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Abstract
The paraxial propagation of a beam incident along an optic axis of a biaxial
crystal slab is studied in detail. Analytical descriptions are given for the
Poggendorff bright and dark rings (associated with the conical singularity of
the dispersion surface), and the axial spike (associated with the toroidal ring
in the dispersion surface). The rings and spike depend on distance from the
crystal. In sharpest focus, the rings are close and asymmetrical, and the
spike is faint. Further away, the rings separate, they develop weak diffraction
oscillations, and the spike grows in intensity. Eventually the oscillations
disappear and the rings become symmetrical, and the axial spike dominates.
The images depend on the profile of the incident beam; explicit formulae are
given for a Gaussian beam and a coherently illuminated pinhole.
Geometrical optics (extended to complex rays for the Gaussian beam) can
describe some aspects of the images, in particular the Poggendorf dark ring,
which arises from antifocusing and for which an explicit description is given.
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1. Introduction

Conical refraction, that is propagation of a beam incident along
an optic axis of a slab of biaxial transparent crystal, is perhaps
the most singular phenomenon in classical optics, as well as
one of the oldest. The basic facts, starting with Hamilton’s
discovery in the early 1830s, are well known [1, 2]. The beam
propagates as a cone, emerging from the crystal as a cylinder.
On close examination, the cross section of the cone is seen to
consist of two bright rings, separated by a dark ring. These
‘Poggendorff rings’ arise from the nonzero range of directions
of the plane waves into which any spatially localized beam can
be decomposed. This is internal conical refraction. However,
as emphasized by Raman et al [3], the very fact that a range of
directions is involved means that external conical refraction is
involved too. This originates not from the conical singularity
at the optic axis (figure 1) but from the ring singularity (axis of
single-ray velocity) of the dispersion surface, and manifests
itself as a spike on the symmetry axis of the cone. The
distinction between the two phenomena is not sharp: one
transforms into the other as the distance from the slab increases.
Far away, the rings disappear, and are replaced by the spike.
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Figure 1. (a) Section of a two-sheeted dispersion surface for a
biaxial crystal, showing the optic axes and points S on the circle of
single-ray velocity (arrows attached to points S). The surface is a
polar plot of refractive indices in the space of wavevector directions;
up to magnification, it is a contour (i.e. constant-frequency) plot of
the dispersion relation ω(k); the term wavevector surface is also
used [1]. (b) Magnification of conical intersection of sheets near an
optic axis, and transverse wavevector coordinates.

Geometrical optics gives an inadequate description. The
detailed structure of the rings requires diffraction theory,
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formulated in the 1970s by Belskii and Khapaluyk [4, 5]
(see also [6], who also confirmed aspects of the theory
experimentally). This was further developed by Moskvin et al
[7], in a detailed study of the asymptotics of the Green function
for conical refraction. Additional rings were predicted by
Warnick and Arnold [8] but seem not to have been observed
yet. The ring structure depends on the profile of the incident
beam, an aspect that has been explored recently [9–12].

My aim here is to extend and complement existing theory
by providing detailed analytical descriptions of the system of
rings and the axial spike, as functions of distance from the
slab, in the simplest formulation that captures the different
phenomena. This is based on paraxial optics, which can be
expressed in terms of Hamiltonian ‘evolution’ for the wave,
with propagation distance playing the role of time (section 2
and the appendix), and the Hamiltonian representing the form
of the dispersion surface. The formal solution, giving the wave
as a diffraction integral, and essentially reformulating earlier
results [4, 5] for completeness, is obtained in section 3.

In section 4, we calculate the ‘focal image’, that is, the
sharpest rings seen with a microscope beyond the crystal
focused on a plane inside the crystal (this would be the image
plane of the entrance face if the crystal were approximated by
an isotropic medium). The ring pattern is asymmetrical, in the
sense that the intensity profiles of the two Poggendorff bright
rings are different. At increasing distances (section 5), the
inner ring acquires oscillations. Eventually these disappear,
and the two rings become symmetrical at large distances
while broadening and getting fainter. Meanwhile, a maximum
appears at the centre of the rings; eventually, this axial spike
(section 6) dominates the pattern.

The geometrical optics of conical refraction is discussed in
section 7, starting from the Hamiltonian of section 2. This is
certainly appropriate, in view of the fact that the prediction
of conical refraction by Hamilton was the first nontrivial
application of his method. Geometrical optics reproduces the
distant bright and dark Poggendorff rings correctly (section 7);
as in the usual treatments [2], the dark ring results from a
kind of antifocusing. A complex-ray extension of geometrical
optics, applicable when the incident beam is Gaussian, gives
greater accuracy but still fails to predict the oscillations and
asymmetrical form of the rings close to the crystal. The theory
also predicts the axial spike, though incorrectly with infinite
intensity. The analysis in this section complements earlier
mathematical investigations [13–15].

For readers uninterested in the technicalities of the
derivations, section 8 contains a summary of the main
features of the conical diffraction patterns, and suggestions
for experimental investigations.

My emphasis is on a detailed analysis of the simplest
case of conical diffraction. There are obvious extensions
that I do not explore here. Some have been studied already.
For example, if the beam direction is changed so as to no
longer lie along an optic axis, conical refraction gives way
to double refraction; the transition has been explored for rigid
rotation of the crystal relative to the beam [16], and in the
generic case where the medium is inhomogeneous as well as
anisotropic so that the conical direction can be encountered in
the course of propagation [17]. Alternatively, the medium can
possess optical activity [18, 19], whose strength is a singular
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Figure 2. Geometry of crystal slab and incident beam, showing
Cartesian coordinates R′, z, with origin on the entrance face, and
cone-centred coordinates R, Z , with origin on the focal image plane.

perturbation that destroys the conical singularity. Finally, if
the medium possesses absorption (dichroism), its strength is a
different singular perturbation, splitting the conical singularity
into two ‘singular axes’ [20, 21]; to my knowledge, the effect
of dichroism on conical diffraction has not been investigated.

2. Plane waves and Hamiltonian model

We consider a slab of transparent crystal with thickness l and
three principal dielectric constants εi and refractive indices ni ,
satisfying

ε1 = n2
1 < ε2 = n2

2 < ε3 = n2
3, (2.1)

with small differences between n1, n2 and n3, reflecting
paraxiality. We define a crystal wavenumber k in terms of
the vacuum wavenumber k0 by

k ≡ n2k0. (2.2)

The crystal is cut so that the slab is perpendicular to one of
the optic axes, and a beam is incident normally. The resulting
refracted light (figure 2) forms a slant cone with the optic axis
as one of its generators.

The two plane waves that can travel in the crystal (0 < z <
l) can be written down almost by inspection, on the basis of a
local approximation to the dispersion surface near the conical
singularity; a derivation is however outlined in the appendix.
Using transverse cone-centred cooordinates {x, y, z} = {R, z}
(figure 2) and transverse wavevectors kP = k{Px , Py} =
k P{cos θP, sin θP} (with P � 1 because of paraxiality), the
waves, expressed in terms of the electric displacement vector
(which is exactly transverse, unlike the electric field), are

D±P(R, z) = exp{ik(P · R − z( 1
2 P2 ± AP))}d±(P). (2.3)

Here the orthogonally polarized eigenmodes are

d+(P) =
(

cos 1
2θP

sin 1
2θP

)
, d−(P) =

(
sin 1

2θP

− cos 1
2θP

)
(2.4)
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Figure 3. Cutaway showing sheets of the conical Hamiltonian (2.7)
for z < l.

and

A = 1

n2

√
(n2 − n1)(n3 − n2), (2.5)

where π/2-A is the semiangle of the conical intersection of
the dispersion surface close to the optic axis, and paraxiality
implies the assumption A � 1 (for aragonite, A = 0.47◦ , and
for napthalene, A = 6.87◦ [3]). Outside the crystal (i.e. z > l),
these waves (with kP conserved by symmetry) are given by
the same expressions with A = 0 and P2 replaced by n2 P2

(embodying Snell’s law).
The plane waves (2.3) and (2.4) are the evolving (with z)

eigenstates of the transverse Hamiltonian

H(P, z) =
[

1
2 P21 + AP

(
cos θP sin θP

sin θP − cos θP

)]
�(l − z)

+ 1
2 n2 P21�(z − l), (2.6)

where here and hereafter � denotes the unit step. The
eigenvalues of this matrix Hamiltonian give the scalar
Hamiltonian functions, paraxially representing the two sheets
of the dispersion surface, governing propagation of the rays
corresponding to the two polarizations:

H±(P, z) = [
1
2 P2 ± AP

]
�(l − z) + 1

2 n2 P2�(z − l). (2.7)

These are depicted in figure 3 as surfaces in the space H , P,
showing the conical intersection at P = 0, corresponding
to the optic axis, and the ring-shaped ‘moat’ at P = A
(where ∇ H = 0), corresponding to the axis of single-ray
velocity. These features will determine the main features
of the geometrical optics (section 7) associated with conical
refraction, after we have discussed the diffraction physics,
governed by (2.6), in sections 3–6.

Operator (2.6) also describes the evolution (with time)
of the quantum state of a spin-1/2 particle in two space
dimensions, with the spin coupled to the momentum. This
is most immediately seen by writing (2.6) (for z < l) as

H(P) = 1
2 P21 + AS · P (2.8)

where, in terms of the Pauli matrices, S = {σ3,σ1}. Therefore,
all our subsequent results for the propagation of light beams
(e.g. the general solution (3.8)) also describe the evolution
of an initial spinor wavepacket. In view of the form of the
scalar eigenhamiltonians (2.7) (figure 3), conical diffraction
provides an exactly solvable quantum system involving a
conical intersection of eigensurfaces.

3. General solution

The wave that evolves from an incident beam with transverse
profile D(R, 0), having traversed the crystal slab and emerged
into the space beyond, can be generated formally by H,
regarded as a matrix-valued operator with ‘momentum’ P
represented by −i∇R/k:

D(R, z) = exp

{
−ik

∫ z

0
dz′ H(P, z′)

}
D(R, 0). (3.1)

To express this as the familiar superposition of plane waves,
we introduce the Fourier transform a(P) of the incident beam:

D(R, 0) = k

2π

∫ ∫
dP exp{ikP · R}a(P). (3.2)

Then (3.1) and (2.6) lead to

D(R, z) = k

2π

∫ ∫
dP exp

{
ik
(

P · R − 1

2
Z P2

)}

×
[

cos(k R0 P)1 − i sin(k R0 P)

×
(

cos θP sin θP

sin θP − cos θP

)]
a(P). (3.3)

Here we have introduced the notations

Z ≡ l + (z − l)n2, R0 ≡ Al, (3.4)

in which R0 is the radius of the cylinder of refraction beyond
the crystal (figure 2), and Z measures the distance, in units
of n2, from the focal image plane (this would be the virtual
image plane of the entrance face if the crystal were isotropic
with index n2). Thus

Z = 0 corresponds to z = l

(
1 − 1

n2

)

(image of entrance face)

Z = l corresponds to z = l (exit face).

(3.5)

For simplicity and convenience, we now assume that the
incident beam is uniformly polarized and circularly symmetric,
so that

D(R, 0) = D0(R)

(
dx0

dy0

)
, |dx0|2 + |dy0|2 = 1. (3.6)

Thus

a(P) = a(P)

(
dx0

dy0

)
, where

a(P) = k
∫ ∞

0
dR RD0(R)J0(k RP), (3.7)

where here and hereafter J denotes a Bessel function.
A short calculation now brings wave (3.3) into the form

D(R, z) =
[

B0(R, R0, Z)1 + B1(R, R0, Z)

×
(

cos θR sin θR

sin θR − cos θR

)](
dx0

dy0

)
, (3.8)

where the important functions B0 and B1 are defined in terms
of

�(R, R0 , Z) ≡
∫ ∞

0
dP a(P) exp

{− 1
2 ik Z P2

}
× sin(k R0 P)J0(k RP) (3.9)
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by

B0(R, R0, Z) = ∂�(R, R0 , Z)

∂R0

= k
∫ ∞

0
dP Pa(P) exp

{− 1
2 ik Z P2

}
× cos(k R0 P)J0(k RP) (3.10)

and

B1(R, R0 , Z) = −∂�(R, R0 , Z)

∂R

= k
∫ ∞

0
dP Pa(P) exp

{− 1
2 ik Z P2

}
× sin(k R0 P)J1(k RP). (3.11)

Equations (3.8)–(3.11) constitute the exact solution of the
paraxial model.

In terms of B0 and B1, the light intensity is

I (R, z) = D∗(R, z) · D(R, z)

= |B0(R, R0 , Z)|2 + |B1(R, R0, Z)|2
+ 2 Re[B∗

0 (R, Z)B1(R, Z)]

× (cos θR(|dx0|2 − |dx0|2) + 2 sin θR Re[d∗
x0dy0]). (3.12)

The dependence on the polarization state is simply an
azimuthal modulation of the ring pattern. This is an inessential
complication here, so we need consider only unpolarized or
circularly polarized light, for which the interference between
B0 and B1 vanishes, and

I (R, Z) = |B0(R, R0 , Z)|2 + |B1(R, R0, Z)|2. (3.13)

This completes the reformulation of the theory of [4, 5].
Two important incident waves, that will be used for some

of the subsequent explicit calculations, can be written in
terms of a beam width parameter w. Using standard Fourier
transforms, these are the Gaussian beam, namely

D0(R) = exp

(
− R2

2w2

)
,

a(P) = kw2 exp
(− 1

2 k2 P2w2
)
,

(3.14)

and the beam from a coherently illuminated pinhole, namely

D0(R) = �(w − R), a(P) = w

P
J1(k Pw). (3.15)

The structure of the rings will emerge clearly when R0 � w,
that is for thick slabs.

The following w-scaled variables will be convenient:

ρ ≡ R

w
, ρ0 ≡ R0

w
, ζ ≡ Z

kw2
. (3.16)

Then, for example, (3.9) becomes, after changing the
integration variable to Q = kwP ,

�(R, R0 , Z) ≡ 1

kw

∫ ∞

0
dQ a

(
Q

kw

)
exp

{
−1

2
iζQ2

}
× sin(ρ0 Q)J0(ρQ). (3.17)

Thick slabs correspond to ρ0 � 1.
As illustrations of the phenomena to be explored, figure 4

shows calculations of the light intensity for a Gaussian incident
beam. In the focal image ζ = 0 (figure 4(a)), the Poggendorff
rings are close together. As ζ increases, the rings separate
and become prominent while developing oscillations. Then
they get fainter and the axial spike appears, and eventually
dominates.

a

b

c

d

e

Figure 4. Ring and axial line intensities for a Gaussian incident
beam, computed numerically from (3.13); left, cutaway 3D plot;
right, density plot for ρ0 = 20 and (a) ζ = 0, (b) ζ = 4, (c) ζ = 8,
(d) ζ = 10 and (e) ζ = 15. The coordinate range is {−30, 30}, that
is {−1.5R0, 1.5R0}.

4. Rings in the focal image

Focusing on the plane Z = ζ = 0 with a microscope beyond
the slab should give the sharpest image of rings generated by
the incident beam. For this case, the fundamental functions B0

and B1, defined by (3.10) and (3.11), can be recast in terms of
an explicit propagator. First we write (cf (3.9))

B0(R, R0, 0) = k
∫ ∞

0
dR′ R′ D0(R

′)
∂

∂R0
C(R, R′ , R0)

B1(R, R0, 0) = −k
∫ ∞

0
dR′ R′ D0(R

′)
∂

∂R
C(R, R′ , R0)

(4.1)
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Figure 5. Above: density plot of the ‘focusing’ propagator C
(equation (4.3)), showing the regions a, b and c where the function
takes different forms. Below: plot of C for R′/R0 = 0.5.

where

C(R, R′ , R0) =
∫ ∞

0
dP J0(k P R′)J0(k P R) sin(k P R0).

(4.2)
This integral can be evaluated in terms of the complete elliptic
integrals K :

C(R, R′ , R0)

=




0 (|R − R′ | > R0: region a)

1

πk
√

RR′ K

(
R2

0 − (R − R′)2

4RR′

)
(|R − R′ | < R0 < R + R′: region b)

−2

πk
√

R2
0 − (R − R′)2

K

(
4RR′

R2
0 − (R − R′)2

)

(R + R′ < R0: region c).

(4.3)

(We use the notation in MathematicaTM [22].) The geometry
of this propagator is shown in figure 5.

It is convenient to describe the profile of the rings using
R0 (that is, the approximate position of the geometrical dark
ring) as the origin, so we define

X ≡ R − R0, ξ ≡ X

w
. (4.4)

For the thick slabs we are interested in, |X | � R0, i.e. |ξ | �
ρ0. It follows that the derivatives in (3.10) and (3.11) and
in (4.1) are approximately equal, so B0 ≈ B1. Another way
to see this is to use asymptotic expressions for the Bessel
functions in (3.10) and (3.11), whence, up to oscillatory terms
that become negligible when integrated,

cos(k R0 P)J0(k RP) ≈ sin(k R0 P)J1(k RP)

≈ cos(k X P − 1
4π)√

2πk R0 P
. (4.5)
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Figure 6. (a) Focused pinhole-beam amplitude (4.8), showing the
zero crossing and the asymptotics of the singularity and inner tail.
(b) Focused intensity corresponding to (a), showing the two
asymmetrical Poggendorff bright rings, with a dark ring between
them.

Manipulations of the elliptic integrals K , also involving
the elliptic integral E , now bring (4.1)–(4.3) to the convenient
form

B0(R, R0, R, 0) ≈ B1(R, R0, R, 0) ≡ 1√
ρ0

f (ξ ), (4.6)

where

f (ξ ) = 1
2

√
ξD0(wξ)�(ξ)

+
1

2π

∫ ∞

|ξ |
dρ ′ ρ ′3/2

ρ ′2 − ξ 2
D0(wρ

′)

×
(

2E

(
ρ ′ − ξ

2ρ ′

)
− (ρ ′ + ξ)

ρ ′ K

(
ρ ′ − ξ

2ρ ′

))
+
�(−ξ)
π

√
2

×
∫ −ξ

0
dρ ′ ρ ′

(ρ ′ + ξ)
√
ρ ′ − ξ

D0(wρ
′)E
(

2ρ ′

ρ ′ − ξ

)
. (4.7)

For the coherently illuminated pinhole source (3.15), the
integrals can be evaluated explicitly, with the result

f (ξ )

=




0 (ξ > 1)

1

π

(
−K

(
1 − ξ

2

)
+ 2E

(
1 − ξ

2

))
(|ξ | < 1)

√
2

π

(√
1 − ξE

(
2

1 − ξ

)
+

ξ√
1 − ξ

K

(
2

1 − ξ

))
(ξ < −1).

(4.8)

Figure 6(a) shows this function, and figure 6(b) shows the
intensity f 2. There is a zero at ξ = −0.652 23 . . . (the
Poggendorff dark ring), rising to a step down to zero at
ξ = 1 (the outer Poggendorff bright ring), and a logarithmic
singularity at ξ = −1 (the inner Poggendorff bright ring) with
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Figure 7. Focused Gaussian-beam intensity (4.10).

an intensity tail decaying as 1/(−ξ)3 inwards, that is towards
the axis of the ring system. Notwithstanding the singularity,
the inner ring contains only 28.79% of the total energy. Belskii
and Khapalyuk [5] obtain and describe expressions equivalent
to (4.8), expressed in terms of the less familiar Legendre P
and Q functions of order 1/2 and hypergeometric functions of
two variables.

For the Gaussian beam (3.14), it is more convenient
to evaluate the focused ring profile from the Fourier
representation, for which (3.9)–(3.11) and (4.6), with
approximation (4.5), give

f (ξ ) = 1√
2π

∫ ∞

0
dQ

√
Q exp

(
−1

2
Q2

)
cos
(

Qξ − 1

4
π

)
.

(4.9)
This integral can be evaluated in several equivalent forms
convenient for numerical calculation. Three such forms,
involving the Bessel functions I (not to be confused with the
intensity in (3.12)) and K , the parabolic cylinder (Weber)
functions D (not to be confused with the beam profile D0

in (3.6)) and the confluent hypergeometric functions 1 F1 [23],
are

f (ξ ) = 1

4
√

2π
|ξ |3/2 exp

(
−1

4
ξ 2

)[
K 3

4

(
1

4
ξ 2

)
+ sgn(ξ )K 1

4

(
1
4 ξ

2
)

+ π
√

2�(−ξ)(I 3
4

(
1
4ξ

2)− I 1
4

(
1
4ξ

2))]
= 1

2 exp
(− 1

4ξ
2
)[

D 1
2
(ξ )�(ξ)

+
(
iD 1

2
(−ξ) + 1

2 (1 − i)D− 3
2
(−iξ)

)
�(−ξ)]

= 1

4
√
π

(
23/4�

(
3

4

)
1 F1

(
3

4
,

1

2
,−1

2
ξ 2

)

+ 2−3/4�
(

1
4

)
ξ 1 F1

(
5
4 ,

3
2 ,− 1

2ξ
2
)]
. (4.10)

The expressions involving I , K and D are analytic, but
continuations to ξ → ξ exp(iπ) are indicated explicitly by
the functions sgn and �. The expression involving D was
derived and discussed by Belsky and Stepanov [9], who also
consider thin slabs, for which ρ0 is not large, so the rings are
less distinct.

Figure 7 shows the intensity f 2. Again, the Poggendorff
rings are asymmetrical; as with the pinhole beam, the inner ring
is the fainter, this time containing 20.24% of the total energy.

ξ/√(1+ζ2)

ζ

|f|2/(1+ζ2)

Figure 8. Transition of Poggendorff rings from near to far field for a
Gaussian incident beam, calculated from (5.1) and showing the
development of oscillations in the inner ring. ξ has been scaled to
compensate for the widening of the rings as ζ increases.

5. Transition to rings in the far field

Formula (4.10) describes the focal image Z = ζ = 0 for
the Gaussian incident beam. It is easy to extend the validity
of (4.10) to nonzero Z (in (3.10) and (3.11)), and nonzero
ζ (in (3.17)). All that is required is to make the arguments
of the exponentials complex, replacing 1/w2 by 1/w2+ik Z .
Thus (4.10) becomes, for finite ζ , after using (4.6),

B0(R, R0, Z)

≈ B1(R, R0, Z) ≈ 1√
ρ0(1 + iζ )3/4

f

(
ξ√

1 + iζ

)
. (5.1)

Figure 8 shows how the rings evolve away from the focal
image ζ = 0. The inner ring (ξ < 0) develops the oscillations
discovered by Warnick and Arnold [8]; they derived a formula
equivalent to (5.1), in which f (ξ ) of (4.10) is expressed in
yet another form, involving associated Laguerre functions of
fractional order and degree. The rings get wider as ζ increases.
For ζ > ρ0 the width of the rings exceeds their radius, and
approximation (5.1) must break down. We do not examine this
case, but instead illustrate (figure 9) the high accuracy of (5.1)
for ρ0 � 1, by comparing this approximate formula with the
exact intensity calculated from (3.10), (3.11) and (3.13).

The additional oscillations in figures 8 and 9 can be
described analytically, starting from (5.1) and (4.10) and (for
example) using the asymptotics of the Bessel functions K
and I to describe the rings for |ξ | > √

ζ . For ξ > 0, the
functions K decay exponentially, and there are no oscillations.
The exponential decay is still present for ξ < 0, but each
of the exponentially growing additional I Bessel functions,
after multiplication by the exponentially decaying prefactor
in (4.10), would give a contribution growing as

√
(−ξ);

however, the leading contributions from the two I functions
cancel, leaving a net contribution, of order 1/(−ξ)3/2, from the
first correction terms in the Bessel asymptotic expansions. The
oscillations result from the interference of this net contribution
for the I Bessel functions with the decaying exponential
from the K Bessel functions. The formula embodying these
considerations is

1

(1 + iζ )3/4
f

(
ξ√

1 + iζ

)
≈ 1

2

[ |ξ |1/2i�(−ξ)

(1 + iζ )

× exp

(
− ξ 2

2(1 + iζ )

)
− �(−ξ)

|ξ |3/2√2

]

(ζ � 1, |ξ | > √
ζ ). (5.2)
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Figure 9. Gaussian-beam ring intensities, calculated from the exact formula (3.13) (thick) and approximation (5.1) (thin). (a) ζ = 0,
ρ̃ = 50; (b) ζ = 5, ρ̃ = 50; (c) ζ = 5, ρ̃ = 200; (d) ζ = 10, ρ̃ = 100; (e) ζ = 50, ρ̃ = 1000; (f) magnification of oscillations decorating the
inner ring in (e).

The same result can be derived using (4.9) and (5.1): the first
term in (5.2) comes from the saddle-point of the Q integral,
and the second term comes from the endpoint Q = 0—that is,
from the conical point P = 0.

The oscillations have period�ξ ∼ 1, and so as z increases
they get faster in comparison with the thickness (∼ζ ) of
the rings. They also get weaker in comparison with the
nonoscillatory contributions, so they fade away when ζ � 1,
leading to the symmetric asymptotic ring pattern (figure 10(a))

I (R, Z) ≈ 2

ρ0(1 + ζ 2)3/4

∣∣∣∣ f

(
ξ

1 + iζ

)∣∣∣∣
2

≈ |ξ |
2ρ0ζ 2

exp

(
− ξ

2

ζ 2

)
(ζ � 1, |ξ | > √

ζ ). (5.3)

The factor |ξ | describes the Poggendorff dark ring.
It is worth pointing out the unusual asymptotic

phenomenon represented by this result. The main contribution
comes from the subdominant exponential, because the leading-
order contributions from the dominant exponentials cancel,
leaving the correction to the dominant exponential, which is
small in the region of physical interest.

This formula for the asymptotic rings for a Gaussian beam
can be generalized to any incident beam. When Z is large,
the integrals over P in (3.10) and (3.11) can be evaluated

by the stationary phase method, after making the large-ρ0

approximation (4.5), treating the factor a(P) as slowly varying.
The result, incorporating (3.13), is

I (R, Z) ≈ |R − R0|
2R0 Z2

∣∣∣∣a
(

R − R0

Z

)∣∣∣∣
2

= |X |
2R0 Z2

∣∣∣∣a
(

X

Z

)∣∣∣∣
2

.

(5.4)
Again, the zero of the factor |X | gives the Poggendorff dark
ring.

For pinhole beam (3.15), (5.4) gives

I (R, Z) ≈ 1

2ρ0|ξ |
(

J1

(
ξ

ζ

))2

, (5.5)

as illustrated in figure 10(b).

6. Axial spike

On the axis R = ρ = 0, the integral B1 (equation (3.11))
vanishes, and the integral B0 (equation (3.10)) can be evaluated
exactly for the Gaussian beam (3.14), with the result

B0(0, R0, Z) = 1

1 + iζ

[
1 + iρ0

√
π

2(1 + iζ )

× exp
(

− ρ2
0

2(1 + iζ )

)
erf
(

iρ0√
2(1 + iζ )

)]
. (6.1)
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Figure 10. (a) Asymptotic (i.e. ζ � 1) Gaussian-beam ring
intensity ρ0ζ I , calculated from (5.3). (b) Asymptotic (i.e. ζ � 1)
pinhole-beam ring intensity ρ0ζ I , calculated from (5.5).
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Figure 11. Axial intensity (ρ = 0) for Gaussian incident beam,
from exact formula (6.1) (thick) and approximation (6.3) (thin), for
ρ̃ = 10.

Figure 11 shows the axial intensity increasing from very small
values (of order 1/ρ4

0 at z = 0) to a maximum, and then slowly
decaying.

For the case ρ0 � 1 that we are interested in, we can use
the asymptotic approximation for the error function of complex
argument. As in the last section, there are large and small
exponentials; including both gives

B0(0, R0, Z) ≈
√
π

2

iρ0

(1 + iζ )3/2
exp

(
− ρ2

0

2(1 + iζ )

)
− 1

ρ2
0

.

(6.2)
The first term comes from the subdominant contribution

(lower limit of the Gaussian integral representing erf), and
the second term 1/ρ2

0 comes from the first correction to the
dominant exponential (upper limit of the integral). Again, we
have the paradoxical situation that in the region of interest
the subdominant exponential gives the greater contribution.
Moreover, we can replace 1+iζ by iζ (even for ζ � 1, because
B0 is small in this case), giving, for the intensity (3.13),

I (R, Z) ≈ πρ2
0

2ζ 3
exp

(
−ρ

2
0

ζ 2

)
. (6.3)

0
0

2 4 6 8 10

0.2

0.4

0.6

0.8

1

ρρ0/ζ

in
te

ns
ity

Figure 12. Axial spike intensity profiles for Gaussian incident
beam, calculated from the Bessel approximation (6.5) (thick), and
exactly from (3.13) for ρ̃ = 20: ζ = 15 (thin), ζ = 17 (chain),
ζ = 20 (dashed), ζ = 30 (dots). The quantity plotted (cf (6.5)
and (3.14)) is [2ζ 3 exp(ρ2

0/ζ
2)/πρ2

0 ]I .

Thus for a ring of radius ρ0 the axial intensity is greatest for
ζ = ρ0

√
2. Figure 11 shows that this approximation is very

accurate.
Once again, the large-ρ0 approximation can be generalized

to any incident beam. Using the stationary phase method to
evaluate integral (3.10), treating a(P) as slowly varying, gives

I (0, Z) ≈ πk R2
0

2Z3

∣∣∣∣a
(

R0

Z

)∣∣∣∣
2

. (6.4)

A slight extension of this argument gives the form of the
axial spike away from the axis. Provided R � R0, i.e. ρ � ρ0,
the Bessel functions can be included in the slowly varying part
of the integrands in (3.10) and (3.11). The result, expressed in
terms of the dimensionless variables, is

I (R, Z) ≈ πρ2
0

2k2w4ζ 3

∣∣∣∣a
(
ρ0

kwζ

)∣∣∣∣
2

×
[(

J0

(
ρρ0

ζ

))2

+

(
J1

(
ρρ0

ζ

))2]
. (6.5)

As illustrated in figure 12 for the Gaussian beam, this formula
gives a good description of the axial spike, with accuracy
increasing with ζ .

7. Geometrical optics

The ray Hamiltonians H± given by (2.7) do not depend on the
transverse position R, so P is conserved and can, together with
the initial position Ri, be used to label ray trajectories R±(z).
These are determined by the Hamilton equation
dR±
dz

= ∇P H± = (P ± eP)�(l − z) + n2P�(z − l),

eP = P
P
, (7.1)

representing ray directions as normals to the surfaces in
figure 3. Outside the crystal, the solution, using the coordinate
Z defined by (3.4), is

R±(z) = Ri + ZP ± R0eP. (7.2)

Solving for the momentum P of the ray reaching R from
the initial position Ri gives

P± = α±eR−Ri , (7.3)
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where the possible values of α are

α+ = |R − Ri| − R0

Z
(if |R − Ri| > R0)

α− = |R − Ri| + R0

Z
and

|R − Ri| − R0

Z

(if |R − Ri| < R0).

(7.4)

Figure 13 illustrates the geometrical origin of these rays from
the + and − sheets of the Hamiltonian (dispersion surface) (2.7)
(figure 3): one from each sheet when |R − Ri| > R0, and both
from the − sheet when |R − Ri| < R0.

The intensity of the ring pattern in geometrical optics, at
position R in the plane Z , is given by the density of those
rays in the incident beam that reach R, Z . Consider first the
far field, where the spreading of the rays is governed by the
momentum distribution |a(P)|2 in the incident beam, which
we can take to be localized in position at Ri = 0. Thus the
intensities from the + and − ray families are

I±geom(R, Z) = 1

2
|a(P±)|2

∣∣∣∣det
dR±
dP

∣∣∣∣
−1

, (7.5)

where the factor 1/2 incorporates the equal division between
the two polarizations + and −, assuming unpolarized incident
light. Differentiating the trajectory (7.2) gives(

det
dR±
dP

)
= det

(
Z ± R0

P2
y

P3 ∓R0
Px Py

P3

∓R0
Px Py

P3 Z ± R0
P2

x
P3

)

= Z

(
Z ± R0

P

)
, (7.6)

and substituting (7.3) and (7.4) with Ri = 0 leads to∣∣∣∣det
dR+

dP

∣∣∣∣
−1

= |R − R0|
Z2 R

�(R − R0)

∣∣∣∣det
dR−
dP

∣∣∣∣
−1

= (R + R0)

Z2 R
+

|R − R0|�(R0 − R)

Z2 R
.

(7.7)

Finally, adding the + and − contributions gives

Igeom(R, Z) = 1

2Z2 R

(
|R − R0|

∣∣∣∣a
( |R − R0|

Z

)∣∣∣∣
2

+ (R + R0)

∣∣∣∣a
(

R + R0

Z

)∣∣∣∣
2)
. (7.8)

Now we examine the implications of this formula, starting
with the rings, where R ∼ R0. Since the argument of a
in the second term (∼2R0/Z ) lies outside the angular range
of the beam in all cases of interest, this term is negligible.
Therefore, the main contribution comes from the first term,
which correctly reproduces the asymptotic rings formula (5.4).
It is clear that the Poggendorff dark ring originates in the zero
of the factor |R − R0| in the first equation in (7.7) for the
Jacobian factor in the intensity. This explanation, implicit in
the usual treatments [2], associates the dark ring with a kind of
antifocusing arising from the conical singularity: the measure
of the region associated with the contributing rays vanishes at
the conical point.

It is tempting to interpret the oscillations in the diffractive
intensity of the rings, as captured by (5.3) (see figures 8
and 9), in terms of interference between the two rays whose

a

b
+

_ _
+

+_
_

+

Figure 13. Solutions of ray slope equations (7.4) (normals to
Hamiltonian of figure 3). (a) |R − Ri| > R0; (b) |R − Ri| < R0.

intensities are the terms in (7.8). But this is wrong, because the
polarization states (cf (2.4)) associated with the two rays (7.4)
(figure 13) are orthogonal and so cannot interfere. The reasons
for the orthogonality are different for R > R0 and R < R0:
for R > R0, the two rays originate on different sheets, with
momenta P with the same azimuths θP; for R < R0, the rays
originate on the same sheet, but with opposite momenta, i.e. θP

and θP + π . The true source of the oscillations is interference
between the main contributing geometric ray and a ‘diffracted
ray’ from the cone (see the remarks following (5.2)).

Consider now the axial spike, for which R ∼ 0 and the
two terms in (7.8) are almost equal. Thus geometrical optics
predicts the spike profile

I spike
geom(R, Z) ≈ R0

Z2 R

∣∣∣∣a
(

R0

Z

)∣∣∣∣
2

(R ≈ 0) (7.9)

—apparently contradicting the Bessel profile (6.5), and
moreover diverging at R = 0. However, the divergence
is a focusing effect, arising from the coincidence of all the
normals to H± (figure 3) at the ring-shaped ‘moat’ P = A
(axis of single-ray velocity) where the dispersion surface is
locally toroidal. Like all focusing effects, this divergence is
softened by diffraction, as described by (6.5). And slightly
away from the axis, where ρρ0/ζ � 1, that is R > Z/k R0, the
asymptotics of the Bessel functions in (6.5) reproduces (7.9)
exactly. This situation is closely analogous to the optical glory
in light from a raindrop [24–26], in which backward scattering
(or, in the quantum analogue [27, 28], forward scattering) is
dominated by an axial caustic, whose focal singularity is also
softened by diffraction associated with a toroidal wavefront.
The mild oscillations in the Bessel profile (6.5) (see figure 12)
can be regarded as interference between the ray contributions
in (7.8) when R is small, in a higher-order geometrical-optics
approximation (the lowest-order interference cancels).

The total energy of the wave at distance Z must of course
equal the energy in the incident beam (reflections are neglected
in our paraxial treatment). Most of this energy is contained in
the rings, as can be seen by integrating the approximate ring
profile (5.4) across the R plane:
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1

2R0 Z2

∫ ∫
R plane

dR |R − R0|
∣∣∣∣a
(

R − R0

Z

)∣∣∣∣
2

≈ 2πR0

2R0 Z2

∫ ∞

−∞
dX |X |

∣∣∣∣a
(

X

Z

)∣∣∣∣
2

= 2π
∫ ∞

0
dP |P ||a(P)|2 =

∫ ∫
R plane

dR |D0(R)|2.
(7.10)

Now recall that (5.4) is a local approximation to the first term in
the exact geometrical-optics formula (7.8). Integration of (7.8)
across the R plane without the approximation leading to (5.4)
shows that the energy is distributed between the two terms
in (7.8) in a way that is not obvious:∫ ∫

dR Igeom(R, Z)

= π

Z2

[∫ ∞

0
dX X

∣∣∣∣a
(

X

Z

)∣∣∣∣
2

+
∫ R0

0
dX X

∣∣∣∣a
(

X

Z

)∣∣∣∣
2

+
∫ ∞

R0

dX X

∣∣∣∣a
(

X

Z

)∣∣∣∣
2]

= 1

2

∫ ∫
P plane

dP |a(P)|2 +
1

2

∫ ∫
P<R0/Z

dP |a(P)|2

+
1

2

∫ ∫
P>R0/Z

dP |a(P)|2

=
∫ ∫

P plane
dP |a(P)|2 =

∫ ∫
R plane

dR |D0(R)|2. (7.11)

These considerations suggest that very little energy is
contained in the central spike, and indeed estimating the
integral of (7.9) over the area R < R0 within the ring gives the
spike energy

∫ ∫
R<R0

dR I spike
geom(R, Z) ∼ 2πR2

0

Z2

∣∣∣∣a
(

R0

Z

)∣∣∣∣
2

, (7.12)

which is small whenever the rings are clearly visible (R0 �
Z/kw).

The above geometrical theory, in terms of rays issuing
from R = 0 in different directions, cannot describe the rings for
small Z . For this, it is necessary to consider the spatial width
w as well as the angular width 1/kw. For general beams, this
would involve propagating the geometrical Wigner distribution
function in the phase space {R,P}, or, if the beam is incoherent,
averaging R in (7.8) over the beam profile. However, for a
coherent Gaussian beam there is a remarkable alternative that
gives the exact geometrical limit for any Z .

As is known [29], a freely propagating Gaussian beam
with waist width w can be generated from the paraxial
propagation of a family of rays that starts from R = 0 not
at the ‘time’ z = 0 but from the complex ‘time’ z = ikw2.
This can be seen most simply from the geometrical amplitude
formula

ψ = constant ×
√

det

(
∂2S

∂Ri∂R j

)
exp(ikS), (7.13)

where S is the action R2/2z, by substituting z → z−ikw2. The
result of applying this procedure to the geometrical intensity is
equivalent to replacing Z by Z → Z − ikw2 in formula (7.8)
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Figure 14. Ring and spike intensities for Gaussian beam, calculated
from the exact formula (3.13) (thick) and the complexified ray
formula (7.14) (thin), for (a)–(e) ρ0 = 20 and (f)–(j) ρ0 = 50, at
distances (a) ζ = 0, (b) ζ = 4, (c) ζ = 8, (d) = 10, (e) ζ = 15,
(f) ζ = 0, (g) ζ = 5, (h) ζ = 10, (i) ζ = 18 and (j) ζ = 22.

for the Gaussian beam. (This procedure is the geometrical-
optics analogue of the replacement described at the beginning
of section 5, which extended diffraction theory from Z = 0
to finite values of Z—or, more accurately, it is an inverse
analogue, since we are now extending geometrical optics from
large Z to smaller Z .)

In dimensionless variables, this complex-ray version of
geometrical optics gives

Igeom = 1

2(1 + ζ 2)

[
(ρ − ρ0)

ρ
exp

{
− (ρ − ρ0)

2

1 + ζ 2

}

+
|ρ + ρ0|
ρ

exp
{
− (ρ + ρ0)

2

1 + ζ 2

}]
. (7.14)

Figure 14 shows how this formula reproduces the main
features of the exact rings and spike, but fails for the
following three essentially wave aspects of conical diffraction:
for the secondary oscillations, since (7.14) gives only the
average over the oscillations; for the finite intensity on the
axis, since (7.14) predicts infinite intensity, and for the
asymmetrical Poggendorff ring profiles in the focal image
Z = 0 (figure 14(a)).

8. Summary and concluding remarks

The sharpest Poggendorff rings are predicted (section 4) to
occur at the focal image Z = 0, with profiles depending on the
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incident beam profile—different, for example, for a coherently
illuminated pinhole (4.8) (figure 6) and a Gaussian beam (4.10)
(figure 7). It is not easy to resolve the two rings, whose
separation is of order w. For example, they are not resolved
in the experiments of Raman et al [3] with naphthalene. In
these experiments, the cited data (A = 6.87◦, l ∼ 2.5 mm,
w ∼ 1 µm) give w/R0 ∼ 1/300, explaining ‘the extreme
sharpness of the circular ring. . .’ and the fact that ‘. . . it is
noteworthy also that the so-called Poggendorff dark circle does
not appear in the focal image of the point source. . .’. More
discriminating experiments should enable the two rings to be
distinguished, and establish the dependence on beam profile.

Further from the crystal (section 5), the separation of
the two rings increases, and is of order w

√
[1 + (Z/kw2)2]

(cf (5.1)). Additional rings develop (figures 8 and 9), as
described for the Gaussian beam by the exact formula (5.1)
with (4.10), or, for large Z , by the simpler formula (5.2).
When Z � kw2, the oscillations disappear, and the
Poggendorff rings (equations (5.3)–(5.5) and figure 10)
become symmetrical, with the separation between the two
rings growing as Z/kw. This transition, and especially the
profile of the rings, should be explored experimentally.

On the axis (section 6), the intensity is small for small
Z , but grows rapidly (equations (6.1)–(6.3) and figure 11),
rising to a maximum value when Z ∼ kwR0, of order
(k/Z)3(R0w

2)2 (with intensity normalized to unity). The axial
spike is especially prominent in the far-from-focus images
of Raman et al [3]. It is narrow, with width (6.5) being
�R ∼ Z/k R0. Measurements of its predicted ‘Bessel’
profile ((6.5) and figure 12) are desirable.
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Appendix. Origin of the wave (2.3)

With Cartesian coordinates r′ = {R′, z} (figure 2), a scalar
plane wave with wavevector ktot can be written

exp{iktot · r′} = exp
{

i
(

kP · R′ + z
√

k2
tot − k2 P2

)}
. (A.1)

In terms of the refractive index n(P) ≡ n2(1 + µ(P)) for
propagation in a direction specified by P, and using (2.2),

ktot = n(P)k0 = n2(1 + µ(P))k0 = (1 + µ(P))k. (A.2)

Expanding the exponent in (A.1) to lowest order in µ and
P gives the paraxial wave

exp{ik(z + P · R′ − z( 1
2 P2 − µ(P)))}. (A.3)

Near the optic axis P = 0, the dispersion surface is given by
a slanted circular cone [2], that with a choice of x axis can be
written

µ±(P) = A(Px ∓ P). (A.4)

The scalar parts of the waves (2.3) now follow, after ignoring
the irrelevant factor exp(ikz) and changing to new transverse
coordinates (figure 2)

R = R′ + Aex z, (A.5)

whose origin R = 0 corresponds to the axis of the cone of
refracted rays. (This argument ignores corrections to (A.4),
quadratic in Px and Py , because their coefficients are of order
n2 − n1 and n3 − n2 and therefore negligible compared with
the coefficient 1/2 in (A.3).)

The polarizations of the waves in (2.3) are chosen to
be orthogonal and to incorporate the sign change of the
eigenvectors around the optic axis [30].
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