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SIAM J. NUMER. ANAL. ( 1980 Society for Industrial and Applied Mathematics 
Vol. 17, No. 2, April 1980 0036-1429/80/1702-0007$01.00/0 

CONIC APPROXIMATIONS AND COLLINEAR SCALINGS 
FOR OPTIMIZERS* 

WILLIAM C. DAVIDONt 

Abstract. Many optimization algorithms update quadratic approximations to their objective functions. 
This paper suggests a generalization from quadratic to conic approximations, defined as ratios of quadratics 
whose denominators are squares, (a + a Tx)2. These can better match the values and gradients of typical 
objective functions, and hence give better estimates for their minimizers. Equivalently, affine scalings, 
S(w)=xo+Jw, of the domain of objective functions f are generalized to collinear scalings, S(w)= 
x0+Jw/(1+hTw)) to make the Hessian of the composition fS more nearly constant as well as better 
conditioned. Certain general features of optimization algorithms using conic approximations and collinear 
scalings are presented. These are not only invariant under affine scalings, along with Newton-Raphson and 
variable metric algorithms, but they are also invariant under the larger group of invertible collinear scalings. 

1. Introduction. Many optimization algorithms update quadratic approximations 
to their objective function f, and use the minimizers of successive approximations to 
estimate minimizers forf. In steepest descent algorithms, each quadratic approximation 
has a unit Hessian and matches the gradient of f at one point. In Newton-Raphson 
algorithms [9], each approximation matches the Hessian as well as the gradient of f at 
one point. In variable metric algorithms [4], each approximation matches the gradient 
of f at two points. But nonquadratic approximations are needed to match function 
values fi, as well as gradients gi. at points x+, whenever f+ -f_ does not equal 

+ g)T (x? - x-). This paper generalizes from quadratic to conic approximating 
functions, defined in ? 2 as those ratios of quadratics whose denominators are squares. 

Some reasons for suggesting this particular generalization are: 
1) Under appropriate conditions, a conic interpolation can be determined by 

successive function and gradient evaluations at the n + 1 vertices of an n dimensional 
simplex, using O(n 2) numerical operations after each, much as a quadratic inter- 
polation can be determined, to within an additive constant, by just its gradients at these 
vertices. 

2) Optimization algorithms using conic approximations can be made invariant 
under the group of collinear transformations characteristic of projective geometry. 
Newton-Raphson and variable metric algorithms are invariant only under the proper 
subgroup of affine transformations, while steepest descent and conjugate gradient 
algorithms are invariant only under the still smaller subgroup of isometries of Euclidean 
space. While affine transformations can improve the conditioning of the Hessian of the 
objective function at any point, collinear transformations can also make the trans- 
formed Hessian more nearly constant, since the Jacobian of collinear transformations, 
unlike that of affine ones, need not be constant. 

3) Conic functions, like most of the objective functions they are to approximate, 
need not be symmetric about their minimizers. They can also better fit exponential, 
penalty, or other functions which share with conics the property of increasing rapidly 
near some n -1 dimensional hyperplane in Dn. 

4) The minimizer of a conic function, like that of a typical objective function, need 
not be in the direction of a Newton step. In contrast, each minimizer of the nonquadratic 
approximations considered by Fried [5], Jacobson and Oxman [6], and others [2], [3], 
[7] is always in the direction of a Newton step since their approximating functions satisfy 

* Received by the editors April 29, 1979, and in revised form September 11, 1979. 
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CONIC APPROXIMATIONS 269 

f(x)=f* +q5(x-xx) for some homogeneous function q of degree z>0; i.e., qS(As)= 
A V+(s) for all A > 0 and s E R'. 

5) Theoretical concepts and computational methods of linear algebra are applic- 
able to algorithms using conic functions when points in the n dimensional domain of 
these functions are specified by the n ratios among n + 1 homogeneous coordinates, 
essentially because the group of invertible collinear transformations is isomorphic to 
the group of invertible (n + 1) x (n + 1) matrices modulo multiples of the unit matrix. 

Section 2 introduces some basic terms and concepts, and ? 3 applies these to the 
study of conic functions with given values and gradients at the vertices of a simplex. 
Section 4 shows how these conic interpolations can be obtained using 0(n2) numerical 
operations after each function and gradient evaluation. Section 5 gives an algorithm 
schemata from which specific optimization algorithms can be derived; it can be read first 
by those primarily interested in computation since it makes few references to the rest of 
this paper. 

The ellipsis "iff" is used for "if and only if". Lower case Greek letters denote real 
numbers which need not be integers; lower case Latin letters denote integers, functions, 
or column vectors; and upper case letters denote more general maps, matrices, or 
spaces. The transpose of any matrix A is AT, and A-T = (AT)-1 = (A-1)T. 

2. Definitions and explications. 
Dn is the n dimensional space of real n x 1 column vectors; 
Rmxn is the mn dimensional space of real m x n matrices; 
Rnfvn is the in (n + 1) dimensional space of real symmetric n x n matrices, ordered 

by A 0-O iff vTAv ?0 for all v E 
In is the n x n unit matrix; and 
X is an open convex subset in Dn. 
A smooth function f: X -* R is: 
affine iff its gradient is constant; 
quadratic iff its Hessian is constant; 
collinear iff it is a ratio of affine functions; 
conic iff it is a ratio of a quadratic to the square of an affine function; 
positive iff f(x) > 0 for all x E X, and 
cupped iff it has a minimizer, all its level sets are convex, and it has no smooth 

extension to a larger open convex domain. 
A map S: W -* X between convex sets W and X is affine, quadratic, collinear, or 

conic iff each affine f: X -* R makes the composition fS: W -* R affine, quadratic, 
collinear, or conic respectively. 

A gauge for a function f: X -* R is a smooth positive function p : X -* R which 
makes the product p2f : X -* R quadratic. 

A scaling for a function f: X -* R is a smooth map S: W -* X from an open set W in 
a Euclidean space to X which makes the composition fS: W -* R quadratic with unit 
Hessian. 

Some basic consequences of these definitions are: 
1) Hierarchy of conic functions. Each constant function is affine; a function is affine 

iff it is both quadratic and collinear, and each quadratic or collinear function is conic. 
2) Restrictions to lines. A function is affine, quadratic, collinear, or conic iff its 

restriction to each line in its domain is affine, quadratic, collinear, or conic respectively. 
3) Maximal extensions. A function has a (collinear) conic extension to all Rn iff it is 

(affine) quadratic. The largest convex domain for any other conic function is an open 
half space in Dn. 
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270 WILLIAM C. DAVIDON 

(4) Criticalpoints. The critical points of each conic function f: X -* form an affine 
subspace in X, possibly null; i.e., if x # y are critical points of f, then each point of X on 
the line through x and y is also a critical point of f. While Hessians at different critical 
points need not be the same, they share a common null space, consisting of multiples of 
the displacements x - y between critical points. A collinear function has a critical point 
iff it is constant. If a conic function has a local minimizer x*, then x* is a global 
minimizer, each level set of f is convex, and f has just one cupped conic extension. 

5) Level sets. The level sets of each conic function are conic sections, but these are 
similar and concentric iff the function is quadratic. To within an affine transformation of 
its domain, each conic function with a unique minimizer is equivalent to one with unit 
Hessian at its minimizer 0 E ns . For each such normalized conic f: X -* R, there is just 
one a E Dn with 

aTx<1 and 1(x)=f*+- T )2 

for all x E X. The level sets of f are convex conic sections which are invariant under 
rotations about a and have one focus at 0 E Din. This function is quadratic and its level 
sets are concentric spheres iff a = 0. For a ? 0, there is just one level set for each 
eccentricity e > 0. It is 

{x EX: a TaTxe2( -a Tx)2} 

within which f(x) f* + le2/aTa. This is an ellipsoid for e < 1, a paraboloid for e = 1, 
and a lobe of a hyperboloid for e > 1. The function f: X -* RI is convex only in the 
segment of a paraboloid 

{X eX: aTaxTX-(l+aTx)2}. 

6) A representation of collinear maps. A map S: W -+ X is collinear and has the 
value xo E X and Jacobian J E Din m at O E W c R'" iff there is an h E R' with 

T i~~~~w 
(2.1) 1+hTw>0 and S(w)=xo+l hT 

for all w E W. The Jacobian of this map at any w E W is 

(Im +wh Tylf1 +hW JwhTW) 

1+hTw FIh W)* 

This map is invertible iff J is invertible and SW = X, in which case 

'( ) J-1r Y(x-xo) 

7) A representation of conic functions. A function f: X -* R is conic and has the 
value fo E R and gradient go E Din at xo E X iff there is an a E Din and A E DnVn with 

TT 

T ~~~~~g0s 1 sTAs 
(2.2) a s<1 and f(xo+s)=fo+ +2 

for all s E Dn with xo + s E X. This function is collinear iff A = 0. Its gradient at any point 
X=XO+s of Xis 

1 T + A s T)1(go g = -2 (In - asTfl (ygo +As): 3- (yIn + as(g+ As), 
V V 
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CONIC APPROXIMATIONS 271 

where y = 1 - aTs is the value at x = xo + s of a gauge for f. This gradient vanishes at 
X* =Xo+S* eX iff 

(A - goa T)S* = _go. 

The value of f is the same at all critical points x* and equals 

1 gos* 1 s*As* 
f* fo+o 2 2 y* 2 7* 

where ey = 1-aTs*. The Hessian of f at x* is 

1 T =1 T 
2 (A-ago -goaT +2(fo-f*)aa T)= (In- as*-'A(I,-s*aT)1 

Y* Y* 

=4 (y*Il + as *)A(y*I, +s*aT). 
7* 

A critical point is a minimizer iff A _; it is unique iff A is invertible, in which case 
e* = 1/(1-aTA-lgo), s* = -y*A-go, f* =fo-2goTA-lgo, and the Hessian of f at x* 
is 

1S 
2 (A - ago)A-'(A - goaT) 

7* 

8) Scalings. The collinear map of (2.1) scales the conic function of (2.2) iff h = jT a 
and JTAJ = Im. A scaling S: W -* X of any function f : X -* R pairs the level sets of f 
with concentric spheres in W. If a function f: X -* R with a critical point x * has an 
invertible scaling S: W -* X, then x * is a unique minimizer; the Hessian of f at x * is 
positive definite, and this Hessian equals J-TJ-1, where J-1 is the Jacobian of 
S- :X-* W at x*. Morse's lemma [8] implies the converse: if a smooth function 
f: Rn -* R has a positive definite Hessian at a critical point x * E Rn, then there is an 
invertible scaling of the restriction of f to some neighborhood X of x*. 

9) Homogeneous coordinates. A function f : X -* R is conic iff for each xo E X there 
is a c E Rn+1 and A E Rn+lvn+l with 

(2.3) cII1 and f(xo+s)=-(C W)2 

for all s Ein with xo + s E X and all positive multiples w E Dn+l of (). The gradient 
g E Rn of f at x = xo + s is uniquely determined by 

(2.4) A (1) = s) +2f(x)c, 

where y = c (s) is the value at x = xo+s of a gauge for f. Equations (2.2) and (2.3) 

specify the same conic function iff 
T T 

(2.5) C(-) and A(A g0a ag0 +O) 2fToc 

10) Miscellaneous. An affine function over all Dn is positive iff it is a positive 
constant, and these are the only gauges for nonconstant quadratic functions. There are 
nonconstant positive affine functions over any proper open convex subset X in n , and 
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272 WILLIAM C. DAVIDON 

while all these gauge each constant function over X, the gauges for each nonconstant 
conic function are positive multiples of each other. 

The sum of two (collinear) conic maps is (collinear) conic iff they share a gauge. The 
set of those collinear maps S: W -* X, from an m dimensional W to an n dimensional X 
which share a gauge, is an (m + 1)n dimensional vector subspace in the -(m + 2)(m + 1 )n 
dimensional vector space of all conic maps S: W -* X which share this same gauge. 

Collinear maps preserve collinearity, convexity, and cross ratios; i.e., if S: W -> X 
is collinear, then 

(i) S pairs collinear points u, v, and w of W with collinear points S(u), S(v), and 
S(w) of X; 

(ii) S pairs each convex subset U in W with a convex subset SU in X; and 
(iii) if t, u, v, and w are collinear points of W, then for any norms on the spaces W 

and X, 

ilt-ullllv-wll list-Suil llSv-Swl 
Ilt-v llvu -wll list-Svii iiSu -SwlI 

whenever the denominators are positive. Note that the choice of norms does 
not affect these ratios since |IAsIl = IA I ilsiI for any norm. 

3. Conic interpolations. While each iteration of the algorithms to be considered 
uses the values and gradients of an objective function at just two points to update a conic 
interpolation, it is instructive first to derive a necessary and sufficient condition for there 
to be a conic interpolation to given function and gradient values at the vertices of any 
simplex. 

THEOREM 1. There is a conic function f: X -* R with values fk ElR and gradients 
gk E Rn at the m + 1 vertices Xk of an m dimensional simplex in X iff there are positive 
numbers Yk with 

(3.1) fi-fi = (2 (gj +gi) (x-xi) 

for all i and j. 
Proof. First assume that f is a conic function with values fk and gradients gk at Xk, 

and let yk be the value at Xk of a gauge for f. Since a gauge is positive, yk > 0, and since it 
is affine, its value at any point x(r) = xi + (xj -xi)r on the line through xi and xj is 
yi + (y - yi)r. Use the definition of a gauge to show that the function q: ax -* Rl defined by 

q(r) = (yi + (-y- yi))2f(x(r)) 

is quadratic. Evaluate q and its derivative q' at 0 and 1, and then use q (1)- q (0)= 
2(q'(0)+q'(1)) to get (3.1). 

Now assume that some fk e R, gk E RIn, and positive numbers yk satisfy (3.1) for the 
m + 1 vertices Xk of a simplex. Since only the ratios among the yk enter in (3.1), choose 
yo = 1. Define Sk = Xk - xo and use the linear independence of the m vectors Sk for k ? 0 
to show there is an a E RF with 

(3.2) aTSk=1-Yk 

for all k. For each k, define the vector rk = (gk - askigk) - 7kgO, and for each i and j, 
define the number 

(3.3) Pij=2 (6gj- g,) (xi -xi) 
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CONIC APPROXIMATIONS 273 

Use (3. 1) and (3.2), together with (fj -fi) + (fi -fo) + (fo -f;) = O, to get 

T~~~~~ (3.4) ri si = Ryiyi (Poi + poi pii), 
and hence r Tsj = r[Tsi. Use this and the linear independence of the m vectors Sk for k $ 0 
to show there is an A E R'Vf with 

(3.5) Ask = rk 

for all k. In (2.2), use any a E R' satisfying (3.2) and A E R... satisfying (3.5) to obtain a 
conic function with the given values and gradients. 0 

COROLLARY 1. There is an affinefunctionf: X -* with valuesfk E R and gradients 
gk E Rn at the m + 1 vertices Xk of a simplex in X iff for all i and j, 

fi-fi = g T(x1-xi) = gf(x;-xi), 
a quadratic interpolation iff 

jfif=2 (gi + gi) T(X-i ) 

a collinear interpolation iff there are positive numbers Yk with 

fi- fi=7 ViT(Xi-Xi) =g (xi xi), 
7i Vi 

and a conic interpolation iff there are positive numbers 7Yk with 

fifi = (Igi++ Yg) (xj xi). 

Proof. This last condition simply repeats the theorem and is included here only to 
facilitate comparisons. Obtain the other conditions from this one by showing that a 
conic interpolation is collinear iff the Pij defined by (3.3) are all zero, that it is quadratic 
iff it has a constant gauge, with yi = yj for all i and j, and that it is affine iff it is both 
quadratic and collinear. 0 

COROLLARY 2. If f: X -* R is a conic function with values fk E R and gradients 
gk E Rn at points Xk E X, then for each i and j there is just one Pij = Pji E R for which the 
values yk at Xk of each gauge for f satisfy (3.3). This Pij also satisfies 
(3.6) i = (f-fi)2- gT(x -Xi)g T(Xj xi), 

(3.7) Pi; =fu fX+ig)(xxi)=fi-fi-gT(x1-xi) 
Vi V~~~~~~i 

and 

(3.8) 1 2(Sj_ i A (S__ 
2 yi RYi Yi Yi 

for the A E Rnvn of (2.2), where Sk = Xk - XO. Iff is cupped, then pij_ O0. For each point x of 
the affine subspace in X spanned by the Xk, there are 0k e R with Z Ck > 0 and 
X = E wkXk/Z, Ok. Each gaugeforf with values Yk atxk has the value Z ckYk/Z, Ok > 0 atx, 
and the value off at x is 

Z f = kYkfk 1 E Z iJj7Yi7YjPq (3.9) f(x)= 
Y.WkYk 2 ( ZMkYk)2 

Proof. Define pij by (3.3), use (3.1) to get (3.6) and (3.7), and use (3.4) and (3.5) to 
get (3.8). If f is cupped, get p.j >0 from A _0 and (3.8). Since each gauge is affine, its 

This content downloaded from 165.82.168.47 on Fri, 12 Apr 2013 13:02:37 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


274 WILLIAM C. DAVIDON 

value at Z cokXk/ZY Wk is Z &0kYk/Z COk, and since each gauge is positive, Z CkYk >0. 
Multiply the function f specified in (3.9) by the square of this gauge to show that f is 
conic, and evaluate f and its directional derivatives at Xk to show that it is the required 
interpolation. O 

COROLLARY 3. There are at most 2n conic functions with values fk E R and gradients 
gk E Dn at the n + 1 vertices Xk of an n dimensional simplex in D8n. Of these, at most one is 
cupped. If there is a cupped conic interpolation f and iffo > fk for each k > 0, then there is 
just one gauge for f whose value at xo is 1; its value at each Xk is 

T 
-go 5/ 

fk to-fk + POk' 

where Sk = Xk - xo and Pok = ((fo-fk)k -gOSgkSk) 

Proof. Use Corollary 2 to show that there is at most one interpolating conic for each 
choice of signs for the n numbers Pok with k > 0, and that these signs are all positive for a 
cupped conic. O 

COROLLARY 4. There is a conic function over the interval [x_, x+] c= R with values 
f? E R and slopes g? E R at points x+ > x_ of R iff there are roots y > 0 to the quadratic 
equation 

(3.10) +y2 +-- y+g=. 
x+-x_ 

For each root 'y, there is just one conic interpolation gauged by an affine function whose 
values 'y-. at xi have the ratio y+/y = 'y. The value and slope of this interpolation at 
x (r) = x_ + (x+ - x4)r E X are 

(1 -r)f + yrf+ yr(1 -r)p 
f(x (TJJ 1 -,r+yr (1 -,r+yr)2 

and 

(1-r)g_ + y3rg+ 
g (x (r)) 

(1= - + yr) 

where 

P =2 ()'g+ - g_)(x+- x_) 

= f_ -f+ + yg+(x+ - x-) 

= f+ -f_ --g_(x+ - x_) and 

p2 = (f+ _f_)2 _ g+g_(x+ _ x_)2 

There is a cupped conic extension of f iff either f is constant, or else y2g+> g_ and 
y3g+ > g_, when the minimizer x* and minimum f* of f are 

3 -y g+x_-g_x+ 
X*- 3 

y g+-g_ 

and 

(f+_f_- p)2 
f* =fi 4p 
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CONIC APPROXIMATIONS 275 

Proof. Use (3.1) with y = y+/y- to get (3.10). Use Theorem 1, Corollary 2, and 
algebra to verify the other conclusions. 0 

This corollary provides a basis for one dimensional optimization algorithms such as 
those developed by Bj0rstad and Nocedal [1]. The following simple example assumes 
that for each k > 0, there is a cupped conic interpolation to the values and slopes of 
the objective function at Xk and Xk1 with a unique minimizer at Xk+1, and that 
fk-1 >fk. 

ALGORITHM 1. 
Input: A point xo in the domain X c R of an objective function f: X -* R, an initial 

nonzero step s1 E R to be taken from xo, and a subalgorithm for calculating the value 
fk e R and slope gk e R of f at any Xk E X. 

Calculate fo and go at xo. 
For each integer k > 0 until some convergence criterion is met, calculate fk and gk 

at Xk = Xk-1 + Sk, and set 

Pk = ((fk 1-fk) -2gk 1gksk/2 
Pkk-2_g-lkS 

Yk = -gk-lSk and 
fk-1 -fk +Pk 

3 
- YkgkSk 

Sk+1 3 
ykgk -gk-1 

4. Recursive interpolations and scalings. A minimizer of a cupped conic function f 
can be calculated from the values and gradients of f at n +1 points, using 0(n3) 
operations. This section shows how 0(n2) operations can be used after each function 
and gradient evaluation to update a conic interpolation and locate its minimizer, or 
equivalently, to update a collinear scaling of its domain. 

The main idea is to use (2.3) to replace the conic function f: X -* R by the quadratic 
1 T n+1 T function w -* 2w Aw over the n dimensional hyperplane in R with cW = 1, and to 

replace each point Xk = xO + Sk E X by a corresponding point 

1 |Sk\ 
Wk = (- 

on this hyperplane. The next algorithm calculates a V e Rn+lvn+l for a cupped conic 
function f : X -* R and n dimensional simplex in X, which is then used by the following 
theorem to specify a minimizer and minimum of f. 

ALGORITHM 2. 
Input: For each integer k from 0 through n, the value fk E R and gradient gk e Rn of 

a cupped conic function f: X -* R at the kth vertex Xk of an n dimensional simplex in X, 
with fo>fk for k>0. 

Set Vo= OE Rn+lvn+l. For each k from 1 through n, set 

Sk Xk XO, Pk = ((fofk)-goSkgkSk)'/2, f = -gOk 

Sk + 

Zk = 1 ) S Yk = ( Tygg and Vk = Zk -Vk-lYk 

YkgkSk 
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276 WILLIAM C. DAVIDON 

T 
T ~~~~~VkV k 

If ykVk > 0, set Vk= Vk-l + T 
YkVk 

else, set Vk = Vk-i. 

Set V = V,. 
THEOREM 2. For each cupped conic function f: X -* R whose values fk E DR at the 

n + 1 vertices Xk of an n dimensional simplex in X satisfy fo> fk for all k > 0, define 
VE l n+lvn+l by Algorithm 2. If y* > 0 and s* E R n are defined by 

1- S*) (?) Vgo 

then f has its minimum value 

f* -fo+* g?s* =fo-2[go,0]V(0) 

at xo + s*, where go e Rn is the gradient off at xo. Furthermore, 

(4.1) V_0, Vc=0, VAV=V and AVA=A-2f*cc 

where C ERn+1 and AE R n+lvn+i are defined by (2.3). 
Proof. Use Corollary 3 of Theorem 1 to show that the yk defined in Algorithm 2, 

together with yo = 1, are the values at Xk of a gauge for f. Use (2.4) to show that for each 
k from 1 through n, the Yk and Zk defined in Algorithm 2 satisfy 

(4.2) CTZk = 0 and Yk =Azk +2(fo-fk)c. 

Since f is cupped, there is a minimum value f* E R of f and a w* E R n+1 with c Tw* = 1 
and Aw* = 2f*c. For each k from 0 through n, define Zk E R and Uk E R+ 

by 

Zk=[W*,Zl,Z2, '*,Zk] and Uk=A-AVkA-2f*cc, 

and define the induction hypothesis 

(9k) Vk 0, Vkc = 0, Vk Vk=Vk, Uk 0 and UkZk = O. 

To prove go, note that Vo =0, that f _f*, in (2.3) implies UO2 '0, and that 
UoZo = Uow* = Aw* - 2f*c = 0. The following proof of 9Pk from 9k-1 is similar to one 
for variable metric algorithms. 

Assume A'k-1 for some k > 0 and show that AVk = Uk-lZk, and hence yjvk = 
Zk Uk_ Zk ?0, with equality iff Uk-lZk = 0. If YkVk =0 , the algorithm sets Vk = Vkl1, so 
that Uk = Uk-i and UkZk = Uk-iZk = [Uk-iZk-i, Ukizk] =0. Now assume ykjv > 0 
and get Vk '-Vki 1 . Use Vklic O and c Zk = O to get Vkc = 0. Use VkAZk = Vkyk- 
Zk and Vk-1AVk-1 = Vk-1 to get VkAVk = Vk. Use the definitions of Uk and Vk to get 

T 
ZkZ k_ 

Uk =Uk-1-Uk-1 ZTUkZk Uk 
Z k Uk-1Z 

Then use Uk_: 10 to get Uk 0 0, and use Uk-iZk-= 0 and UkZk = 0 to get UkZk = 0. 
This completes the proof of 2k from -ik,1 and hence of An. 

Use the linear independence of the vectors Sk for k #0 , together with c TZk =0 and 
c w* = 1, to show that rank (Zk) = k + 1, which with UkZk = 0 gives rank (Uk) C n - k; 
in particular, Un = 0. Use this, An, and (2.3) and (2.4) to obtain the conclusions of the 
theorem. O 
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While each iteration in Algorithm 2 refers back to the starting point x0, a linear 
mapping in each iteration, using 0(n 2) operations, can update this reference point so 
that the kth iteration uses only the step Xk - Xk1 instead of Xk - x0. The next algorithm 
differs from Algorithm 2 just by this mapping. 

ALGORITHM 3. 
Input: For each integer k from 0 through n, the value fk E R and gradient gk R n of 

a cupped conic function f: X -e R at the kth vertex Xk of an n dimensional simplex in X, 
with fk-l >fk for each k > 0. 

Set Vo = 0 E Rn+1vn+1. For each k from 1 through n, set 
T 

1" f T\ TT1/2 -gk-ilSk 
Sk= Xk -Xk-1, Pk = ((fk-1 Jk) -gk-lSkgkSk) ,Yk = 

fk +Pk fk-1 -fk + Pk 

1 

Y Sk lYkgk gk - 1 
Zk(Y = Vk = Z - Vk-lYkq 

-'kgkSk/ 

Yk 

and 

Dk Ik( -Sk) 

T set Vk=DVkVkDT If YkVk > 0, set Vk=Lk( Vk1 + T k 
YkVk 

else, set Vk=DkVk-1Dk 

Set V= Vn. 
COROLLARY 1. For each cupped conic function f: X R Da whose values fk E R at the 

n + 1 vertices Xk of an n dimensional simplex in X satisfy fk-1 > fk for all k > 0, define 
VE Stn+lvn+1 by Algorithm 3. If y* >0 and s ED Rnare defined by 

1 (s 1) ( g>) n( O) 

then f has its minimum value 

f * =fn +2 gnS* fn - [gn,0]V(O) 

at Xn + S*, where gn E R is the gradient of f at xn. Furthermore, 

V-'0, Vcn=0, VAnV=V and AnVAn=An-2f*CnCn 
where cn E Rn+1 and An E R; n+lvn+1 are defined by replacing xo by xn in (2.3). 

Proof. For each k from 0 through n, define CkeIRn+1 and AkE Rn+lvn?l by 
replacing x0 by Xk in (2.3). Show that for each k from 1 through n, the Yk and Zk defined 
in Algorithm 3 satisfy 

T 
Ck-lZk = and Yk =Ak-1Zk+2(fk-1-fk)ck-1 

instead of (4.2). As in the proof of Theorem 2, define f * E R and w * E Rn+1 by cw* =W 1 
and Aow* = 2f*co. Define Zo = w * and for each k from 1 through n, define Zk E 
Rn+lxk+l by Zk =Dk[Zk-l, Zk], where Dk l DRn+lxn+l is defined in Algorithm 3. 
Replace c and A by Ck and Ak in the definition of Uk and the induction hypothesis 9Pk of 
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the proof of Theorem 2, and replace c and A by Ck-l and Ak-i in the proof of ?Pk from 
gk-i. Use Ck = Dk Ck- and Ak = Dk Ak-lDk to complete the proof of this corol- 
lary. O 

The symmetric matrices Vk ?0 can be factored as Vk = LkL7j for an Lk E Rnll'Mk 

of rank mk = rank (Vk) - n. These Lk are determined only to within a right multi- 
plication by an orthogonal mk X mk matrix. Each Lk determines an hk E: R mk and 
fk E RnXmk by 

(4.3) T(=k) k 

and these, with Xk E X, determine a collinear scaling Sk: Wk -O X of f: X -e R by (2.1). 
The composite function fSk: Wk -e R is quadratic with unit Hessian since /?kk implies 
Lk A Lk = Im and Ljc = 0, or equivalently, that hk and Jk satisfy hk = Jka and 
JkAJk = Im. 

The only changes needed in Algorithm 3 to update Lk, and hence the collinear map 
Sk: Wk -e X, instead of Vk = LkLk, are to define an integer mO = 0, and then for each 
k > 0, to replace the update for Vk by the following update for mk and Lk E Rn+iXmk: 

If ykVk >O, set mk = mk-4+1 and Lk = Dk[Lk-1, Vk(YkVk)]; 

else, set mk = mk- and Lk = DkLk-i. 

5. An algorithm schemata. Instead of discarding all previous interpolations in each 
iteration, as in Algorithm 1 for one dimensional problems, or saving all previous 
interpolations, as in Algorithms 2 and 3 for cupped conic objective functions, more 
general algorithms need to selectively replace some old information about the objective 
function with new. The choice of what is to be replaced needs to take into account at 
least two factors. For one, information gathered in regions far from a minimizer is 
usually better discarded than that from nearby regions. For another, information from 
steps which are nearly in the same direction as the current step is usually better 
discarded than that from steps in quite different directions. Conflict between these 
desiderata arise when steps near the minimizer lie in a subspace of few dimensions, and 
various strategies for balancing them need to be considered. However since these 
considerations are not unique to algorithms using conic approximations or collinear 
scalings, the following schemata leaves open this choice of strategy, and only suggests 
how any one could be implemented. 

Input: m and n, positive integers specifying the dimension m of the region in Rwn 
consistent with any linear equality constraints; if there are no constraints, 
m = n; 

xo E Rn, a point consistent with any constraints where the first value and 
gradient of the objective function will be computed; 

JOE E;8nXm, a matrix whose m columns span all steps consistent with any 
constraints. If the initial conic approximation is quadratic, then the 
columns of Jo are conjugate steps which if taken from the minimizer 
would each increase the quadratic approximation by 2; 

ho E Rm, a column vector equal to zero if the initial conic approximation is 
quadratic; 

E E DR, a positive number, used in a test which stops the calculation when the 
minimum of the current conic approximation is within E of the current 
function value; and 
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a subalgorithm for calculating the value fk E Ra and gradient gk E wR of the 
objective function at Xk. 

Step 0. Call fo and go at xo. 
Comment. The initial conic approximation to the objective function satisfies 

(5.1) f(xo+ 
Jo w 

) =fo+dgojow+ W Tw 

for all w E WRm with 1 + hojW > 0. This approximation is singular at those x E wR equal to 
xo +Jow/ho w for some w E WRm with how >0. If goJoho < 1, it has the minimum value 
fo-2 II2goII at 

Jo1 hJo4go 

For each k > 0: 
Step 1 k Set Wk =-k-lgk-1 If 2 WkWk < E, then stop. 

Else, go to Step 2k* 

Comment. This simple convergence test is invariant under collinear mappings; it 
may be supplemented with others. 

Step 2 k. Find a step Sk = A kJk-1 Wk, typically with A k = 1/ (1 + h k-1 Wk), for which the 
function value fk and gradient gk at Xk = Xk1 + Sk satisfy 

T 
0 > gk-lSk, 

fk-1 >fk and (fk-1-fk)2 >gk-lSkgkSk. 

Comment. Some step Sk will satisfy the stated conditions provided the objective 
function has a lower bound. 

Step 3k. Set Pk = ((fk-1 - k) - lgk-SkgkSk), 

'Yk = -gk-1Sk/(fk-1-fk +Pk), and 
T T 

rk = Jk-1 (Ykgk -gk-1)-hk-1YkgkSk. 

Comment. This 'Yk E Ra and rk E Rm are used in the update for hk and Jk. The 'Yk is the 
ratio of the value of a gauge at Xk to that at Xk1, and rk is the change in the gradient of 
the composite function fSk-1: W -* R resulting from the step from Xk-l to Xk, where Sk-l 
satisfies (2.1). If differences in function values are used to estimate gradients, then the 
components of rk can be estimated directly from function differences, rather than first 
estimating gk and then using it to calculate rk. 

VT ~~T Step 4k. Choose a vector Vk E Rm with VkVk = 2Pk ?? Vkrk. 

Set Uk = (Vk - rk)/(vk - rk)Vk, 

hk = Ykhk-1 + (1- Yk - Ykhk-lVk)Uk, and 

Jk = 'YkJk-1 + (Sk -YkJk-1Vk)Uk-Skhk. 

Comment. The choice of the vector Vk E Rm determines what old information about 
the objective function is to be replaced by new information. If u kTv; = 0 for some j < k, 
then all information from the jth step is kept. If Sk is nearly in the same direction as some 
si, for which information is to be kept, then Vk should be nearly in the same direction 
as v;. 

THEOREM 3. If an algorithm of this type is used with a cupped conic objective 
function f: X -e St, and if for each k m, the Vk chosen in Step 4k makes u kjV1 = 0 for all 
j < k, then the m + 1 points Xk for k _ m span the m dimensional affine subspace in X of 
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those x for which x - xo is in the column space of Jo. The restriction of f to this affine 
subspace has a minimum iff 1 + h TWm+ > 0, and if this is the case, this restriction has its 
minimum value 

f= fm-_llWm+ill2 
at 

Jmwm+1 
X* =Xm +h T . 

Furthermore, Lm E R n+lxm defined by (4.3) satisfies 
LTAmLm = Im and LTcm =0, 

where cm E Rn+1 and Am E n+lvn+1 are defined by replacing xo by Xm in (2.3). 
Proof. To simplify this argument, keep xo as a reference point, as in Algorithm 2, 

instead of shifting the reference point from Xk1 to Xk in the kth iteration, as in this 
algorithm and Algorithm 3; i.e., make these changes in the kth iteration: 

Sk = Xk - XO, Pk =((fo -fk) -gOSkg Sk)Sk2 Yk =-g sk/(fO fk+Pk), 

T g ~~~~T 
rk = Jk-1 (Ykgk - go) - hk-lYkg kSk, 

hk = hk-1 +( hik-1V k)Uk 

and 

Jk = Jk-1 + Sk Jk1Vk) Uk 
Yk 

Use Corollary 3 of Theorem 1 to show that these yk, together with yo = 1, are the values 
at Xk of a gauge for f. Define Yk and Zk as in Algorithm 2 and define Lk by (4.3). Show 

T that rk = Lk-lyk, 

Lk =Lk-1+(Zk-Lk-lVk )k, 

Zk LkVk, and Vk = Lkyk. Define c E fRn+1 and A E Rn+1vn+1 by (2.3) so that Yk and Zk 
satisfy (4.2). Show that if yi and z1 also satisfy (4.2), as well as zi = Lk-1vV, v1 = Lk-1Y;, 
and ukv1 = 0, then Lk inherits from Lk-l the property that z; = Lkv1 and v; = Lky1. Then 
use induction as in the proof of Theorem 2. Lastly, verify that the update for hk and Jk 
given in the algorithm differs from that given here by just the linear mapping Dk defined 
in Algorithm 3. 0 

6. Summary and conclusions. Three ways to specify conic functions have been 
introduced; one given by (2.2) and used in Theorem 1, one given by (2.3) using 
homogeneous coordinates and used in Theorem 2, and one given by (5.1) in terms of a 
collinear scaling and used in the algorithm schemata of ? 5. Equations (2.2) and (2.3) 
specify the same conic function iff their parameters satisfy (2.5), and (2.2) and (5.1) 
specify the same conic function iff ho = JoTa and JoTAJo = I. 

Theorem 1 and its corollaries in ? 3 summarize basic properties of conic inter- 
polations with given values and gradients at the vertices of a simplex. Corollary 4 
specializes Theorem 1 to conic interpolations over line intervals, and Algorithm 1 
suggests how these can be used for line searches, though safeguards must be added to 
make this a general purpose algorithm. Theorem 2 gives the properties of Algorithm 2, 
which uses O(n2) operations to update a conic interpolation after each evaluation of a 
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function and its gradient. Algorithm 3 differs from Algorithm 2 in using only the steps 
Xk - Xkl rather than Xk - xO for making these updates. Algorithm 4 updates collinear 
scalings for the objective function rather than conic approximations to it, though these 
are equivalent, in the absence of rounding, for approximations with unique minimizers. 
Theorem 3 states the basic properties of the algorithm schemata of ? 5 for updating 
collinear scalings. Specific algorithms can be obtained from this by adding rules for 
choosing the factor Ak determining the magnitude of Xk - Xk-l in Step 2, and for 
choosing the direction of the vector Vk in Step 4, which determines what information 
from previous iterations is to be replaced in the current one. 

P. Bj0rstad and J. Nocedal [1] have developed an algorithm for one dimensional 
minimization which improves upon Algorithm 1 of ? 3. Theirs includes safeguards to 
insure stability. They prove it has an R quadratic convergence rate, when there is a 
neighborhood of the minimum in which f" is positive and f"' is Lipschitz continuous, and 
that it has a faster convergence rate than algorithms making cubic interpolations when 
f"f""> 2(ft"')2. 

D. Sorensen [10] has shown that an algorithm updating collinear scalings for n 
dimensional problems has a Q superlinear convergence rate and that it compares 
favorably with a widely used BFGS variable metric algorithm on a variety of standard 
test problems. His algorithm updates a matrix Ck corresponding to fkj =AkA1 for 
the J of (2.1) and A of (2.2). 
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