric manifold, if the Ricci tensor S
satisfies (∇XS)(φY, φZ) = 0, then the Ricci tensor is said to be η-parallel.

The notion of η-parallel Ricci tensor for Sasakian manifold was introduced by Kon
[22].

Putting r = 0 in (5.4)we have

S(Y,Z) = −kg(Y,Z) + (2n + 1)kη(Y )η(Z). (5.6)

Replacing Y and Z by φY and φZ in (5.6) and using (2.1)we obtain

S
(
φY, φZ

)
= −kg

(
φY, φZ

)
. (5.7)



ISRN Geometry 11

Relation (5.7) yields

(∇XS)
(
φY, φZ

)
= 0, (5.8)

since k is a constant. Therefore we have the following corollary.

Corollary 5.4. A (2n+1)-dimensional φ-conharmonically flatN(k)-contact metric manifold satisfies
η-parallel Ricci tensor.
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[5] C. Özgür, “On φ-conformally flat Lorentzian para-Sasakian manifolds,” Radovi Matematički, vol. 12,
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