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Conic Input Mapping Design of Constrained
Optimal Iterative Learning Controller

for Uncertain Systems
Yuanqiang Zhou , Kaihua Gao , Xiaopeng Tang , Huanjia Hu, Dewei Li , and Furong Gao

Abstract—In this article, we study the optimal iterative
learning control (ILC) for constrained systems with bounded
uncertainties via a novel conic input mapping (CIM) design
methodology. Due to the limited understanding of the process
of interest, modeling uncertainties are generally inevitable, sig-
nificantly reducing the convergence rate of the control systems.
However, huge amounts of measured process data interacting
with model uncertainties can easily be collected. Incorporating
these data into the optimal controller design could unlock new
opportunities to reduce the error of the current trail optimization.
Based on several existing optimal ILC methods, we incorporate
the online process data into the optimal and robust optimal ILC
design, respectively. Our methodology, called CIM, utilizes the
process data for the first time by applying the convex cone theory
and maps the data into the design of control inputs. CIM-based
optimal ILC and robust optimal ILC methods are developed for
uncertain systems to achieve better control performance and a
faster convergence rate. Next, rigorous theoretical analyses for the
two methods have been presented, respectively. Finally, two illus-
trative numerical examples are provided to validate our methods
with improved performance.

Index Terms—Data-driven approach, iterative learning control
(ILC), optimization, process control, robust design.
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I. INTRODUCTION

ITERATIVE learning control (ILC) is developed for a class
of systems that repetitively perform a given task over a

limited duration of time [1], [2]. It has been extensively stud-
ied in fundamental theory and practical applications [3], [4].
The main reason includes its ability to modulate the input sig-
nal by integrating the input and output information from past
iterations/cycles/batches, which leads to gradual improvements
of control performance for the systems [5]–[7]. Furthermore,
the constant repetition of conducting the same task under
the ILC framework makes the system acquires some kind
of learning capability from its historical experience. This is
the main difference between ILC and other intelligent control
techniques [1]. Therefore, it is of great significance to study
data-based learning of the system under the ILC strategy.
For common ILC strategies, controller design and sta-

bility analysis depend on previous information of the
system [8]–[12]. Amann et al. [13] proposed an optimization-
based ILC to derive gradient-type algorithms and it is a simple
and effective control strategy for deterministic and iterative
invariant systems. Son et al. [8] developed ILC frameworks for
tracking problems with specified data points and ILC designs
and convergence analyses are based on accurate information
from system matrices. Freeman and Dinh [14] developed
point-to-point ILC for discrete-time MIMO systems. The
monotonic convergence of ILC was studied in [9] for nonlinear
systems under globally Lipschitz conditions.
Recent work has focused on combining optimization

approaches with ILC design methods. The existing literature
on this topic is of various perspectives, including systems
with different scenarios [5], [7], and different optimization
methods, such as real-time optimization [15], [16], gradient-
type optimization [17]–[19], model predictive control
(MPC) [20], [21], etc. Therein, MPC has the ability to handle
constraints and accommodate the performance objectives
in an optimal way [22], [23], so its combination with ILC
gives the control system full ability to take constraints into
consideration and a certain ability to learn in predictive
environments. Li et al. [24] proposed a combined design
method of real-time feedback-based ILC and MPC for
systems with unknown input nonlinearity. Liu et al. [25]
proposed a combined design of ILC and robust MPC method
for nonlinear systems. From a two-dimensional (2-D) system
point of view, the combined design issues of ILC and
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MPC have been widely studied for repetitive systems or batch
processes (see, e.g., [21] and [26]–[28]).
With the rapid development of data science and machine

learning, various data-based learning methods have enriched
the ILC methodology. Hou et al. [29] pointed out that data-
driven control methods are effective and applicable when
the plant models are unavailable; even if the physical mod-
els are available, they may be too complex to be tractable
for controller design. Lu et al. [30] reviewed different levels
of learning mechanisms: control input, model parameter, and
tracking reference, and the key point behind those learning
mechanisms is to utilize a collection of inputs and/or out-
puts data to adjust the corresponding unknown information.
The notion of learnability of a control system was introduced
in [31] and some data-based learning schemes were developed
using repetitiveness of the control system. An MPC-based
ILC design method was proposed in [20] with a data-driven
approach for uncertain batch processes and the historical input
data were used in [32] to modulate the control input using
an optimization-based ILC strategy. Two data-driven ILC
schemes were developed in [33] for nonlinear discrete-time
MIMO systems based on an equivalent dynamic linearized
model of an unknown ideal learning controller, where the
historical input and tracking error data were used to directly
modulate the iterationwise control input. The aforementioned
results have proved that with the integration of data-driven
learning methods, system performance can be significantly
improved and the convergence rate can be accelerated.
In this article, we address a data-enhanced controller

design methodology for uncertain systems, which takes ILC,
optimization, data-driven approach, robustness, and constraints
handling into consideration. First, we present some existing
optimal ILC and robust optimal ILC methods for uncer-
tain systems. Most of the existing optimal ILC strategies
are designed based on the nominal systems using the lifted
techniques [34], [35] and robust convergence is guaranteed
with a given matrix inequality related to the boundary of the
uncertainties. Following the results, some extensions to robust
optimal ILC methods are developed for uncertain systems.
Several results about the method need to give an adequate
uncertainty description of linear or nonlinear plants. Using
ellipsoidal uncertainty and polytopic uncertainty description
of the system, a robust ILC with a linear matrix inequality
(LMI) approach is developed in [36] based on the worst case
performance index. For an uncertain system, if knowledge of
the compact set that contains any possible discrepancies is
available, the robust optimal ILC strategy developed in [37]
can be used based on the minimization of a dynamic upper
bound on tracking error.
The main objective of this article is to develop a new data-

driven learning design methodology that integrates historical
process data into the design of ILCs with a focus on optimiz-
ing uncertain systems. For uncertain systems, the data-driven
approach has some advantages, as historical input and/or out-
put data contain information that interacts with uncertainties.
Thus, historical process data can be compensated for the cur-
rent trail optimization. Using cone theory to incorporate pro-
cess data from previous cycles into current trail optimization,

TABLE I
COMPARISONS BETWEEN BASIC RESULTS, ALGORITHMS 1 AND 2

this article develops a new data-based design methodology,
called conical input mapping (CIM). CIM uses the process
data for the first time by utilizing convex cone theory and
mapping the data into the optimal control input. With the
CIM methodology incorporated into the optimization-based
ILC, the optimization of control input can be transformed
into the optimization of coefficients associated with the data,
which improves the accuracy of the optimization model and
reduces the error of the current trail optimization, ultimately
improving robustness and control performance. Using CIM-
based optimal ILC strategies, we attempt to accelerate the
convergence rate of norm-optimal ILC algorithms and improve
control performance for uncertain systems.
The contribution of this article is threefold.

First, different from the existing data-driven mecha-
nisms [20], [33], [38], [39], we, for the first time, develop a
CIM methodology for uncertain systems. This new method-
ology imposes admissible constraints in the domain of the
input variables for data-driven ILC, thereby reducing the
errors of the current trail optimization. Second, by employing
the methodology, two different data-driven optimal ILC
algorithms are developed: the former is a new CIM-based
optimal ILC method and the latter is a new CIM-based robust
optimal ILC method. Third, rigorous theoretical analyses
for the two proposed algorithms are presented, respectively,
demonstrating the feasibility of the algorithms and the
monotonic convergence of control systems.
The remainder of this article is organized as follows. In

Section II, we present the problem formulation and provide
some basic optimal ILC methods. In Section III, we present
the CIM design methodology, and then, a new CIM-based
optimal ILC method (Algorithm 1) is developed and mono-
tonic convergence of the system is analyzed. In Section IV, a
novel CIM-based robust optimal ILC method using min–max
optimization (Algorithm 2) is developed and monotonic con-
vergence of the system is analyzed. In Section V, we provide
two numerical examples to illustrate the efficacy of the two
algorithms. Finally, we draw conclusions and discuss future
orientations of the research in Section VI. For the sake of clar-
ity and readability, the comparisons between our main results
are illustrated in Table I.
The notation used in this article is fairly standard.

Specifically, R denotes the real space, N denotes the collec-
tion of all non-negative natural numbers, and R

n denotes the
n-dimensional Euclidean space. We write 1N to denote the
vector [1 · · · 1]T ∈ R

N with N components. For a matrix
A ∈ R

n×n, we write A � 0 and A � 0 to denote that A
is positive definite and positive semidefinite, respectively. For
a vector x ∈ R

n, xT denotes its transpose, ‖x‖ denotes the
Euclidean norm, ‖M‖ denotes the induced matrix norm for a
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real matrix M ∈ R
n×m, and ‖x‖2P denotes the quadratic form

xTPx for a real symmetric and positive semidefinite matrix
P. Furthermore, we use ⊗ to indicate the Kronecker product,
and the symbol I[a,b], a, b ∈ N, is defined to be the integer set
{a, a + 1, . . . , b} with a ≤ b. Finally, we define max(x, y) =
[max(x1, y1),max (x2, y2), . . . ,max (xn, yn)]T ∈ R

n and
min(x, y) = [min (x1, y1),min (x2, y2), . . . ,min (xn, yn)]T ∈
R
n, where x = [x1, . . . , xn]T ∈ R

n and y = [y1, . . . , yn]T

∈ R
n are both n-dimensional real vectors.

II. PRELIMINARIES

A. Problem Formulation

Consider a MIMO discrete-time system given by

xk(t + 1) = (A+ �a(t))xk(t) + (B+ �b(t))uk(t) (1)

yk(t) = Cxk(t) (2)

where t ∈ I[0,N] is the time index, k ∈ I[1,∞) is the iteration
index, N is the trail length of each iteration; xk(t) ∈ R

n, uk(t) ∈
R
m, and yk(t) ∈ R

p are the state vector, control input, and
measured output, respectively, at time t in the kth iteration; A,
B, and C are the system matrices with appropriate dimensions;
and �a(t) and �b(t) denote the unknown uncertainties. For
the industrial process described as (1) and (2), we consider
the following input constraints as:

ui,k(t) ∈ Ui
�= [

ui, ui
]
, ui < ui (3)

ui,k(t) − ui,k(t − 1) ∈ δUi
�= [

δui, δui
]
, δui < 0 < δui (4)

ui,k(t) − ui,k−1(t) ∈ �Ui
�= [

dui, dui
]
, dui < 0 < dui (5)

where ui,k(t) denotes the ith component of uk(t), that is,
uk(t) = [u1,k(t), . . . , ui,k(t), . . . , um,k(t)], i ∈ I[1,m].
The control objective is to steer the system output to track

a given reference. We denote the desired reference as yd(t),
t ∈ I[0,N] and assume that yd(t) is realizable; that is, there is a
suitable initial state xd(0) and unique input sequence ud(t) ∈
U

�= ∏m
i=1 Ui ⊂ R

m and
∏m

i=1 δUi such that

xd(t + 1) = Axd(t) + Bud(t) (6)

yd(t + 1) = Cxd(t + 1). (7)

In addition, suppose that the matrix CB is of full-column
rank, then the desired input ud(t) can be well defined as
ud(t) = [(CB)TCB]−1(CB)T(yd(t + 1) − CAxd(t)) and xd(t +
1) = Axd(t) + Bud(t) with the desired initial value xd(0).
Assumption 1: For all t ∈ I[0,N], the uncertainties �a(t)

and �b(t) are bounded; that is, maxt ‖�a(t)‖ ≤ βa,
maxt ‖�b(t)‖ ≤ βb.
Assumption 2: The identical initialization condition holds

for all iterations; that is, xk(0) = 0 ∀k ∈ I[1,∞).
For (1) and (2), the majority of existing optimal ILC formu-

lations focus on designing an optimal timewise control input
increment δuk(t)

�= uk(t)−uk(t−1) instead of the control input
uk(t). Thus, we rewrite (1) and (2) in the general augmented
state-space form given by

xk(t + 1) = (A+ �a(t))xk(t) + (B+ �b(t))δuk(t) (8)

yk(t + 1) = Cxk(t + 1) (9)

where xk(t) = [xTk (t), u
T
k (t − 1)]T ∈ R

n+m and the aug-
mented matrices A ∈ R

(n+m)×(n+m), �a(t) ∈ R
(n+m)×(n+m),

B ∈ R
(n+m)×m, �b(t) ∈ R

(n+m)×m, and C ∈ R
p×(n+m) are

given by

A =
[
A B
0 I

]
, �a(t) =

[
�a(t) �b(t)
0 0

]

B =
[
B
I

]
, �b(t) =

[
�b(t)
0

]
, C = [

C 0
]
.

To facilitate the following design for (8) and (9), we define
uk = [δuTk (0), . . . , δu

T
k (N − 1)]T, yk = [yTk (1), . . . , y

T
k (N)]T,

ud = [δuTd (0), . . . , δu
T
d (N − 1)]T, yd = [yTd (1), . . . , y

T
d (N)]T,

the lifted system matrix

H �=

⎡
⎢⎢⎢⎢⎣

CB 0 · · · 0

CAB CB
. . .

...
...

...
. . . 0

CAN−1B CAN−2B · · · CB

⎤
⎥⎥⎥⎥⎦ (10)

and the lifted uncertainty

�k
�= [

ξTk (1), . . . , ξTk (N)
]T

(11)

with ξk(t), t = 1, . . . ,N, defined as

ξk(t)
�= yk(t) − CAtxk(0) −

t−1∑
τ=0

CAt−1−τBδuk(τ ). (12)

Note that if �a(t) = 0 and �b(t) = 0 for all t ∈ I[0,N] in (1)
and (2), we obtain that ξk(t) = 0 ∀t. Now, the lifted form of
the system (1) and (2) and the desired system (6) and (7) can
be expressed as

yk = Mxk(0) + Huk + �k (13)

yd = Mxd(0) + Hud (14)

where M = [(CA)T, . . . , (CAN)T]T.
Next, we consider the exact form of the lifted uncertainty

ξk(t) using the uncertainty matrices �a(t) and �b(t). First, for
any time t, using induction, we obtain

ξk(t) = C

[
t−1∏
τ=0

(A+ �a(τ )) − At

]
xk(0)

+ C
t−1∑
τ=0

⎡
⎣
⎛
⎝ t−1∏
s=τ+1

(A+ �a(s))

⎞
⎠(B+ �b(τ ))

− At−1−τB

]
δuk(τ ).

Using Assumption 2 and uk(−1) = 0, we obtain that
xk(0) = [xTk (0), u

T
k (−1)]T = 0. Then, we can simplify ξk(t) as

ξk(t) =
t−1∑
τ=0

⎡
⎣C

⎛
⎝ t−1∏
s=τ+1

(A+ �a(s))

⎞
⎠(B+ �b(τ ))

− CAt−1−τB

⎤
⎦δuk(τ ) (15)
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which is a linear combination of the unknown matri-
ces {�a(τ ),�b(τ ), τ ∈ I[0,t−1]} and the input sequence
{δuk(0), . . . , δuk(t − 1)}.
Considering t = 0, 1, . . . ,N−1 in (15) and by concatenating

to form (11), we end up with

�k = �Huk (16)

where �H ∈ R
Np×Nm is a lower triangular coefficient matrix

determined by {�a(t),�b(t), t ∈ I[0,N]} and each block-entry
of �H is given by

[�H]i,j �=

⎧⎪⎨
⎪⎩
C
(∏i

s=j(A+ �a(s))
)
(B+ �b(τ ))

−CAi−jB, if i ≥ j
0, otherwise

where i, j ∈ I[1,N]. Note that if �a(t) = 0 and �b(t) = 0 for
all t ∈ I[0,N] in (8) and (9), we obtain that [�H]i,j = 0 for all
i, j ∈ I[1,N], indicating that �H = 0.
Using Assumption 1, we obtain that �a(t) and �b(t) are

bounded with ‖�a(t)‖ ≤ βa + βb and ‖�b(t)‖ ≤ βb for all
t ∈ I[0,N]. Thus, �H in (16) is bounded; that is, there exists
β�H > 0, which is a function of βa and βb such that

‖�H‖ ≤ β�H
�= max

i,j

∥∥∥[�H]i,j
∥∥∥. (17)

In addition, �H is stationary and independent along the
iteration axis.
Assumption 3: The initial error is bounded, that is, ‖xk(0)−

xd(0)‖ ≤ β0.
Using (13)–(14) and (16), the entire tracking error of the

kth iteration is given by

ek
�= yd − yk = Mxd(0) + Hδuk − �Huk (18)

where δuk = ud − uk. In this case, the transition model for
tracking error trajectory is obtained as

ek = ek−1 − H�uk − �H�uk (19)

where �uk = uk − uk−1 denotes the cyclewise control input
along the iteration axis, that is

�uk = [
�δuTk (0), . . . ,�δuTk (N − 1)

]T
(20)

where �δuk(t)
�= δuk(t) − δuk(t − 1).

Next, all the constraints given by (3)–(5) can be rewritten as

��uk ≤ 	k (21)

where � ∈ R
4Nm×Nm and J ∈ R

Nm×Nm are given by

� =

⎡
⎢⎢⎣

I
−I
J

−J

⎤
⎥⎥⎦, J =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0
−I I · · · 0 0

0 −I
. . .

... 0
...

. . .
. . .

. . .
...

0 0 · · · −I I

⎤
⎥⎥⎥⎥⎥⎥⎦

and I is the identity matrix with appropriate dimension, the
vector 	k ∈ R

4Nm is given by

	k =

⎡
⎢⎢⎣
min

(
u− uk−1, du

)
−max(u− uk−1, du

)
δu− Juk−1

−δu+ Juk−1

⎤
⎥⎥⎦

where u = 1N ⊗ u, u = 1N ⊗ u, du = 1N ⊗ du, du = 1N ⊗
du, δu = 1N ⊗ δu, δu = 1N ⊗ δu, u = [u1, . . . , um]

T, u =
[u1, . . . , um]T, δu = [δu1, . . . , δum]T, δu = [δu1, . . . , δum]

T,
du = [du1, . . . , dum]

T, and du = [du1, . . . , dum]T. Note that
	k ≥ 0, which indicates that (21) always holds with �uk = 0.

B. Basic Results

1) Optimal ILC Strategy: We suppose that
Assumptions 1–3 are satisfied. The idea is to optimize
�uk during the ILC design, which does not take the model
uncertainty into consideration. At each iteration, the follow-
ing quadratic performance index is minimized to obtain the
cyclewise control input:

min
�uk

∥∥ẽk∥∥2Q + ∥∥�uk∥∥2R (22a)

s.t. ẽk = ek−1 − H�uk (22b)

��uk ≤ 	k. (22c)

After solving the optimization problem (22), we obtain the
optimal solution, denoted as �u◦

k , and the optimized state ẽ
◦
i =

ek−1 − H�uk. Then, we apply the following ILC algorithm:

u◦
k = uk−1 + �u◦

k (23)

to the system (1) and (2) at the kth iteration. For more
details about convergence analysis of this kind of optimal ILC
strategies, one can refer to [34] and [35].
2) Robust Optimal ILC Strategy: We suppose that

Assumptions 1–3 are satisfied. In order to incorporate model
uncertainty information explicitly into the ILC design, the
worst case performance index is considered. At each iteration,
the following quadratic performance index is minimized to
obtain the cyclewise robust control input:

min
�uk

max
�H

∥∥ẽk∥∥2Q + ∥∥�uk∥∥2R (24a)

s.t. ẽk = ek−1 − (H + �H)�uk (24b)

��uk ≤ 	k. (24c)

After solving the optimization problem (24), the robust optimal
ILC algorithm given by

u�
k = uk−1 + �u�

k (25)

is applied to the system (1) and (2) at the kth iteration. For
more details about convergence analysis of this kind of robust
optimal ILC strategies, one can refer to [36] and [37].
Remark 1: Note that the above two strategies are one-stage

approaches, which only need to optimize the input vector �uk
given in (19) for each iteration. Then, the control inputs uk of
the kth iteration will be implemented. Therefore, they are run-
to-run ILC strategies since they can calculate the updating laws
at the beginning of each iteration [2], [24]. Different from the
run-to-run ILC strategies, the real-time feedback-based ILC
strategies consider the optimization of timewise input vectors
(see, e.g., [40] and [41]). However, if the optimization hori-
zon is equal to the trail length of each iteration, they can be
modified to the problem formulations given by (22) or (24).
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III. CIM-BASED OPTIMAL ILC DESIGN

For the uncertain system given by (19), the process data,
including the historical input and output sequences, constrain
the information, which interacts with the uncertainties. Thus,
incorporating these data into the optimization-based ILC can
reduce the errors of the current optimization. To that end,
the CIM design methodology is presented using convex set
and cone theory in this section. Next, the CIM-based optimal
ILC strategy is developed and the theoretical analysis of the
strategy is presented.

A. CIM Methodology

In convex geometry [42], a convex combination is a linear
combination of distinct points with the form

∑r
i=1 αisi, where∑r

i=1 αi = 1, αi ≥ 0, i = 1, . . . , r, and si can be vector, scalar,
or more general point in an affine space. A set is convex if
it contains all convex combinations of its points. As pointed
out in [43], the convex hull of a set is the set of all convex
combinations of points in the set.
In cone theory [43], a set S is called a cone, if for every

s ∈ S and α ≥ 0, we have αs ∈ S. A set S is a convex cone if it
is convex and a cone, that is, for any s1, s2 ∈ S and α1, α2 ≥ 0,
we have α1s2 + α2s2 ∈ S. A conic combination is a linear
combination of distinct points provided that all coefficients
are non-negative. The conic hull of a set is the set of all conic
combinations of points in the set. More formally, given a finite
set S = {s1, s2, . . . , sn}, where si ∈ R

q, i = 1, 2, . . . , r, the
conic hull of S is given by

CH(S)
�=
{
s ∈ R

q : s =
r∑

i=1
αisi : ∀si ∈ S

}
(26)

where αi ≥ 0, i = 1, 2, . . . , r. It follows from [43] that CH(S)

is the smallest convex cone that contains S. In addition, the
convex cone of a given set of points is identical to the set of
all their conic combinations.
To incorporate input updates of previous trails into the cur-

rent optimization, we let Sk denote the historical control input
sequences as

Sk = {�u1, . . . ,�uk−1}. (27)

In terms of (26), we have si = �ui ∈ Sk ⊂ R
Nm with q = Nm

and r = k − 1 and using (19), �ui, i = 1, . . . , k − 1, satisfies
the real uncertain dynamics, i.e.,

ei = ei−1 − H�ui − �H�ui. (28)

Then, using the conic hull (26) and the data set (27), we design
the cyclewise control input as

�uk = CH(Sk) + ζk (29)

where

CH(Sk) =
k−1∑
i=1

αi�ui (30)

and αi ≥ 0, i = 1, . . . , k − 1; the vector ζk ∈ R
Nm denotes

an auxiliary control input vector, which can be seen as a
projection of �uk on the conic hull CH(Sk) given by (26)

Fig. 1. Illustration of �u4 = CH(S4) + ζ4 ∈ R
3, where CH(S4) denotes

the conic hull of the vector set {�u1,�u2,�u3}.

using (27). Besides, the term ζk in (29) is an additive term
to the conic hull CH(Sk) for feasibility consideration, but in
practical implementation, it can be set to 0.
It is important to note that the basic results presented in

Section II-B only optimize the current control input �uk,
whereas using (29), we can map the current control input �uk
into the conic combination of the historical control input data
{�u1,�u2, . . . ,�uk−1} and optimize the coefficients αi asso-
ciated with each data �ui, i = 1, 2, . . . , k−1. It is this change
that allows us to enforce the constraints for the current control
input �uk and reduce the error of current trail optimization.
An example of �u4 ∈ R

3 using (29) with k = 4 is illustrated
in Fig. 1.

B. CIM-Based Optimal ILC Design

In this section, we incorporate the historical input data into
the CIM-based optimal ILC design. For the optimization for-
mulation (22) presented in Section II-B1, using (26) and (30)
and substituting (30) into (22b) yields

êk = ek−1 − H
(
k−1∑
i=1

αi�ui + ζk

)

= ek−1 −
(
k−1∑
i=1

αiH�ui

)
− Hζk. (31)

Then, the minimization of the performance index (22a) with
respect to �uk is transferred into the minimization of the index
with respect to the coefficients {α1, . . . , αk−1}.
Finally, using (31), a newly developed optimization problem

that utilizes historical input data by the following conic hull
theory can be formulated as:

min
α1,...,αk−1,ζk

∥∥êk∥∥2Q + ∥∥�uk∥∥2R (32a)

s.t. (31) (32b)

�uk =
k−1∑
i=1

αi�ui + ζk (32c)

αi ≥ 0, i = 1, . . . , k − 1 (32d)

��uk ≤ 	k (32e)

where the performance index given in (32a) is used to mini-
mize the tracking error and the cyclewise control input; Q � 0
and R � 0 are symmetric sign-definite weighting matrices
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with compatible dimensions. Note that the weighting matri-
ces {Q,R} serve as tuning knobs to achieve a proper tradeoff
between the tracking error and the control input.
For the optimization problem (32), we highlight that it

employs cone theory to incorporate error updates of previous
trails of solving (22) into the current trail optimization. To
be more specific, using (28) and (23), we obtain H�u◦

i =
ei−1 − ei − �H�u◦

i and substituting it into (32b) yields

êk = ek−1 +
[∑k−1

i=1 αi
(
ei − ei−1 + �H�u◦

i

)]− Hζk. (33)

For the optimization problem (22), we obtain that for each i =
1, . . . , k−1, the real error ei in (19) satisfies ei = ẽ◦i −�H�u◦

i ,
where ẽ◦i is the optimized state after solving (22). Then, we
obtain ẽ◦i − ei−1 = ei − ei−1 + �H�u◦

i . Thus, (33) implies
that

êk = ek−1 +
[
k−1∑
i=1

αi
(
ẽ◦i − ei−1

)]− Hζk. (34)

Note that when ζk = 0, the current to-be-optimized state
êk satisfies êk − ek−1 ∈ CH({ẽ◦i − ei−1}k−1i=1 ), which con-
fines the error êk − ek−1 to be the minimal conic hull of the
optimized error data set {ẽ◦i − ei−1}k−1i=1 . This indicates that
the optimized error data of the optimization problem (22) is
adopted to compensate for the to-be-optimized state of the
optimization problem (32). To guarantee the feasibility of the
optimization problem (32), we do not force ζk to be 0. By
using the cone theory, the error of the current trail optimization
problem (32) is reduced compared with the problem (22).
Thus, the optimization problem (32) can improve the control
performance using (30) with the CIM methodology.
Remark 2 [Implementation for Solving (32)]: For the

developed optimization problem (32), it is a general QP
problem. To solve the problem, fmincon, a nonlinear program-
ming solver in MATLAB, can be adopted.

C. CIM-Based Optimal ILC Algorithm

After solving the optimization problem (32), we obtain the
optimal solution, denoted as {α�

1, . . . , α
�
k−1} and ζ �

k . Then,
using (32c), the CIM-based optimal input is given by

�u�
k =

k−1∑
i=1

α�
i �ui + ζ �

k . (35)

Next, we apply the optimized control input given by

u�
k = uk−1 +

k−1∑
i=1

α�
i �ui + ζ �

k (36)

to the system at the kth iteration and repeat the procedure at
the next iteration. The CIM-based optimal ILC strategy can
be summarized as the following Algorithm 1.
Remark 3: Note that all the parameters {α1, . . . , αk−1, ζk}

in (30) are the design variables that are to be optimized
in (32). In particular, the parameters {α1, . . . , αk−1} are the
non-negative coefficients in (26) used to construct the conic
hull of the set Sk, which contains its historical input sequences
{�u1, . . . ,�uk−1}. The parameter ζk given in (32c) is a free

Algorithm 1 CIM-Based Optimal ILC Algorithm
0) Form the lifted matrix H given by (10) and select

weighting matrices Q and R to satisfy (38).
1) Set iteration index k = 1 and initialize u0.
2) Apply uk to the system, measure output yk, and compute

tracking error ek.
3) Obtain the optimal parameters {α�

1, . . . , α
�
k−1} and vector

ζ �
k by solving the optimization problem (32).

4) Apply (36) to the system and update the data set (27).
5) Set k ← k + 1 and go back to step 2).

vector in the admissible input space within R
Nm, which can

be designed as 0 for the conic hull CH(Sk) in a practical
implementation. Designing the control input by following the
CIM methodology given by (30) will provide constraints in
the domain of the admissible input variables for data-driven
ILC strategies.
Remark 4 (Comparison of Computational Complexity): The

computation complexity of Algorithm 1 is compared with
the optimal ILC strategy presented in Section II-B1. In the
optimal ILC strategy, the input vector �uk for each iteration
is obtained by solving the optimization problem (22), which
is a general QP problem. In general, a QP problem with
ρ variables has computational complexity Q(ρ2). For the
QP problem given by (22), the total number of variables at
each update is mN. Consequently, the computational com-
plexity for the optimal ILC strategy is Q((mN)2). Next, for
Algorithm 1, the optimal solution is obtained by solving the
new QP problem (32). Since the total number of variables at
each update for solving the QP problem (32) is (k−1+m), the
computational complexity of Algorithm 1 is Q((k− 1+m)2).
Note that the number of variables increases slowly in the size
of the QP problem (32), indicating that the computing time for
executing Algorithm 1 increases slowly with more data col-
lecting during the process running. Thus, since the trail length
N of each iteration is much larger than the dimension m of the
input variable and if the iteration index k � (m(N − 1) + 1),
Algorithm 1 achieves better computational efficiency than the
optimal ILC strategy.

D. Theoretical Analysis

This section analyzes the feasibility and monotonic conver-
gence of Algorithm 1.
Lemma 1: Consider the system given by (1) and (2) subject

to (3)–(5) and controlled by Algorithm 1. If Assumptions 1–3
hold and the optimization problem given by (32) is feasible at
iteration k, then Algorithm 1 is always feasible.
Proof: Consider any iteration k such that the problem given

by (32) has a feasible solution, denoted by {α�
1, . . . , α

�
k−1, ζ �

k }.
Then, the optimal control input u�

k given by (36) satisfies all
the constraints and is implemented for the iteration k. Next,
at the end of iteration k, we update (32c) as

�uk+1 =
k−1∑
i=1

αi�ui + αk�uk + ζk+1 (37)
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where αi = α�
i , i = 1, . . . , k − 1, αk = 0, and ζk+1 = ζ �

k . In
this case, for iteration k+1 with the constructed solution given
by (37), we obtain that all the constraints given by (32b)–(32e)
are satisfied except for the minimization of the performance
measure (32a). Thus, there is at least one admissible solution
for the problem given by (32) at iteration k + 1; that is, it is
feasible at iteration k+ 1. Finally, by mathematical induction,
we obtain that Algorithm 1 is always feasible. This completes
the proof.
Lemma 1 shows that constructing the to-be-optimized con-

trol input by utilizing the conic hull of its historical input
sequences will not affect the solvability of the optimization
problem; that is, the optimization problem (32) is still feasible
for each iteration. Next, the following proposition shows that
the actual tracking error ‖ek‖2Q under Algorithm 1 is upper
bounded.
Proposition 1: Consider the system given by (1) and (2)

and assume that Assumptions 1–3 hold. If the weighting matri-
ces Q and R in (32) are designed to satisfy the following
condition:

β2�H‖Q‖ ≤ ‖R‖. (38)

Then, the actual tracking error ‖ek‖2Q under Algorithm 1 is
upper bounded by ∥∥ek∥∥2Q ≤ J1(�uk) (39)

for any k, where J1(�uk) is defined as

J1(�uk)
�= ∥∥ek−1 − H�uk

∥∥2
Q + ∥∥�uk∥∥2R. (40)

Proof: To execute Algorithm 1, we need to solve the
optimization problem (32). For (32), we note that êk =
ek−1 − H�uk. But, using the actual model (19), it follows
that: ∥∥ek∥∥2Q = ∥∥ek−1 − (H + �H)�uk

∥∥2
Q

≤ max
�H

∥∥ek−1 − (H + �H)�uk
∥∥2
Q

= max
�H

[
(ek−1 − H�uk)TQ(ek−1 − H�uk)

+ �uTk�HTQ�H�uk
− �uTk�HTQ(ek−1 − H�uk)

− (ek−1 − H�uk)TQ�H�uk
]

= ∥∥ek−1 − H�uk
∥∥2
Q

+ max
�H

(
�uTk�HTQ�H�uk

)
+ max

�H
[−�uTk�HTQ(ek−1 − H�uk)

− (ek−1 − H�uk)TQ�H�uk
]
. (41)

Note that for any �H, (17) indicates ‖�H‖ ≤ β�H. Then,
using (38), we obtain

max
�H

‖�HTQ�H‖ ≤ β2�H‖Q‖ ≤ ‖R‖. (42)

It further implies that

max
�H

(
�uTk�HTQ�H�uk

) ≤ ∥∥�uk∥∥2R. (43)

Now, substituting (43) into (41) yields∥∥ek∥∥2Q ≤ ∥∥ek−1 − H�uk
∥∥2
Q + ∥∥�uk∥∥2R

+ max
�H

[−�uTk�HTQ(ek−1 − H�uk)

− (ek−1 − H�uk)TQ�H�uk
]

≤ ∥∥ek−1 − H�uk
∥∥2
Q + ∥∥�uk∥∥2R

+ 2 max
�H

[
(H�uk − ek−1)TQ�H�uk

]
. (44)

Next, we consider the function �(�H) defined as

�(�H)
�= max

�H
[
(H�uk − ek−1)TQ�H�uk

]
(45)

and note that �(0) = 0.
Finally, using (40), (44), and (45), it follows that:∥∥ek∥∥2Q − 2�(�H) ≤ J1(�uk). (46)

Since J1(�uk) given by (40) is independent of �H, letting
�H = 0 in (46) yields (39). This completes the proof.
Theorem 1: Consider the system given by (1)–(2) subject

to (3)–(5) and controlled by Algorithm 1. If Assumptions 1–3
hold and the problem given by (32) is feasible at the first
iteration, then Algorithm 1 guarantees a monotonic decrease
on the tracking error ek given by (18), i.e.,

‖ek‖2Q ≤ ‖ek−1‖2Q
for any k ∈ I[1,∞). Furthermore, limk→∞ ‖ek‖ exists.
Proof: First, using Proposition 1, we obtain that J1(�u�

k) is
an upper bound of ‖ek‖2Q, where �u�

k is given by (35), i.e.,

‖ek‖2Q ≤ J1(�u�
k). (47)

Next, we note that (32e) holds when �uk = 0. It can
be verified that all the constraints given by (32b)–(32d) is
satisfied when αi = 0, i = 1, . . . , k− 1 and ζk = 0. This indi-
cates that �uk = 0 is a feasible solution to the optimization
problem (32). After solving the optimization problem given
by (32), using optimality of the solution �u�

k, we have

J1
(
�u�

k

) ≤ J1(0). (48)

Then, substituting �uk = 0 into (40) yields

J1(0) = ‖ek−1‖2Q. (49)

Finally, combining (47)–(49) yields

‖ek‖2Q ≤ ‖ek−1‖2Q. (50)

This means that ‖ek‖2Q is monotonically decreasing with the
iteration k. Since ‖ek‖2Q ≥ 0, we obtain that limk→∞ ‖ek‖
exists. This completes the proof.

IV. CIM-BASED ROBUST OPTIMAL ILC DESIGN

In this section, we develop a CIM-based robust optimal ILC
design strategy that utilizes the CIM methodology and adopts
the min–max optimization method by maximizing the bounded
model uncertainties. To that end, we combine the proposed
Algorithm 1 with the presented results in Section II-B2 and
redesign the optimization problem (32) to achieve better
control performance.
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A. CIM-Based Robust Optimal ILC Design

For the developed optimization problem (32), we note
that the uncertainty matrix �H is not explicitly incorpo-
rated into the design. Thus, the optimization problem (32) can
be designed by combining the robust optimal ILC strategy
presented in Section II-B2.
First, for the optimization problem (24), using CIM method-

ology and substituting (30) into (24b) yields

êk = ek−1 − (H + �H)

(
k−1∑
i=1

αi�ui + ζk

)

= ek−1 −
k−1∑
i=1

αi(H + �H)�ui − (H + �H)ζk. (51)

Since for the previous iteration i, i = 1, . . . , k− 1, using (28)
we obtain (H + �H)�ui = ei−1 − ei and substituting it
into (51) yields

êk = ek−1 +
[
k−1∑
i=1

αi(ei − ei−1)
]

− (H + �H)ζk. (52)

Next, substituting (52) into the optimization formula-
tion (24) and taking the model uncertainty information into
consideration, a new optimization problem can be formu-
lated as

min
α1,...,αk−1,ζk

max
�H

∥∥êk∥∥2Q + ∥∥�uk∥∥2R (53a)

s.t. (52) (53b)

�uk =
k−1∑
i=1

αi�ui + ζk (53c)

αi ≥ 0, i = 1, . . . , k − 1 (53d)

��uk ≤ 	k (53e)

where Q � 0 and R � 0 are symmetric sign-
definite weighting matrices with compatible dimensions and
designed to satisfy (38). It is obvious from (53b) and (53c)
that it incorporates both previous input and output error
data.
For the optimization problem (53), by comparing (53b)

with (34), we obtain that it incorporates the real input and
error data of previous trails into the current trail optimization.
When ζk = 0, the to-be-optimized state êk satisfies êk−ek−1 ∈
CH({ei − ei−1}k−1i=1 ), which confines the error êk − ek−1 to be
the minimal conic hull of the error data set {ei−ei−1}k−1i=1 . This
guarantees that the current to-be-optimized state ek is always
restrained by the real error data of previous iterations. Since
we use the real data to compensate for the to-be-optimized
state of the model given by (24), the error of the current trail
optimization problem (53) is reduced compared with (24) and
the control performance using (30) with the CIM methodology
is thus improved.
Remark 5: For the optimization problem (53), it is a min–

max QP problem based on the worst case performance
measure. To solve this problem, we rewrite it in the

Algorithm 2 CIM-Based Robust Optimal ILC Algorithm
0) Form the lifted matrix H given by (10) and select

weighting matrices Q and R to satisfy (38).
1) Set iteration index k = 1 and initialize u0.
2) Apply uk to the system, measure output yk, and compute

tracking error ek.
3) Obtain the optimal parameters {α�

1, . . . , α
�
k−1} and vector

ζ �
k by solving the optimization problem (53).

4) Apply (55) to the system and update the data set.
5) Set k ← k + 1 and go back to step 2).

form of

min
α1,...,αk−1,ζk

η

s.t.
∥∥êk∥∥2Q +

∥∥∥ k−1∑
i=1

αi�ui + ζk

∥∥∥2
R

≤ η

(52) ∀ �H
αi ≥ 0, i = 1, . . . , k − 1

��uk ≤ 	k.

Then, similar to solving (32), using the fmincon function, we
can solve the problem.

B. CIM-Based Robust Optimal ILC Algorithm

We let {α�
1, . . . , α

�
k−1, ζ �

k } denote the optimal solutions to the
optimization problem (53), then using (53c), the CIM-based
robust optimal control input can be represented as

�u�
k =

k−1∑
i=1

α�
i �ui + ζ �

k . (54)

Next, we apply the optimized control input given by

u�
k = uk−1 +

k−1∑
i=1

α�
i �ui + ζ �

k (55)

to the system at the kth iteration and repeat the proce-
dure at the next iteration. We denote the CIM-based robust
optimal ILC algorithm as Algorithm 2, which only needs
to revise Algorithm 1 from solving (32) in step 3) to solv-
ing (53). The detailed description of Algorithm 2 is given as
follows.
Remark 6 (Comparison of Computational Complexity): We

consider the computation complexity of Algorithm 2 com-
pared with the robust optimal ILC strategy presented in
Section II-B2. The total number of variables at each update of
the QP problem given by (24) is mN and the computational
complexity for the robust optimal ILC strategy is Q((mN)2).
For Algorithm 2, the total number of variables at each update
for solving the QP problem (53) is (k − 1 + m) and the
computational complexity is Q((k − 1 + m)2). Thus, if the
iteration index k � (m(N − 1) + 1), Algorithm 2 achieves
better computational efficiency than the robust optimal ILC
strategy.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 09,2022 at 10:39:21 UTC from IEEE Xplore.  Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: CIM DESIGN OF CONSTRAINED OPTIMAL ILC FOR UNCERTAIN SYSTEMS 9

C. Theoretical Analysis

In this section, we discuss the feasibility and monotonic
convergence of Algorithm 2.
Lemma 2: Consider the system given by (1) and (2) subject

to (3)–(5) and controlled by Algorithm 2. If Assumptions 1–3
hold and the problem given by (53) is feasible at iteration k,
then Algorithm 1 is always feasible.
Proof: The proof follows similar arguments as the proof of

Lemma 1. First, we construct a feasible solution as (37) with
αi = α�

i , i = 1, . . . , k−1, αk = 0, and ζk+1 = ζ �
k . Then, it can

be easily verified that all the constraints given by (53b)–(53e)
are satisfied except for the minimization of the performance
measure (53a). Finally, we conclude that there is at least one
admissible solution for the problem given by (53) at iteration
k + 1, indicating that Algorithm 2 is feasible. This completes
the proof.
Proposition 2: Consider the system given by (1) and (2)

and assume that Assumptions 1–3 hold. Let the weighting
matrices Q and R in (53) are designed to satisfy (38). Then,
the actual tracking error ‖ek‖2Q under Algorithm 2 is upper
bounded by ∥∥ek∥∥2Q ≤ J2(�uk) (56)

for any k, where J2(�uk) is defined as

J2(�uk)
�= max

�H
∥∥ek−1 − (H + �H)�uk

∥∥2
Q + ∥∥�uk∥∥2R.

Proof: Using similar arguments used to prove Proposition 1,
we obtain∥∥ek∥∥2Q ≤ max

�H
∥∥ek−1 − (H + �H)�uk

∥∥2
Q

≤ max
�H

∥∥ek−1 − (H + �H)�uk
∥∥2
Q + ∥∥�uk∥∥2R

= J2(�uk). (57)

This completes the proof.
Theorem 2: Consider the system given by (1) and (2)

subject to (3)–(5) and controlled by Algorithm 2. If
Assumptions 1–3 hold and the problem given by (53) is
feasible at the first iteration, then Algorithm 2 guarantees a
monotonic decrease on the tracking error ek given by (18),
i.e.,

‖ek‖2Q ≤ ‖ek−1‖2Q
for any k ∈ I[1,∞). Furthermore, limk→∞ ‖ek‖ exists.
Proof: The proof is similar to that for Theorem 1. Thus, we

give sketch proof here. First, using Proposition 2, we obtain

‖ek‖2Q ≤ J2
(
�u�

k

)
(58)

where �u�
k is the optimal solution to (53) given by (54).

Next, it can be verified that �uk = 0 is a feasible solution
to the optimization problem (53) with αi = 0, i = 1, . . . , k−1
and ζk = 0. Then, using optimality of the solution �u�

k, it
follows that:

J2
(
�u�

k

) ≤ J2(0) = ‖ek−1‖2Q. (59)

Finally, combining (58) and (59) yields

‖ek‖2Q ≤ ‖ek−1‖2Q. (60)

This indicates that ‖ek‖2Q is monotonically decreasing with
the iteration k. Note that ‖ek‖2Q ≥ 0. Finally, we obtain that
limk→∞ ‖ek‖ exists. This completes the proof.
Remark 7: For Algorithms 1 and 2, we have the following

observations.
1) They are both data-driven learning methods that utilize

the CIM methodology to reduce the errors of the current
trail optimization. Both Algorithms are optimal strate-
gies with an integration of the conic hull of the data set
Sk.

2) The CIM methodology utilizes the historical process
data to compensate for the current trail optimization,
thus achieving smaller tracking errors and better
control performance for uncertain systems. In par-
ticular, Algorithm 1 is expected to achieve better
control performance than the strategy presented in
Section II-B1; Algorithm 2 can achieve better control
performance than the strategy presented in Section II-B2
and Algorithm 1.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, two illustrative numerical examples are pro-
vided to illustrate the key ideas presented in this article. The
first example is a benchmark example in the presence of uncer-
tainties. The second example is an injection molding process
in the presence of uncertain perturbations.

A. Example 1: Benchmark

Consider the benchmark example adapted from [44] given
by (1) and (2) with

A =
⎡
⎣0.8 −0.4 0.2
0 0.3 −0.5
0 0 0.5

⎤
⎦,B =

⎡
⎣ 0 0
0 −0.6
0.5 0

⎤
⎦

C =
[
0 1 0
0 0 1

]

�a(t) =
⎡
⎣0 0 0
0 0 0.15 exp(−0.1t)
0 0 0

⎤
⎦,�b(t) = 0

which is a MIMO model with m = p = 2. Note that ‖�a(t)‖ ≤
βa = 0.15 and βb = 0. The desired reference trajectory is set
as yd(t) = [0.5 sin(2π t/N), sin(2π t/N)]T, where N = 50 s is
the trail length. The constraints are set in the form of (3)–(5)
with ui = −ui = 0.6, δui = −δui = 0.5, and dui = −dui =
0.5, i = 1, 2.
To illustrate the performance results of Algorithms 1 and 2,

the weighting matrices are set as Q = I and R = 0.5I. Fig. 2
shows the control inputs of the system in the presence of
uncertainties with Algorithm 1 from eight iterations. Fig. 3
shows the same graph for the system with Algorithm 2. It can
be seen from Figs. 2 and 3 that all the constraints are satis-
fied for all iterations. To compare the results with the existing
methods without using the CIM methodology, we adopt the
optimal ILC strategy developed in [34] and the robust optimal
ILC strategy developed in [36] to realize the same control
objective for the system. To make the comparisons more clear,
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Fig. 2. Control inputs of the system in the presence of uncertainties with
Algorithm 1 from eight iterations.

Fig. 3. Control inputs of the system in the presence of uncertainties with
Algorithm 2 from eight iterations.

Fig. 4. Comparison results of RMSE of the system in the presence of
uncertainties from eight iterations with the control methods in [34] and [36],
Algorithms 1 and 2.

we introduce the index of root mean squared error (RMSE) as

RMSE(k) =
√√√√ N∑

i=1
(yd(t) − yk(t))2 = ‖yd − yk‖2. (61)

The use of RMSE is very common, and it is consid-
ered an excellent general-purpose error metric for numerical
predictions. Comparisons of RMSE of the system from eight
iterations with the control methods in [34] and [36] and
Algorithms 1 and 2 are shown in Fig. 4. It can be seen from

Fig. 5. Control inputs of the injection molding process in the presence of
uncertain perturbations with Algorithm 1 from ten iterations.

Fig. 4 that the system with Algorithm 2 converges faster than
Algorithm 1.

B. Example 2: Injection Molding Process

Injection molding, which is a typical batch process, consists
of three main stages: 1) filling; 2) packing; and 3) cooling [45].
For the packing stage, the nozzle pressure, which is a key pro-
cess variable, should be controlled to follow a given profile to
ensure product quality. Based on the least-square regression
method using historical process data, the nozzle packing pres-
sure response to the hydraulic control valve opening can be
identified as an uncertain state-space form presented in [46].
This model has been widely studied in [47] and [48]. The
detailed model adopted from [46] is given by

xk(t + 1) =
([

1.607 1
−0.6086 0

]
+ �a(t)

)
xk(t)

+
([

1.2390
−0.9282

]
+ �b(t)

)
uk(t), 0 ≤ t ≤ 100

yk(t) = [
1 0

]
xk(t)

where the uncertain perturbations �a(t) and �b(t) are cal-
culated by using statistical learning methods based on a
confidence level from the data, which are given by

�a(t) =
[
0.08δ1(t) 0
0.08δ2(t) 0

]
, �b(t) =

[
0.1δ3(t)
0.1δ4(t)

]
and δi(t) ∈ {δi:|δi| < 0.5}, i ∈ {1, 2, 3, 4}, denote inde-
pendently and uniformly distributed random variables in the
interval (0, 1). Note that ‖�a(t)‖ ≤ βa = 0.08 and ‖�b(t)‖ ≤
βb = 0.1. The desired reference trajectory is set as

yd(t) =
⎧⎨
⎩
0, 0 ≤ t < 20
150 tanh(t − 30) + 150, 20 ≤ t ≤ 40
300, 40 < t ≤ 100

which corresponds to N = 100 in (1) and (2) for the injec-
tion molding process. Here, we use the function tanh(·) as a
smoother for practical implementation. Furthermore, we con-
sider the constraints in (3)–(5) for the process as ui = −ui =
20, δui = −δui = 10, and dui = −dui = 20.
To illustrate the system performance of Algorithms 1 and 2,

the weighting matrices are set as Q = I and R = 10I. In Fig. 5,
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Fig. 6. Control inputs of the injection molding process in the presence of
uncertain perturbations with Algorithm 2 from ten iterations.

Fig. 7. Comparison results of RMSE of the injection molding process in
the presence of uncertain perturbations from ten iterations with the control
methods in [34] and [36], and Algorithms 1 and 2.

we show the control inputs of the process in the presence
of uncertain perturbations with Algorithm 1 from ten itera-
tions. In Fig. 6, we show the same graph for the process with
Algorithm 2. It can be seen from Figs. 5 and 6 that the con-
straints are satisfied for all iterations. Next, we compare the
control performance of Algorithms 1 and 2 with the basic
optimal ILC strategy developed in [34] and the robust optimal
ILC strategy developed in [36] for the same control objective.
To make the comparisons more clear, we adopt the RMSE
given by (61) as a comparison index. Fig. 7 plots the compar-
ison results of RMSE of the process from ten iterations with
the control methods in [34] and [36] and Algorithms 1 and 2. It
can be seen from Fig. 7 that the CIM-based optimal ILC strate-
gies have improved the control performance for the system. In
particular, Algorithm 1 achieves better control performance
and faster convergence rate than the optimal ILC method
in [34]; Algorithm 2 achieves better control performance and
faster convergence rate than the robust optimal ILC method
in [36] and Algorithm 1.

VI. CONCLUSION

In this article, we proposed a data-driven design method-
ology called CIM. Then, CIM-based optimal ILC and CIM-
based robust optimal ILC are developed for uncertain systems

with constraints. Theoretical analyses for the two strategies
are presented, respectively, demonstrating the feasibility of the
algorithms and the monotonic convergence of the systems. The
key idea behind our CIM design methodology is that there was
available process data that interacted with uncertainties and
thus, incorporating these data into the optimization-based ILC
design reveals the potentials to reduce the errors of the current
trail optimization, thereby improving control performance for
uncertain systems. The illustrative numerical examples on the
benchmark example and the injection molding process have
shown that the proposed optimal ILC methods have some clear
advantages over the existing optimal ILC methods. Future
research will focus on exploiting the potential of the CIM
methodology for systems with passive incomplete information,
such as random data dropouts, faded measurements, etc.
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