
J Optim Theory Appl (2016) 169:1042–1068

DOI 10.1007/s10957-016-0892-3

Conic Optimization via Operator Splitting and

Homogeneous Self-Dual Embedding

Brendan O’Donoghue1
· Eric Chu1

·

Neal Parikh2
· Stephen Boyd1

Received: 24 February 2015 / Accepted: 2 February 2016 / Published online: 22 February 2016

© Springer Science+Business Media New York 2016

Abstract We introduce a first-order method for solving very large convex cone pro-

grams. The method uses an operator splitting method, the alternating directions method

of multipliers, to solve the homogeneous self-dual embedding, an equivalent feasibil-

ity problem involving finding a nonzero point in the intersection of a subspace and

a cone. This approach has several favorable properties. Compared to interior-point

methods, first-order methods scale to very large problems, at the cost of requiring

more time to reach very high accuracy. Compared to other first-order methods for

cone programs, our approach finds both primal and dual solutions when available or

a certificate of infeasibility or unboundedness otherwise, is parameter free, and the

per-iteration cost of the method is the same as applying a splitting method to the

primal or dual alone. We discuss efficient implementation of the method in detail,

including direct and indirect methods for computing projection onto the subspace,

scaling the original problem data, and stopping criteria. We describe an open-source

implementation, which handles the usual (symmetric) nonnegative, second-order, and

semidefinite cones as well as the (non-self-dual) exponential and power cones and

their duals. We report numerical results that show speedups over interior-point cone

solvers for large problems, and scaling to very large general cone programs.

Keywords Optimization · Cone programming · Operator splitting ·
First-order methods

Mathematics Subject Classification 90C25 · 90C06 · 49M29 · 49M05

B Brendan O’Donoghue

bodonoghue85@gmail.com

1 Department of Electrical Engineering, Stanford University, Stanford, CA, USA

2 Department of Computer Science, Stanford University, Stanford, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-016-0892-3&domain=pdf

J Optim Theory Appl (2016) 169:1042–1068 1043

1 Introduction

In this paper we develop a method for solving convex cone optimization problems

that can (a) provide primal or dual certificates of infeasibility when relevant and (b)

scale to large problem sizes. The general idea is to use a first-order method to solve

the homogeneous self-dual embedding of the primal–dual pair; the homogeneous self-

dual embedding provides the necessary certificates, and first-order methods scale well

to large problem sizes.

The homogeneous self-dual embedding is a single convex feasibility problem

that encodes the primal–dual pair of optimization problems. Solving the embedded

problem involves finding a nonzero point in the intersection of two convex sets, a

convex cone and a subspace. If the original pair is solvable, then a solution can be

recovered from any nonzero solution to the embedding; otherwise, a certificate of

infeasibility is generated that proves that the primal or dual is infeasible (and the other

one unbounded). The homogeneous self-dual embedding has been widely used with

interior-point methods [1–3].

We solve the embedded problem with an operator splitting method known as the

alternating direction method of multipliers (ADMM) [4–7]; see [8] for a recent survey.

It can be viewed as a simple variation of the classical alternating projections algorithm

for finding a point in the intersection of two convex sets. Roughly speaking, ADMM

adds a dual-state variable to the basic method, which can substantially improve con-

vergence. The overall method can reliably provide solutions to modest accuracy after

a relatively small number of iterations and can solve large problems far more quickly

than interior-point methods. (It may not be suitable if high accuracy is required, due

to the slow ‘tail convergence’ of first-order methods in general, and ADMM in par-

ticular [9]). To the best of our knowledge, this is the first application of a first-order

method to solving such embeddings. The approach described in this paper combines

a number of different ideas that are well established in the literature, such as cone

programming and operator splitting methods. We highlight various dimensions along

which our method can be compared to others.

Some methods for solving cone programs only return primal solutions, while oth-

ers can return primal–dual pairs. In addition, some methods can only handle feasible

problems, while other methods can also return certificates of infeasibility or unbound-

edness. The original idea of the homogeneous self-dual embedding is due to Ye et

al. [10,11]. Self-dual embeddings have generally been solved via interior-point meth-

ods [12], while the literature on other algorithms has generally yielded methods that

cannot return certificates of infeasibility; see, e.g., [13–15].

Our approach involves converting a primal–dual pair into a convex feasibility

problem involving finding a point in the intersection of two convex sets. There are

many projection algorithms that could be used to solve this kind of problem, such

as the classical alternating directions method or Dykstra’s alternating projections

method [16,17], among others [18,19]. For a further discussion of these and many

other projection methods, see Bauschke and Koch [20]. Any of these methods could

be used to solve the problem in homogeneous self-dual embedding form.

Operator splitting techniques go back to the 1950s; ADMM itself was developed

in the mid-1970s [4,5]. Since then a rich literature has developed around ADMM

123

1044 J Optim Theory Appl (2016) 169:1042–1068

and related methods [6,7,21–28]. Many equivalences exist between ADMM and

other operator splitting methods. It was shown in [6] that ADMM is equivalent

to the variant of Douglas–Rachford splitting presented in [26] (the original, more

restrictive, form of Douglas–Rachford splitting was presented in [29]) applied to

the dual problem, which itself is equivalent to Rockafellar’s proximal point algo-

rithm [21,30].

Douglas–Rachford splitting is also equivalent to Spingarn’s ‘method of partial

inverses’ [31–33] when one of the operators is the normal cone map of a linear sub-

space [7,34]. In this paper we apply ADMM to a problem where one of the functions is

the indicator of a linear subspace, so our algorithm can also be viewed as an application

of Spingarn’s method. Another closely related technique is the ‘split-feasibility prob-

lem,’ which seeks two points related by a linear mapping, each of which is constrained

to be in a convex set [19,35–37].

In [7] and [38] it was shown that equivalences exist between ADMM applied to the

primal problem, the dual problem, and a saddle point formulation of the problem; in

other words, ADMM is (in a sense) itself self-dual.

These techniques have been used in a broad range of applications including imaging

[39–41], control [42–46], estimation [47], signal processing [48–51], finance [52], and

distributed optimization [53,54].

There are several different ways to apply ADMM to solve cone programs [8,13].

In some cases, these are applied to the original cone program (or its dual) and yield

methods that can return primal–dual pairs, but cannot handle infeasible or unbounded

problems.

The indirect version of our method interacts with the data solely by multiplication

by the data matrix or its adjoint, which we can informally refer to as a ‘scientific

computing’ style algorithm; it is also called a ‘matrix-free method.’ There are several

other methods that share similar characteristics, such as [55–62], as well as some

techniques for solving the split-feasibility problem [35]. See Esser et al. [63] for a

detailed discussion of various first-order methods and the relationships between them,

and Parikh and Boyd [64] for a survey of proximal algorithms in particular.

Outline In Sect. 2 we review convex cone optimization, conditions for optimality,

and the homogeneous self-dual embedding. In Sect. 3, we derive an algorithm (1) that

solves convex cone programs using ADMM applied to the homogeneous self-dual

embedding. In Sect. 4, we discuss how to perform the substeps of the procedure effi-

ciently. In Sect. 5 we introduce a scaling procedure that greatly improves convergence

in practice. We conclude with some numerical examples in Sect. 6, including (when

applicable, i.e., the problems are small enough and involve only symmetric cones)

a comparison of our approach with state-of-the-art interior-point methods, both in

quality of solution and solution time.

2 Conic Optimization

Consider the primal–dual pair of (convex) cone optimization problems

123

J Optim Theory Appl (2016) 169:1042–1068 1045

minimize cTx

s.t. Ax + s = b

(x, s) ∈ R
n × K,

maximize −bT y

s.t. −AT y + r = c

(r, y) ∈ {0}n × K∗.
(1)

Here x ∈ R
n and s ∈ R

m (with n ≤ m) are the primal variables, and r ∈ R
n

and y ∈ R
m are the dual variables. We refer to x as the primal variable, s as the

primal slack variable, y as the dual variable, and r as the dual residual. The set K is

a nonempty, closed, convex cone with dual cone K∗, and {0}n is the dual cone of R
n ,

so the cones R
n × K and {0}n × K∗ are duals of each other. The problem data are

A ∈ R
m×n, b ∈ R

m, c ∈ R
n , and the cone K. (We consider all vectors to be column

vectors).

The primal and dual optimal values are denoted p⋆ and d⋆, respectively; we allow

the cases when these are infinite: p⋆ = +∞ (−∞) indicates primal infeasibility

(unboundedness), and d⋆ = −∞ (+∞) indicates dual infeasibility (unboundedness).

It is easy to show weak duality, i.e., d⋆ ≤ p⋆, with no assumptions on the data. We

will assume that strong duality holds, i.e., p⋆ = d⋆, including the cases when they are

infinite.

2.1 Optimality Conditions

When strong duality holds, the KKT (Karush–Kuhn–Tucker) conditions are necessary

and sufficient for optimality. Explicitly, (x⋆, s⋆, r⋆, y⋆) satisfies the KKT conditions

and so is primal–dual optimal, when

Ax⋆ + s⋆ = b, s⋆ ∈ K, AT y⋆ + c = r⋆, r⋆ = 0, y⋆ ∈ K∗, (y⋆)Ts⋆ = 0,

i.e., when (x⋆, s⋆) is primal feasible, (r⋆, y⋆) is dual feasible, and the complementary

slackness condition (y⋆)Ts⋆ = 0 holds. The complementary slackness condition can

equivalently be replaced by the condition

cTx⋆ + bT y⋆ = 0,

which explicitly forces the duality gap, cTx + bT y, to be zero.

2.2 Certificates of Infeasibility

If strong duality holds, then exactly one of the sets

P = {(x, s) : Ax + s = b, s ∈ K}, (2)

D = {y : AT y = 0, y ∈ K∗, bT y < 0}, (3)

is nonempty, a result known as a theorem of strong alternatives [65, Sect. 5.8]. Since

the set P encodes primal feasibility, this implies that any dual variable y ∈ D serves as

a proof or certificate that the set P is empty, i.e., that the problem is primal infeasible.

123

1046 J Optim Theory Appl (2016) 169:1042–1068

Intuitively, the set D encodes the requirements for the dual problem to be feasible but

unbounded.

Similarly, exactly one of the following two sets is nonempty:

P̃ = {x : −Ax ∈ K, cTx < 0}, (4)

D̃ = {y : AT y = −c, y ∈ K∗}. (5)

Any primal variable x ∈ P̃ is a certificate of dual infeasibility.

2.3 Homogeneous Self-Dual Embedding

The original pair of problems (1) can be converted into a single feasibility problem by

embedding the KKT conditions into a single system of equations and inclusions that

the primal and dual optimal points must jointly satisfy. The embedding is as follows:

⎡

⎣

r

s

0

⎤

⎦ =

⎡

⎣

0 AT

−A 0

cT bT

⎤

⎦

[

x

y

]

+

⎡

⎣

c

b

0

⎤

⎦, (x, s, r, y) ∈ R
n × K × {0}n × K∗. (6)

Any (x⋆, s⋆, r⋆, y⋆) that satisfies (6) is optimal for (1). However, if (1) is primal or

dual infeasible, then (6) has no solution.

The homogeneous self-dual embedding [10] addresses this shortcoming:

⎡

⎣

r

s

κ

⎤

⎦ =

⎡

⎣

0 AT c

−A 0 b

−cT −bT 0

⎤

⎦

⎡

⎣

x

y

τ

⎤

⎦, (x, s, r, y, τ, κ) ∈ R
n ×K×{0}n ×K∗ ×R+ ×R+.

(7)

This embedding introduces two new variables, τ and κ , that are nonnegative and

complementary, i.e., at most one is nonzero. To see complementarity, note that the

inner product between (x, y, τ) and (r, s, κ) at any solution must be zero due to the

skew symmetry of the matrix in (7), and the individual components xTr, yTs, and τκ

must each be nonnegative by the definition of dual cones.

The reason for using this embedding is that the different possible values of τ and κ

encode the different possible outcomes. If τ is nonzero at the solution, then it serves

as a scaling factor that can be used to recover the solutions to (1); otherwise, if κ is

nonzero, then the original problem is primal or dual infeasible. In particular, if τ = 1

and κ = 0, then the self-dual embedding reduces to the simpler embedding (6).

Any solution of the self-dual embedding (x, s, r, y, τ, κ) falls into one of three

cases:

1. τ > 0 and κ = 0. The point

(x̂, ŷ, ŝ) = (x/τ, y/τ, s/τ)

satisfies the KKT conditions of (1) and so is a primal–dual solution.

123

J Optim Theory Appl (2016) 169:1042–1068 1047

2. τ = 0 and κ > 0. This implies that the gap cTx + bT y is negative, which imme-

diately tells us that the problem is either primal or dual infeasible.

– If bT y < 0, then ŷ = y/(bT y) is a certificate of primal infeasibility (i.e., D is

nonempty) since

AT ŷ = 0, ŷ ∈ K∗, bT ŷ = −1.

– If cTx < 0, then x̂ = x/(−cTx) is a certificate of dual infeasibility (i.e., P̃ is

nonempty) since

−Ax̂ ∈ K, cT x̂ = −1.

– If both cTx < 0 and bT y < 0, then the problem is both primal and dual

infeasible (but the strong duality assumption is violated).

3. τ = κ = 0. If one of cTx or bT y is negative, then it can be used to derive a

certificate of primal or dual infeasibility. Otherwise, nothing can be concluded

about the original problem. Note that zero is always a solution to (7), but steps can

be taken to avoid it, as we discuss in Sect. 3.4.

The system (7) is homogeneous because if (x, s, r, y, τ, κ) is a solution to the

embedding, then so is (t x, ts, tr, t y, tτ, tκ) for any t ≥ 0, and when t > 0 this scaled

value yields the same primal–dual solution or certificates for (1). The embedding is

also self-dual, which we show below.

Notation To simplify the subsequent discussion, let

u =

⎡

⎣

x

y

τ

⎤

⎦ , v =

⎡

⎣

r

s

κ

⎤

⎦, Q =

⎡

⎣

0 AT c

−A 0 b

−cT −bT 0

⎤

⎦ .

The homogeneous self-dual embedding (7) can then be expressed as

find (u, v)

s.t. v = Qu

(u, v) ∈ C × C∗,
(8)

where C = R
n × K∗ × R+ is a cone with dual cone C∗ = {0}n × K × R+. We

are interested in finding a nonzero solution of the homogeneous self-dual embedding

(8). In the sequel, ux , u y, uτ and vr , vs, vκ will denote the entries of u and v that

correspond to x, y, τ and r, s, κ , respectively.

Self-Dual Property Let us show that the feasibility problem (8) is self-dual. The

Lagrangian has the form

L(u, v, ν, λ, μ) = νT(Qu − v) − λTu − μTv,

123

1048 J Optim Theory Appl (2016) 169:1042–1068

where the dual variables are ν, λ, μ, with λ ∈ C∗, μ ∈ C. Minimizing over the primal

variables u, v, we conclude that

QTν − λ = 0, −ν − μ = 0.

Eliminating ν = −μ and using QT = −Q we can write the dual problem as

find (μ, λ)

s.t. λ = Qμ

(μ, λ) ∈ C × C∗,

with variables μ, λ. This is identical to (8).

3 Operator Splitting Method

The convex feasibility problem (8) can be solved by many methods, ranging from

simple alternating projections to sophisticated interior-point methods. We are inter-

ested in methods that scale to very large problems, so we will use an operator splitting

method, the alternating direction method of multipliers (ADMM). There are many

operator splitting methods (some of which are equivalent to ADMM) that could be

used to solve the convex feasibility problem, such as Douglas–Rachford iteration,

split-feasibility methods, Spingarn’s method of partial inverses, Dykstra’s method,

and others. While we have not tried these other methods, we suspect that many of

them would yield comparable results to ADMM. Moreover, much of our discussion

below, on simplifying the iterations and efficiently carrying out the required steps,

would also apply to (some) other operator splitting methods.

3.1 Basic Method

ADMM is an operator splitting method that can solve convex problems of the form

minimize [f (x) + g(z)] s.t. x = z. (9)

(ADMM can also solve problems where x and z are affinely related; see [8] and the

references therein). Here, f and g may be nonsmooth or take on infinite values to

encode implicit constraints. The basic ADMM algorithm is

xk+1 = argmin
x

(

f (x) + (ρ/2)‖x − zk − λk‖2
2

)

zk+1 = argmin
z

(

g(z) + (ρ/2)‖xk+1 − z − λk‖2
2

)

λk+1 = λk − xk+1 + zk+1,

where ρ > 0 is a step-size parameter and λ is the (scaled) dual variable associated

with the constraint x = z, and the superscript k denotes iteration number. The initial

points z0 and λ0 are arbitrary, but are usually taken to be zero. Under some very

123

J Optim Theory Appl (2016) 169:1042–1068 1049

mild conditions [8, Sect. 3.2], ADMM converges to a solution, in the following sense:

f (xk)+g(zk) converges to the optimal value, λk converges to an optimal dual variable,

and xk − zk , the equality constraint residual, converges to zero. Additionally, for the

restricted form we consider in (9), we have the stronger guarantee that xk and zk

converge to a common value [21, Sect. 5]. We will mention later some variations on

this basic ADMM algorithm with similar convergence guarantees.

To apply ADMM, we transform the embedding (8) to ADMM form (9):

minimize
[

IC×C∗(u, v) + IQu=v(ũ, ṽ)
]

s.t. (u, v) = (ũ, ṽ), (10)

where IS denotes the indicator function [66, Sect. 4] of the set S. A direct application

of ADMM to the self-dual embedding, written as (10), yields the following algorithm:

(ũk+1, ṽk+1) = �Qu=v(u
k + λk, vk + μk)

uk+1 = �C(ũk+1 − λk)

vk+1 = �C∗(ṽk+1 − μk)

λk+1 = λk − ũk+1 + uk+1

μk+1 = μk − ṽk+1 + vk+1, (11)

where �S(x) denotes the Euclidean projection of x onto the set S. Here, λ and μ are

dual variables for the equality constraints on u and v, respectively.

3.2 Simplified Method

In this section we show that the basic ADMM algorithm (11) given above can be

simplified using properties of our specific problem.

3.2.1 Eliminating Dual Variables

If we initialize λ0 = v0 and μ0 = u0, then λk = vk and μk = uk for all subsequent

iterations. This result allows us to eliminate the dual variable sequences above. This

will also simplify the linear system in the first step and remove one of the cone

projections.

Proof The proof is by induction. The base case holds because we can initialize the

variables accordingly. Assuming that λk = vk and μk = uk , the first step of the

algorithm becomes

(ũk+1, ṽk+1) = �Q

(

uk + λk, vk + μk
)

= �Q

(

uk + vk, uk + vk
)

, (12)

where Q = {(u, v) : Qu = v}.
The orthogonal complement of Q is Q⊥ = {(v, u) : Qu = v} because Q is skew-

symmetric. It follows that if (u, v) = �Q(z, z), then (v, u) = �Q⊥(z, z) for any z,

since the two projection problems are identical save for reversed output arguments.

This implies that

(ṽk+1, ũk+1) = �Q⊥

(

uk + vk, uk + vk
)

. (13)

123

1050 J Optim Theory Appl (2016) 169:1042–1068

Recall that z = �Q(z) + �Q⊥(z) for any z. With (12) and (13), this gives

uk + vk = ũk+1 + ṽk+1. (14)

The Moreau decomposition [64, Sect. 2.5] of x with respect to a nonempty, closed,

convex cone C is given by

x = �C(x) + �−C∗(x), (15)

and moreover, the two terms on the right-hand side are orthogonal. It can be written

equivalently as x = �C(x) − �C∗(−x). Combining this with (14) gives

uk+1 = �C(ũk+1 − vk)

= �C(uk − ṽk+1)

= uk − ṽk+1 + �C∗(ṽk+1 − uk)

= uk − ṽk+1 + vk+1

= μk+1.

A similar derivation yields λk+1 = vk+1, which completes the proof. This lets us

eliminate the sequences λk and μk . ⊓⊔

Once the value uk+1 = �C(ũk+1 − vk) has been calculated, the step that projects

onto the dual cone C∗ can be replaced with

vk+1 = vk − ũk+1 + uk+1.

This follows from the λk update, which is typically cheaper than a projection step.

Now no sequence depends on ṽk , so it too can be eliminated.

3.2.2 Projection Onto Affine Set

Each iteration, the algorithm (11) computes a projection onto Q by solving

minimize
[

(1/2)‖u − uk − vk‖2
2 + (1/2)‖v − uk − vk‖2

2

]

s.t. v = Qu,

with variables u and v. The KKT conditions for this problem are

[

I QT

Q −I

] [

u

μ

]

=
[

uk + vk

uk + vk

]

, (16)

where μ ∈ R
m+n+1 is the dual variable associated with the equality constraint Qu −

v = 0. By eliminating μ, we obtain

ũk+1 = (I + QT Q)−1(I − Q)(uk + vk).

123

J Optim Theory Appl (2016) 169:1042–1068 1051

The matrix Q is skew-symmetric, so this simplifies to

ũk+1 = (I + Q)−1(uk + vk).

(The matrix I + Q is guaranteed to be invertible since Q is skew-symmetric).

3.2.3 Final Algorithm

Combining the simplifications of the previous sections, the final algorithm is

ũk+1 = (I + Q)−1(uk + vk)

uk+1 = �C

(

ũk+1 − vk
)

vk+1 = vk − ũk+1 + uk+1. (17)

The algorithm consists of three steps. The first step is projection onto a subspace,

which involves solving a linear system with coefficient matrix I + Q; this is discussed

in more detail in Sect. 4.1. The second step is projection onto a cone, a standard

operation discussed in detail in [64, Sect. 6.3].

The last step is computationally trivial and has a simple interpretation: As the

algorithm runs, the vectors uk and ũk converge to each other, so uk+1 − ũk+1 can be

viewed as the error at iteration k + 1. The last step shows that vk+1 is exactly the

running sum of the errors. Roughly speaking, this running sum of errors is used to

drive the error to zero, exactly as in integral control [67].

We can also interpret the second and third steps as a combined Moreau decom-

position of the point ũk+1 − vk into its projection onto C (which gives uk+1) and its

projection onto −C∗ (which gives vk+1).

The algorithm is homogeneous: If we scale the initial points by some factor γ > 0,

then all subsequent iterates are also scaled by γ and the overall algorithm will give

the same primal–dual solution or certificates for (1), since the system being solved is

also homogeneous.

A straightforward application of ADMM directly to the primal or dual problem in

(1) obtains an algorithm which requires one linear system solve involving AT A and

one projection onto the cone K, which has the same per-iteration cost as (17); see,

e.g., [13] for details.

3.3 Variations

There are many variants on the basic ADMM algorithm (17) described above, and

any of them can be employed with the homogeneous self-dual embedding. We briefly

describe two important variations that we use in our reference implementation.

Over-Relaxation In the u- and v-updates, replace all occurrences of ũk+1 with

αũk+1 + (1 − α)uk,

123

1052 J Optim Theory Appl (2016) 169:1042–1068

where α ∈]0, 2[is a relaxation parameter [21,68]. When α = 1, this reduces to the

basic algorithm given above. When α > 1, this is known as over-relaxation; when

α < 1, this is under-relaxation. Some numerical experiments suggest that values of α

around 1.5 can improve convergence [44,69].

Approximate Projection Another variation replaces the subspace projection update

with a suitable approximation [21,30,68]. We replace ũk+1 in the first line of (17)

with any ũk+1 that satisfies

‖ũk+1 − (I + Q)−1(uk + vk)‖2 ≤ ζ k, (18)

where ζ k > 0 satisfy
∑

k ζ k < ∞. This variation is particularly useful when an

iterative method is used to compute ũk+1.

Note that (18) is implied by the (more easily verified) inequality

‖(Q + I)ũk+1 − (uk + vk)‖2 ≤ ζ k . (19)

This follows from the fact that ‖(I + Q)−1‖2 ≤ 1, which holds since Q is skew-

symmetric. The left-hand side of (19) is the norm of the residual in the equations that

define ũk+1 in the basic algorithm.

3.4 Convergence

Algorithm Convergence We show that the algorithm converges, in the sense that it

eventually produces a point for which the optimality conditions almost hold. For the

basic algorithm (17) and the variant with over-relaxation and approximate projection,

for all iterations k > 0 we have

uk ∈ C, vk ∈ C∗, (uk)Tvk = 0. (20)

These follow from the last two steps of (17), and hold for any values of vk−1 and ũk .

Since uk+1 is a projection onto C, uk ∈ C follows immediately. The condition vk ∈ C∗

holds since the last step can be rewritten as vk+1 = �C∗(vk − ũk+1), as observed

above. The last condition, (uk)Tvk = 0, holds by our observation that these two points

are the (orthogonal) Moreau decomposition of the same point.

In addition to the three conditions in (20), only one more condition must hold for

(uk, vk) to be optimal: Quk = vk . This equality constraint holds asymptotically, i.e.,

we have, as k → ∞,

Quk − vk → 0. (21)

(We show this from the convergence result for ADMM below). Thus, the iterates

(uk, vk) satisfy three of the four optimality conditions (20) at every step, and the

fourth one (21) is satisfied in the limit.

To show that the equality constraint holds asymptotically we use general ADMM

convergence theory; see, e.g., [8, Sect. 3.4.3], or [21] for the case of approximate

projections. This convergence theory tells us that

123

J Optim Theory Appl (2016) 169:1042–1068 1053

ũk → uk, ṽk → vk (22)

as k → ∞, even with over-relaxation and approximate projection. From the last step

in (17) we conclude that vk+1 − vk → 0. From (14), (22), and vk+1 − vk → 0, we

obtain uk+1 − uk → 0.

Expanding (19), we have

Qũk+1 + ũk+1 − uk − vk → 0,

and using (22) we get

Quk+1 + uk+1 − uk − vk → 0.

From uk+1 − uk → 0 and vk+1 − vk → 0 we conclude

Quk − vk → 0,

which is what we wanted to show.

Eliminating Convergence to Zero We can guarantee that the algorithm will not con-

verge to zero if a nonzero solution exists, by proper selection of the initial point

(u0, v0), at least in the case of exact projection.

Denote by (u⋆, v⋆) any nonzero solution to (8), which we assume satisfies either

u⋆
τ > 0 or v⋆

κ > 0, i.e., we can use it to derive an optimal point or a certificate for (1).

If we choose initial point (u0, v0) with u0
τ = 1 and v0

κ = 1, and all other entries zero,

then we have

(u⋆, v⋆)T(u0, v0) > 0.

Let φ denote the mapping that consists of one iteration of algorithm (17), i.e.,

(uk+1, vk+1) = φ(uk, vk). We show in the appendix that the mapping φ is nonex-

pansive, i.e., for any (u, v) and (û, v̂) we have that

‖φ(u, v) − φ(û, v̂)‖2 ≤ ‖(u, v) − (û, v̂)‖2. (23)

(Nonexpansivity holds for ADMM more generally; see, e.g., [6,21,28] for details).

Since (u⋆, v⋆) is a solution to (8), it is a fixed point of φ, i.e.,

φ(u⋆, v⋆) = (u⋆, v⋆). (24)

Since the problem is homogeneous, the point γ (u⋆, v⋆) is also a solution for any

positive γ , and is also a fixed point of φ. Combining this with (23), we have at iteration

k

‖(uk, vk) − γ (u⋆, v⋆)‖2
2 ≤ ‖(u0, v0) − γ (u⋆, v⋆)‖2

2, (25)

for any γ > 0. Expanding (25) and setting

γ = ‖(u0, v0)‖2
2/(u

⋆, v⋆)T(u0, v0),

123

1054 J Optim Theory Appl (2016) 169:1042–1068

which is positive by our choice of (u0, v0), we obtain

2(u⋆, v⋆)T(uk, vk) ≥ (u⋆, v⋆)T(u0, v0)(1 + ‖(uk, vk)‖2
2/‖(u0, v0)‖2

2),

which implies that

(u⋆, v⋆)T(uk, vk) ≥ (u⋆, v⋆)T(u0, v0)/2,

and applying Cauchy–Schwarz yields

‖(uk, vk)‖2 ≥ (u⋆, v⋆)T(u0, v0)/2‖(u⋆, v⋆)‖2 > 0. (26)

Thus, for k = 1, 2, . . ., the iterates are bounded away from zero.

Normalization The vector given by

(ûk, v̂k) = (uk, vk)/‖(uk, vk)‖2

satisfies the conditions given in (20) for all iterations, and by combining (21) with (26)

we have that

Qûk − v̂k → 0,

in the exact projection case at least. In other words, the unit vector (ûk, v̂k) eventually

satisfies the optimality conditions for the homogeneous self-dual embedding to any

desired accuracy.

3.5 Termination Criteria

In view of the discussion of the previous section, a stopping criterion of the form

‖Quk − vk‖2 ≤ ǫ

for some tolerance ǫ, or alternatively a normalized criterion

‖Quk − vk‖2 ≤ ǫ‖(uk, vk)‖2,

will work, i.e., the algorithm eventually stops. Here, we propose a different scheme

that handles the components of u and v corresponding to primal and dual variables

separately. This yields stopping criteria that are consistent with ones traditionally used

for cone programming.

We terminate the algorithm when it finds a primal–dual optimal solution or a cer-

tificate of primal or dual infeasibility, up to some tolerances. If uk
τ > 0, then let

xk = uk
x/uk

τ , sk = vk
s /uk

τ , yk = uk
y/uk

τ

123

J Optim Theory Appl (2016) 169:1042–1068 1055

be the candidate solution. This candidate is guaranteed to satisfy the cone constraints

and complementary slackness condition by (20). It thus suffices to check that the

residuals

pk = Axk + sk − b, dk = AT yk + c, gk = cTxk + bT yk,

are small. Explicitly, we terminate if

‖pk‖2 ≤ ǫpri(1 + ‖b‖2), ‖dk‖2 ≤ ǫdual(1 + ‖c‖2), |gk | ≤ ǫgap(1 + |cTx | + |bT y|)

and emit (xk, sk, yk) as (approximately) primal–dual optimal. Here, quantities

ǫpri, ǫdual, ǫgap are the primal residual, dual residual, and duality gap tolerances,

respectively.

On the other hand, if the current iterates satisfy

∥

∥

∥
Auk

x + vk
s

∥

∥

∥

2
≤

(

−cTuk
x/‖c‖2

)

ǫunbdd,

then uk
x/(−cTuk

x) is an approximate certificate of unboundedness with tolerance ǫunbdd ,

or if they satisfy

∥

∥

∥
ATuk

y

∥

∥

∥

2
≤

(

−bTuk
y/‖b‖2

)

ǫinfeas,

then uk
y/(−bTuk

y) is an approximate certificate of infeasibility with tolerance ǫinfeas.

These stopping criteria are identical to those used by many other cone solvers and

similar to those used by DIMACS [70,71] and the Sedumi solver [2].

4 Efficient Subspace Projection

In this section we discuss how to efficiently compute the projection onto the subspace

Q, exactly and also approximately (for the approximate variation).

4.1 Solving the Linear System

The first step in (17) is to solve the linear system (I + Q)ũk = w for some w:

⎡

⎣

I AT c

−A I b

−cT −bT 1

⎤

⎦

⎡

⎣

ũx

ũ y

ũτ

⎤

⎦ =

⎡

⎣

wx

wy

wτ

⎤

⎦. (27)

To lighten notation, let

M =
[

I AT

−A I

]

, h =
[

c

b

]

,

123

1056 J Optim Theory Appl (2016) 169:1042–1068

so

I + Q =
[

M h

−hT 1

]

.

It follows that

[

ũx

ũ y

]

= (M + hhT)−1

([

wx

wy

]

− wτ h

)

,

where M +hhT is the Schur complement of the lower right block 1 in I + Q. Applying

the Sherman–Morrison–Woodbury formula [72, p. 50] to (M + hhT)−1 yields

[

ũx

ũ y

]

=
(

M−1 − M−1hhT M−1

(

1 + hT M−1h
)

)

([

wx

wy

]

− wτ h

)

and

ũτ = wτ + cTũx + bTũ y .

Thus, in the first iteration, we compute and cache M−1h. To solve (27) in subsequent

iterations, it is only necessary to compute M−1(wx , wy), which will require the bulk

of the computational effort, and then to perform some simple vector operations using

cached quantities.

There are two main ways to solve linear equations of the form

[

I −AT

−A −I

] [

zx

−zy

]

=
[

wx

wy

]

, (28)

the system that needs to be solved once per iteration. The first method, a direct method

that exactly solves the system, is to solve (28) by computing a sparse permuted LDLT

factorization [73] of the matrix in (28) before the first iteration and then to use this

cached factorization to solve the system in subsequent steps. This technique, called

factorization caching, is very effective in the common case when the factorization cost

is substantially higher than the subsequent solve cost, so all iterations after the first

one can be carried out quickly. Because the matrix is quasi-definite, the factorization

is guaranteed to exist for any symmetric permutation [74].

The second method, an indirect method that we use to approximately solve the

system, involves first rewriting (28) as

zx = (I + AT A)−1(wx − ATwy), zy = wy + Azx ,

by elimination. This system is then solved with the conjugate gradient method (CG)

[72,75,76]. Each iteration of conjugate gradient requires multiplying once by A and

once by AT, each of which can be parallelized. If A is very sparse, then these multi-

plications can be performed especially quickly; when A is dense, it may be better to

123

J Optim Theory Appl (2016) 169:1042–1068 1057

first form G = I + AT A in the setup phase. We warm-start CG by initializing each

subsequent call with the solution obtained by the previous call. We terminate the CG

iterations when the residual satisfies (19) for some appropriate sequence ζ k .

4.2 Repeated Solves

If the cone problem must be solved more than once, then computation from the first

solve can be re-used in subsequent solves by warm-starting: We set the initial point

to u0 = (x⋆, y⋆, 1), v0 = (0, s⋆, 0), where x⋆, s⋆, y⋆ are the optimal primal–dual

variables from the previous solve. If the data matrix A does not change and a direct

method is being used, then the sparse permuted LDLT factorization can also be reused

across solves for additional savings. This arises in many practical situations, such as

in control, statistics, and sequential convex programming.

5 Scaling Problem Data

Though the algorithm in (17) has no explicit parameters, the relative scaling of the

problem data can greatly affect the convergence. This suggests a preprocessing step

where we scale the data to (hopefully) improve the convergence.

In particular, consider scaling vectors b and c by positive scalars σ and ρ, respec-

tively, and scaling the primal and dual equality constraints by diagonal positive definite

matrices D and E , respectively. This yields the following scaled primal–dual problem

pair:

minimize ρ(Ec)T x̂

s.t. D AEx̂ + ŝ = σ Db

(x̂, ŝ) ∈ R
n × K,

maximize −σ(Db)T ŷ

s.t. −E AT Dŷ + r̂ = ρEc

(r̂ , ŷ) ∈ {0}n × K∗,

with variables x̂, ŷ, r̂ , and ŝ. After solving this new cone program with problem data

Â = D AE, b̂ = σ Db, and ĉ = ρEc, the solution to the original problem (1) can be

recovered from the scaled solution via

x⋆ = Ex̂⋆/σ, s⋆ = D−1ŝ⋆/σ, y⋆ = Dŷ⋆/ρ.

Transformation by the matrix D must preserve membership of the cone K, to ensure

that if s ∈ K, then D−1s ∈ K (the same is not required of E). If K = K1 × · · · × Kq ,

where Ki ⊂ R
mi , then we could use, for example,

D = diag(π1 Im1 , . . . , πq Imq),

where each πi > 0.

We have observed that in practice, data which has been equilibrated, i.e., scaled to

have better conditioning, admits better convergence [77–80]. We have found that if

the columns of A and b all have Euclidean norm close to one and the rows of A and

c have similar norms, then the algorithm (17) typically performs well. The scaling

123

1058 J Optim Theory Appl (2016) 169:1042–1068

parameters E, D, σ , and ρ can be chosen to (approximately) achieve this [80–82],

though the question of whether there is an optimal scaling remains open. There has

recently been much work devoted to the question of choosing an optimal, or at least

good diagonal scaling; see [83,84].

Scaled Termination Criteria When the algorithm is applied to the scaled problem, it

is still desirable to terminate the procedure when the residuals for the original problem

satisfy the stopping criteria defined in Sect. 3.5.

The original residuals can be expressed in terms of the scaled data as

pk = (1/σ)D−1(Âx̂k + ŝk − b̂),

dk = (1/ρ)E−1(ÂT ŷk + ĉ),

gk = (1/ρσ)(ĉT x̂k + b̂T ŷk),

and the convergence checks can be applied as before. The stopping criteria for

unboundedness and infeasibility then become

∥

∥

∥
D−1

(

Âûk
x + v̂k

s

)
∥

∥

∥

2
≤

(

−ĉTûk
x/‖E−1ĉ‖2

)

ǫunbdd,
∥

∥

∥
E−1

(

ÂTûk
y

)
∥

∥

∥

2
≤

(

−b̂Tûk
y/‖D−1b̂‖2

)

ǫinfeas.

6 Numerical Experiments

In this section we present numerical results for SCS, our implementation of the algo-

rithm described above. We show results on two application problems, in each case

instances that are small, medium, and large. We compare the results to SDPT3 [85]

and Sedumi [2], state-of-the-art interior-point solvers. We use this comparison for sev-

eral purposes. First, the solution computed by these solvers is high accuracy, so we can

use it to assess the quality of the solution found by SCS. Second, we can compare the

computing times. Run-time comparison is not completely fair, since an interior-point

method reliably computes a high-accuracy solution, whereas SCS is meant only to

compute a solution of modest accuracy and may take longer than an interior-point

method if high accuracy is required. Third, Sedumi targets the same homogeneous

self-dual embedding (7) as SCS, so we can compare a first-order and a second-order

method on the same embedding.

6.1 SCS

Our implementation, which we call SCS for ‘splitting conic solver,’ is written in

C and can solve cone programs involving any combination of nonnegative, second-

order, semidefinite, exponential, and power cones (and dual exponential and power

cones) [86]. It has multi-threaded and single-threaded versions, and computes the

(approximate) projections onto the subspace using either a direct method or an iterative

method. SCS is available online at https://github.com/cvxgrp/scs.

123

https://github.com/cvxgrp/scs

J Optim Theory Appl (2016) 169:1042–1068 1059

along with the code to run the numerical examples. SCS can be used in other C, C++,

Python, MATLAB, R, Julia, Java, and Scala programs and is a supported solver in

parser-solvers CVX [87], CVXPY [88], Convex.jl [89], and YALMIP [90]. It is now

the default solver for CVXPY and Convex.jl for problems that cannot be expressed

using the standard symmetric cones.

The direct implementation uses a single-threaded sparse permuted LDLT decompo-

sition from the SuiteSparse package [73,91,92]. The sparse indirect implementation,

which uses conjugate gradient, can perform the matrix multiplications on the CPU or

on the GPU. The CPU version uses a basic sparse multiplication routine parallelized

using OpenMP [93]. By default, the GPU version uses the sparse CUDA BLAS library

[94]. By default, the indirect solver uses ζ k = (1/k)1.5 as the termination tolerance at

iteration k, where the tolerance is defined in (19).

SCS handles the usual nonnegative, second-order, and semidefinite cones, as well

as the exponential cone and its dual [64, Sect. 6.3.4],

Kexp = {(x, y, z) : y > 0, yex/y ≤ z} ∪ {(x, y, z) : x ≤ 0, y = 0, z ≥ 0},
K ∗

exp = {(u, v, w) : u < 0, − uev/u ≤ ew} ∪ {(0, v, w) : v ≥ 0, w ≥ 0},

and the power cone and its dual [95–97], defined as

K a
pwr = {(x, y, z) : xa y(1−a) ≥ |z|, x ≥ 0, y ≥ 0},

(

K a
pwr

)∗
= {(u, v, w) : (u/a)a(v/(1 − a))(1−a) ≥ |w|, u ≥ 0, v ≥ 0},

for any a ∈ [0, 1]. Projections onto the semidefinite cone are performed using the

LAPACK dsyevr method for computing the eigendecomposition; projections onto

the other cones are implemented in C. The multi-threaded version computes the pro-

jections onto the cones in parallel.

In the experiments reported below, we use the termination criteria described in

Sects. 3.5 and 5, with the default values

ǫpri = ǫdual = ǫgap = ǫunbdd = ǫinfeas = 10−3.

The objective value reported for SCS in the experiments below is the average of the

primal and dual objectives at termination. The time required to do any preprocessing

(such as the matrix factorization) and to carry out and undo the scaling are included

in the total solve times.

All the experiments were carried out on a system with 32 2.2 GHz cores and 512 GB

of RAM, running Linux. (The single-threaded versions, of course, do not make use

of the multiple cores). The GPU used was a Geforce GTX Titan X with 12 GB of

memory.

123

1060 J Optim Theory Appl (2016) 169:1042–1068

6.2 Lasso

Consider the following optimization problem:

minimize (1/2)‖Fz − g‖2
2 + μ‖z‖1, (29)

over z ∈ R
p, where F ∈ R

q×p, g ∈ R
q and μ ∈ R+ are data. This problem, known

as the lasso [98], is widely studied in high-dimensional statistics, machine learning,

and compressed sensing. Roughly speaking, (29) seeks a sparse vector z such that

Fz ≈ g, and the parameter μ trades off between quality of fit and sparsity. It has been

observed that first-order methods can perform very well on lasso-type problems when

the solution is sparse [99,100].

The lasso problem can be formulated as the SOCP [101]

minimize (1/2)w + μ1Tt

s.t. −t ≤ z ≤ t,

∥

∥

∥

∥

1 − w

2(Fz − g)

∥

∥

∥

∥

2

≤ 1 + w

with variables z ∈ R
p, t ∈ R

p and w ∈ R. This formulation is easily transformed in

turn into the standard form (1).

Problem Instances We generated data for the numerical instances as follows. First,

the entries of F were sampled independently from a standard normal distribution.

We randomly generated a sparse vector ẑ with p entries, only p/10 of which were

nonzero. We then set g = Fẑ +w, where the entries in w were sampled independently

and identically from N (0, 0.1). We chose μ = 0.1μmax for all instances, where

μmax = ‖FTg‖∞ is the smallest value of μ for which the solution to (29) is zero.

Results The results are summarized in Table 1. For the small, medium, and large

instances, the fastest implementation of SCS, indirect on the GPU, provides a speedup

of roughly 30×, 190×, and 1000×, respectively over SDPT3 and Sedumi. In the

largest case, SCS takes <4 min compared to nearly 3 days for SDPT3 and Sedumi.

In other words, not only is the degree of speedup dramatic in each case, but it also

continues to increase as the problem size gets larger; this is consistent with our goal

of solving problems outside the ability of traditional interior-point methods.

SCS is meant to provide solutions of modest, not high, accuracy. However, we see

that the solutions returned attain an objective value within 0.01 % of the optimal value

attained by SDPT3 and Sedumi, a negligible difference in applications.

If we compare the direct and indirect CPU implementations of SCS, we see that for

small problems the direct version of SCS is faster, but for larger problems the multi-

threaded indirect method dominates. The sparsity pattern in this problem lends itself

to an efficient multi-threaded matrix multiply since the columns in the data matrix A

have a similar number of nonzeros. This speedup is even more pronounced when the

matrix multiplications are performed on the GPU.

123

J Optim Theory Appl (2016) 169:1042–1068 1061

Table 1 Results for the lasso example

Small Medium Large

Variables p 10,000 30,000 1,00,000

Measurements q 2000 6000 20,000

Standard form variables n 2001 6001 20,001

Standard form constraints m 22,002 66,002 220,002

Nonzeros in A 3.8 × 106 3.4 × 107 3.9 × 108

SDPT3

Total solve time (s) 196.5 4.2 × 103 2.3 × 105

Objective 682.2 2088.0 6802.6

Sedumi

Total solve time (s) 138.0 5.6 × 103 2.5 × 105

Objective 682.2 2088.0 6802.6

SCS direct

Total solve time (s) 21.9 3.6 × 102 6.6 × 103

Factorization time (s) 5.5 1.1 × 102 4.2 × 103

Iterations 400 540 500

Objective 682.2 2088.1 6803.5

SCS indirect

Total solve time (s) 31.6 1.2 × 102 7.5 × 102

Average CG iterations 5.9 5.9 5.9

Iterations 400 540 500

Objective 682.2 2088.1 6803.6

SCS indirect GPU

Total solve time (s) 4.6 22.0 2.1 × 102

6.3 Portfolio Optimization

Consider a simple long-only portfolio optimization problem [52,102], [65, Sect. 4.4.1],

in which we choose the relative weights of assets to maximize the expected risk-

adjusted return of a portfolio:

maximize
[

μTz − γ (zT�z)
]

s.t. 1Tz = 1, z ≥ 0,

where the variable z ∈ R
p represents the portfolio of p assets, μ ∈ R

p is the vector

of expected returns, γ > 0 is the risk aversion parameter, and � ∈ R
p×p is the asset

return covariance matrix, also known as the risk model. The risk model is expressed

in factor model form

� = FFT + D,

123

1062 J Optim Theory Appl (2016) 169:1042–1068

where F ∈ R
p×q is the factor loading matrix and D ∈ R

p×p is a diagonal matrix

representing ‘idiosyncratic’ or asset-specific risk. The number of risk factors q is

typically much less than the number of assets p. (The factor model form is widely

used in practice).

This problem can be converted in the standard way into an SOCP:

maximize μTz − γ (t + s)

s.t. 1Tz = 1, z ≥ 0, ‖D1/2z‖2 ≤ u, ‖FTz‖2 ≤ v

‖(1 − t, 2u)‖2 ≤ 1 + t, ‖(1 − s, 2v)‖2 ≤ 1 + s,

(30)

with variables z ∈ R
p, t ∈ R, s ∈ R, u ∈ R, and v ∈ R. This can be transformed into

standard form (1) in turn.

Problem Instances The vector of log-returns, log(μ), was sampled from a standard

normal distribution, yielding lognormally distributed returns. The entries in F were

sampled independently from N (0, 0.1), and the diagonal entries of D were sampled

independently from a uniform distribution on [0, 0.1]. For all problems, we chose

γ = 1.

Results The results are summarized in Table 2. In all cases the objective value attained

by SCS was within 0.5 % of the optimal value. The worst budget constraint violation

of the solution returned by SCS in any instance was only 0.002 and the worst nonneg-

ativity constraint violation was only 5 × 10−7. SCS direct is more than seven times

faster than SDPT3 on the largest instance, and much faster than Sedumi, which did

not manage to solve the largest instance after a week of computation.

Unlike the previous example, the direct solver is faster than the indirect solver on

the CPU for all instances. This is due to imbalance in the number of nonzeros per

column which, for the simple multi-threaded matrix multiply we’re using, leads to

some threads handling much more data than others, and so the speedup provided by

parallelization is modest. The indirect method on the GPU is fastest for the medium

sized example. For the small example the cost of transferring the data to the GPU

outweighs the benefits of performing the computation on the GPU, and the large

example could not fit into the GPU memory.

7 Conclusions

We presented an algorithm that can return primal and dual optimal points for convex

cone programs when possible, and certificates of primal or dual infeasibility otherwise.

The technique involves applying an operator splitting method, the alternating direc-

tion method of multipliers, to the homogeneous self-dual embedding of the original

optimization problem. This embedding is a feasibility problem that involves finding

a point in the intersection of an affine set and a convex cone, and each iteration of

our method solves a system of linear equations and projects a point onto the cone.

We showed how these individual steps can be implemented efficiently and are often

amenable to parallelization. We discuss methods for automatic problem scaling, a

critical step in making the method robust.

123

J Optim Theory Appl (2016) 169:1042–1068 1063

Table 2 Results for the portfolio optimization example

Small Medium Large

Assets p 1,00,000 5,00,000 25,00,000

Factors q 100 500 2500

Standard form variables n 100,103 500,503 2,502,503

Standard form constraints m 200,104 1,000,504 5,002,504

Nonzeros in A 1.3 × 106 2.5 × 107 5.1 × 108

SDPT3

Total solve time (s) 70.7 1.6 × 103 6.3 × 104

Objective 0.0388 0.0364 0.0369

Sedumi

Total solve time (s) 100.6 7.9 × 103 >6.1 × 105

Objective 0.0388 0.0364 ?

SCS direct

Total solve time (s) 13.0 190 9.6 × 103

Factorization time (s) 0.6 19.2 913

Iterations 500 440 980

Objective 0.388 0.0365 0.0367

SCS indirect

Total solve time (s) 27.6 313 2.5 × 104

Average CG iterations 3.0 3.0 3.0

Iterations 500 440 980

Objective 0.0388 0.0365 0.0367

SCS indirect GPU

Total solve time (s) 27.8 184 OOM

We provide a reference implementation of our algorithm in C, which we call SCS.

We show that this solver can solve large instances of cone problems to modest accuracy

quickly and is particularly well suited to solving large cone problems outside of the

reach of standard interior-point methods.

Acknowledgments This research was supported by DARPA’s XDATA program under grant FA8750-12-

2-0306. N. Parikh was supported by a NSF Graduate Research Fellowship under grant DGE-0645962. The

authors thank Wotao Yin for extensive comments and suggestions on an earlier version of this manuscript,

and Lieven Vandenberghe for fruitful discussions early on. We would also like to thank the anonymous

reviewers for their constructive feedback.

Conflict of interest The authors declare that they have no conflict of interest.

Appendix: Nonexpansivity

In this appendix we show that the mapping consisting of one iteration of the algorithm

(17) is nonexpansive, i.e., if we denote the mapping by φ, then we shall show that

123

1064 J Optim Theory Appl (2016) 169:1042–1068

‖φ(u, v) − φ(û, v̂)‖2 ≤ ‖(u, v) − (û, v̂)‖2,

for any (u, v) and (û, v̂).

From (17) we can write the mapping as the composition of two operators, φ = P◦L ,

where

P(x) = (�C(x),−�−C∗(x)),

and

L(u, v) = (I + Q)−1(u + v) − v.

To show that φ is nonexpansive, we only need to show that both P and L are nonex-

pansive.

To show that P is nonexpansive, we proceed as follows

‖x − x̂‖2
2 = ‖�C(x) + �−C∗(x) − �C(x̂) − �−C∗(x̂)‖2

2

= ‖�C(x) − �C(x̂)‖2
2 + ‖�−C∗(x) − �−C∗(x̂)‖2

2

− 2�C(x̂)T�−C∗(x) − 2�C(x)T�−C∗(x̂)

≥ ‖�C(x) − �C(x̂)‖2
2 + ‖�−C∗(x) − �−C∗(x̂)‖2

2

= ‖(�C(x) − �C(x̂)),−(�−C∗(x) − �−C∗(x̂))‖2
2

= ‖P(x) − P(x̂)‖2
2,

where the first equality is from the Moreau decompositions of x and x̂ with respect

to the cone C, the second follows by expanding the norm squared and the fact that

�C(x) ⊥ �−C∗(x) for any x , and the inequality follows from �C(x̂)T�−C∗(x) ≤ 0

by the definition of dual cones.

Similarly for L we have

‖L(u, v) − L(û, v̂)‖2 =
∥

∥

∥
(I + Q)−1(u − û + v − v̂) − v + v̂

∥

∥

∥

2

=
∥

∥

[

(I + Q)−1 −(I − (I + Q)−1)
]

(u − û, v − v̂)
∥

∥

2

≤ ‖(u − û, v − v̂)‖2 = ‖(u, v) − (û, v̂)‖2,

where the inequality can be seen from the fact that

[

(I + Q)−1 −(I − (I + Q)−1)
] [

(I + Q)−1 −(I − (I + Q)−1)
]T = I

by the skew symmetry of Q, and so
∥

∥

[

(I + Q)−1 −(I − (I + Q)−1)
]
∥

∥

2
= 1.

123

J Optim Theory Appl (2016) 169:1042–1068 1065

References

1. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, London (2011)

2. Sturm, J.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim.

Methods Softw. 11(1), 625–653 (1999)

3. Skajaa, A., Ye, Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic opti-

mization. http://www.stanford.edu/yyye/nonsymmhsdimp.pdf (2012)

4. Glowinski, R., Marrocco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par

penalisation-dualité, d’une classe de problems de Dirichlet non lineares. Rev. Fr. d’Autom. Inf. Rech.

Opér. 9, 41–76 (1975)

5. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite

element approximations. Comput. Math. Appl. 2, 17–40 (1976)

6. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M.,

Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to Numerical Solution of

Boundary-Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

7. Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization.

Ph.D. thesis, Massachusetts Institute of Technology (1989)

8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning

via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

9. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas–Rachford alternating direction

method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

10. Ye, Y., Todd, M., Mizuno, S.: An O(
√

nL)-iteration homogeneous and self-dual linear programming

algorithm. Math. Oper. Res. 19(1), 53–67 (1994)

11. Xu, X., Hung, P., Ye, Y.: A simplified homogeneous and self-dual linear programming algorithm and

its implementation. Ann. Oper. Res. 62, 151–171 (1996)

12. Nesterov, Y., Nemirovski, A.: Interior-Point Polynomial Methods in Convex Programming. SIAM,

Philadelphia (1994)

13. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite

programming. Math. Program. Comput. 2(3–4), 203–230 (2010)

14. Lan, G., Lu, Z., Monteiro, R.: Primal–dual first-order methods with O(1/ǫ) iteration-complexity for

cone programming. Math. Program. 126(1), 1–29 (2011)

15. Aybat, N., Iyengar, G.: An augmented Lagrangian method for conic convex programming. Preprint

(2013). arXiv:1302.6322v1

16. Boyle, J., Dykstra, R.: A method for finding projections onto the intersection of convex sets in Hilbert

spaces. In: Dykstra, R., Robertson, T., Wright, F. (eds.) Advances in Order Restricted Statistical

Inference. Lecture Notes in Statistics, vol. 37, pp. 28–47. Springer, New York (1986)

17. Bauschke, H., Borwein, J.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory

79(3), 418–443 (1994)

18. Censor, Y., Chen, W., Combettes, P., Davidi, R., Herman, G.: On the effectiveness of projection

methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl.

51(3), 1065–1088 (2012)

19. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space.

Numer. Algorithms 8, 221–239 (1994)

20. Bauschke, H., Koch, V.: Projection methods: Swiss army knives for solving feasibility and best

approximation problems with halfspaces. arXiv:1301.4506 (2013)

21. Eckstein, J., Bertsekas, D.: On the Douglas–Rachford splitting method and the proximal point algo-

rithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

22. Combettes, P., Pesquet, J.: Primal–dual splitting algorithm for solving inclusions with mixtures of

composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2),

307–330 (2012)

23. Combettes, P.: Systems of structured monotone inclusions: duality, algorithms, and applications.

SIAM J. Optim. 23(4), 2420–2447 (2013)

24. Komodakis, N., Pesquet, J.: Playing with duality: an overview of recent primal–dual approaches for

solving large-scale optimization problems. arXiv:1406.5429 (2014)

25. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear

Mechanics. SIAM, Philadelphia (1989)

123

http://www.stanford.edu/yyye/nonsymmhsdimp.pdf
http://arxiv.org/abs/1302.6322v1
http://arxiv.org/abs/1301.4506
http://arxiv.org/abs/1406.5429

1066 J Optim Theory Appl (2016) 169:1042–1068

26. Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer.

Anal. 16(6), 964–979 (1979)

27. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

28. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution

of Boundary-Value Problems. North-Holland, Amsterdam (1983)

29. Douglas, J., Rachford, H.: On the numerical solution of the heat conduction problem in 2 and 3 space

variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

30. Rockafellar, R.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.

14(5), 877–898 (1976)

31. Spingarn, J.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

32. Spingarn, J.: Applications of the method of partial inverses to convex programming: decomposition.

Math. Program. 32, 199–223 (1985)

33. Spingarn, J.: A primal–dual projection method for solving systems of linear inequalities. Linear

Algebra Appl. 65, 45–62 (1985)

34. Eckstein, J.: The Lions–Mercier splitting algorithm and the alternating direction method are instances

of the proximal point algorithm. Tech. Rep. LIDS-P-1769, Massachusetts Institute of Technology

(1989)

35. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse

Probab. 18(2), 441 (2002)

36. Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-

sets split feasibility problem. J. Math. Anal. Appl. 327(2), 1244–1256 (2007)

37. Censor, T.: Sequential and parallel projection algorithms for feasibility and optimization. In: Multi-

spectral Image Processing and Pattern Recognition, pp. 1–9. Bellingham: International Society for

Optics and Photonics (2001)

38. Yan, M., Yin, W.: Self equivalence of the alternating direction method of multipliers. arXiv:1407.7400

(2014)

39. Combettes, P.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95,

155–270 (1996)

40. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging

Sci. 2(2), 323–343 (2009)

41. O’Connor, D., Vandenberghe, L.: Image deblurring by primal–dual operator splitting. SIAM J. Imag-

ing Sci. 7(3), 1724–1754 (2014)

42. Lin, F., Fardad, M., Jovanovic, M.: Design of optimal sparse feedback gains via the alternating

direction method of multipliers. In: Proceedings of the 2012 American Control Conference, pp.

4765–4770 (2012)

43. Annergren, M., Hansson, A., Wahlberg, B.: An ADMM algorithm for solving ℓ1 regularized MPC

(2012)

44. O’Donoghue, B., Stathopoulos, G., Boyd, S.: A splitting method for optimal control. IEEE Trans.

Control Syst. Technol. 21(6), 2432–2442 (2013)

45. Mota, J., Xavier, J., Aguiar, P., Puschel, M.: Distributed ADMM for model predictive control and

congestion control. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp.

5110–5115 (2012)

46. O’Donoghue, B.: Suboptimal control policies via convex optimization. Ph.D. thesis, Stanford Uni-

versity (2012)

47. Wahlberg, B., Boyd, S., Annergren, M., Wang, Y.: An ADMM algorithm for a class of total variation

regularized estimation problems. In: Proceedings 16th IFAC Symposium on System Identification (to

appear) (2012)

48. Combettes, P., Wajs, V.: Signal recovery by proximal forward–backward splitting. Multiscale Model.

Simul. 4(4), 1168–1200 (2006)

49. Combettes, P., Pesquet, J.: A Douglas–Rachford splitting approach to nonsmooth convex variational

signal recovery. IEEE J. Sel. Top. Sign. Proces. 1(4), 564–574 (2007)

50. Combettes, P., Pesquet, J.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms

for Inverse Problems in Science and Engineering, pp. 185–212. Springer, Berlin (2011)

51. Yang, J., Zhang, Y.: Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM

J. Sci. Comput. 33(1), 250–278 (2011)

52. Boyd, S., Mueller, M., O’Donoghue, B., Wang, Y.: Performance bounds and suboptimal policies for

multi-period investment. Found. Trends Optim. 1(1), 1–69 (2013)

123

http://arxiv.org/abs/1407.7400

J Optim Theory Appl (2016) 169:1042–1068 1067

53. Parikh, N., Boyd, S.: Block splitting for distributed optimization. Math. Program. Comput. 6(1),

77–102 (2013)

54. Kraning, M., Chu, E., Lavaei, J., Boyd, S.: Dynamic network energy management via proximal

message passing. Found. Trends Optim. 1(2), 70–122 (2014)

55. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications

to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

56. Becker, S., Candès, E., Grant, M.: Templates for convex cone problems with applications to sparse

signal recovery. Math. Program. Comput. 3(3), 1–54 (2010)

57. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51(2), 457–480 (2012)

58. Monteiro, R., Ortiz, C., Svaiter, B.: An inexact block-decomposition method for extra large-scale

conic semidefinite programming. Optimization-online preprint 4158, 1–21 (2013)

59. Monteiro, R., Ortiz, C., Svaiter, B.: Implementation of a block-decomposition algorithm for solving

large-scale conic semidefinite programming problems. Comput. Optim. Appl. 57, 45–69 (2014)

60. Monteiro, R., Ortiz, C., Svaiter, B.: A first-order block-decomposition method for solving two-easy-

block structured semidefinite programs. Math. Program. Comput. 6, 103–150 (2014)

61. Zhao, X., Sun, D., Toh, K.: A Newton-CG augmented Lagrangian method for semidefinite program-

ming. SIAM J. Optim. 20, 1737–1765 (2010)

62. O’Donoghue, B., Candès, E.: Adaptive restart for accelerated gradient schemes. Found. Comput.

Math. 15(3), 715–732 (2015)

63. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal–dual algorithms

for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

64. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2014)

65. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

66. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

67. Franklin, G., Powell, J., Emami-Naeini, A.: Feedback Control of Dynamic Systems, vol. 3. Addison-

Wesley, Reading, MA (1994)

68. Gol’shtein, E., Tret’yakov, N.: Modified Lagrangians in convex programming and their generaliza-

tions. Point-to-Set Maps Math. Program. 10, 86–97 (1979)

69. Eckstein, J.: Parallel alternating direction multiplier decomposition of convex programs. J. Optim.

Theory Appl. 80(1), 39–62 (1994)

70. Pataki, G., Schmieta, S.: The DIMACS library of mixed semidefinite-quadratic-linear programs.

dimacs.rutgers.edu/Challenges/Seventh/Instances

71. Mittelmann, H.: An independent benchmarking of SDP and SOCP solvers. Math. Program. (Ser. B)

95, 407–430 (2003)

72. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore

(1996)

73. Davis, T.: Direct Methods for Sparse Linear Systems. SIAM Fundamentals of Algorithms. SIAM,

Philadelphia (2006)

74. Vanderbei, R.: Symmetric quasi-definite matrices. SIAM J. Optim. 5(1), 100–113 (1995)

75. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)

76. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

77. Bauer, F.: Optimally scaled matrices. Numer. Math. 5(1), 73–87 (1963)

78. Bauer, F.: Remarks on optimally scaled matrices. Numer. Math. 13(1), 1–3 (1969)

79. Van Der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14(1), 14–23

(1969)

80. Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matrices. Tech. Rep.,

Rutherford Appleton Laboratories (2001)

81. Osborne, E.: On pre-conditioning of matrices. JACM 7(4), 338–345 (1960)

82. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal–dual algorithms in convex

optimization. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV),

pp. 1762–1769. IEEE (2011)

83. Giselsson, P., Boyd, S.: Diagonal scaling in Douglas–Rachford splitting and ADMM. In: Proceedings

of the 54th IEEE Conference on Decision and Control, pp. 5033–5039 (2014)

84. Giselsson, P., Boyd, S.: Metric selection in fast dual forward backward splitting. Automatica 62, 1–10

(2015)

85. Toh, K., Todd, M., Tütüncü, R.: SDPT3: A Matlab software package for semidefinite programming.

Optim. Methods Softw. 11(12), 545–581 (1999)

123

http://www.dimacs.rutgers.edu/Challenges/Seventh/Instances

1068 J Optim Theory Appl (2016) 169:1042–1068

86. SCS: Splitting conic solver v1.1.0. https://github.com/cvxgrp/scs (2015)

87. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0 beta.

http://cvxr.com/cvx (2013)

88. Diamond, S., Boyd, S.: CVXPY: A python-embedded modeling language for convex optimization.

http://web.stanford.edu/boyd/papers/cvxpy_paper.html (2015)

89. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia. SC14

Workshop on High Performance Technical Computing in Dynamic Languages (2014)

90. Lofberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: IEEE International

Symposium on Computed Aided Control Systems Design, pp. 294–289 (2004)

91. Davis, T.: Algorithm 849: a concise sparse Cholesky factorization package. ACM Trans. Math. Softw.

31(4), 587–591 (2005)

92. Amestoy, P., Davis, T., Duff, I.: Algorithm 837: AMD, an approximate minimum degree ordering

algorithm. ACM Trans. Math. Softw. 30(3), 381–388 (2004)

93. OpenMP Architecture Review Board: OpenMP application program interface version 3.0. http://

www.openmp.org/mp-documents/spec30.pdf (2008)

94. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue

6(2), 40–53 (2008)

95. Nesterov, Y.: Towards nonsymmetric conic optimization. http://www.optimization-online.org/DB_

FILE/2006/03/1355.pdf (2006). CORE discussion paper

96. Skajaa, A., Ye, Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic opti-

mization. Math. Program. 150(2), 391–422 (2015)

97. Khanh Hien, L.: Differential properties of Euclidean projection onto power cone. http://www.

optimization-online.org/DB_FILE/2014/08/4502.pdf (2014)

98. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288

(1996)

99. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse prob-

lems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

100. Demanet, L., Zhang, X.: Eventual linear convergence of the Douglas–Rachford iteration for basis

pursuit. arXiv preprint arXiv:1301.0542 (2013)

101. Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.

Linear Algebra Appl. 284, 193–228 (1998)

102. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

123

https://github.com/cvxgrp/scs
http://cvxr.com/cvx
http://web.stanford.edu/boyd/papers/cvxpy_paper.html
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.optimization-online.org/DB_FILE/2006/03/1355.pdf
http://www.optimization-online.org/DB_FILE/2006/03/1355.pdf
http://www.optimization-online.org/DB_FILE/2014/08/4502.pdf
http://www.optimization-online.org/DB_FILE/2014/08/4502.pdf
http://arxiv.org/abs/1301.0542

	Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding
	Abstract
	1 Introduction
	2 Conic Optimization
	2.1 Optimality Conditions
	2.2 Certificates of Infeasibility
	2.3 Homogeneous Self-Dual Embedding

	3 Operator Splitting Method
	3.1 Basic Method
	3.2 Simplified Method
	3.2.1 Eliminating Dual Variables
	3.2.2 Projection Onto Affine Set
	3.2.3 Final Algorithm

	3.3 Variations
	3.4 Convergence
	3.5 Termination Criteria

	4 Efficient Subspace Projection
	4.1 Solving the Linear System
	4.2 Repeated Solves

	5 Scaling Problem Data
	6 Numerical Experiments
	6.1 SCS
	6.2 Lasso
	6.3 Portfolio Optimization

	7 Conclusions
	Acknowledgments
	Appendix: Nonexpansivity
	References

