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Vol. 17, No. 2, April 1980 0036-1429/80/1702-0007$01.00/0

CONIC APPROXIMATIONS AND COLLINEAR SCALINGS
FOR OPTIMIZERS*

WILLIAM C. DAVIDONYt

Abstract. Many optimization algorithms update quadratic approximations to their objective functions.
This paper suggests a generalization from quadratic to conic approximations, defined as ratios of quadratics
whose denominators are squares, (o +a "x)*. These can better match the values and gradients of typical
objective functions, and hence give better estimates for their minimizers. Equivalently, affine scalings,
S(w)=xo+Jw, of the domain of objective functions f are generalized to collinear scalings, S(w)=
xo+Jw/(1+hTw), to make the Hessian of the composition f§ more nearly constant as well as better
conditioned. Certain general features of optimization algorithms using conic approximations and collinear
scalings are presented. These are not only invariant under affine scalings, along with Newton—-Raphson and
variable metric algorithms, but they are also invariant under the larger group of invertible collinear scalings.

1. Introduction. Many optimization algorithms update quadratic approximations
to their objective function f, and use the minimizers of successive approximations to
estimate minimizers for f. In steepest descent algorithms, each quadratic approximation
has a unit Hessian and matches the gradient of f at one point. In Newton—-Raphson
algorithms [9], each approximation matches the Hessian as well as the gradient of f at
one point. In variable metric algorithms [4], each approximation matches the gradient
of f at two points. But nonquadratic approximations are needed to match function
values f., as well as gradients g. at points x., whenever f.—f_ does not equal
3(g++g) (x+—x_). This paper generalizes from quadratic to conic approximating
functions, defined in § 2 as those ratios of quadratics whose denominators are squares.

Some reasons for suggesting this particular generalization are:

1} Under appropriate conditions, a conic interpolation can be determined by
successive function and gradient evaluations at the n + 1 vertices of an n dimensional
simplex, using O(n?) numerical operations after each, much as a quadratic inter-
polation can be determined, to within an additive constant, by just its gradients at these
vertices.

2) Optimization algorithms using conic approximations can be made invariant
under the group of collinear transformations characteristic of projective geometry.
Newton-Raphson and variable metric algorithms are invariant only under the proper
subgroup of affine transformations, while steepest descent and conjugate gradient
algorithms are invariant only under the still smaller subgroup of isometries of Euclidean
space. While affine transformations can improve the conditioning of the Hessian of the
objective function at any point, collinear transformations can also make the trans-
formed Hessian more nearly constant, since the Jacobian of collinear transformations,
unlike that of affine ones, need not be constant.

3) Conic functions, like most of the objective functions they are to approximate,
need not be symmetric about their minimizers. They can also better fit exponential,
penalty, or other functions which share with conics the property of increasing rapidly
near some n — 1 dimensional hyperplane in R".

4) The minimizer of a conic function, like that of a typical objective function, need
not be in the direction of a Newton step. In contrast, each minimizer of the nonquadratic
approximations considered by Fried [5], Jacobson and Oxman [6], and others [2], [3],
[7]is always in the direction of a Newton step since their approximating functions satisfy

* Received by the editors April 29, 1979, and in revised form September 11, 1979.
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CONIC APPROXIMATIONS 269

f(x)=fy + d(x — x4 ) for some homogeneous function ¢ of degree v >0; i.e., dp(As) =
A’¢(s) forallA >0and seR".

5) Theoretical concepts and computational methods of linear algebra are applic-
able to algorithms using conic functions when points in the n dimensional domain of
these functions are specified by the n ratios among »n +1 homogeneous coordinates,
essentially because the group of invertible collinear transformations is isomorphic to
the group of invertible (n + 1) X (n + 1) matrices modulo multiples of the unit matrix.

Section 2 introduces some basic terms and concepts, and § 3 applies these to the
study of conic functions with given values and gradients at the vertices of a simplex.
Section 4 shows how these conic interpolations can be obtained using O(n?) numerical
operations after each function and gradient evaluation. Section 5 gives an algorithm
schemata from which specific optimization algorithms can be derived; it can be read first
by those primarily interested in computation since it makes few references to the rest of
this paper.

The ellipsis ““iff”” is used for ““if and only if”’. Lower case Greek letters denote real
numbers which need not be integers; lower case Latin letters denote integers, functions,
or column vectors; and upper case letters denote more general maps, matrices, or
spaces. The transpose of any matrix Ais A, and A" T=(A")'=4a™HT

2. Definitions and explications.

R" is the n dimensional space of real n X1 column vectors;

R™*" is the mn dimensional space of real m X n matrices;

R™"" is the 3n(n + 1) dimensional space of real symmetric n X n matrices, ordered

by Az0iff v"Av =0 for all veR";

I, is the n X n unit matrix; and

X is an open convex subset in R",

A smooth function f: X > R is:

affine iff its gradient is constant;

quadratic iff its Hessian is constant;

collinear iff it is a ratio of affine functions;

conic iff it is a ratio of a quadratic to the square of an affine function;

positive iff f(x)>0 for all x € X, and

cupped iff it has a minimizer, all its level sets are convex, and it has no smooth

extension to a larger open convex domain.

A map §: W - X between convex sets W and X is affine, quadratic, collinear, or
conic ift each affine f: X - R makes the composition fS: W >R affine, quadratic,
collinear, or conic respectively.

A gauge for a function f: X >R is a smooth positive function p : X - R which
makes the product p’f: X - R quadratic.

A scaling for afunction f: X > Ris asmoothmap S : W - X from an open set W in
a Euclidean space to X which makes the composition fS: W - R quadratic with unit
Hessian.

Some basic consequences of these definitions are:

1) Hierarchy of conic functions. Each constant function is affine; a function is affine
iff it is both quadratic and collinear, and each quadratic or collinear function is conic.

2) Restrictions to lines. A function is affine, quadratic, collinear, or conic iff its
restriction to each line in its domain is affine, quadratic, collinear, or conic respectively.

3) Maximal extensions. A function has a (collinear) conic extension to all R" iff it is
(affine) quadratic. The largest convex domain for any other conic function is an open
half space in R".
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270 WILLIAM C. DAVIDON

(4) Critical points. The critical points of each conic function f: X - R form an affine
subspace in X, possibly null; i.e., if x # y are critical points of f, then each point of X on
the line through x and y is also a critical point of f. While Hessians at different critical
points need not be the same, they share a common null space, consisting of multiples of
the displacements x — y between critical points. A collinear function has a critical point
iff it is constant. If a conic function has a local minimizer x,, then x, is a global
minimizer, each level set of f is convex, and f has just one cupped conic extension.

5) Level sets. The level sets of each conic function are conic sections, but these are
similar and concentric iff the function is quadratic. To within an affine transformation of
its domain, each conic function with a unique minimizer is equivalent to one with unit
Hessian at its minimizer 0 € R". For each such normalized conic f: X - R, there is just
one a € R" with

1 x™x

2(1-a'x)?

for all x € X. The level sets of f are convex conic sections which are invariant under
rotations about a and have one focus at 0 € R". This function is quadratic and its level

sets are concentric spheres iff a =0. For a # 0, there is just one level set for each
eccentricity e > 0. It is

a’x<1 and flx)=f.+

{xeX:aTax"x=e*(1~ax)?

within which f(x) = f, +3e/a”a. This is an ellipsoid for e <1, a paraboloid for e =1,
and a lobe of a hyperboloid for e> 1. The function f: X >R is convex only in the
segment of a paraboloid

xeX:aTax"x=(1+a"x)3.
6) A representation of collinear maps. A map §: W- X is collinear and has the

value xo€ X and Jacobian J € R**™ at 0 W = R™ iff there is an h € R™ with

T _ Jw
2.1) 1+h"w>0 and S(w)—xo+-————-—1+hTw
for all w € W. The Jacobian of this map at any we W is
In+whD)' 1 ( _ thT)
1+h'w  1+hTw 1+h"w/

Jw)=J

This map is invertible iff J is invertible and SW = X, in which case

J M (x = x0)

-1 _
S LT

7) A representation of conic functions. A function f:X - R is conic and has the
value fo€ R and gradient goe R" at xoe X iff thereisanaeR" and A€ R™¥" with
gos 1 sTAs
—a’s 2 (l—aTs)2
for all s € R” with xo+ s € X. This function is collinear iff A = 0. Its gradient at any point
x=xo+s of X is

(2.2) a’s<1 and f(x0+s)=f0+1
1 T\-1 1 T
=—,—as") (‘)/80+AS)=;'§(YI,,+aS Wygo+ As),
Y
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CONIC APPROXIMATIONS 271

where y =1—a”s is the value at x = xo+s of a gauge for f. This gradient vanishes at
Xge =Xot+S5, €X iff

(A —8god T)S* = —8o-
The value of f is the same at all critical points x, and equals

1gds 1sfAs
fa=fot5= === fom 35
Y% Y%
where v, =1—a’s,. The Hessian of f at x,, is

b

1 1 _ _
—Z(A—agoT—goaT+2(f0—f*)aaT)=7(1n—as§) A, —s.a”)™
sk E3

1
=5 (yela + a5 ) A(ysl, +54a").
£

A critical point is a minimizer iff A =0; it is unique iff A is invertible, in which case
ve=1/1—=aTA7 go), 54 = —¥xA g0, fx = fo—386 A" go, and the Hessian of f at x,
is

- (A—agDA™ (A~ goa").
Y%
8) Scalings. The collinear map of (2.1) scales the conic function of (2.2)ift h =J Ta
and JTAJ =1I,,. A scaling $: W - X of any function f: X - R pairs the level sets of f
with concentric spheres in W. If a function f: X - R with a critical point x, has an
invertible scaling §: W - X then x, is a unique minimizer; the Hessian of f at x is
positive definite, and this Hessian equals J "J ', where J™' is the Jacobian of
$':X->W at x,. Morse’s lemma [8] implies the converse: if a smooth function
f:R*>R has a positive definite Hessian at a critical point x, € R", then there is an
invertible scaling of the restriction of f to some neighborhood X of x,.
9) Homogeneous coordinates. A function f: X - Ris conic iff for each xo € X there
isaceR" and Ae R*™"*! with

1w Aw

(2.3 c ((1))—1 and f(xo+s)= 2T TP

for all s e R" with xo+s € X and all positive multiples w € R**" of (i) The gradient
g<R"” of f at x = xo+ s is uniquely determined by

.4 A (]) = (L5 +2re

where y = cT( ;) is the value at x =xo+s of a gauge for f. Equations (2.2) and (2.3)
specify the same conic function iff
_ _ T _ T
(2.5) c= ( a) and A= (A goaT @80 go) +2focc T
1 8o 0

10) Miscellaneous. An affine function over all R" is positive iff it is a positive
constant, and these are the only gauges for nonconstant quadratic functions. There are
nonconstant positive affine functions over any proper open convex subset X in R", and
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272 WILLIAM C. DAVIDON

while all these gauge each constant function over X, the gauges for each nonconstant
conic function are positive multiples of each other.
The sum of two (collinear) conic maps is (collinear) conic iff they share a gauge. The
set of those collinear maps §: W - X, from an m dimensional W to an » dimensional X
which share a gauge, is an (m + 1)n dimensional vector subspace in the 3(m +2)(m + 1)n
dimensional vector space of all conic maps S: W -» X which share this same gauge.
Collinear maps preserve collinearity, convexity, and cross ratios; i.e.,if S: W-> X
is collinear, then
(i) S pairs collinear points u, v, and w of W with collinear points S(u), S(v), and
S(w) of X;
(ii) S pairs each convex subset U in W with a convex subset SU in X; and

(iif) if ¢, u, v, and w are collinear points of W, then for any norms on the spaces W
and X,

le —ulllo —wi _ ISt —Sul |Sv — Sw
le—olllu —wl St —Soll|Su - Swl

whenever the denominators are positive. Note that the choice of norms does
not affect these ratios since ||As||=|A|[ls|| for any norm.

3. Conic interpolations. While each iteration of the algorithms to be considered
uses the values and gradients of an abjective function at just two points to update a conic
interpolation, it is instructive first to derive a necessary and sufficient condition for there
to be a conic interpolation to given function and gradient values at the vertices of any
simplex.

THEOREM 1. There is a conic function f: X >R with values f. € R and gradients
gr € R" at the m + 1 vertices xi of an m dimensional simplex in X iff there are positive
numbers vy with

T
(3.1) fl—f,=%<;y‘lg,+l,lg,) (x,»—x.»)
] i
foralliandj.

Proof. First assume that f is a conic function with values f; and gradients g; at x,
and let y, be the value at x, of a gauge for f. Since a gauge is positive, y, > 0, and since it
is affine, its value at any point x(7) = x; +{x; —x;)7 on the line through x; and x; is
v: + (y; — v:)7. Use the definition of a gauge to show that the function q : R—»> Rdefined by

q(r)=(vi+ (v = ¥)7)*f(x (7))

is quadratic. Evaluate q and its derivative ¢’ at 0 and 1, and then use q(1)—¢q(0)=
3(q'(0)+4'(1)) to get (3.1).

Now assume that some f; € R, g € R", and positive numbers v, satisfy (3.1) for the
m + 1 vertices x; of a simplex. Since only the ratios among the y, enter in (3.1), choose

vo= 1. Define s, = xi — xo and use the linear independence of the m vectors s, for k #0
to show there is an a e R" with

(3.2) a"si=1—

for all k. For each k, define the vector r. = v (g« — asigx) — yxgo, and for each i and j,
define the number

T
(3.3) Pij =%<‘y" 81'“&81') (x; = x:).
Yi Yi

This content downloaded from 165.82.168.47 on Fri, 12 Apr 2013 13:02:37 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

CONIC APPROXIMATIONS 273

Use (3.1) and (3.2), together with (f; —f;) +(fi —fo) + (fo—1:) =0, to get
(3.4) risi = vrvi(poi + Po; — Pij)s

and hence riTs,- = r,~Tsi. Use this and the linear independence of the m vectors s, for k # 0
to show there is an A € R™"" with

(35) Ask =TI

for all k. In (2.2), use any a € R" satisfying (3.2) and A € R""" satisfying (3.5) to obtain a
conic function with the given values and gradients. [

COROLLARY 1. There is an affine function f : X > R with values fi. € R and gradients
gr € R” at the m + 1 vertices xi. of a simplex in X iff for all i and j,

fi—fi=gi(xi—x)=2gi (x;—x),
a quadratic interpolation iff
fi—fi=5g+g)" (x;—x),

a collinear interpolation iff there are positive numbers y; with
_Y T
fi—fi= g, ! (5= x:) =38 (x; = xi),
and a conic interpolation iff there are positive numbers ;. with
RYIAY
fi=fi=3\ &+ &) (x—x).
Yi Yi

Proof. This last condition simply repeats the theorem and is included here only to
facilitate comparisons. Obtain the other conditions from this one by showing that a
conic interpolation is collinear iff the p; defined by (3.3) are all zero, that it is quadratic
iff it has a constant gauge, with y; = v; for all / and j, and that it is affine iff it is both
quadratic and collinear. [}

COROLLARY 2. If f: X =R is a conic function with values fi. € R and gradients
g € R at points x; € X, then for each i and | there is just one p;; = p; € R for which the
values vy, at x; of each gauge for f satisfy (3.3). This p;; also satisfies

(3.6) pr=(f—f)—gl (x;i—x)g] (x;—x.),
3.7) =f f,+ g (5 xf>=ﬁ—ﬁ—§—fgf<x,»—xi>
and
Loo(si_s\" (8 8
G.8) Pi=a Yo (7; %) A('Yj 'Yi)

forthe AeR""" of (2.2), where si = xix — xo. If f is cupped, then p;; Z 0. For each point x of
the affine subspace in X spanned by the xi, there are wir€R with Y wi,>0 and
x =Y wwxi/ 2, wr. Each gauge for f with values v\ at x; has the value ¥, wiyi/Y. o, >0 atx,
and the value of f at x is

_ 2wy 1Y 0wy
39 FO=N e 2 Cowm)®

Proof. Define p; by (3.3), use (3.1) to get (3.6) and (3.7), and use (3.4) and (3.5) to
get (3.8). If f is cupped, get p; =0 from A =0 and (3.8). Since each gauge is affine, its
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274 WILLIAM C. DAVIDON

value at Y wwxi/Y, wi 18 Y, wryi/?, wi, and since each gauge is positive, Y wiyi > 0.
Multiply the function f specified in (3.9) by the square of this gauge to show that f is
conic, and evaluate f and its directional derivatives at x; to show that it is the required
interpolation. 0

COROLLARY 3. There are at most 2" conic functions with values f;, € R and gradients
gr € R" at the n + 1 vertices xi of an n dimensional simplex in R”. Of these, at most one is
cupped. If there is a cupped conic interpolation f and if fo > fi for each k > 0, then there is
just one gauge for f whose value at x, is 1; its value at each x; is

T
__ " 8oSk
fo—fc +pox’
where s, = xi.— xo and por = (fo—fi)* — gasigasi)”’>.

Proof. Use Corollary 2 to show that there is at most one interpolating conic for each
choice of signs for the n numbers po, With k > 0, and that these signs are all positive fora
cupped conic. 0O

COROLLARY 4. There is a conic function over the interval [x_, x.] < R with values

f-€R and slopes g. € R at points x> x_ of R iff there are roots y >0 fto the quadratic
equation

Y

(3.10) giyi -2 fo ot y+g_=0.
X+— X~

For each root v, there is just one conic interpolation gauged by an affine function whose
values y. at x. have the ratio y./vy-=. The value and slope of this interpolation at
x()=x_-+(x+—x_)re Xare

A-7f-+yrfs  yr(l—1)p

foe(r)) = 1—7+vyr (1—7'+')/7')2
and
_(-m)g_+y’rg.
g(x(T))_ (1—T+'Y7')3 )
where

1 1
p =:2' (‘Yg+_; g_) (x+—x-)
=f —fit+v8+(xs—x-)
=f+_f—_lg-—(x+“x—) and
Y

P2 = (f+—f—)2—g+g-(x+—x—)2-

There is a cupped conic extension of f iff either f is constant, or else y*g.>g_ and
v>g+> g-, when the minimizer x,, and minimum f,, of f are

. Y- xs
¥ y’g—g-
and
_ (fo—f-£p)
f* _fi_—4—_—'
]
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CONIC APPROXIMATIONS 275

Proof. Use (3.1) with y = y../y_ to get (3.10). Use Theorem 1, Corollary 2, and
algebra to verify the other conclusions. [

This corollary provides a basis for one dimensional optimization algorithms such as
those developed by Bjgrstad and Nocedal [1]. The following simple example assumes
that for each k>0, there is a cupped conic interpolation to the values and slopes of
the objective function at x, and x;_; with a unique minimizer at x..,, and that
fe-1> fre

ALGORITHM 1.

Input: A point x, in the domain X c R of an objective function f: X - R, an initial
nonzero step s; € R to be taken from x,, and a subalgorithm for calculating the value
fx e R and slope g, € Rof f at any x, € X.

Calculate f;; and go at xo.

For each integer k > 0 until some convergence criterion is met, calculate f, and g
at xp = xp-1+ Sk, and set

P = ((fr _fk)2 - gk—1gksi)l/2,

— 8k—15k

Y =——————— and
fe1—fu+px
_ —‘Y?cgksk
Sk+1 =3
Y8k — 8k—-1

4. Recursive interpolations and scalings. A minimizer of a cupped conic function f
can be calculated from the values and gradients of f at n+1 points, using O(n°)
operations. This section shows how O(n?) operations can be used after each function
and gradient evaluation to update a conic interpolation and locate its minimizer, or
equivalently, to update a collinear scaling of its domain.

The main idea is to use (2.3) to replace the conic function f: X - R by the quadratic
function w ->3w " Aw over the n dimensional hyperplane in R"** with ¢ 'w = 1, and to
replace each point x; = xo+ 5. € X by a corresponding point

Yy
k vi 1

on this hyperplane. The next algorithm calculates a V e R"*'V"*! for a cupped conic
function f: X - R and n dimensional simplex in X, which is then used by the following
theorem to specify a minimizer and minimum of f.

ALGORITHM 2.

Input: For each integer k from 0 through n, the value f, € Rand gradient g, € R" of
a cupped conic function f: X - R at the kth vertex x, of an n dimensional simplex in X,
with fo> f. for k> 0.

Set Vo=0e R"*'Y"*', For each k from 1 through n, set

T
—-gas
sk=xk—%0, pi=((fo—fo)*—gasigisi) % Y =0k
fo~fi+pi
1
— ~
= Ik y Yk T <Ykgk Tgo) and v =z — Vi1 yee
=1 ~ Yi8kSk
Y
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vkvk

If yivi >0, set Vi=Vioi+
kak

CISC, set Vk = Vk_1.

Set V=1V,

THEOREM 2. For each cupped conic function f: X - R whose values f, € R at the
n+1 vertices xi of an n dimensional simplex in X satisfy fo>fi for all k>0, define
VeR™" by Algorithm 2. If y,. >0 and s, € R” are defined by

( 1

11 1
fx =fo+§;;ggs* =fo—5[go, OJV(%O)

at xo+ 5y, where goc R" is the gradient of f at xo. Furthermore,
4.1) V=0, Ve=0, VAV=V and AVA=A-2f.cc’,

where c e R**" and Ae R™™""*" are defined by (2.3).

Proof. Use Corollary 3 of Theorem 1 to show that the vy, defined in Algorithm 2,
together with yo =1, are the values at x, of a gauge for f. Use (2.4) to show that for each
k from 1 through », the y, and zj defined in Algorithm 2 satisfy

(4.2) ¢Tzk=0 and y=Az +2(fo—fo)c.

Since f is cupped, there is 2 minimum value f, e Rof fanda w, € R**' with ¢ "w, =1
and Aw, = 2f,c. For each k from O through n, define Z, € R**"***! and U, e R"*¥"*!
by

Zi =Wy 21,22, 2] and Upg=A—AViA-2f.cc,
and define the induction hypothesis
(@k) Vk 20, VkC = 0, VkA Vk = Vk, Uk =0 and Uka =0.

To prove %P,, note that Vo=0, that f=f, in (2.3) implies Uy=0, and that
UosZo= Ugwy = Awy —2f,c = 0. The following proof of ;. from P, _, is similar to one
for variable metric algorithms.

Assume P,_; for some k>0 and show that Av, = Ux_12i, and hence yivi =
28 U-12x 20, with equality iff Up_1z, =0.If y,ka =0, the algorithm sets Vi = V.4, s0
that Uk = Uk—l and Uka = Uk_lzk = [Uk-le_l, Uk_lzk] = (). Now assume y{vk >0
andget Vi, = V,_;=0. Use V,_;c =0and c¢Tzp=0to get Vic =0.Use Vi Az = Viyr =
zi and Vi 1AV,_; = Vi _; to get Vi, AV} = V.. Use the definitions of U, and V, to get

T
ZxZ K
Ue=Ug1— U ZI{Uk-—lzk U1
Then use Uy-1=0to get U, =0, and use Uy-1Z;-1=0and Uz, =0 to get U Z, = 0.
This completes the proof of #, from %;_,, and hence of Z,.

Use the linear independence of the vectors s, for k # 0, together with ¢ "z, = 0 and
c¢"wy =1, to show that rank (Z,) = k + 1, which with U,Z, = 0 gives rank (Uy) =n —k;
in particular, U, = 0. Use this, ,, and (2.3) and (2.4) to obtain the conclusions of the
theorem. O
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While each iteration in Algorithm 2 refers back to the starting point x,, a linear
mapping in each iteration, using O(n?) operations, can update this reference point so
that the kth iteration uses only the step x; — x,—1 instead of x; — xo. The next algorithm
differs from Algorithm 2 just by this mapping.

ALGORITHM 3.

Input: For each integer k from O through n, the value f; € Rand gradient g, € R" of
a cupped conic function f: X - R at the kth vertex x; of an n dimensional simplex in X,
with fi_1 > fi for each £ >0.

Set Vo=0€R""'""*!, For each k from 1 through #, set

T
1/2 —8k-15k

Sk = Xk — Xk—1, Pk=((fk—1_fk)2—gZ—1Skglsk) y YT T 7T
fe-1—fi +px

1
— 5
Yk _ (Ykgk—gk—1> _
Zi y Y= T Ve =2k — Vi—1Ye
l—l — Y8 kSk
Yi
and
_ I, —Sk)
D= (0 1)
kUL
If yfoe >0, set Vi =Dk(Vk_1+ - ") DY
YUk

else, set Vi =Dka_1D{.

Set V=1V,

COROLLARY 1. For each cupped conic function f: X - R whose values f, € R at the
n+1 vertices xi of an n dimensional simplex in X satisfy fic—1> fi for all k >0, define
VeR™!"*! by Algorithm 3. If y4 >0 and s, € R are defined by

1 "
2 (0)-0)-v(8)
vs \ 1 1 0
then f has its minimum value
11 ¢ 1 7 (gn)
=fhtz—8n =Jn—5L8ns 0]V
fe=1. 274 gnSs =1, 2[8 ] 0
at x, + sy, where g, € R" is the gradient of f at x,. Furthermore,

V=0, Vc,=0, VA,V=V and A,VA,=A,—2fxCrcr,

where ¢, e R™" and A, e R**""*" are defined by replacing xo by x, in (2.3).

Proof. For each k from O through n, define cx e R**' and AreR™ " by
replacing x, by x; in (2.3). Show that for each k from 1 through #, the y, and z, defined
in Algorithm 3 satisfy

ci-1zx=0 and Vi = A—12i +2(fiem1 — fi ) ce—1

instead of (4.2). Asin the proof of Theorem 2, define f, e Rand wy e R* by cow, =1
and Aowy = 2f4co. Define Zy=w, and for each k& from 1 through n, define Z; ¢
RV by Zy = Di[Zi_1, 2], where Dy e R**"*! is defined in Algorithm 3.
Replace ¢ and A by ¢, and A, in the definition of U and the induction hypothesis #; of
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the proof of Theorem 2, and replace ¢ and A by ¢,—1 and A,_; in the proof of %, from
Pri_1. Use ¢ =Dy k-1 and Ax = DiTAwo1DE to complete the proof of this corol-
lary. O

The symmetric matrices Vi =0 can be factored as V), = L.LT foran L, e R"""*™
of rank my =rank (Vi)=n. These L, are determined only to within a right multi-
plication by an orthogonal my X m; matrix. Each L, determines an h, € R™ and
Je e R by

4.3) ( Z’k;) =Ly,

and these, with x; € X, determine a collinear scaling S, : W, » X of f: X >R by (2.1).
The composite function fS; : W, - R is quadratic with unit Hessian since %, implies
LT A L,=1I, and LIc=0, or equivalently, that &, and J, satisfy A, =J Ta and
JiAT =1,

The only changes needed in Algorithm 3 to update L, and hence the collinear map
St : W, > X, instead of V, =L,L7, are to define an integer mo =0, and then for each
k>0, to replace the update for V; by the following update for m, and L, € R*"""™:

If yive >0, setmp=myu_1+1 and Li=Di[Li_1, vi/(y i)
else, setmy=mg_1 and Ly=DiL; ;.

5. Analgorithm schemata. Instead of discarding all previous interpolations in each
iteration, as in Algorithm 1 for one dimensional problems, or saving all previous
interpolations, as in Algorithms 2 and 3 for cupped conic objective functions, more
general algorithms need to selectively replace some old information about the objective
function with new. The choice of what is to be replaced needs to take into account at
least two factors. For one, information gathered in regions far from a minimizer is
usually better discarded than that from nearby regions. For another, information from
steps which are nearly in the same direction as the current step is usually better
discarded than that from steps in quite different directions. Conflict between these
desiderata arise when steps near the minimizer lie in a subspace of few dimensions, and
various strategies for balancing them need to be considered. However since these
considerations are not unique to algorithms using conic approximations or collinear
scalings, the following schemata leaves open this choice of strategy, and only suggests
how any one could be implemented.

Input: m and n, positive integers specifying the dimension m of the region in R"
consistent with any linear equality constraints; if there are no constraints,
m=n;

xo€R", a point consistent with any constraints where the first value and
gradient of the objective function will be computed;

Joe R*™™, a matrix whose m columns span all steps consistent with any
constraints. If the initial conic approximation is quadratic, then the
columns of J, are conjugate steps which if taken from the minimizer
would each increase the quadratic approximation by 3;

ho€ R™, a column vector equal to zero if the initial conic approximation is
quadratic;

€ € R, a positive number, used in a test which stops the calculation when the
minimum of the current conic approximation is within ¢ of the current
function value; and
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a subalgorithm for calculating the value f; € R and gradient g, € R” of the
objective function at x;.
Step 0. Call f, and g at x,.
Comment. The initial conic approximation to the objective function satisfies
J()w T 1 T
5.1 ( +——> =fot +=

(5.1 fxo 1+h§w fo goJow 2w w
for all w € R™ with 1+ h¢w > 0. This approximation is singular at those x € R" equal to
xo+Jow/haw for some w € R™ with hgw > 0. If gdJoho <1, it has the minimum value
fo=33glf at

Xo— JoJ g 8o

1-hiJage

For each k> 0:

Step 1r. Set wi =—Ji_1gx—1. If 3 wiwi <&, then stop.

Else, go to Step 2.

Comment. This simple convergence test is invariant under collinear mappings; it
may be supplemented with others.

Step 2. Find a step s, = ApJi—1 Wy, typically with A, =1/(1+ hi_iwy), for which the
function value f; and gradient g at xx = xx—1 + s, satisfy

0> gZ—1Sk,
fe-1>fi and  (fi: —fk)2> gZ—lskg{Sk-

Comment. Some step s, will satisfy the stated conditions provided the objective
function has a lower bound.

Step 3. Set pi = ((fi—1 _fk)2_gZ—1SngSk)l/2,
Ve = — gi-18k/ (fm1 —fi +pi), and
e =J -1 (V& — 8k—1) = P—1 Yk Sk

Comment. This y, € Rand r, € R™ are used in the update for A, and Ji.. The v, is the
ratio of the value of a gauge at x, to that at x,_1, and 7, is the change in the gradient of
the composite function fS; _; : W - Rresulting from the step from xx_1 to xx, where S,_;
satisfies (2.1). If differences in function values are used to estimate gradients, then the
components of 7, can be estimated directly from function differences, rather than first
estimating g, and then using it to calculate 7.

Step 4,. Choose a vector v, € R™ with Vivk =2pk # Vi

Set ui = (v — i)/ (v — 1) "ok

hie = viche—1+ (1 — v —Ykhz—1vk)uk, and
Jio = Vi1 + (8¢ —kak—lvk)ulf*skhl-

Comment. The choice of the vector v, € R™ determines what old information about
the objective function is to be replaced by new information. If u,{v, =0 for some j <k,
then all information from the jth step is kept. If s, is nearly in the same direction as some
s;, for which information is to be kept, then v, should be nearly in the same direction
as v

THEOREM 3. If an algorithm of this type is used with a cupped conic objective
function f: X - R, and if for each k = m, the v, chosen in Step 4, makes urv; =0 for all
j <k, then the m + 1 points xi for k =m span the m dimensional affine subspace in X of
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those x for which x —xq is in the column space of Jo. The restriction of f to this affine
subspace has a minimum iff 1 + hlw,.1>0, and if this is the case, this restriction has its
minimum value

[ = fm _%”wmi-lnz

at

Xa =X + mem+1
% T .
" 1'*'hmwrrﬂ-l

Furthermore, L,, € R"™" defined by (4.3) satisfies
LIAnL,=1, and Llc,=0,

where ¢, € R** and A,, € R*™""! are defined by replacing xo by x. in (2.3).

Proof. To simplify this argument, keep x, as a reference point, as in Algorithm 2,
instead of shifting the reference point from x,_; to x; in the kth iteration, as in this
algorithm and Algorithm 3; i.e., make these changes in the kth iteration:

Sk =Xk — X0, Pk= ((fo_fk)z_ggskgzsk)l/2> Ye = _ggsk/(f()_fk +pi)s
I =J{—1 (‘Ykgk —go)"‘ hk—l'YkgI{sk,

hy = hk—1+<i" 1 —hz—lvk>uk
Yk

and
1
Jk =Jk_1 + ("“ Sk —];{_11)1() u,{.
Y

Use Corollary 3 of Theorem 1 to show that these vy, together with y, = 1, are the values
at x; of a gauge for f. Define y, and z, as in Algorithm 2 and define L; by (4.3). Show
that te = Ll{—l)’k,

Li=Li—1+(zi — Li100)ur,

2k = Litw, and vx = Liyi. Define ce R and Ae R"*"""*! by (2.3) so that y, and z
satisfy (4.2). Show that if y; and z; also satisfy (4.2), as well as z; = L, _,v;, v; =Li, Vis
and uv; =0, then L, inherits from L, _, the property that z; = L,v; and v; = L{y;. Then
use induction as in the proof of Theorem 2. Lastly, verify that the update for h, and J;
given in the algorithm differs from that given here by just the linear mapping D, defined
in Algorithm 3. O

6. Summary and conclusions. Three ways to specify conic functions have been
introduced; one given by (2.2) and used in Theorem 1, one given by (2.3) using
homogeneous coordinates and used in Theorem 2, and one given by (5.1) in terms of a
collinear scaling and used in the algorithm schemata of § 5. Equations (2.2) and (2.3)
specify the same conic function iff their parameters satisfy (2.5), and (2.2) and (5.1)
specify the same conic function iff ho=J Jaand JTAJ, =1

Theorem 1 and its corollaries in § 3 summarize basic properties of conic inter-
polations with given values and gradients at the vertices of a simplex. Corollary 4
specializes Theorem 1 to conic interpolations over line intervals, and Algorithm 1
suggests how these can be used for line searches, though safeguards must be added to
make this a general purpose algorithm. Theorem 2 gives the properties of Algorithm 2,
which uses O(n?) operations to update a conic interpolation after each evaluation of a
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function and its gradient. Algorithm 3 differs from Algorithm 2 in using only the steps
Xx — Xr—1 rather than x, —xo for making these updates. Algorithm 4 updates collinear
scalings for the objective function rather than conic approximations to it, though these
are equivalent, in the absence of rounding, for approximations with unique minimizers.
Theorem 3 states the basic properties of the algorithm schemata of § 5 for updating
collinear scalings. Specific algorithms can be obtained from this by adding rules for
choosing the factor A, determining the magnitude of x; —x;-; in Step 2, and for
choosing the direction of the vector v, in Step 4, which determines what information
from previous iterations is to be replaced in the current one.

P. Bjgrstad and J. Nocedal [1] have developed an algorithm for one dimensional
minimization which improves upon Algorithm 1 of § 3. Theirs includes safeguards to
insure stability. They prove it has an R quadratic convergence rate, when there is a
neighborhood of the minimum in which f" is positive and f™ is Lipschitz continuous, and
that it has a faster convergence rate than algorithms making cubic interpolations when
f/r fmr > 2( fm)2'

D. Sorensen [10] has shown that an algorithm updating collinear scalings for n
dimensional problems has a Q superlinear convergence rate and that it compares
favorably with a widely used BFGS variable metric algorithm on a varlety of standard
test problems. His algorithm updates a matrix C; corresponding to JiJx = A for
the J of (2.1) and A of (2.2).
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