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PREFACE

This document contains the new Unified Conic formulation of R. H. Battin,

and is intended to replace the Space Shuttle GN&C Equation Document No. 3 by

W. M. Robertson.
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FOREWORD

This document is one of a series of candidates for inclusion in a future

revision of JSC -04217, "Space Shuttle Guidance, Navigation and Control Design

Equations. " The enclosed has been prepared under NAS9-10268, Task No. 15-A,

"GN& C Flight Equation Specification Support", and applies to function 1 of the

Orbital Coast Navigation Module (ON2) as defined in MSC-03690, Rev. D, "Space

Shuttle Orbiter Guidance, Navigation and Control Software Functional Require-

ments", dated January 1973.

Gerald M. Levine
Division Leader, Guidance Analysis
NASA Programs Department

iv



TABLE OF CONTENTS

Section 1 Introduction

Section 2 Functional Flow Diagram

Section 3 Input and Output Variables

Section 4 Description of Equations

Section 5 Detailed Flow Diagrams

Section 6 Supplementary Information

V



NOMENCLATURE

a Semi-major axis

A *Value of 1 U2(x ; a ) function

b,blb 2
b3, b5 Intermediate variables

b 4  Reciprocal of normalized final position magnitude (b4 = r 0 /r)

B Value of 2 (UW O ; a) + a0 U1 (2; ) ) function

D Value of U 1 (-; ) function

eflag Error flag

* x
E Value of Uo0 ( ;a ) function

f True anomaly

f0  Coefficient indicating sign of transfer

fl Coefficient to convert to normalized velocity (v = f _v)

f2 Inverse of fl (v = f2  
)

f3 Coefficient to convert to normalized transfer time interval

(At = f 3 At)

f4 Inverse of f 3 (At = f4  t)

f5 Coefficient to convert to normalized eccentric anomaly

(x = f 5 x)

These capital letters do not indicate matrices.
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f6 Inverse of f5 (x = f6 x )

f7 Intermediate variable

F *State extrapolation coefficient

Ft,Ft *State extrapolation coefficients (Ft = Ft )

r r
G, G State extrapolation coefficients ( G=

Gt *State extrapolation coefficient

i Iteration counter

i Maximum permissible number of iterations
max

i Unit vector in r directionro

j Counter for calculation of the continued fraction Q

k Counter for the summation of the U1 series

k Maximum value for k
max

Normalized semi-latus rectum(p = r0 p)

P Normalized orbital period (P = Pcircular P

Q * Continued fraction function

r, r Final position magnitude and its normalized analog (r = r 0 r)

r(t) Inertial position vector corresponding to time t

r 0  Magnitude of r

* These capital letters do not indicate matrices.
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r0 Inertial position vector corresponding to time t o

smax Maximum scalar representable on the computer

smin Minimum positive scalar representable on the computer

U1  Value of U 1 ( -;') function

u lold Previous value of ul

Un(x; a) Universal function of Battin

v (t) Inertial velocity vector corresponding to time t

Vo' -0 Inertial velocity vector, corresponding to initial time to,
and its normalized analog (v = vcircular )

w Value of U 0 (T ; ) function

x,x Eccentric anomaly difference and its normalized analog

(x = /o0 x , independent variable used in the Kepler

iteration scheme)

x Independent variable used as the input argument to the
arg

Transfer Time Interval Routine

xc Value of x to which the Kepler iteration scheme converged

x ' Previous value of xc c

xguess Guess of x

xlast Previous value of x

This capital letter does not indicate a matrix.
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Xmax' xmax Independent variable upper bound, and its normalized analog

Xmin 7rmin Independent variable lower bound, and its normalized analog

Xold Value of xguess from the previous iteration

X p Value of x corresponding to one period of the orbit

Xq y Intermediate variables

z, Values of U1 (; a), U 1( ; ) functions (z = -

a , a. Reciprocal of the semi-major axis and its normalized analog

( = ro0  )

At, Af Transfer time interval and its normalized analog (At = Pcircular )

t arg Dependent variable used as the output argument from the

Transfer Time Interval Routine

Atc Value of the transfer time interval calculated in the Kepler Routine

At' Previous value of Atc
c c

At error Error between ATguess and t during any particular iteration

Atguess Transfer time interval corresponding to the most recent independent

variable xguess during the Kepler iteration

At last Previous value of A

Atx Dependent variable boundary distance on the maximum side used

in the Secant Iterator

At'rin Dependent variable boundary distance on the minimum side used

in the Secant Iterator
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Ata x
max Dependent variable upper bound and its normalized analog
max

Atin,
tmin Dependent variable lower bound and its normalized analog
min

A(ol d  Value of Aguess from the previous iteration

Au 1 Increment in ul

Ax Increment in g
guess

ea Tolerance defining near parabolic orbits used in boundary selection

St Primary convergence criterion: error in normalized transfer

time interval

E't Secondary convergence criterion: minimum permissible dif-

ference between two transfer time intervals used in the Secant

Iterator

Ew Tolerance defining area where the computer cannot handle the

continued fraction Q calculation

6 Transfer angle (true anomaly increment)

Is Gravitational parameter of the earth

U0 , 0 Conic parameter and its normalized analog ( a = ~0 )

X



1. INTRODUCTION

The Conic State Extrapolation Routine provides the capabil-

ity to conically extrapolate any spacecraft inertial state vector either

backwards or forwards as a function of time or as a function of

transfer angle. It is merely the coded form of two versions of the

solution of the two-body differential equations of motion of

the spacecraft center of mass. Because of its relatively fast compu-

tation speed and moderate accuracy, it serves as a preliminary

navigation tool and as a method of obtaining quick solutions for tar-

geting and guidance functions. More accurate (but slower) results

are provided by the Precision State Extrapolation Routine.
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2. FUNCTIONAL FLOW DIAGRAMS

The Conic State Extrapolation Routine basically consists of two parts - one

for extrapolating in transfer time interval, and one for extrapolating in transfer

angle. Some portions of the formulation are common to the two parts and may be

arranged as subroutines on a computer. Similarly, there are several areas of

overlap with the Conic Required Velocity Routine (Ref. 5), and these may be treated

likewise.

2. 1 Conic State Extrapolation as a Function of
Transfer Time Interval - Kepler Routine

This routine involves a single loop iterative procedure, and hence is orga-

nized into three sections - initialization, iteration, and final computations. This

scheme is shown in Figure 1, where the variable "x " is the independent
guess

variable used in the iteration procedure. For a given initial state, the variable

"x " measures the amount of transfer along the extrapolated trajectory.
guess

Hence, the iteration involves adjusting " x " until the transfer time interval
guess

calculated from it agrees, to within some tolerance, with the specified transfer

time interval. Then the extrapolated state vector is calculated from several in-

termediate variables already calculated in the transfer time interval computation.

2. 2 Conic State Extrapolation as a Function of
Transfer Angle - Theta Routine

This routine involves a direct calculation (i. e., does not have an iteration

scheme), as shown in Figure 2. The extrapolated state vector is again calculated

from the same intermediate variables used in the Kepler Routine. However, this

time these variables are computed directly in terms of the initial state and the

transfer angle.
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ENTER

Initialization

* Normalize the input parameters

* Compute various normalized conic
parameters

- Compute a starting guess for the
iteration variable "guess

_ _ _guess

Iteration

Adjust
gue *I Compute the transfer time interval
guess corresponding to " X "

guess

N
onverge

?

Yes

Final Computations

SCompute the extrapolated state vector
corresponding to the converged value

o guess

EXIT

Figure 1. Kepler Routine, Functional Flow Diagram
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ENTER

* Normalize the input parameters

* Compute various normalized conic
parameters

* Compute the transfer time interval
corresponding to the specified
transfer angle 9

* Compute the extrapolated state
vector corresponding to the
specified transfer angle 9

EXIT

Figure 2. Theta Routine, Functional Flow Diagram
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3. INPUT AND OUTPUT VARIABLES

The Conic State Extrapolation Routine has only one universal constant: the

gravitational parameter of the earth. Its principal input variables are the inertial

state vector which is to be extrapolated and the transfer time interval or transfer

angle through which the extrapolation is to be made. Several optional input vari-

ables may be supplied in the transfer time case in order to speed the computations.

The principal output variable of both cases is the extrapolated inertial state vector.

3. 1 Conic State Extrapolation as a Function of
Transfer Time Interval - Kepler Routine

Input Variables

(r 0 ,' 0 )  Inertial state vector which is to be extrapolated

(corresponds to time t 0 ).

At Transfer time interval through which the extra-

polation is to be made.

x Starting guess of the independent variable (used to

speed convergence). If no guess is available,

set x = 0, and the routine will generate its own

guess.

At' Value of dependent variable, the transfer time inter-

val, to which the previous call to Kepler had converged.

x'c Value of the independent variable, universal eccentric

anomaly difference, to which the previous call to Kepler

had converged.

Output Variables

(r, v) Extrapolated inertial state vector (corresponds to time t).

At c  Converged value of the dependent variable, the transfer

time interval, from the Kepler iteration scheme (should

agree closely with At).
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xc  Converged value of the independent variable from the

Kepler iteration scheme.

O no error

eflag Error flag 1 solution failed to converge

S2 U1 series failed to converge

3 both 1 and 2 occured

3. 2 Conic State Extrapolation as a Function of
Transfer Angle - Theta Routine

(r 0 ,v 0 )  Inertial state vector which is to be extrapolated.

6 Transfer angle through which the extrapolation is

to be made.

(r, v) Extrapolated inertial state vector.

Atc Transfer Time Interval corresponding to the conic

extrapolation through the transfer angle 6.

o no error

1 orbit too nearly rectilinear

2 multi-revolution input for
hyperbolic trajectory

eflag Error flag = 3 transfer past asymptote on
a hyperbolic trajectory

4 transfer required closure
through infinity
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4. DESCRIPTION OF EQUATIONS

The universal formulation of Battin in terms of the universal eccentric anomaly

difference is used. It should be noted that the formulation given in the detailed flow

diagrams of Section 5 is a normalized version of the formulation presented here.

It is felt that the equation descriptions of this section are more clear when ex-

pressed in standard variables rather than in normalized variables.

The universal eccentric anomaly, usually denoted by x, is defined by the

relations

,a- (E - E 0 ) ellipse

x = -p(tanf/2 - tan f 0 /2 ) parabola

-a (H - H ) hyperbola

Here, a is the semi-major axis, E and H are the eccentric anomaly and its

hyperbolic analog, p is the semi-latus rectum and f the true anomaly. Using this

definition, the generalized form of Kepler's equation expresses the transfer time

interval as

At = [r 0 U 1 (x; a) + a0 U 2 (x; a) + U 3 (x; a)]

2 22
where U (x; a) = xn 1 a 2 (ax

n n! (n+2)! (n+4)!
2

1 2 V0
and a =

a r 0

and a 0 0

Furthermore, the expressions for the extrapolated position and velocity vectors

(r, v ) in terms of the initial position and velocity vectors (r 0 0 ) are also

given in terms of x by the following standard formulae

r = r 0 U 0 (x; a) + a 0 U 1 (x; a) + U 2 (x; a)

1 r 0 Ul(x; a) +a 0 U2 (x; a)
r(t) =[1- U 2 (x; a)] r +[ v 0

v(t) = [- U1 (x; a) ]r 0 + [ U2 (x; a)] 0
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However, in this document a slightly modified, but equivalent, formulation

is used, namely

U 1(- ; a) 1
At = [2(r0 U ; a) + 0 U(; a))+ U2(x;a)Q]

xx
r= r 0 + (1-ar 0 ) U2 (x; a)+2 a0 U0 (; a) U 1 (-; a)

r(t)= Fr 0 +Gv 0

v(t)= Ftr 0 +Gt v 0

Here, the function Q is defined in Section 4. 1, but the other variables are as

follows:

F = 1 -- U2 (x; a)
r o

2 ro UO (-; a) U1 (-; a) + a 1 (x; a)

2G 2x 2x
Ft rr- UO ; a) U1 (-2; a)

Gt = 1-- U2 (x; a)

The family of functions Un(x; a) used in these equations can be related to

some elementary functions by noting that

U(x;a) = fcos J' x a > 0

(cosh x a<0

sin 1- x a > 0

Ul(x; a) =

sinh 7x a <O

Then, from these the higher order functions follow directly from the useful identity

n

Un(x; a) + a Un+2 (x; a) = n
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4. 1 The Q Function

A very useful function employed in the evaluation of the universal formulation

of Battin is the Q function which may be written

U3 (x; a)Q 3- x
Q=3

U 1 (Y; a)

It can be shown that Q is a hypergeometric function of the variable

q = a U1 (-;a )

From this, Battin has developed a continued fraction formulation for evaluating Q
as a function of the variable

w = Uo(-; a)

to improve the convergence. The formulation is conveniently expressed by

1 2+ (1 -
Q 2 3 w(w+1) 4

where w-1w+1
n-1 1+(n- 1) (1 B'(n+2 (-B n

Evaluation of this expression is started by setting BM = 0 for a sufficiently large

value of M, and calculating lower Bn 's recursively until B1 is reached. This

means that the number of levels M of the continued fraction necessary to achieve

some specified accuracy must be precomputed as a function of w.

4. 2 Conic State Extrapolation as a Function of Transfer
Time Interval - Kepler Routine

Since the transfer time interval At is given, it is desired to find the x

corresponding to it in the generalized Kepler equation. Then the extrapolated state

vector (r, v) expression can be evaluated based on that value of x . Unfortunately,

the generalized Kepler equation expresses At as a transcendental function of x ,
and no power series inversion of the equation is known which has good convergence

properties for all orbits. Therefore, it is necessary to solve the equation itera-

tively for x.
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The actual evaluation of the Kepler equation is conveniently expressed in terms

of the variable

z = 2 U 1 (2; a)

From this it can be shown that

U x 2'
U( 0 ) = 1-- z

U0 (2 ;n) = 1i- z2

U 1 ( a ) = wz

212
U2 (x; a) = 2 w z2

These quantities are needed to evaluate the transfer time interval corresponding to

x during each iteration. Then, once convergence is achieved the latest values of

these quantities are used to calculate the extrapolated state vectors.

The iteration scheme used to solve for x is a modified secant method (linear

inverse interpolation/extrapolation). It merely finds a new guess for the independent

variable xnew which attempts to adjust the dependent variable At to the desired

value. This adjustment is based on a linear interpolation/ extrapolation of the last

guess of the independent variable xold . The scheme requires a minimum point

and a maximum point on the At vs. x curve between which the solution is known

to be. These two points define two possible guesses for the new x, namely

/ At - Atol d

new old Atold - At (min old- minnew oold

- Atold
Xnew = old \At old At max (Xold- Xmax)

one of which is an interpolation and the other an extrapolation. The modified scheme

preferentially selects the extrapolated guess from the two possibilities. However,

if this happens to extrapolate outside the upper or lower bounds, then the interpolated

guess is used to ensure a solution. It should be noted that these bounds are contin-

ually reset during the iteration as more and more values of x are determined

to be too small or too large. This modification has been found to improve the con-

vergence when the desired transfer time interval is near a "knee" in the At vs. x

curve.
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4. 3 Conic State Extrapolation as a Function of
Transfer Angle - Theta Routine

As with the Kepler Routine, the universal formulation of Battin in terms of

the universal eccentric anomaly difference x is used in the Theta Routine. How-

ever, in this case the functions U (x; a) may be expressed directly in terms of

the specified transfer angle. The relationships used in this formulation are

U ; a) = [Cos -j- sin ]

U 1 ( ; a) = sin
/ p 2

2rr 0  .28
U2 (x; a) = sin 2

However, to evaluate these functions requires the final position magnitude, but

from the position magnitude extrapolation equation it can be shown that

o= 2 [cos (cos 2 -~ sin 2 p sin 2 ] -1

Thus, from these quantities the extrapolated state vectors are calculated using the

formulae in Section 4. Furthermore, these quantities may also be used to evaluate

the transfer time interval from the generalized Kepler equation.
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5. DETAILED FLOW DIAGRAMS

This section contains detailed flow diagrams of two Conic State Extrapolation

Routines (Kepler and Theta) and the subroutines used by them.

Each input and output variable in the routine and subroutine call statements

can be followed by a symbol in brackets. This symbol identifies the notation for the

corresponding variable in the detailed description and flow diagrams of the called

routine. When identical notation is used, the bracket symbol is omitted.

The Kepler routine utilizes the following subroutines, which are diagrammed

in Section 5. 3:

Kepler Transfer Time Interval (Section 5. 3. 1)

* U1 Series Summation (Section 5. 3. 2)

* Q Continued Fraction (Section 5. 3. 3)

* Kepler Iteration Loop (Section 5. 3. 4)

* Secant Iterator (Section 5. 3. 5)
* Kepler Transfer Time Interval (Section 5. 3. 1)

* U1 Series Summation (Section 5. 3. 2)

* Q Continued Fraction (Section 5. 3. 3)

• Extrapolated State Vector (Section 5. 3. 6)

The Theta routine utilizes the following subroutines, which are diagrammed

in Section 5. 3:

* Q Continued Fraction (Section 5. 3. 3)

* Extrapolated State Vector (Section 5. 3. 6)
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5. 1 Conic State Extrapolation as a Function of
Transfer Time - Kepler Routine

UNIVERSAL PROGRAM INPUT
CONSTANTS CONSTANTS VARIABLES

max, kmax" smin Smax 0 ' o 0 At,

a' w t 't x, At c , xc

At 0

0 = -1 f0 =1

n=O

fl4 = 1 i1 f
2:'1 f5 -

f2
f3 r f 6f '0

r
r0  r0

0 = f -0

o = -r ' 0 1

bo  = 0'X-1

a = 1-b

Figure 3a. Kepler Routine, Detailed Flow Diagram
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Xguess f5 x at = f3 At

last f5 X'c Aast c

min m0 in

a I Yes

No 2 1/3

NP = 2sx

maxmax ma x

Oput:

max max aax
No YeYes

Call Kepler Transfer Time ga a

max = x

Interval (Section 5. 3. 1)

S mP maxInput: 3max arg ], 2O, 1 2;
Iw, smax' k max

min max

~ last A last

max max x =S mXguess guess Xp

xlast = x1ast - xp

Figure 3b. Kepler Routine, Detailed Flow Diagram
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2

No oesin s+
xmin < xguess<xm xguess 2

Yes

Call Kepler Transfer Time
Interval (Section 5. 3. 1)

Input: Xguess[Xarg] 0 O a

w , Smax , kmax

Output guess arg

No e Yes
last gues ues

S<xat <x and guess last
mn last guesd < Aast

max

x =x
Smin x1ast max last

A min= ltastmax las

Call Kepler Iteration Loop (Sec. 5. 3. 4)

Input: imax' t t A~t guess' uess

Xmin' ATmin 1max' dmax' 0
a, Smax kmax

Output: guess' guess A, D, E, eflag

Figure 3c. Kepler Routine, Detailed Flow Diagram
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S= 1 + 2(b0 A + 0 DE)

b = 1/

Xc = 6 (Xguess + n 'p

At= f4 ( guess + nP )

Call Extrapolated State Vector (Sec. 5. 3. 6)

Input: f2, b4&, g0 ro0 A, D, E, I :0o

Output: r, v

OUTPUT VARIABLES

A Atc, x, eflag

Figure 3d. Kepler Routine, Detailed Flow Diagram
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5.2 Conic State Extrapolation as a Function of
Transfer Angle - Theta Routine

UNIVERSAL PROGRAM INPUT
CONSTANT CONSTANTS VARIABLES

I PA' tpw' s max 10, Yo0

No Yes

rO 0

n =0

eflag= 0

fi =fl =

f2 f1

f4 T 1 r O

r

_ir  =

- 2- Y.vo

Figure 4a. Theta Routine, Detailed Flow Diagram
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b = sin( /2)

3 - -

Yes

NNo

be = cos (n/2)X

o N

Figure 4b. Theta Routine, Detailed Flow Diagram+ b 1

S5-

eflag= 2 Ye 0 n>

5-7
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b3

b4

B = 2 b0 b 5

D = J-K
E = b2 b 5

Call Q Continued Fraction
(Sec. 5.3. 3)

Input: w, Cw , smax

Output: Q

At= f 4 (D(B+ AQ) + n )

Call Extrapolated State Vector
(Sec. 5. 3. 6)

Input: f2 ' b4 ' 0 , r A, D,

E, ir0 ,v 0

Output: r, v

OUTPUT VARIABLES

F 7, Atc, eflag

Figure 4c. Theta Routine, Detailed Flow Diagram
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5.3 Subroutines Used by the Transfer Time and/or the
Transfer Angle Conic Extrapolation Routines

5. 3. 1 Kepler Transfer Time Interval Subroutine

INPUT VARIABLES

xarg 0a ' ' S w'
Sma x , kmax

eflag = 0

Call U1 Series Summation
(Sec. 5.3.2)

Input: x arg , , kmax

Output: u 1, eflag

z = 2ul

E = 1-2az

1+E

D = wz

A = D 2

:, = 2(E + a 0 D)

Call Q Continued Fraction
(Sec. 5. 3. 3)

Input: w, w , smax

Output: Q

c' =D(B+AQ)arg

OUTPUT VARIABLES

Il ,AD,E, earg flag

Figure 5. Kepler Transfer Time Interval, Detailed Flow Diagram
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5. 3.2 U1 Series Summation Subroutine

INPUT VARIABLES

arg c max

Au 1

u1 = Aul

= 2

f7 = - Au1

f 7 Aul

Aul k(k- 1)

k = k + 2 old = u 1

u1 = ul + Au 1

Yes

1=ulold

No

ek <k

No

OUTPUT VARIABLES

ue flag

Figure 6. U1 Series Summation, Detailed Flow Diagram
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5. 3. 3 Q Continued Fraction Subroutine

This subroutine is identical to the one used in the Conic Required Velocity

routines. It should be noted that this routine has been designed to give double

precision (16 digits) accuracy.

INPUT VARIABLES

w" Cw' Smax

Yes
w < f w

No

x = 21.04 - 13.04 w Yes w < Yes

NoNo

_ 5(2 w + 5) Yes Q = Smax Q
Xq 3 < 4. 625

Xq 10 (w + 12) Yes

No

(w + 60) Yes
xq= 2 w <44

No

H (w + 164) Yes

No

x = 70

Figure 7a. Q Continued Fraction, Detailed Flow Diagram
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b= 0

W-1v-Y w+1

j=[x ]q

j j-1 b=-b

Yes

No

Q- 1+ 2(1 - b)
+ 3 w(w + 1)

OUTPUT VARIABLE

The symbol [x i denotes the largest integer whose magnitude
does not q exceed the magnitude of xq.

Figure 7b. Q Continued Fraction, Detailed Flow Diagram
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5. 3.4 Kepler Iteration Loop Subroutine

This subroutine is similar, though not identical, to the iteration loops used

in the Conic Required Velocity routines. All could easily be combined into one

routine but have been diagrammed spearately for purposes of clarity.

INPUT VARIABLES

i ,e, ( ' t,

max t t'f guess
At ,x ,At ,x

guess Xmin min max'
max aO ,a' s kmax 0 max' max

error guess

< Yes
<terror t

Call Secant Iterator (Sec. 5. 3. 5)

Input: et, At error Xguess'

guess' Xmin, Atmin '

max Amax

Output: Ax, X min Amin' Xmax

A'max

xold X guess

x x +guess= guess

i=i+1

Seess= xold

Figure 8a. .Kepler Iteration Loop, Detailed Flow Diagram
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old guess

Call Kepler Transfer Time
Interval (Sec. 5. 3. 1)

Input: x [ ], ,

guess [Xarg 0

w , Smax kma x

Output: Atguess [Atarg , A, D,
guess arg

E, eflag

SYes
guess tgueolss

No

Yes

eflag= eflag + 1

OUTPUT VARIABLES

xguess' A guess'
A, D, E, eflag

Figure 8b. Kepler Iteration Loop, Detailed Flow Diagram
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5.3.5 Secant Iterator Subroutine

This subroutine is identical to the one used in the Conic Required Velocity

routines.
INPUT VARIABLES

t' error' puess guess

Xmin, fmmn max, Amax

At AT zt
min guess min

AT ATa
max guess max

Itmin t Yesor A 0=0
t max t

. No

No Yes
t <0error

x -x . xma -xe
a =  guess x x  A = guess -max

Atmin mi error atmnx m6error

Yes x + + Yes
guess gue-ess

x<x x>xx tma x  e min

No o

Sx -x axguess -max guess minm error merrorAtax 6tin

mm ess max -- ess
min gu e s s  max guess

OUTPUT VARIABLES

NN N N
r!

Ax, x , t ,x ,X' Xmi n  tmin max' amax

Figure 9. Secant Iterator, Detailed Flow Diagram
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5. 3. 6 Extrapolated State Vector Subroutine

INPUT VARIABLES

f2, b4 0 rO'

A, D, E, i rI 0

F = 1 - 2A

S= 2(D E + a0 A)

= -2 b 4 DE

Gt = 1 - 2 b4 A

r = r 0 (Fir + 3'0 )

S = f2 (t ir 0 + Gt 0 )

OUTPUT VARIABLES

rv

Figure 10. Extrapolated State Vector, Detailed Flow Diagram
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6. SUPPLEMENTARY INFORMATION

The analytic expressions for the generalized Kepler equation and the extra-

polated position and velocity vectors are given in Battin (Ref. 3 ). Battin also de-

vised the normalized formulation and organized the overall flow diagram structure.

However, the details of the structure and the testing were done by Shepperd and

Robertson.

A Newton iteration scheme may be devised at some time in the future. This

would result in faster convergence near the solution point, but its worth depends

on the expense of the derivative evaluation. It may be shown that if the derivative

evaluation by itself takes more than 44% of the computation time used for the other

calculations in one pass through the loop, then it is more efficient timewise to use

the secant method.
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