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Abstract

This paper is concerned with the quadratic regression problem, where the goal is to find
the unknown state (numerical parameters) of a system modeled by a set of equations
that are quadratic in the state. We focus on the setting when a subset of equations of
fixed cardinality is subject to errors of arbitrary magnitudes (potentially adversarial). We
develop two methods to address this problem, which are both based on conic optimization
and are able to accept any available prior knowledge on the solution as an input. We derive
sufficient conditions for guaranteeing the correct recovery of the unknown state for each
method and show that one method provides a better accuracy while the other one scales
better to large-scale systems. The obtained conditions consist in bounds on the number
of bad measurements each method can tolerate without producing a nonzero estimation
error. In the case when no prior knowledge is available, we develop an iterative-based conic
optimization technique. It is proved that the proposed methods allow up to half of the total
number of measurements to be grossly erroneous.The efficacy of the developed methods is
demonstrated in different case studies, including data analytics for a European power grid.

Keywords: nonlinear regression, conic programming, bad data detection

1. Introduction

Nonlinear regression aims to find the parameters of a given model based on observational
data. One may assume the existence of a potentially nonlinear continuous function f(x;a)
defined over the set of all possible models x ∈ X and all possible inputs a ∈ A, where the
goal is to estimate the true model given a set of imperfect measurements yi’s:

yi = f(x;ai) + ηi, ∀i ∈ {1, ...,m} (1)
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In this formulation, the unknown error vector ηηη could be the measurement noise with modest
values. However, a more drastic scenario corresponds to the case where the vector ηηη is sparse
and its nonzero entries are allowed to be arbitrarily large. Under this circumstance, a priori
information about the probability distribution of the sparse vector ηηη may be available, in
addition to an upper bound on the cardinality of ηηη. This important problem is referred to
as robust regression and appears in real-world situations when some observations, named
outliers, are completely wrong in an unpredictable way. This could occur during an image
acquisition with several corrupted pixels, or result from communication issues during data
transmission in sensor networks. Such problems arise in different domains of applications
and have been studied in the literature. In the context of electric power grid, the regression
problem is known as state estimation, where the goal is to find the operating point of the
system based on the voltage signals measured at buses and power signals measured over
lines and at buses (Abur and Exposito, 2004; Madani et al., 2017b; Zhang et al., 2018b).
Outliers in this case are associated with faulty sensors, cyber attacks, or regional data
manipulation to impact the electricity market (Jin et al., 2017; Madani et al., 2017b).

There are several classical works on robust regression and outliers detection. The book
by Rousseeuw and Leroy (2005) offers an overview of many fundamental results in this area
dating back to 1887 when Edgeworth proposed the least-absolute-value regression estimator.
Modern techniques for handling sparse errors of arbitrary magnitudes vary with respect to
different features: statistical properties of the error, class of the regression model f(x;a), set
of possible true models, type of theoretical guarantees, and characteristics of the adversary
model generating errors (Candès et al., 2011; Nasrabadi et al., 2011; Bhatia et al., 2015;
Zhang et al., 2016; Klopp et al., 2017). There is a plethora of papers on this topic for the
well-known linear regression problem (Candes and Tao, 2005; Wright and Ma, 2010; Studer
et al., 2012; Chen et al., 2013a; Bhatia et al., 2017). In this case, the function f(x;a) is linear
in the model vector x, and can be written as a∗x. Nevertheless, there are far less results
known for nonlinear regression. This is due to the fact that linear regression amounts to a
system of linear equations with a cubic solution complexity if the measurements are error-
free, whereas nonlinear regression is NP-hard and its complexity further increases with
the inclusion of premeditated errors. However, very special cases of nonlinear regression
have been extensively studied in the literature. In particular, the robust phase retrieval
problem that can be formulated with f(x;ai) = |a∗ix|2 has received considerable attention
(Zhang et al., 2016; Hand and Voroninski, 2016; Chen et al., 2017). Another special case
is the trace regression problem that has been studied in Hamidi and Bayati (2019) under
a low-rank assumption on the unknown matrix solution. However, this has not yet been
studied under adversarial sparse additive errors. The mathematical framework provided in
the current paper addresses the trace regression problem under a low-rank assumption and
sparse adversarial noise.

Given a ∈ A and an arbitrary ε > 0, it follows from the Stone-Weierstrass theorem
that there exists a polynomial pa : Rn → R that uniformly approximates f on X with the
precision error of ε. This way, given the data {(yi,ai)}mi=1, there exists a nonlinear regression
model

yi = pai
(x) + ε̂i, ∀i ∈ {1, ...,m}

where each function pai
(x) is a polynomial and ε̂i is the difference between pai

(x) and
f(x,ai) that is bounded from above by ε. Notice that ε̂ is dense noise of a small value
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that we do not consider in this paper since its presence just shifts the solutions recovered
using our methods by a small value that can be naturally bounded (this corresponds to the
sensitivity analysis of conic optimization). On the other hand, each polynomial equation can
be converted to a quadratic equation by introducing new variables and adding new quadratic
equations (Sojoudi et al., 2014). As an example, the polynomial equation 1 = x4−x3+x can
be written as 1 = z2−xz+x with the additional variable z and measurement equation 0 =
z−x2 (note that the number of variables and constraints increases in a logarithmic fashion
in terms of the degree of the polynomial). This discussion implies that every nonlinear
regression could be approximated up to any arbitrary precision with a quadratic regression
where the augmented model of the system is quadratic. For this reason, the focus of this
paper is only on quadratic regression.

As a far more general case of phase retrieval, a quadratic regression problem with the
variable x can be modeled as f(x;Ai) = x∗Aix. The state estimation problem for power
systems belongs to the above model due to the quadratic laws of physics (i.e., the quadratic
relationship between voltage and power), where each matrix Ai has rank 1 or 2. Robust
regression in power systems is referred to as bad data detection. This problem was first
studied in 1971 by Merrill and Schweppe (1971), and there are many recent progresses on
this topic (Deka et al., 2015; Weng et al., 2015; Madani et al., 2017b).

The existing approaches for robust regression include the analysis of the unconstrained
case (Candes and Tao, 2005; Studer et al., 2012; Bhatia et al., 2015, 2017; Josz et al., 2018),
the constrained scenario with conditions on the sparsity of the solution vector x (Wright
and Ma, 2010; Nasrabadi et al., 2011; Nguyen and Tran, 2013; McWilliams et al., 2014),
and more sophisticated scenarios in the context of matrix completion (Candès et al., 2011;
Chen et al., 2013b; Klopp et al., 2017; Zhang et al., 2018a). Motivated by applications in
inverse covariance estimation (Wang and Lin, 2014), the papers by Xu et al. (2009); Yang
and Xu (2013); McWilliams et al. (2014) consider sparse noise in the input vector ai as
opposed to the additive error considered in the present paper. The work of Candes and
Tao (2005) is based on l1-minimization, whereas Nasrabadi et al. (2011) solve an extended
Lasso formulation defined as the minimization of ‖y −Ax + ννν‖22 + µ1‖x‖1 + µ2‖ννν‖1. The
work by Dalalyan and Chen (2012) proposes to solve a second-order cone programming
(SOCP) for robust linear regression, which is related to the current paper with a focus
on robust nonlinear regression. In contrast to the above-mentioned papers that aim to
develop a single optimization problem to estimate the solution of a regression, there are
iterative-based methods as well. For instance, Chen et al. (2013a); Bhatia et al. (2015, 2017)
propose iterative algorithms via hard thresholding. As a major generalization, the current
paper significantly advances the ideas proposed in its conference version (Molybog et al.,
2018). Here, we develop an improved theoretical analysis of the semidefinite programming
relaxation and provide a more computationally tractable relaxation based on second-order
cone programming. This problem can be solved significantly faster than a semidefinite
programming of comparable size, which provides the practitioners with a trade-off between
the tightness of the relaxation and the computational speed. We put the explanation and
the proof into the same framework as the semidefinite relaxation, so that the material
from Molybog et al. (2018) can set the stage for presenting the new mathematical results.
Aside from theoretical developments, we present a novel set of numerical experiments that
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partially answer questions raised by Molybog et al. (2018) and discuss intriguing areas of
applications where the more scalable version of the relaxation can make a difference.

Due to the diversity in the problem formulation and approaches taken by different pa-
pers, it is difficult to compare the existing results since there is no single dominant method.
However, the most common measures of performance for robust regression algorithms are
the traditional algorithmic complexity and the permissible number of gross measurements
‖ηηη‖0 compared to the total number of measurements m. In this paper, the objective is
to design a polynomial-time algorithm, in contrast with potentially exponential-time ap-
proaches (Vı́̌sek, 2006), with guaranteed convergence under technical assumptions. As far
as the robustness of an algorithm is concerned, the existing works often provide probabilis-
tic guarantees on the recoverability of the original parameter vector x for linear Gaussian
stochastic systems under various assumptions on the relationship between ‖ηηη‖0 and m. In

this case, the ratio ‖ηηη‖0
m

, named breakdown point, is limited by a constant and could even
approach 1 if the unknown solution x is sparse.

1.1 Contributions and Organization

The main objective of this paper is to analyze a robust regression problem for an arbitrary
quadratic model that includes power system state estimation and phase retrieval as spe-
cial cases. The focus is on the calculation of the maximum number of bad measurements
that does not compromise the exact reconstruction of the model vector x. In Section 2,
we formally state the problem. In Section 3, we propose two conic optimization methods
and study their properties. In particular, we obtain conditions that guarantee the exact
reconstruction of x. In Section 4, we develop the main results of this paper. Under certain
technical assumptions, we discover the dependence between the number of perfect mea-
surements and the maximum admissible number of wrong measurements. After that, we
consider a stochastic setting based on Gaussian distributions. In this case, we show that
the number of bad measurements can safely be on the order of the square root of the total
number of measurements, and moreover the breakpoint approaches 1/2 if there is enough
prior information. To provide a broader range of possible approaches to the problem, Sec-
tion 5 designs an alternative iterative-based method. Numerical results are presented in
Section 6, which includes a case study on a European power grid.

1.2 Notation

Rn and Cn denote the sets of real and complex n-dimensional vectors, respectively. Bold
letters are reserved for vectors and matrices. [A]ij or Aij is the (i, j)-th element of a matrix
A. The symbols Hn and Sn denote the sets of n × n Hermitian and symmetric matrices.
tr(A) and 〈A,B〉 are the trace of a matrix A and the Frobenius inner product of two
matrices A and B. The conjugate transpose and Moore-Penrose pseudoinverse of A are
shown asA∗ andA+. The notationA◦B refers to the Hadamard (entrywise) multiplication.
The eigenvalues of a matrix M ∈ Hn are denoted as λ1(M), ..., λn(M) in descending order.
The smallest and the largest singular values of A are shown as σmin and σmax, respectively.
ei stands for the i-th column of the unit matrix I of appropriate dimension. Given a
matrix A ∈ Cn×m and a set S ⊂ {1, . . . ,m}, the matrix AS is defined to be a matrix
obtained by adjoining the columns of A with indexes in S. Given a vector a ∈ Cn and a
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set S ⊂ {1, . . . , n}, the vector aS is defined to be a subvector of a obtained by stacking the
components of a with indexes in S. For a sequence of indexes S, the symbol {αi}i∈S denotes
a sequence indexed by S. Whenever the notation is obvious from the context, we drop the
indexing subscript for notational simplicity. The symbol ‖v‖0 shows the cardinality of a
vector v, i.e., the number of its nonzero elements. Given a matrix A, the symbols ‖A‖1,
‖A‖∞, ‖A‖2, and ‖A‖F denote the maximum absolute column sum, maximum absolute
row sum, maximum singular value, and Frobenius norm of A, respectively. The cardinality
of a set M is indicated as |M|. The notation a ∼ N (α, β) means that a is a normally
distributed random variable with the parameters α and β.

2. Problem Formulation and Preliminaries

The quadratic regression under sparse noise aims to find a vector x in Rn or Cn such that

yr = x∗Mrx+ ηr, ∀r ∈ {1, . . . ,m}, (2)

where

• y1, . . . , ym are some known real-valued measurements.

• η1, . . . , ηm are unknown but sparsely occurring real-valued noise of arbitrary magni-
tudes.

• M1, . . .Mm are some known n× n Hermitian matrices.

The regression problem could have two solutions ±x in the real-valued case, which increases
to infinitely many in the form of x × e

√
−1θ in the complex case. To avoid this ambiguity,

the objective of this work is to find the matrix xx∗ rather than x since this matrix is
invariant under the rotation of x. At the same time, the recovery of x from xx∗ is a simple
problem that can be solved using the spectral decomposition. If m is large enough, then
xx∗ is expected to be unique. This paper aims to recover any solution xx∗ in case there
are multiple ones. In Problem (2), each measurement equation could have a linear term in
addition to its purely quadratic function x∗Mrx. By introducing one additional variable z
such that z2 = 1, one can multiply the linear terms with z to make them quadratic (Madani
et al., 2017c). As a result, Problem (2) is a general quadratic regression problem.

Let x̂ be an initial guess for the unknown solution x. We refer to this as prior knowledge.
We do not make any assumption about the gap between x̂ and x, and develop different
methods that can be run independent of this gap. However, the goal is to show that as
this gap becomes smaller, the performance of these methods increases. More precisely, we
define a measure to quantify the amount of information in the prior knowledge and use it
to study the to-be-developed techniques. Note that it is easy to deduce prior knowledge
for many real-world systems. For example, we will show that the physics of power systems
naturally provide such useful knowledge.

Consider the complex-valued case and write x = a+
√
−1b ∈ Cn and M = A+

√
−1B ∈

Hn, where a,b ∈ Rn, A ∈ Sn and B = −BT ∈ Rn×n. It is straightforward to verify that:

x∗Mx = aTAa+ 2bTBa+ bTAb =

[

a
b

]T [
A −B
B A

] [

a
b

]

5



Molybog, Madani and Lavaei

Notice that the matrices in the right-hand side of the above equation are real-valued. As a
result, we will only develop the theoretical results of this work in the real-valued case x ∈ Rn

and Mr ∈ Sn since they can be easily carried over to the complex-valved case. However,
we will offer a case study on power systems where the unknown state is a complex vector.

In the regression problem under sparse noise, the vector ηηη is assumed to be sparse.
To distinguish between error-free and erroneous measurements, we partition the set of
measurements into two subsets of good and bad measurements:

G = {r ∈ {1, . . . ,m}|ηr = 0}, B = {1, . . . ,m}\G
To streamline the derivation of the analytical results of this paper, we assume that G =
{1, . . . , |G|} and B = {|G|+1, . . . ,m}. However, the algorithms to be designed are completely
oblivious to the type of each measurement and its membership in either G or B.

The objective of this paper is to develop efficient algorithms for finding x precisely as
long as ηηη is sufficiently sparse. This statement will be formalized in the next sections.

3. Conic Optimization Methods

Consider a variable matrix W playing the role of xxT . This matrix is positive semidefinite
and has rank 1. By dropping the rank constraint, one can cast the quadratic regression as
a linear matrix regression. Motivated by this relaxation, consider the optimization problem

minimize
W∈Sn, ννν∈Rm

〈W,M〉+ µ‖ννν‖1

subject to 〈W,Mr〉+ νr = yr, ∀r ∈ {1, . . . ,m} (3a)

W = WT �C 0 (3b)

where the notation �C is the generalized inequality sign with respect to C, which is either the
cone of symmetric positive semidefinite (PSD) matrices or the 2× 2 principal sub-matrices
PSD cone (see Permenter and Parrilo, 2014). The above cones are formally defined in
Subsection 3.2.

The problem definition involves a matrix M that is to be designed based on the prior
knowledge x̂ ∈ Rn in such a way that the term 〈W,M〉 in the objective function promotes
a low-rank structure on W. The construction of M will be studied later in the paper. We
refer to Problem (3) as penalized conic program, but call it with more specific names in two
special cases: (i) penalized semidefinite program (SDP) if C is the cone of PSD matrices,
(ii) penalized second-order cone program (SOCP) if C is the cone of matrices with all 2× 2
principal sub-matrices being PSD. The penalized conic program is a convex problem and
can be solved in polynomial time up to any given accuracy.

A popular approach to solving rank minimization problems is via an approximation
technique that replaces the non-convex objective function with the nuclear norm of the
unknown matrix (Candès et al., 2011). We exploit a different approach for three main
reasons:

• The nuclear norm minimization is rooted in the fact that the nuclear norm is a convex
envelope of the rank over a certain ball, but the connection between nuclear norm and
rank fades away when the ball is intersected with the hyperplanes given by (3a).
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• In many practical applications, some prior knowledge about the unknown state is avail-
able. However, the nuclear norm minimization cannot incorporate such information
to improve the search for the unknown solution. This is in contrary to the standard
numerical algorithms for optimization that allow the initialization of the process for
finding an optimal solution. Therefore, one would expect to have a new learning
method for quadratic regression that exploits prior knowledge about the solution.

• The minimization of the trace is meaningless in many applications where the trace
of all feasible matrices W is automatically in a narrow bound. In this case, the
trace cannot be used to distinguish low-rank solutions from high-rank solutions. This
naturally occurs in power systems, for which the trace is almost fixed since voltage
magnitudes are always close to nominal values (e.g., 110 volts) (Madani et al., 2014)

The method to be developed in this paper addresses the above issues via a major generaliza-
tion of the nuclear norm minimization. In particular, if x̂ = 0, then the proposed approach
is equivalent to the nuclear norm minimization. We refer to x̂ as prior knowledge, and aim
to show how the amount of information in the prior knowledge—measured in terms of the
closeness between x̂ and the unknown solution—affects the performance of the penalized
conic program and the estimation error.

In the following two subsections, we will introduce the functions κ and ξ, matrices J̄
and J̃, and vectors d̄ and d̃, and then study the problem of designing M based on the prior
knowledge x̂.

3.1 Penalized Semidefinite Programming

Consider the penalized SDP that corresponds to Problem (3) with C equal to the PSD cone.
Given a matrix X ∈ Sn, define κ(X) to be the sum of the two smallest eigenvalues of X,
i.e.,

κ(X) := λn(X) + λn−1(X)

Let the matrix M in the objective function of the penalized SDP be chosen to have the
following properties:

Mx̂ = 0,

rank(M) ≥ n− 1

κ(M) > 0

If there is no prior knowledge available, one can select x̂ to be zero and then choose M as
I. This will correspond to the famous nuclear norm minimization. As will become evident
in the paper, the linear term 〈W,M〉 with the above-mentioned matrix M penalizes the
deviation of W from x̂x̂T . Since x̂x̂T is low-rank, the inclusion of this linear term auto-
matically takes care of both prior knowledge and low-rank promotion. There are infinitely
many choices for M, and it is not important which one to select as far as the analysis of this
paper is concerned. One natural choice for M is the matrix of orthogonal projection onto
the hyperplane that is orthogonal to x̂. This particular matrix is computationally cheap
to construct. However, if more than one initial guess is available, it is beneficial to design
the matrix M via an optimization problem that attempts to minimize the violation of the
above conditions for all initial values of x̂.
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Observe that the dual of Problem (3) can be obtained as:

maximize
λ∈Rm

− yTλλλ

subject to M+

m
∑

r=1

λrMr � 0 (4a)

‖λλλ‖∞ ≤ µ (4b)

where � 0 is the positive semidefinite sign. Define the matrix J̄ and the vector d̄ as:

J̄ = [M1x . . . Mmx] (5a)

d̄ = Mx (5b)

where x is the solution of the original problem (2). The matrix J̄ captures the coherence
between the model vector x and the measurement matrices Mr. At its turn, the vector d̄
measures the alignment of the solution x and the prior knowledge x̂. Note that J̄ and d̄ are
both completely noise-agnostic. The regularity property of the matrix J̄ and the norm of
the vector d̄ play important roles in guaranteeing the correct recovery of x. A preliminary
result is provided below, which will later be used to study the penalized SDP.

Lemma 1 Assume that there exists an index r ∈ {1, . . . ,m} such that x̂TMrx̂ 6= 0 and

µ > ‖J̄+
G
(

d̄− µJ̄B sign(ηηηB)
)

‖∞ (6a)

κ(M)

2max
r
‖Mr‖2

> ‖J̄+
G
(

d̄− µJ̄B sign(ηηηB)
)

‖1 + µ|B| (6b)

Then, (xxT , ηηη) is the unique solution of the penalized SDP. Moreover, λ̂̂λ̂λ =

[

λ̂̂λ̂λG
λ̂̂λ̂λB

]

defined

as

λ̂̂λ̂λB =− µ sign(ηηηB)

λ̂̂λ̂λG =− J̄+
G

(

d̄+ J̄Bλ̂̂λ̂λB
)

is a dual solution.

Proof The proof is provided in Appendix A.

The conditions given in Lemma 1 will be refined and further studied in Section 4 to
uncover useful properties of the penalized SDP.

3.2 Penalized Second-Order Cone Programming

Although penalized SDP is a convex optimization, its memory and time complexities make
it less appealing for large-scale problems (Boyd et al., 2004). These complexities can be
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significantly reduced if the union of the 0-1 sparsity patterns of the matrices M,M1, ...,Mm

is a sparse matrix itself (Fukuda et al., 2001). This requires a natural sparsity in the
measurement matrices Mr and also the design of a sparse matrix M, which is not always
possible. As an alternative, one can break down the complexity of the penalized SDP by
replacing its constraint W � 0 with second-order conic constraints. Although penalized
SDP offers better recovery guarantees than penalized SOCP, the latter has a significantly
lower computational complexity and can be efficiently solved for large-scale problems using
interior-point methods (Alizadeh and Goldfarb, 2003). In this part, we study the penalized
SOCP as a counterpart of penalized SDP. This optimization problem is obtained by building
the cone C based on the 2× 2 principal submatrices of W, as explained below.

Definition 2 (2PSM) A matrix X ∈ Sn belongs to the 2× 2 principal sub-matrices PSD
cone if each 2× 2 principal sub-matrix of X is positive semidefinite, i.e.,

[ei ej ]
TX[ei ej ] � 0, ∀ i < j

Since the 2PSM cone is not self-dual, we introduce the scaled diagonally dominant cone
below.

Definition 3 (SDD) A matrix X ∈ Rn×n belongs to the scaled diagonally dominant cone
if there exists a set of 2× 2 positive semidefinite matrices {Xij}j≤n

i<j such that

n
∑

j=2

j−1
∑

i=1

[ei ej ]X
ij [ei ej ]

T = X

The notation {Xij}j≤n
i<j in the above definition means {Xij

∣

∣j = 2, . . . , n, i = 1, . . . , j−1}.
The next lemma explains the connection between 2PSM and SDD cones.

Lemma 4 (Permenter and Parrilo (2014)) The dual of the 2×2 principal sub-matrices
PSD cone is the scaled diagonally dominant cone of the same dimension.

In what follows, we will define and describe certain properties of a linear space of diagonal
decompositions of matrices. These definitions are somewhat more tedious than the ones in
the previous subsection, but they serve the same aim: they formally define the matrix M
and the counterparts of J̄ and d̄ for the penalized SOCP.

Definition 5 The sequence {Aij ∈ S2}i<j is said to be a diagonal decomposition (or just
decomposition) of A ∈ Sn if

A =

n
∑

j=2

j−1
∑

i=1

[ei, ej ]A
ij [ei, ej ]

T

A decomposition that consists of PSD matrices is a certificate that a matrix belongs to
the SSD cone. Similarly to the function κ defined for the penalized SDP, we introduce the
function χ({Xij}i<j) as follows:

χ
(

{Xij}i<j

)

:= min
i<j

tr(Xij) = min
i<j

(

λ1(X
ij) + λ2(X

ij)
)
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Consider a sequence {Mij ∈ S2}j≤n
i<j such that

{

χ({Mij}i<j) > 0

Mij [x̂i x̂j ]
T = 0 for all i < j

Define the corresponding penalized SOCP as Problem (3) with C equal to the 2PSM cone
and

M =
∑

i<j

[ei ej ]M
ij [ei ej ]

T . (7)

Since Mij � 0, the matrix M belongs to the SDD cone. Similarly to the penalized SDP,
there is an infinite number of possible matrices M, one of which can naturally be obtained
by selecting Mij to be the orthogonal projection onto the line orthogonal to [x̂i x̂j ]

T .
The dual of the penalized SOCP takes the form:

maximize − yTλλλ

subject to M+

m
∑

r=1

λrMr = H (8a)

∑

i<j

[ei ej ]H
ij [ei ej ]

T = H (8b)

Hij � 0 (8c)

‖λλλ‖∞ ≤ µ (8d)

where the variables are λ ∈ Rm, H ∈ Sn and {Hij}j≤n
i<j ⊂ S2. Now, it is easy to observe

that each conic constraint [ei ej ]
TW[ei ej ] � 0 in Problem (3) corresponds to the dual

variable matrix Hij . Hence, the complementary slackness condition can be written as

〈[ei ej ]
TW[ei ej ],H

ij〉 = 0, for all i < j ≤ n

Define G to be a symmetric matrix such that Mij [xi xj ]
T = [Gij Gji]

T for all i < j ∈
{1, . . . , n} and Gii = 0 for all i ∈ {1, . . . , n}. Furthermore, for every r ∈ {1, . . .m}, define
Rr as a matrix with the properties:











n
∑

j=1
Rr

ij = M r
ii for all i ∈ {1, . . . , n}

Rr
ii = 0 for all i ∈ {1, . . . , n}

One simple example of this matrix is a matrix with the (i, j)-entry equal to Rr
ij =

Mr
ii

n−1
for i 6= j. Given r ∈ {1, . . . ,m}, define Gr ∈ Rn×n as a matrix with the components
Gr

ij = xjM
r
ij + xiR

r
ij and Gr

ii = 0 for all i, j ∈ {1, . . . , n}. Similarly to (5), define:

J̃ =
[

vecnd
(

G1
)

. . . vecnd (Gm)
]

(9a)

d̃ = vecnd (G) (9b)

where the vectorization operator vecnd : Rn×n → Rn2−n puts all elements excluding the
diagonal of its matrix argument into the form of a vector. Similarly to the penalized SDP
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case, here J̃ captures the coherence between the data and the true model, while d̃ captures
the correlation between the true model and the prior knowledge.

The counterpart of Lemma 1 is stated below for the penalized SOCP.

Lemma 6 Assume that the components of the initial guess are nonzero (i.e., x̂i 6= 0 for all
i ∈ {1, . . . , n}) and that there exists an index r ∈ {1, . . . ,m} such that x̂∗Mrx̂ 6= 0 and

µ > ‖J̃+
G

(

d̃− µJ̃B sign(ηηηB)
)

‖∞ (10a)

χ({Mij}i<j)

max
r, i<j

|tr({Mij
r }i<j)|

> ‖J̃+
G

(

d̃− µJ̃B sign(ηηηB)
)

‖1 + µ|B| (10b)

Then, (xxT , ηηη) is the unique solution of the penalized SOCP. Moreover, λ̂̂λ̂λ =

[

λ̂̂λ̂λG
λ̂̂λ̂λB

]

defined

as

λ̂̂λ̂λB =− µ sign(ηηηB)

λ̂̂λ̂λG =− J̃+
G

(

d̃+ J̃Bλ̂̂λ̂λB
)

can be completed to a dual optimal solution.

Proof The proof is provided in Appendix B.

We need to mention that while there is some freedom in the choice of λ̂̂λ̂λG in the proof of
Lemma 6, the dual variables λ̂̂λ̂λB associated with the bad measurements are inflexible. This
is elaborated below.

Lemma 7 λ̂̂λ̂λB = −µ sign(ηηηB) is the only possible choice for the optimal dual variables if
the optimal primal variables are (xxT , ηηη).

Proof The proof is provided in Appendix B

4. Main Results

In this section, we develop the key theoretical results on the Robust Quadratic Regression
solution via the conic methods presented in the preceding section. The common structure
of the conditions in Lemmas 1 and 6 allows us to derive results providing guarantees for
both the SDP and the SOCP approaches simultaneously. To do so, we will use the universal
notations J and d to denote J̄ and d̄ (defined in Subsection 3.1) in the penalized SDP case
and to denote J̃ and d̃ (defined in Subsection 3.2) in the penalized SOCP case. Define

αSDP = κ(M)

2‖d̄‖2 max
r

‖Mr‖2 or αSOCP =
χ({Mij}i<j)

‖d̃‖2 max
r, i<j

|tr(Mij
r )|

For the particular matrices M constructed in Section 3 using the projection operator, both
κ(M) and χ({Mij}i<j) are equal to 1. In addition, one can normalize the equations in (2) be-
fore solving the problem via a rescaling so that ‖Mr‖ = 1, in which case the terms with Mr

11
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in the definitions of αSDP and αSOCP can be eliminated (or bounded by a constant). There-

fore, we can write that αSDP ∝ |〈 x

‖x‖ ,
x̂

‖x̂‖〉|−1 and αSOCP ∝ (
∑

i<j |〈[ xi

‖x‖
xj

‖x‖ ], [
x̂i

‖x̂‖
x̂j

‖x̂‖ ]〉|)−1,
which imply that these parameters measure the amount of information in the prior knowl-
edge. Henceforth, we use the shorthand notation α to denote αSDP or αSOCP depending
on whether the penalized SDP or SOCP is analyzed. The same notation is used for l that
takes one of the following values:

lSDP = n; lSOCP = n2 − n

4.1 Deterministic Bound

In this subsection, we establish a uniform bound on the number of bad measurements that
a penalized conic relaxation can tolerate. To do so, we make use of two matrix properties
introduced in Bhatia et al. (2017).

Definition 8 (SSC property) A matrix X ∈ Rl×m is said to satisfy the Subset Strong Con-
vexity (SSC) Property at level p with constant γp > 0 if

γp ≤ min
|S|=p

√

λmin(XSXT
S )

Definition 9 (SSS property) A matrix X ∈ Rl×m is said to satisfy the Subset Strong
Smoothness (SSS) Property at level p with constant Γp > 0 if

max
|S|=p

√

λmax(XSXT
S ) ≤ Γp

Note that the notation |S| = p in the above definition specifies the index set of any p
columns of the matrix X. The ratio of the constants γp and Γm−p can be interpreted as a
uniform condition number at level p.

Theorem 10 Consider Problem (2), and let N = |B| denote the cardinality of the support
of the noise vector η. Without any future assumption on the noise, consider the correspond-
ing penalized conic problem. Consider arbitrary constants ᾱ, γ and Γ such that

ᾱ >

(√
N Γ

γ
+ (1− Γ

γ
)
)√

m−N +N

γ − Γ
,

• If the exact solution x of (2), the prior knowledge x̂ and the measurement matrices
Mr are such that J̄ satisfies the SSC property at level m−N = |G| with the constant γ
and the SSS property at level N = |B| with the constant Γ, then there exists a constant
µ for which (xxT , ηηη) is the unique solution of the penalized SDP problem if αSDP ≥ ᾱ.

• If the exact solution x of (2), the prior knowledge x̂ and the measurement matrices
Mr are such that J̃ satisfies the SSC property at level m−N = |G| with the constant
γ and the SSS property at level N = |B| with the constant Γ, then there exists a
constant µ for which (xxT , ηηη) is the unique solution of the penalized SOCP problem
if αSOCP ≥ ᾱ.

12
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Proof The proof follows from Lemmas 1 and 6, together with Lemma 11 to be stated later
in the paper.

Theorem 10 implies that the penalized conic relaxations are exact and the corresponding
instances of the NP-hard problem (2) can be solved in polynomial time, provided that
they satisfy a certain condition. This condition is not restrictive as long as the amount of
information in the prior knowledge is not too low.

Notice that aside from the cardinalities of the sets G and B, Theorem 10 imposes no
condition on the noise values. Therefore, the guarantee provided by this Theorem is estab-
lished for the “worst-case scenario” when the adversary is adaptive and strategically selects
the indexes of the error vector ηηη based on the true solution x to have the most impact.
Theorem 10 in the paper is based on two basic assumptions:

• Incoherence of the good measurements and dominance of good measurements over
bad ones: This is implied by the terms of the form γ − Γ in the inequality bound;

• The amount of information in the prior knowledge: This is implied by the lower bound
α ≥ ᾱ.

Although Theorem 10 just states the existence of the hyperparameter µ, we will identify an
interval for this parameter below.

Lemma 11 Let J be a matrix in Rl×m that satisfies the SSC and SSS properties on levels
|G| and |B| with the respective constants γ|G| and Γ|B| (γ|G| > Γ|B|). Moreover, let d be a

vector in Rl and λλλ be a vector in Rm such that λλλB = µ ·s, where µ is a scalar and the entries
of s are only +1 or −1. If

αγ|G|(γ|G| − Γ|B|)− |B|γ|G| >
(

√

|B|Γ|B| + (γ|G| − Γ|B|)
)

√

|G|

then the interval
[

‖d‖2
γ|G| − Γ|B|

,
(αγ|G| −

√

|G|)‖d‖2
√

|B||G|Γ|B| + |B|γ|G|

]

(11)

is not empty and the system of inequalities

{

µ > ‖λλλG‖∞
α‖d‖2 > ‖λλλG‖1 + µ|B|

is satisfied with λλλG = −J+
G (JBλλλB + d) for every µ in the interval (11).

Proof The proof directly follows from Definitions 8 and 9, as well as Lemma 26 proved in
Appendix C.

Lemma 11 provides an interval for the hyperparameter µ. The length of this interval
and its location depend on the solution x and the amount of information in the measure-
ments, but they are independent of the noise values. This is consistent with the existing
results for the precedents of the quadratic regression problem, such as Lasso (Wainwright,
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2009) and Graphical Lasso (Ravikumar et al., 2011). In such problems, the existence of
this interval with unknown endpoints is enough for developing iterative methods, such as
bisection techniques, to repeatedly solve the problem and update µ based on measuring the
quality of estimation at each run of the optimization. This fits within the realm of model
selection, where one can use information-theoretic methods such as the Akaike criterion. In
Section 6, we will verify that the simple idea of trying multiple values for µ with different
orders of magnitude performs well on real data.

4.2 Stochastic Bound

In the preceding section, we developed theoretical results on the correct recovery of the
state of the problem and the number of permissible bad measurements. Unlike the existing
results that focus on particular types of quadratic regression problems, these results apply to
any arbitrary set of matrices Mr’s. This generality of the results has made the conditions
somewhat sophisticated. In what follows, we will simplify the results and provide some
intuition under a stochastic setting.

Definition 12 A matrix X is called standard Gaussian over R if its entries are independent
and identically distributed random variables with a standard normal distribution.

The data in this subsection is assumed to be stochastic, and therefore the associated
theoretical results should be stated in a probabilistic sense. We select δ ∈ (0, 1), and define

ε∗ = argminε>0 2
√
6e ·

√

l log 3

ε
+log 2

δ

1−2ε and τδ = 2
√
6e ·

√

l log 3

ε∗
+log 2

δ

1−2ε∗ .

Theorem 13 Consider a random instance of Problem (2) where the measurement matrices
Mr and the exact solution x are random and distributed such that J (either J̄ or J̃) is a
standard Gaussian matrix. B consists of N elements selected uniformly on random from the
measurement index set {1, 2, ...,m}. Consider an arbitrary constant δ ∈ (0, 1). Introduce

shortcut notation: a =
√√

m−N − τδ; b =
√√

N + τδ and c =
√√

m−N + τδ, let ᾱ be
a constant satisfying

ᾱ >

(m−N)
1

4 −N
1

4
b
a
+ N

a

[

b

N
1
4

+ c

(m−N)
1
4

]

a−N
1

4 (m−N)−
1

4 b

• If the exact solution x of (2) and the prior knowledge x̂ are such that αSDP ≥ ᾱ, then
with probability at least (1 − δ)2 there exists a constant µ for which (xxT , ηηη) is the
unique solution of the penalized SDP problem.

• If the exact solution x of (2) and the prior knowledge x̂ are such that αSOCP ≥ ᾱ,
then with probability at least (1 − δ)2 there exists a constant µ for which (xxT , ηηη) is
the unique solution of the penalized SOCP problem.

Proof The proof follows from Lemmas 1 and 6, together with Lemma 14 to be stated later
in the paper.
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Unlike the results of the previous subsection, the stochastic bounds given above are
established for a “random scenario” when the adversary is oblivious and selects the indexes
of the nonzero components of the error vector ηηη on random with a uniform distribution.
Nevertheless, we still consider the noise values to be completely arbitrary and possibly
engineered to have the most negative impact on the regression problem.

It is important to discuss when J becomes a Gaussian matrix in order to use the stochas-
tic bounds in Theorem 13. The easiest scenario corresponds to the case where the true
solution x is a deterministic vector while Mr’s are stochastic matrices. For example, [Mr]ij
with the distribution N (0, 1

nx2

j

) makes [Mrx] a standard normal vector, independent of any

other column vector in the matrix J̄. Likewise, an example of the data distribution for
the SOCP case is [Mr]ii ∼ N (0, n − 1) and [Mr]ij ∼ N (0, ( xi

xj
)2) when i 6= j. Indeed,

Rij ∼ N (0, 1) whenever i 6= j will make J̃ a standard Gaussian matrix.

The major difference between Theorem 13 and Theorem 10 is the elimination of the SSC
property conditions. The simplification of the deterministic bounds was carried out for a
Gaussian setting, but the developed techniques could be used to study other distributions
as well. We will identify an interval for the hyperparameter µ below.

Lemma 14 Let J be a matrix in Rl×m that is sampled from a normal standard Gaussian
distribution. Moreover, let d be a vector in Rl and λλλ be a vector in Rm such that λλλB = µ · s,
where µ is a scalar and the entries of s are only +1 or −1. Consider arbitrary numbers

δ ∈ (0, 1) and ǫ > 0. Denote τδ,ε =

√

cl+c′ log 2

δ

1−2ε , where c = 24e2 log 3
ε
and c′ = 24e2. If

√

|G| >
√

|B|
√

1+∆|B|√
1−∆|G|

+ |B|
α
√

1−∆|G|−1

√
1+∆|B|+

√
1+∆|G|√

1−∆|G|
, (12)

where ∆t ≥ τδ,ε√
t
for t = |B| and |G|, then with probability at least (1− δ)2 the interval

[

‖d‖2√
|G|(1−∆|G|)−

√
|B|(1+∆|B|)

,
(α
√

(1−∆|G|)−1)‖d‖2
|B|(
√

(1+∆|B|)+
√

(1+∆|G|))

]

(13)

is not empty and the system of inequalities

{

µ > ‖λλλG‖∞
α‖d‖2 > ‖λλλG‖1 + µ|B|

is satisfied with λλλG = −J+
G (JBλλλB + d) for every µ in the interval (13).

Proof The proof is provided in Appendix C

As explained after Lemma 11, the existence of the unknown interval given in (13) enables
the design of iterative techniques to adaptively find a suitable value for µ. We will illustrate
the insensitivity of the conic programs to the exact value of µ in Section 6.

It can be verified that to satisfy the condition (12), the number of good measurements
|G| must grow quadratically in the number of bad measurements |B| for both the penalized
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SDP and the penalized SOCP relaxations. Nevertheless, in the case when α → ∞, this
condition on |G| and |B| can be reduced to the simple inequality

|G|(1− τδ,ε
√

|G|
) > |B|(1 + τδ,ε

√

|B|
)

or equivalently
{

|G| > τ2δ,ε
|B| < |G|+ τ2δ,ε − 2τδ,ε

√

|G|
(14)

The above inequalities imply that the number of bad measurements |B| is allowed to increase
from O(

√

|G|) to O(|G|) as the amount of information in the prior knowledge increases.
Numerical studies show that the function τδ,ε is expected to be fairly flat with respect

to ε for practically important values of the parameters. For illustration purposes, consider
l = 100 and δ = 0.05. In this setting, ε = ε∗ = 0.05514 is the minimum of τδ,ε and

τ2δ,ε∗ ≃ 893.7l + 223.6 log
2

δ
≃ τ2δ

which demonstrates the asymptotic behavior of the function. Since lSDP = n but lSOCP =
n2 − n, it can be concluded that the guarantee for the SDP approach works whenever the
number of measurements is on order of the size of the problem, while the guarantee for
the SOCP approach requires a higher number of measurements. This gives rise to a salient
difference between the penalized SDP and the penalized SOCP: the SDP approach offers
a higher performance over the SOCP approach but is computationally more expensive.
Another important difference between the SDP and SOCP approaches—coming from the
nature of the problem itself—is rooted in the definition of the coefficient α. The amount of
prior knowledge needed for the SDP approach to work is less than or equal to that needed
for the SOCP approach.

5. Robust Least-Squares Regression

Taking a step back from the penalized convex program, note that the literature on regression
under sparse noise utilizes other methods along with convex relaxation techniques. To
consider an alternative baseline, in this section we focus our attention on the development
of an iterative technique inspired by Bhatia et al. (2017). This new method is most useful
when no prior knowledge about the unknown solution is available. To build an iterative
algorithm for solving Problem (2), consider the optimization

minimize
W∈Sn, ν∈Rm

1

2

m
∑

r=1

(〈W,Mr〉+ νr − yr)
2

subject to W �C 0

‖ννν‖0 ≤ k

(15)

where k is a parameter. This problem is nonconvex due to a cardinality constraint.

Definition 15 Define HTk(y) : Rm → Rm as a hard thresholding operator such that

[HTk(z)]i =

{

zi if |zi| is among the k largest-in-magnitude entries of z
0 otherwise,
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where [HTk(z)]i denotes the ith entry of HTk(z).
Consider the function

f(ννν) := min
W�C0

1

2

m
∑

r=1

(〈W,Mr〉 − (yr − νr))
2

and let Ŵ(ννν) denote a solution to this problem. We propose a Hard Thresholding method
for solving the quadratic regression problem, which consists of the iterative scheme

νννt+1 = HTk(ννν
t − d(νννt))

where

d(ννν) =
1

2
∇ννν

(

m
∑

r=1

(〈W,Mr〉 − (yr − νr))
2

)

∣

∣

∣

∣

W=Ŵ(ννν)

(the symbol ∇ννν stands for the gradient with respect to ννν). By Lemma 3.3.1 in Bertsekas
(1995), if Ŵ(ννν) is a continuously differentiable mapping, then ∇f(ννν) = d(ννν). Inspired
by this fact, one may informally regard d(ννν) as the gradient of the optimal value of the
optimization problem (15) without its cardinality constraint. Define w = vec(W), ŵ(ννν) =
vec(Ŵ(ννν)), ar = vec(Mr) for r = 1, ...,m, and A = [a1 . . . am]T . It can be verified that

d(ννν) = Aŵ(ννν)− y + ννν

which implies that

HTk(ννν − d(ννν)) = HTk(y −A · vec(Ŵ(ννν)))

Based on this formula, we propose a conic hard thresholding method in Algorithm 1. Unlike

Algorithm 1 Conic Hard Thresholding

Input: Covariates A, responses y, corruption index k, tolerance ε, and cone C
Initialization :

1: ννν0 ← 0, t← 0;
LOOP Process

2: while ‖νννt − νννt−1‖ > ε do

3: Ŵt = arg min
W�C0

m
∑

r=1

(

〈W,Mr〉 − (yr − νtr)
)2

;

4: νννt+1 = HTk(y −A · vec(Ŵt));
5: t← t+ 1;
6: end while
7: return Ŵt+1

the penalized SDP and penalized SOCP methods, Algorithm 1 does not rely on any prior
knowledge. Instead of the penalty terms in the objective, it solves a sequence of conic
programs to identify the set of bad measurements through a thresholding technique. In
the regime where m ≥ n(n+1)

2 , this algorithm with a high computational complexity can be
further relaxed by letting the cone C be the set of symmetric matrices. We refer to this as
Algorithm 2, where the condition W �C 0 is reduced to W = WT . Note that Algorithm
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2 is not effective if m < n(n + 1)/2 because the number of measurements becomes less
than the number of scalar variables in W. On the other hand, as m grows, the feasibility
constraint W �C 0 would more likely be satisfied for free (since the feasible set shrinks) and
Algorithm 1 would perform similarly to Algorithm 2. Inspired by this property, we analyze
the asymptotic behavior of Algorithm 2 for Gaussian systems below.

Lemma 16 Suppose that |B| < m
20000 , m ≥ n2, and Mr is a random normal Gaussian

matrix for r = 1, ...,m. For every ǫ > 0, Algorithm 2 recovers a matrix W such that
‖W − xxT ‖2 ≤ ǫ within O(log(‖ηηη‖2

ǫ
) + log( 2m

n2+n
)) iterations.

Proof It follows from Theorem 4 by Bhatia et al. (2017).

Let W∗ be any solution obtained by Algorithm 2. Then, one can use its eigenvalue
decomposition to find a vector u such that u = arg min

v∈Cn
‖vvT −W‖2. Therefore,

‖uuT − xxT ‖2 = ‖(uuT −W∗)− (xxT −W∗)‖2
≤ ‖uuT −W∗‖2 + ‖xxT −W∗‖2 ≤ 2ε

(16)

This means that Algorithm 2 can be used to find an approximate solution u with any arbi-
trary precision for the robust regression problem for Gaussian systems with a large number
of measurements and yet it allows up to a constant fraction of measurements to be com-
pletely wrong. Comparing this with the guarantee O(|B|) = O(|G| 12 ) for the penalized conic
methods, given by Theorem 13, it can be concluded that Algorithm 1 (or 2) is asymptoti-
cally more robust to outliers than the penalized conic program since it solves a sequence of
optimization problems iteratively as opposed to a single one. This leads to another level of
tradeoff between the complexity of an estimation method and its robustness level.

The theoretical analyses of this work were all on a regression model subject to a sparse
error vector. However, the results can be slightly modified to account for modest noise
values in addition to sparse errors. The bounds derived in this work remain the same, but
the solutions found by the penalized conic problem and Algorithm 1 would no longer match
the true regression solution being sought (as expected, due to a corruption in all equations).
The mismatch error is a function of the modest noise values. The details are omitted for
brevity; however, the this scenario will later be analyzed in numerical examples.

6. Experiments

In this section, we study the numerical properties of the penalized conic methods and the
conic hard thresholding Algorithm 1. The simulation results in Section 6.2 and 6.3 are on
physical systems for which we use the realistic prior knowledge that can be inferred from
the physics of the problem (without having access to any information about the solution).
In addition, we do not use any prior knowledge for the simulations in Sections 6.1 and 6.4,
and select M to simply be a diagonal matrix.

6.1 Synthetic Data

Following Madani et al. (2017a), we define the sparsity pattern of an arbitrary matrix
X ∈ Sn to be a binary matrix N ∈ Sn whose (i, j)-entry is equal to 1 if and only if Xij 6= 0.
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Figure 1: Estimation error as a function of: (a) the number of data pointsm, (b) the dimensionality
n, (c) the standard deviation σ of additive white noise.
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Figure 2: Estimation error as a function of the number of bad measurements k for different mag-
nitudes of additive dense Gaussian noise.
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Define the set
S(N) , {X ∈ S

n|X ◦N = X}
We conduct some experiments on synthetically generated quadratic regression data sets with
corruptions. The true model vector x is chosen to be a random unit-norm vector, while the
input matrices Mr’s are chosen from S(N) according to a common random sparsity pattern
N. The nonzero entries of Mr’s are generated from a normal standard distribution. The
matrix N has all diagonal elements and 3n off-diagonal elements nonzero. The off-diagonal
positions are selected uniformly. The measurements to be corrupted are chosen uniformly
at random and the value of each corruption is generated uniformly from the interval [10, 20].
The measurements are then generated as yr = x∗Mrx + ηr + ωr, where in addition to the
sparse error vector ηηη there is a random dense noise vector ωωω whose entries are Gaussian
with zero mean and standard deviation σ. All reported results are averaged over 10 random
trials.

By assuming that no prior information about the solution x is available, we set the
matrix M to be equal to In. The parameter µ is chosen as 10−2. Regarding Algorithm 1,
the parameter k is selected as the true number of corrupted measurements, the tolerance
ε is set to 10−3, and the algorithm is terminated early if the number of conic iterations
exceeds 50. In both of the methods, C is considered to be the 2PSM cone. Hence, we refer
to these methods as penalized SOCP and SOCP hard thresholding. Due to the sparsity in
the data, the SOCP formulation can be simplified by only imposing those 2× 2 constraints
in (2) that correspond to the members of {(i, j) | Nij = 1}.

We measure the performance of each algorithm using the root-mean-squared error
(RMSE) defined as ‖x⋆−x‖2√

n
, where x is the output of the algorithm and x⋆ is the cor-

rect solution. Figure 1 shows the RSME in three different plots as a function of the number
of data points m, the dimensionality n, and the additive white noise standard deviation
σ. Figure 2 depicts the RSME as a function of the number of bad measurements k for
different magnitudes of additive dense Gaussian noise. It can be observed that both the
penalized conic problem and the conic hard thresholding algorithm exhibit an exact recov-
ery property for systems with up to 700 randomly corrupted measurements out of 2500
measurements in the absence of dense Gaussian noise. The same behavior is observed in
the presence of dense Gaussian noise of different magnitudes: the error of the penalized
SOCP solution grows gradually, while the error of the hard thresholding algorithm has a
jump at around 800 bad measurements. These simulations support the statement that up
to a constant fraction of measurements could be completely wrong, and yet the unknown
regression solution is found precisely.

Although the theoretical analysis provided in this paper favors Algorithm 1 over the
penalized conic problem, our empirical analysis shows that the penalized SOCP method
has a better performance than the hard thresholding algorithm uniformly in the number
of measurements, dimensionality, noise magnitude and the number of outliers. To explain
this observation, note that the derived theoretical bounds correspond to the worst-case
scenario and are more conservative for an average scenario. Moreover, the implementation
of Algorithm 1 in this section has limited the number of iterations to 50, while Theorem 16
requires the number of iterations to grow with respect to the amount of corruption.

The results of this part are produced using the standard MOSEK v7. SOCP-solving
procedure, run in MATLAB on a 12-core 2.2GHz machine with 256GB RAM. The CPU
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time for each round of solving SOCP ranges from 3s (for n = 250, m = 2500) to 30s (for
n = 400, m = 2500).

6.2 State Estimation for Power Systems

In this subsection, we present empirical results for the penalized conic problem with a PSD
cone C tested on the real data for the power flow state estimation with outliers. As discussed
in Madani et al. (2017b), this problem can be formulated as robust quadratic regression.
The experiment is run on the PEGASE 1354-bus European system borrowed from the
MATPOWER package (Fliscounakis et al., 2013; Josz et al., 2016). This system has 1354
nodes and the objective is to estimate the nodal voltages based on voltage magnitude and
power measurements of the form yr = x∗Mrx+ ηr + ωr, where ωωω is a dense additive noise
whose rth entry is Gaussian with mean zero and the standard deviation equal to σ times the
true value of the corresponding voltage/power parameter. The dimension of the complex
vector x is 1354, which leads to 2708 real variables in the problem. In this model, the
measurements are voltage magnitude squares, active and reactive nodal power injections,
and active and reactive power flows from both sides of every line of the power system. This
amounts to 3n+ 4t = 12026 measurements, where t = 1991 denotes the number of lines in
the system. Note that the quadratic regression problem is complex-valued in this case.

The penalty parameter µ of the penalized conic problem is set to 102 and the matrix M
is chosen as −Y+γI, where Y is the susceptance matrix of the system and γ is the smallest
positive number that makes M positive semidefinite. This choice of M corresponds to x̂
being equal the eigenvector of −Y associated with its smallest eigenvalue. This eigenvector
provides a combination of voltages that results in the minimum amount of reactive power
loss, as shown by Madani et al. (2019). Hence, by using this particular M, we implicitly
assume that the ground truth vector of voltages does not create a large amount of reactive
power loss, which is a physical feature of real-world power systems. Since the penalized SDP
problem is large-scale, we employ a tree decomposition technique to leverage the sparsity
of the problem to solve it more efficiently (Madani et al., 2016). The width of the tree
decomposition used to reduce the complexity is equal to 12. We do not report any results
on Algorithm 1 because it requires solving large-scale SDPs successively and this could
be time-consuming. Moreover, the number of measurements is not high enough to use
Algorithm 2, and, therefore, we will not test this method either.

The numerical results are reported in Figure 3. Remarkably, if the dense Gaussian noise
is non-existent, the conic problem recovers the solution precisely as long as the number of
bad measurements is less than 150 (note that

√
m ≃ 109). Note that power systems are

sparse networks, their models are far from Gaussian, but the bounds from Theorem 13 are
still valid in this numerical example.

6.3 Dynamic State Estimation

In this subsection, we demonstrate the usefulness of the proposed mathematical technique
for solving sequential decision-making problems. We again consider data analytics for power
systems, but leverage the fact that state estimation is solved regularly due to the time-
varying and stochastic demands requested by millions of consumers. At each time instance,
we use the estimated state of the system at the previous time as prior knowledge for infer-
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Figure 3: This plot shows the RMSE with respect to the number of corrupted measurements k for
the PEGASE 1354-bus system.

Figure 4: Net active (top) and reactive (bottom) powers at buses 2 (left), 50 (middle) and 93 (right)
over the period of simulation.

ring the current state of the system. We use the IEEE 300-bus benchmark system from the
MATPOWER package and simulate two hours of its evolution under varying nodal active
and reactive powers to reflect the changes in supply and demand. The net nodal powers
are the only time-varying measurements of this system (each net power is the difference
between the generation and the consumption at the node). To make the analysis realistic,
we simulate both continuous changes and sudden jumps in the time-varying nodal powers.
The continuous changes are modeled by a Wiener random process, while the jump values
and locations are sampled from a uniform distribution that affect each time-varying mea-
surement (curve) 5 times over the considered interval on average. The evolution of some of
these measurements is depicted in Fig. 4.
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Figure 5: This plot shows the root mean squared error over the time period of the simulation. The
dashed line denotes the error obtained by applying the SOCP penalized method with
the objective matrix M constructed from the matrix Y as in Section 6.2. The solid line
denotes the error obtained by applying the same method, but using a dynamic method
for designing M through the path-following approach.

At each time step of the simulation, happening every 2 minutes, we solve the state
estimation under sparse noise via the penalized SOCP method described in Section 3.2. We
let the number of corrupted measurements be 20% of the total number of measurements
m = 3444. In the first time step, we construct the matrix M according to the formula (7)
based on the true state of the system, set in accordance with the IEEE 300-bus system
data set. At each subsequent time instance, we construct the matrix M based on the
solution obtained in the previous time step. We refer to this procedure as the path-following
experiment.

As a baseline for comparison, we also study a different strategy where we apply the
penalized SOCP method at each time step with the objective matrix M constructed from
the matrix Y as in Section 6.2, without using the prior knowledge in the solution of the
previous time instance. Both the baseline and path-following experiments were conducted
5 times to produce an average result. The values of the parameter µ were chosen prior to
the experiment as 5 · 10−1 for the baseline and 5 · 10−4 for the path-following part. They
were chosen experimentally from the set {5, 5 · 10−1, 5 · 10−2, 5 · 10−3, 5 · 10−4, 5 · 10−5}.

Figure 5 demonstrates that the errors produced in the path-following experiment are
smaller than the errors produced in the baseline experiment by an order of magnitude.
Given that the only difference between these two approaches is in the construction of the
objective matrix, one can conclude that the solution of the problem in each time step can
serve as useful prior knowledge for the next time step.

There is also a notable uptrend of the bottom curve, which reflects the error accumula-
tion during the path-following experiment. This is due to the fact that the prior knowledge
at each time is considered to be the state estimated at the previous time, rather than the
true state of the system at the previous time. As a result, if the previous estimated state
has some error, it affects learning the current state and this error accumulates over time.
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Figure 6: This plot shows the average estimation error of 15 random ground truth realizations with
respect to the number of corrupted observations.

However, since the model (e.g., topology) of a power network changes on a slow time scale
(e.g., every few hours), there is a reset in the process that eliminates the error.

6.4 Linear System Identification

Following Fattahi and Sojoudi (2018), this case study is concerned with the problem of
identifying the parameters of a linear dynamical system, given limited observation and non-
uniform snapshots of the state vector. Consider a discrete-time linear system described by
the equations

x⋆[τ + 1] = A⋆x⋆[τ ] +B⋆u[τ ] τ = 1, 2, . . . , T − 1, (17a)

y[τ ] = C⋆x⋆[τ ] +w⋆[τ ] τ = 1, 2, . . . , T, (17b)

where

• {x⋆[τ ] ∈ Rn}Tτ=1 are the state vectors that are known at times τ ∈ {τ1, . . . , τo},

• {u[τ ] ∈ Rm}Tτ=1 and {y[τ ] ∈ Rk}Tτ=1 are the known control and observation vectors,
respectively,

• A⋆ ∈ Rn×n, B⋆ ∈ Rn×m and C⋆ ∈ Rk×n are fixed unknown matrices, and

• {w⋆[τ ] ∈ Rk}Tτ=1 are the vectors of sparsely occurring observation errors that are
unknown.

We propose to determine the triplet (A⋆,B⋆,C⋆) by solving the following system of quadratic
equations:

0 = e× x[τ + 1]− (e×B)u[τ ]−Ax[τ ] τ = 1, 2, . . . , T − 1, (18a)

y[τ ] = Cx[τ ] +w[τ ] τ = 1, 2, . . . , T, (18b)

x[τ ] = e× x[τ ] τ = τ1, τ2, . . . , τo, (18c)

1 = e2, (18d)
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with the unknown vector

z , [e, x[1]⊤, x[2]⊤, . . . , x[T ]⊤, vec{A}⊤, vec{B}⊤, vec{C}⊤]⊤ (19)

and the noise estimation vectors {w[τ ] ∈ Rk}Tτ=1. The auxiliary variable e is added to make
the system of equations homogeneous, similar to the canonical quadratic regression problem
(2). In order to solve the system of equations (18), we formulate the penalized SDP problem
(3) by introducing the matrix variable Z accounting for zz⊤. In this experiment, we use
the objective function

〈M,Z〉+ η ×
T
∑

τ=1

‖w[τ ]‖1 (20)

where M = diag{[0, 0.001×11×nT , 11×n2 , 01×nm, 11×nk]} and η = 0.1.
We consider system identification problems with n = 5, m = 2, k = 3, and T = 50 time

epochs. We assume that, for every τ ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, the state vector
x⋆[τ ] is unknown. The elements of the ground truth matrices A⋆ ∈ R5×5, B⋆ ∈ R5×2, C⋆ ∈
R3×5 and the control vectors {u[τ ]}Tτ=1, as well as the initial state x⋆[1] have independent
Gaussian distribution with zero mean and variance 1

3 . Unstable ground truth matrices
A with an eigenvalue outside of the unit circle are excluded. For various values of ρ, we
randomly choose ρ elements of {y[τ ]}Tτ=1 and corrupt them by adding observation errors
chosen uniformly from the interval [10, 20]. Figure 6, demonstrates the average estimation
error for 15 trials. As shown in Figure 6, with up to 35 corrupted observations, the triplet
(A⋆,B⋆,C⋆) can be recovered with zero error. Exploiting the sparsity of the problems
(Nakata et al., 2003), each round of penalized SDP has been solved within 5 minutes.

7. Conclusion

In this paper, we study instances of the NP-hard problem of learning a parametric model
from a series of nonlinear data points subject to sparse adversarial errors of arbitrary magni-
tudes. This problem arises in the data analysis process of cyber-physical systems, and so it
is of both theoretical and practical importance to construct polynomial algorithms for this
problem. We develop two conic programming methods to learn the unknown model, both
of which accepts any available prior knowledge about the solution. Sufficient conditions
are derived to guarantee the success of these methods, and it is shown that the trade-off
between the developed techniques is in their performance versus required computational
power. In the case when no prior knowledge is available, a surrogate iterative method
based on conic programming is developed, offering another level of this trade-off. These
methods are studied under a stochastic setting, and it is shown that they can correctly
find the model even if up to a constant factor of measurements are strategically corrupted.
The results are demonstrated in four experiments on learning dynamical systems and power
network states.
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Appendix A.

The following lemma studies Slater’s condition for the dual problem (4).

Lemma 17 If there exists an index r ∈ {1, . . . ,m} such that x̂TMrx̂ 6= 0, then the interior
of the feasible region of the problem (4) is not empty and strong duality holds for the penalized
SDP.

Proof Choose c ∈ {−1,+1} such that cx̂TMrx̂ > 0. To construct a strictly feasible point
for Problem (4), it is enough to consider λλλ = uer, where u > 0 is a constant that is smaller
than µ andM+cuMr̂ ≻ 0. Such a constant exists due to Lemma 3.2.1 in Bertsekas (1999).

Proof of Lemma 1 Strong duality of the penalized SDP follows from Lemma 17. We aim
to prove that under such a choice of λ̂̂λ̂λ, the matrix M +

∑

λ̂rMr is a PSD matrix. The
complementary slackness condition:

〈xxT ,M+
m
∑

r=1

λrMr〉 = 0

or equivalently

(M+
m
∑

r=1

λrMr)x = 0. (21)

It is straightforward to verify that the condition (21) is satisfied for λ = λ̂̂λ̂λ. Therefore,

rank(M +
m
∑

r=1
λ̂̂λ̂λrMr) ≤ n − 1. In light of Corollary 4.3.39 in Horn (2013), that κ(·) is a

concave function. Now, it follows from condition (6b) that

κ(M+
m
∑

r=1

λ̂rMr) ≥ κ(M) +
m
∑

r=1

κ(λ̂rMr) ≥ κ(M)− 2
m
∑

r=1

|λ̂r| ‖Mr‖2 > 0

which, combined with (6b), yields that rank(M +
∑m

r=1 λ̂rMr) ≥ n − 1. Dual feasibility

for λ̂̂λ̂λG follows from condition (21), the above inequality, definition of κ and condition (6a).
On the other hand, primal feasibility is satisfied for (xxT , η). Therefore, (xxT , η) and λ̂̂λ̂λ is
a primal-dual optimal pair for the problem. This completes the proof.

Appendix B.

Lemma 18 The sequence {Aij ∈ S2}i<j is a decomposition of A if and only if:
{

[

Aij
]

21
=
[

Aij
]

12
= Aij = Aji

∑n
i=2

∑i−1
j=1

[

Aji
]

22
+
∑n

j=2

∑j−1
i=1

[

Aij
]

11
= Aii

Proof The proof is based on basis linear algebra and is omitted for brevity.

We define linear operations over decompositions below.
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Definition 19 Given the sequences {Aij ∈ S2}j≤n
i<j and {Bij ∈ S2}j≤n

i<j , define the sum:

{Aij}j≤n
i<j + {Bij}j≤n

i<j := {Aij +Bij}j≤n
i<j

Definition 20 For a sequence {Aij ∈ S2}j≤n
i<j and a scalar c ∈ R, define the multiplication:

c{Aij}j≤n
i<j := {cAij}j≤n

i<j

In the following statements, we sometimes omit the indexes of decompositions.

Lemma 21 If {Aij ∈ S2}j≤n
i<j and {Bij ∈ S2}j≤n

i<j are decompositions of A and B respec-

tively, then {Aij +Bij} is a decomposition of A+B and c{Aij} is a decomposition of cA,
for all c ∈ R.

Proof To prove the first part, one can write:

∑

i<j

[ei ej ]
(

Aij +Bij
)

[ei ej ]
T =

∑

i<j

[ei ej ]A
ij [ei ej ]

T +
∑

i<j

[ei ej ]B
ij [ei ej ]

T = A+B

Moreover,

∑

i<j

[ei ej ]cA
ij [ei ej ]

T = c
∑

i<j

[ei ej ]A
ij [ei ej ]

T = cA

This proves the second part of the lemma.

Recall that κ is a concave function, and an analogous property of χ will be stated below.

Lemma 22 Given the sequences {Aij} = {Aij ∈ S2}j≤n
i<j and {Bij} = {Bij ∈ S2}j≤n

i<j as
well as c ∈ R, the following properties hold:

χ({Aij}+ {Bij}) ≥ χ({Aij}) + χ({Bij})
χ(c{Aij}) ≥ −|c|max

i′<j′
|tr(Ai′j′)|

Proof Introduce

(i′, j′) = argmin
i<j

tr(Aij);

(i′′, j′′) = argmin
i<j

tr(Bij);

(i∗, j∗) = argmin
i<j

tr(Aij +Bij);

The proof of the first inequality follows from the following expression:

χ({Aij}+ {Bij}) ≥ tr(Ai∗j∗ +Bi∗j∗) = tr(Ai∗j∗) + tr(Bi∗j∗) ≥
≥ tr(Ai′j′) + tr(Bi′′j′′) = χ({Aij}) + χ({Bij})
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For the second inequality, one can write

χ(c{Aij}) = min
i<j

tr(cAij) = min
i<j

c tr(Aij) ≥ −max
i<j

|c tr(Aij)| ≥ −|c|max
i<j

|tr(Aij)|

This completes the proof.

Lemma 23 If the components of the initial guess are nonzero (x̂i 6= 0 for all i ∈ {1, . . . , n})
and there exists an index r ∈ {1, . . . ,m} such that x̂∗Mrx̂ 6= 0, then the interior of the
feasible region of Problem (8) is not empty, and strong duality holds for the penalized SOCP.

Proof Recall that x̂ is an initial guess for the solution x and M a matrix in the objective
function constructed based on x̂. We choose c ∈ {−1,+1} such that cx̂TMrx̂ > 0, and
select λλλ = ucer. It is desirable to show that if u is a sufficiently small positive number, then
M+ ucMr belongs to the interior of the SDD cone, i.e., it can be written as

M+ ucMr =
∑

i<j

[ei ej ]H
ij [ei ej ]

T ,

where each Hij is a 2× 2 symmetric positive-definite matrix. By construction, the matrix
M can be written as

M =
∑

i<j

[ei ej ]M
ij [ei ej ]

T

where each Mij is a 2 × 2 symmetric positive semidefinite matrix that has rank 1 and
[x̂i, x̂j ] belongs to the null space of Mij . Now, we need to find a decomposition {Bij}i<j of
F := cMk such that Mij +uBij becomes positive definite if u is small. Since the null space
of Mij is one dimensional, it suffices to show that [x̂i x̂j ]B

ij [x̂i x̂j ]
T > 0 (due to Lemma

3.2.1 in Bertsekas (1999)). To this end, consider the following decomposition:

[

Bij
]

11
= (di − dj − Fij)

x̂j

x̂i
+ s

n−1
[

Bij
]

12
= Fij

[

Bij
]

21
= Fji

[

Bij
]

22
= (dj − di − Fji)

x̂i

x̂j
+ s

n−1

where di = x̂TFei−sx̂i

1T x̂
for every i ∈ {1, . . . , n} and s = x̂TFx̂

x̂T x̂
. To complete the proof, it

suffices to show that
{

F =
∑

i,j [ei ej ]B
ij [ei ej ]

T

[x̂i x̂j ]B
ij [x̂i x̂j ]

T > 0

Which according to lemma 18 is equivalent to the following three conditions satisfied simul-
taneously:

Bij
12 = Fij , Bij

21 = Fji, ∀i < j (22)

Bij
11x̂

2
i +Bij

22x̂
2
j > −(Fij + Fji)x̂ix̂j ∀ i < j (23)

∑

j<i

Bji
22 +

∑

j>i

Bij
11 = Fii, ∀i (24)
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Condition (22) is straightforward to verify. To verify (23), notice that

Bij
11x̂

2
i + Bij

22x̂
2
j

= ((di − dj − Fij)
x̂j
x̂i

+
s

n− 1
)x̂2i + ((dj − di − Fji)

x̂i
x̂j

+
s

n− 1
)x̂2j

= (−Fij − Fji)x̂ix̂j + s
x̂2i + x̂2j
n− 1

> −(Fij + Fji)x̂ix̂j

To analyze (24), one can write:

∑

j<i

Bji
22 +

∑

j>i

Bij
11

=
∑

j<i

((di − dj − Fij)
x̂j

x̂i
+ s

n−1) +
∑

j>i

((di − dj − Fij)
x̂j

x̂i
+ s

n−1)

=
∑

j 6=i

(di − dj − Fij)
x̂j

x̂i
+ s

= di
x̂i
(
∑

j

x̂j − x̂i)− 1
x̂i
(
∑

j

dj x̂j − dix̂i)− 1
x̂i
(
∑

j

Fij x̂j − Fiix̂i) + s

= di
x̂i

∑

j

x̂j − 1
x̂i

∑

j

dj x̂j − 1
x̂i

∑

j

Fij x̂j + s+ Fii

= di
x̂i

1T x̂− 1
x̂i

∑

j

dj x̂j − 1
x̂i
eTi Fx̂+ s+ Fii

= di
x̂i

1T x̂− 1
x̂i1

T x̂

∑

j

[x̂TFej − x̂js]x̂j − 1
x̂i
eTi Fx̂+ s+ Fii

= di
x̂i

1T x̂− 1
x̂i1

T x̂
[x̂TFx̂− sx̂T x̂]− 1

x̂i
eTi Fx̂+ s+ Fii

= di
x̂i

1T x̂− 1
x̂i
eTi Fx̂+ s+ Fii

= Fii.

As a result, if u is small, then ‖ucer‖∞ ≤ µ and Aij + uBij is positive definite. Therefore
M+ uF belongs to the interior of the SDD cone.

Using the notation from Section 3.2, define

Mij
r :=

[

Rr
ij M r

ij

M r
ji Rr

ji

]

and state the following lemma.

Lemma 24 The sequence {Mij
r }j≤n

i<j is a decomposition of Mr.

Proof It is straightforward to verify that

n
∑

i=2

i−1
∑

j=1

[Mji
r ]22 +

n
∑

j=2

j−1
∑

i=1

[Mij
r ]11 =

n
∑

j=1

Rr
ij = M r

ii

The rest of the proof follows from Lemma 18.

Lemma 25 {Mij}i<j +
m
∑

r=1
λr{Mij

r }i<j is a decomposition of M+
m
∑

r=1
λrMr
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Proof The proof follows immediately from Lemmas 21 and 24.

Proof of Lemma 6 Strong duality of the penalized SOCP follows from Lemma 23. In
sight of Lemma 25, it is desirable to show that under λλλ = λ̂̂λ̂λ each matrix Mij +

∑

λ̂rM
ij
r is

a PSD matrix. The complementary slackness condition can be written as

〈[xi xj ][xi xj ]
T ,Mij +

∑

λrM
ij
r 〉 = 0

or, given Mij +
m
∑

r=1
λ̂rM

ij
r � 0, equivalently,

(Mij +
∑

λrM
ij
r )

[

xi
xj

]

= 0. (25)

The condition (25) combined with χ({Mij}i<j+
m
∑

r=1
λ̂r{Mij

r }i<j) > 0 yieldsMij+
m
∑

r=1
λ̂rM

ij
r �

0 for all i, j ∈ {1, . . . , n}, and thus M +
m
∑

r=1
λ̂rMr ∈ SDD (by Lemma 21). To satisfy the

condition (25), λλλ must be such that:

m
∑

r=1

λr

[

Rr
ij M r

ij

M r
ji Rr

ji

] [

xi
xj

]

= −
[

Gij

Gji

]

∀ i < j

or equivalently
∑

r∈G∪B
λrR

r
ijxi = −

∑

r∈G∪B
λrM

r
ijxj −Gij ∀ i 6= j

Use the definitions given in (9) and rewrite this as

J̃GλλλG = −(J̃Bλ̂̂λ̂λB + d̃)

One solution to the above system is

λ̂̂λ̂λG = −J̃+
G (J̃Bλ̂̂λ̂λB + d̃)

To conclude with dual feasibility, it is sufficient to show that

χ({Mij}i<j +

m
∑

r=1

λ̂r{Mij
r }i<j) > 0,

which is guaranteed by condition (10b) and Lemma 22, and ‖λ̂̂λ̂λ‖∞ ≤ µ which is guaranteed
by condition (10a). On the other hand, primal feasibility is satisfied for (xxT , η). Therefore,

(xx∗, η) and (λ̂̂λ̂λ, {Mij}+
m
∑

r=1
λ̂r{Mij

r }) is a primal-dual optimal pair for the problem. This

completes the proof.
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Proof of Lemma 7 Consider strong duality:

〈xxT ,M〉+ µ‖ηηη‖1 = −yT λ̂̂λ̂λ⇐⇒

xTMx+ µ‖ηηηB‖1 = −
m
∑

r=1

xT λ̂̂λ̂λrMrx− ηηηTBλ̂̂λ̂λB ⇐⇒

xT

(

M+

m
∑

r=1

λ̂̂λ̂λrMr

)

x = −
(

µ‖ηηηB‖1 + ηηηTBλ̂̂λ̂λB
)

By complementary slackness condition, we have

xT (M+
m
∑

r=1
λ̂rMr)x =

= xT

{

∑

i<j

[ei ej ](M
ij +

∑

λ̂rM
ij
r )[ei ej ]

T

}

x

=
∑

i<j

[xi xj ](M
ij +

∑

λ̂rM
ij
r )

[

xi
xj

]

= 0

Subject to the constraint ‖λ̂̂λ̂λ‖∞ < µ, the only solution of µ‖ηηηB‖1 + ηηηTBλ̂̂λ̂λB = 0 is λ̂̂λ̂λB =
−µ sign(ηηηB)

Appendix C.

The next lemma will help prove some key results of the paper.

Lemma 26 Let J be a matrix in Rl×m, d be a vector in Rl and λλλ be a vector in Rm such
that λλλB = µ · s, where µ is a scalar and s consists of +1 or −1. If

σmin(JG) > σmax(JB)

and

(σmin(JG)− σmax(JB))(ασmin(JG)−
√

|G|) >
√

|B|σmax(JB)
√

|G|+ |B|σmin(JG) (26)

then the interval
[

‖d‖2
σmin(JG)− σmax(JB)

,
(ασmin(JG)−

√

|G|)‖d‖2
√

|B||G|σmax(JB) + |B|σmin(JG)

]

(27)

is not empty and the system of inequalities

{

µ > ‖λλλG‖∞
α‖d‖2 > ‖λλλG‖1 + µ|B| (28)

is satisfied by λλλG = −J+
G (JBλλλB + b) for every µ in the interval given in (27).
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Proof Set λλλG = −J+
G (JBλλλB + d) and check the set of values of µ under which the system

(28) is satisfied. It can be shown that ‖λλλB‖∞ = µ; ‖λλλB‖2 = µ
√

|B|. One can use several
auxiliary inequalities:

1. ‖J+
Gd‖1 ≤

√

|G|‖J+
Gd‖2 ≤

√

|G|‖J+
G ‖2‖d‖2

2. ‖J+
Gd‖∞ ≤ ‖J+

Gd‖2 ≤ ‖J+
G ‖2‖d‖2

3. ‖J+
G JBλλλB‖1 ≤

√

|G|‖J+
G JBλλλB‖2 ≤

√

|G|‖J+
G ‖2‖JBλB‖2 ≤ µ

√

|G||B|‖J+
G ‖2‖JB‖2

4. ‖J+
G JBλλλB‖∞ ≤ ‖J+

G JB‖∞‖λλλB‖∞ ≤ µ‖J+
G JB‖2 ≤ µ‖J+

G ‖2‖JB‖2
It is desirable to show that

{

µ > ‖J+
G (JBλλλB + d)‖∞

α‖b‖2 > ‖J+
G (JBλλλB + d)‖1 + µ|B| (29)

One can use ‖J+
G (JBλλλB + d)‖ ≤ ‖J+

Gd‖ + ‖J+
G JBλλλB‖ and relax the inequalities in (29) by

applying the auxiliary inequalities:
{

µ > ‖J+
G ‖2‖d‖2 + µ‖J+

G ‖2‖JB‖2
α‖d‖2 >

√

|G|‖J+
G ‖2‖d‖2 + µ

√

|G|‖J+
G ‖2
√

|B|‖JB‖2 + µ|B|

Using ‖JB‖2 = σmax(JB) and ‖J+
G ‖2 = σmin(JG)−1, it yields that







µ(1− σmax(JB)
σmin(JG)

) > ‖d‖2
σmin(JG)

α‖d‖2 >
√

|G|
σmin(JG)

‖d‖2 + µ

( √
|G|

σmin(JG)

√

|B|σmax(JB) + |B|
)

One can express the bounds on µ as






µ > ‖d‖2
σmin(JG)−σmax(JB)

µ <
ασmin(JG)‖d‖2−

√
|G|‖b‖2√

|B|σmax(JB)
√

|G|+|B|σmin(JG)

This gives rise to a condition to guarantee that the interval is not empty:

(ασmin(JG)−
√

|G|)‖d‖2
√

|B|σmax(JB)
√

|G|+ |B|σmin(JG)
>

‖d‖2
σmin(JG)− σmax(JB)

The above inequality holds by (26). This concludes the proof.

Proof of Lemma 14 Note that the inequality (12) is stronger than
√

|G|(1−∆|G|) >
√

|B|(1 + ∆|B|)

In light of Lemma 14 in Bhatia et al. (2015), any randomly sampled Gaussian matrix
X ∈ Rl×m satisfies the inequalities

λmax(XXT ) ≤ m+ (1− 2ε)−1
√

cml + c′m log 2
δ

λmin(XXT ) ≥ m− (1− 2ε)−1
√

cml + c′m log 2
δ
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with probability at least 1 − δ for every ε > 0, where c = 24e2 log 3
ε
and c′ = 24e2. This

implies that the relations

σmin(JG) ∈ [
√

|G|(1−∆|G|),
√

|G|(1 + ∆|G|)]

and

σmax(JB) ∈ [
√

|B|(1−∆|B|),
√

|B|(1 + ∆|B|)]

are each satisfied with the probability 1− δ, and both are met simultaneously with proba-
bility at least (1− δ)2. By tightening the bounds in Lemma 26 with these limits on singular
values, it is straightforward to verify the statement of the theorem.
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Cédric Josz, Stéphane Fliscounakis, Jean Maeght, and Patrick Panciatici. AC power flow
data in MATPOWER and QCQP format: iTesla, RTE snapshots, and PEGASE. arXiv
preprint arXiv:1603.01533, 2016.

Cedric Josz, Yi Ouyang, Richard Zhang, Javad Lavaei, and Somayeh Sojoudi. A theory on
the absence of spurious solutions for nonconvex and nonsmooth optimization. Advances
in Neural Information Processing Systems, 2018.

Olga Klopp, Karim Lounici, and Alexandre B Tsybakov. Robust matrix completion. Prob-
ability Theory and Related Fields, 169(1-2):523–564, 2017.

34



Conic Optimization for Quadratic Regression Under Sparse Noise

Ramtin Madani, Somayeh Sojoudi, and Javad Lavaei. Convex relaxation for optimal power
flow problem: Mesh networks. IEEE Transactions on Power Systems, 30(1):199–211,
2014.

Ramtin Madani, Morteza Ashraphijuo, and Javad Lavaei. Promises of conic relaxation
for contingency-constrained optimal power flow problem. IEEE Transactions on Power
Systems, 31(2):1297–1307, 2016.

Ramtin Madani, Abdulrahman Kalbat, and Javad Lavaei. A low-complexity parallelizable
numerical algorithm for sparse semidefinite programming. IEEE Transactions on Control
of Network Systems, 2017a.

Ramtin Madani, Javad Lavaei, Ross Baldick, and Alper Atamtürk. Power system state
estimation and bad data detection by means of conic relaxation. In Proceedings of the
50th Hawaii International Conference on System Sciences, 2017b.

Ramtin Madani, Somayeh Sojoudi, Ghazal Fazelnia, and Javad Lavaei. Finding low-rank
solutions of sparse linear matrix inequalities using convex optimization. SIAM Journal
on Optimization, 27(2):725–758, 2017c.

Ramtin Madani, Javad Lavaei, and Ross Baldick. Convexification of power flow equations
in the presence of noisy measurements. IEEE Transactions on Automatic Control, 64(8):
3101–3116, 2019.

Brian McWilliams, Gabriel Krummenacher, Mario Lucic, and Joachim M Buhmann. Fast
and robust least squares estimation in corrupted linear models. In Advances in Neural
Information Processing Systems, pages 415–423, 2014.

Hyde M Merrill and Fred C Schweppe. Bad data suppression in power system static state
estimation. IEEE Transactions on Power Apparatus and Systems, 6:2718–2725, 1971.

Igor Molybog, Ramtin Madani, and Javad Lavaei. Conic optimization for robust quadratic
regression: Deterministic bounds and statistical analysis. IEEE 57th Conference on De-
cision and Control (CDC), 2018.

Kazuhide Nakata, Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, and Kazuo
Murota. Exploiting sparsity in semidefinite programming via matrix completion II: Im-
plementation and numerical results. Mathematical Programming, 95(2):303–327, 2003.

Nasser M Nasrabadi, Trac D Tran, and Nam Nguyen. Robust lasso with missing and
grossly corrupted observations. In Advances in Neural Information Processing Systems,
pages 1881–1889, 2011.

Nam H Nguyen and Trac D Tran. Exact recoverability from dense corrupted observations
via l1-minimization. IEEE transactions on information theory, 59(4):2017–2035, 2013.

Frank Permenter and Pablo Parrilo. Partial facial reduction: simplified, equivalent SDPs
via approximations of the PSD cone. Mathematical Programming, pages 1–54, 2014.

35



Molybog, Madani and Lavaei

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, Bin Yu, et al. High-
dimensional covariance estimation by minimizing ℓ1-penalized log-determinant diver-
gence. Electronic Journal of Statistics, 5:935–980, 2011.

Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection, volume
589. John wiley & sons, 2005.

Somayeh Sojoudi, Ramtin Madani, Ghazal Fazelnia, and Javad Lavaei. Graph-theoretic
algorithms for polynomial optimization problems. In IEEE 53rd Conference on Decision
and Control, pages 2257–2271. IEEE, 2014.

Christoph Studer, Patrick Kuppinger, Graeme Pope, and Helmut Bolcskei. Recovery of
sparsely corrupted signals. IEEE Transactions on Information Theory, 58(5):3115–3130,
2012.
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