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We present a perspective on the computation and interpretation of force constants at points of symmetry-induced

(Jahn–Teller) conical intersection. Our method is based upon the projection of the ‘branching space’ from the full
(3N � 6)-dimensional Hessian for each component of a degenerate electronic state. For Jahn–Teller active

molecules, this has the effect of removing the linear Jahn–Teller coupling from all but the interstate coupling and
gradient difference vectors. The quadratic coupling constants are determined by the splitting of the harmonic

vibrational frequencies within degenerate vibrational normal coordinates of the ‘intersection space’. The potential
energy surface topology along these normal modes is analogous to the Renner–Teller effect occurring in orbitally

degenerate linear molecules. Our methodology gives a straightforward theoretical analysis of the various Jahn–
Teller intersections and allows the determination of the seam curvature. Thus, we are in a position to compute

the various Jahn–Teller coupling constants, in a particular coordinate system, and in addition to determine the
nature of the high-symmetry Jahn–Teller geometry (i.e., minimum or saddle-point on the seam). We illustrate

these concepts with various examples of different Jahn–Teller conical intersections in some small molecules.

Introduction

Time-resolved laser spectroscopy is now commonly used to
study the dynamics of ultrafast (o1 ps) photochemical pro-

cesses.1–8 Conical intersections between ground and excited
state potential energy surfaces have proved to be essential for

explaining the timescales and product distributions of these
processes.9–11 The role of conical intersections in photochemi-

cal reactions is difficult to probe directly by experiment, but is
now well established computationally.12–22

There is, however, a type of conical intersection for which
there is a long history of direct high-resolution spectroscopic

work: the symmetry-induced crossings that occur in Jahn–
Teller active molecules.23–29 Commonly used spectroscopic

techniques include photoelectron spectroscopy from a neutral
closed-shell species to an open-shell Jahn–Teller active spe-

cies,8,25,30–34 and laser-induced fluorescence from a non-degen-
erate excited state to a degenerate state.24,26,27,29,35–40 Here,

measured vibronic energy levels can be compared directly with
those calculated from parameterised model Hamiltonians,

although there remain problems with the choice of Hamil-
tonian and calculating the necessary parameters.

The main purpose of this perspective article is to emphasise

the connections between the study of photochemical processes
and the spectroscopy of Jahn–Teller molecules. We have

recently implemented a method for characterizing the conical
intersection seam in terms of a quadratic expansion in curvi-

linear co-ordinates.41 This offers a way to parameterise model
Hamiltonians for spectroscopy, and to benchmark the compu-

tational methods used for locating intersections. However, we

also develop this idea conceptually, to show that established
ideas from Jahn–Teller theory offer a new perspective on the

crossing seam for photochemical processes, where symmetry
may not be involved. Recent calculations and experiments

show that for photochemistry, decay away from the minimum
energy point of a crossing may dominate,14,42 in which case a

systematic way of mapping out segments of the crossing seam
will be invaluable.16,41

It is 75 years since von Neumann and Wigner43 first dis-
cussed the existence of conical intersections between potential

energy surfaces in polyatomic molecules. This was based upon
a detailed analysis of the spectral representation of a symmetric

(Hermitian) matrix and yielded the von Neumann–Wigner
theorem, which states that in general two real parameters

(three in the Hermitian case) need to be independently varied
in order to achieve an eigenvalue degeneracy (see ref. 44 for a

translation of the original article and ref. 45 for detailed
discussion). Eight years later, Jahn and Teller proved in their

seminal paper46 that a polyatomic molecule in an orbitally
degenerate electronic state is unstable with respect to linear

displacement along some non-totally symmetric coordinates.
The Jahn–Teller theorem47,48 states that a molecule in an

orbitally degenerate electronic state will distort along some

non-totally symmetric vibrational coordinate which is deter-
mined by the symmetric square of the direct product of the

degenerate irreducible representation (irrep) of the electronic
state with itself. The Jahn–Teller theorem thus showed that for

a polyatomic molecule belonging to a non-Abelian point
group, the two degrees of freedom lifting the degeneracy

transform as some non-totally symmetric irrep and will thus
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lower the symmetry. Jahn and Teller proved, by exhaustively
looking at all possible molecular point groups, that these non-

totally symmetric vibrations always exist; therefore there will
always be modes of vibration which lift the degeneracy and

lower the symmetry. The Jahn–Teller geometry is a conical
intersection between the two components of the degenerate

electronic state.
In non-cubic point groups, group theoretical analysis of

Jahn–Teller degeneracies leads to a classification into E # e
and E# (b1" b2) cases.

47–50 The former occurs in all point

groups not containing a principal C4 axis of symmetry, whereas
the latter occurs when this is the case.51 The nomenclature

above indicates that a degenerate electronic state transforming
as an E-type irreducible representation (irrep) interacts with a

degenerate vibration, again transforming as an e-type irrep; or
that a degenerate electronic state transforming as an E-type

irrep interacts with two non-degenerate vibrations which trans-
form as b1 and b2 irreps of the point group. The symmetries of

the vibrations that lift the degeneracy can always be chosen to
transform as a totally-symmetric and a non-totally symmetric

irrep of an Abelian subgroup (i.e., one containing no degen-
erate irreducible representations).

Any geometry of a molecule at which the electronic state is
degenerate lies on a conical intersection seam between the

potential energy surfaces of the components of the degenerate
electronic state. Conical intersections can occur between elec-

tronic potential energy surfaces in Abelian point groups50 (e.g.,
an intersection between A1 and B2 electronic states in C2v

symmetry), and when there is no symmetry52,53 (nominally C1

point-group). These so-called accidental intersections are not
required by symmetry, as in the Jahn–Teller case, but occur

rather due to the nature of the two electronic states involved.
Conical intersections have been shown to be of considerable

importance in organic13–16,21,22 and inorganic19,20 photochem-
istry in recent years. Points of intersection represent funnels for

radiationless decay in polyatomic molecules.9 This was first
pointed out by Teller54,55 as early as 1937, but it is only in the

last decade that conical intersections have been routinely
optimized.56–58

There are two vectors that lift the degeneracy linearly (i.e., to
first-order) at a conical intersection via the von Neumann–

Wigner theorem.43,59 These vectors define the ‘branching
space’.60 The vectors spanning the ‘branching space’ are the

gradient difference (x1) and interstate coupling vectors (x2).

x1 ¼
@ðE2 � E1Þ

@n
ð1Þ

x2 ¼ C t
2

� �

�

@Ĥe

@n
C1j i ð2Þ

where n is a vector of Cartesian displacements of the nuclei, Ĥe

is the clamped nucleus electronic Hamiltonian operator, and Ci

are the eigenvectors in a configuration interaction problem. It
can be shown that the interstate coupling vector is parallel to

the non-adiabatic coupling vector.57 The degeneracy persists

for an infinitesimal step in the orthogonal complement to the
‘branching space’: the ‘intersection space’. However, the de-

generacy can be lifted quadratically (i.e., to second-order) by a
finite step in this ‘intersection space’, in a manner analogous to

the Renner–Teller effect61–63 in orbitally-degenerate linear
molecules (see Fig. 1).

A general conical intersection is found by simultaneously
optimising the adiabatic energy gap and the projection of the

upper state gradient onto the ‘branching space’.57 The ‘branch-
ing space’, also known as the g–h plane,45,52,53 forms the basis

for locating and characterising a conical intersection geo-
metry.56,57 The location of low-energy domains of seams of

intersection is now commonplace, and such regions represent
key mechanistic elements in photochemical reaction model-

ling.19–21 Until very recently however, the ‘intersection space’

has hardly been considered beyond the fact that it is the
orthogonal complement to the ‘branching space’. Yarkony64

has noted that second-order terms become dominant in parti-
cular cases where one of the first-order terms has zero length.

However, here we show, with several examples, that the
second-order effects are important even if the first-order terms

are not zero.
The first point to make clear is that the degeneracy at a

conical intersection is in fact lifted at second-order in any
rectilinear coordinate system. This can be observed by anal-

ysing the ‘intersection space’ vibrational frequencies. To ratio-

nalise why the second-order effects are obtained in this way,
one must recognise that the Hessian (force constants) for each

state (i.e., each component of the degenerate state at the
intersection) is different. For the symmetry-imposed cases

discussed in the present article, the frequencies and modes
swap in degenerate pairs. In this respect, the well-known idea

of quadratic Jahn–Teller coupling23,24,26–28,47–49 is equivalent
to second-order degeneracy lifting.

Fig. 1 Renner–Teller surface topologies.
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We shall now discuss the extended seam of intersection,
which is a (3N � 8)-dimensional hypercurve. We have recently

shown how to calculate the curvature at a critical point on the
seam using the first- and second-order potential constants.41

Both first- and second-order effects contribute to the curvature
of the seam and therefore it is important that we think beyond

the ‘branching space’ and consider the ‘intersection space’ as
well. The Jahn–Teller effect provides us with an excellent

means of understanding both of these spaces since symmetry
can be used. In addition, a more general understanding of the

seam provides some new ideas about the Jahn–Teller effect
itself. For example, for the cyclopropenyl radical we show that

the higher symmetry D3h Jahn–Teller point is in fact a saddle-
point on the seam: there are lower energy critical points on the

seam of both C3v and Cs symmetry. Thus, although the
degeneracy at the D3h geometry is lifted at first-order as the

Jahn–Teller theorem predicts, the seam in fact extends to lower
symmetry structures. We can understand this once we recog-

nize that the seam is a curvilinear combination of the first-
order ‘branching space’ and the second-order ‘intersection

space’.
We begin with a brief discussion of the standard quadratic

Jahn–Teller vibronic Hamiltonian and how it may be general-
ized. Notice that in the standard approach to Jahn–Teller

systems, which can be termed the multi-mode approach,50 all
vibrations with the correct symmetry lift the degeneracy to

first-order. In the model developed in this paper, which is
formally equivalent, only two modes lift the degeneracy, but

these coordinates change along the (3N� 8)-dimensional seam.

We then discuss the Renner–Teller effect in HCCS to highlight
some pertinent facts about second-order degeneracy lifting. We

follow this with a detailed discussion of the seam of intersec-
tion in the cyclopropenyl radical. We also discuss a simulation

of the photoelectron spectrum of cyclobutadiene, where qua-
litative agreement between theory and experiment is possible

using only a very minimal linear vibronic coupling model and
wavepacket propagation techniques. Finally we compute the

Jahn–Teller coupling constants for the cyclopentadienyl radi-
cal (Cp) in its 2E00

1 ground state. The quadratic coupling

constants are computed to be quite small, in agreement with
recent experimental studies.

The quadratic Jahn–Teller vibronic Hamiltonian

In this section we shall discuss the Hamiltonian used in
spectroscopic studies of Jahn–Teller systems in more detail.

In particular, we will focus on the ways in which symmetry can
be used to simplify the expression. The quadratic form of the

potential in this Hamiltonian can be written as a 2 � 2 matrix
(labelled by the components of the degenerate electronic state),

which is diagonalised to yield the potential energy surfaces.50,65

The parameters of the quadratic form are referred to as

coupling constants.23,26–28 Once the potential constants are
known from say theoretical computations, the full nuclear

Hamiltonian, which can be represented in some suitable set

of nuclear basis functions, e.g., harmonic oscillator functions
(Hermite polynomials), can be solved to give the vibronic

energy levels for direct comparison with experiment. In prac-
tice this can only be performed for small systems, or with a

reduced dimensionality.
In our theoretical development, we will discuss the form of

the potential matrix for a general set of vibrational coordinates
(Qi). An example of such a set comes from the theoretical

computation of photoelectron spectra,50,66–68 where the neutral
ground-state vibrational coordinate basis is used. This has the

disadvantage that the interstate coupling and gradient differ-
ence vectors are not parallel to any normal modes of the

appropriate symmetry. Rather they are linear combinations
of the symmetry adapted normal modes for the ground state.

This vibrational coordinate basis is generally used when fitting
surfaces from single-point energy computations.

We develop an alternative set of coordinates ( �Qi) based upon
the gradient difference vector and the interstate coupling

vector, plus a set of 3N � 8 normal modes of the ‘intersection
space’. The latter set of coordinates has the advantage that all

of the terms lifting the degeneracy at first-order are contained
within the ‘branching space’. Although in general the ‘branch-

ing space’ vectors are only defined to within a unitary trans-
formation of each other, for the symmetric Jahn–Teller systems

discussed below the vectors are uniquely defined through the
largest Abelian subgroup.

We begin with a general discussion. The (non-relativistic)
molecular Hamiltonian is,

Ĥ ¼ T̂N þ V (3)

where T̂N is the nuclear kinetic energy operator and V is the

potential energy for the coupled electronic states. The potential

matrix (V) expanded to second-order around a point on a
conical intersection seam in a set of general vibrational

coordinates is given by,

V ¼

1
2

P

3N�6

i

oiQ
2
i 0

0 1
2

P

3N�6

i

oiQ
2
i

0

B

B

B

B

@

1

C

C

C

C

A

þ

P

3N�6

i

kAi Qi

P

3N�6

i

kAB
i Qi

P

3N�6

i

kAB
i Qi

P

3N�6

i

kBi Qi

0

B

B

B

B

@

1

C

C

C

C

A

þ

P

3N�6

i;j

gAij QiQj

P

3N�6

i;j

ZAB
ij QiQj

P

3N�6

i;j

ZAB
ij QiQj

P

3N�6

i;j

gBijQiQj

0

B

B

B

B

@

1

C

C

C

C

A

ð4Þ

where the potential constants above, kAi , k
B
i , k

AB
i , gAij , g

B
ij , Z

AB
ij ,

are defined as,

kAi ¼ CAh j @Ĥe

@Qi

 !

0

CAj i ð5Þ

kBi ¼ CBh j @Ĥe

@Qi

 !

0

CBj i ð6Þ

kAB
i ¼ CAh j @Ĥe

@Qi

 !

0

CBj i ð7Þ

gAij ¼ CAh j @2Ĥe

@Qi@Qj

 !

0

CAj i ð8Þ

gBij ¼ CBh j @2Ĥe

@Qi@Qj

 !

0

CBj i ð9Þ

ZAB
ij ¼ CAh j @2Ĥe

@Qi@Qj

 !

0

CBj i ð10Þ

where CA and CB are the adiabatic electronic wavefunctions.

The subscripts A and B can be thought of as the symmetry
labels for the components of the degenerate electronic state in

an Abelian subgroup, while the subscript 0 indicates that
derivatives are evaluated at the conical intersection point.
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(Note that in eqns. (5)–(10), we have given the leading terms, so
that the definition of the gradient is clear. However, the full

contribution to the gradient, including the second-order
changes in energy due to first-order changes in the wavefunc-

tion, is actually computed). The first term in eqn. (4) is just a
standard harmonic oscillator representation for each state (i.e.,

completely analogous to single Born–Oppenheimer surface
vibrational analysis69,70). Note that there are three types of

constant, two diagonal and one off-diagonal, at first-order
(involving the first derivative with respect to Q), and three

types of constant at second-order (involving second derivatives
with respect to Q). Depending on the particular Jahn–Teller

symmetry, these three types of constant will be related to one
another. The expansion in eqn. (4) is written as a zeroth-order

term, which is chosen so that states are degenerate and have the
same curvature (oi), plus a linear term, in which the degeneracy

is lifted by terms proportional to the first derivatives, plus a
quadratic term, in which the degeneracy is lifted by terms

proportional to the second derivatives. In eqn. (4) oi is known
as the unperturbed frequency of each mode.26,28 These are

arbitrary parameters as any changes can be compensated by
changes in the second-order coefficients gAij and gBii . They are

however useful in an interpretive context, and form a link to
the standard quadratic Jahn–Teller Hamiltonian. This will

become clear as the theory is developed below. The first-order
terms (eqns. (5)–(7)) shift the harmonic parabolas from the

origin, while the second-order terms (eqns. (8)–(10)) alter the
curvature of each surface and give rise to the lifting of the

degeneracy at second-order.

The symmetries of the modes that give non-zero potential
constants above can be determined using group theoretical

arguments (see ref. 26 and the appendix). The direct products
of the irreps spanned by each component of the electronic state

and those irreps spanned by the vibrational coordinates must
contain the totally symmetric representation, or the matrix

element is identically zero. These direct products are tabulated
for all degenerate electronic states of all non-Abelian point

groups.26

We now proceed to introduce an alternative set of vibra-

tional coordinates that arises almost naturally from the usual
treatment of conical intersections,45,52,53,64

�Q ¼ ( �Qx1
, �Qx2

)" ( �Q1,. . ., �Q3N–8) (11)

This set of coordinates is spanned by the ‘branching space’: the

mass-weighted gradient difference vector ( �Qx1
) and the mass-

weighted interstate coupling vector ( �Qx2
), and the ‘intersection

space’, whose coordinates are obtained as the normal modes of
the projected Hessian ( �Q1,. . ., �Q3N–8). As discussed above, in

this set of coordinates all of the terms which lift the degeneracy
to first-order are contained within the ‘branching space’

spanned by ( �Qx1
) and ( �Qx2

).
At this point let us reiterate that the above coordinate system

(eqn. (11)) is based upon the von Neumann–Wigner theorem.
This type of vibrational coordinate system was originally

introduced by Atchity, Xantheas and Ruedenberg,60 termed

‘intersection adapted coordinates’, and has been extensively
used by Yarkony.45,52,53,71 Our methodology introduces an

explicit representation for the 3N � 8 intersection space. Thus,
from the von Neumann–Wigner theorem there are two and

only two coordinates which lift the degeneracy at first-order in
nuclear displacements. These coordinates are not constant for

the seam of intersection but rather change continuously along
the seam, as will be discussed later. The so-called multi-mode

Jahn–Teller problem47,50,65,72–74 arises because a given set of
symmetry-adapted vibrational normal coordinates may not

include any coordinates exactly parallel to the two vectors
given above (eqns. (1) and (2)); this is not the case with the

coordinate system in eqn. (11), and as we shall show the multi-
mode problem is equivalent to determining the curvilinear

seam from the rectilinear coordinates given in eqn. (11). Thus,
the two equivalent (and complementary) views of the multi-

mode Jahn–Teller problem can be summarised as: (i) using a
fixed set of symmetry-adapted normal modes (taken from a

related system in its equilibrium geometry) one can determine
first- and second-order coupling constants for all modes of

appropriate symmetry, or (ii) using ‘intersection adapted co-
ordinates’ only two coordinates have a first-order coupling

constant, however these coordinates change in a curvilinear
manner along the seam, and may be combined with the local

intersection space coordinates to determine a finite portion of
the (curved) seam.

We shall rewrite eqn. (4) in terms of the ‘intersection
adapted’ coordinate system,

V ¼

1
2

P

3N�6

i

oi
�Q
2

i 0

0 1
2

P

3N�6

i

oi
�Q
2

i

0

B

B

B

B

@

1

C

C

C

C

A

þ
kA1

�Qx1
kAB
1

�Qx2

kAB
1

�Qx2
kB1

�Qx1

0

@

1

A

þ

P

3N�6

i;j

gAij
�Qi

�Qj

P

3N�6

i;j

ZAB
ij

�Qi
�Qj

P

3N�6

i;j

ZAB
ij

�Qi
�Qj

P

3N�6

i;j

gBij
�Qi

�Qj

0

B

B

B

B

@

1

C

C

C

C

A

ð12Þ

Notice that the summations have been removed from the linear
term. Thus kA1 is the gradient on state A and kAB

1 is the

magnitude of the interstate coupling vector.
We now introduce a simple one-dimensional model example

(adapted from ref. 75), where �Qx1
is the gradient difference

coordinate, and kA1 ¼ k in eqn. (12). This is known as the E#

b Jahn–Teller problem (a degenerate E-type electronic state
interacting with a single non-degenerate vibration), which

occurs in some condensed phase systems. The E# b potential
can be considered the limiting case of the E # (b1 " b2)

potential (vide infra) in which one of the linear coupling
constants (eqns. (5)–(7)) is much larger than the other. The

potential matrix is,

V ¼
1
2
o �Q

2

x1
0

0 1
2
o �Q

2

x1

 !

þ k �Qx1
0

0 �k �Qx1

� �

ð13Þ

Eqn. (13) is written as the sum of two matrices, zeroth-order
(unperturbed harmonic oscillator) and first-order (linear

Fig. 2 One-dimensional potential energy curves obtained from the
E# b Jahn–Teller Hamiltonian including linear coupling.
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coupling), and gives the following two expressions for the

potential surfaces,

Vþ ¼ 1

2
o �Q

2

x1
þ k �Qx1

ð14Þ

V� ¼ 1

2
o �Q

2

x1
� k �Qx1

ð15Þ

Plotting the solutions of eqns. (14) and (15) as a function of �Qx1
we obtain the potential energy curves shown in Fig. 2. The

gradient at �Qx1
¼ 0 is obviouslyþk or �k, and the curvature of

each surface is o. The length of the gradient difference is 2k.

Thus, the term linear in Q in eqn. (13) has the effect of shifting
two equivalent parabolas from �Qx1

¼ 0 to �Qx1
¼ þk/o and

�Qx1
¼ �k/o with a minimum energy of �k2/2o. The effect of

quadratic coupling is shown in Fig. 3, where the curvature of

each surface changes and two different minima occur.
Now we add the second dimension (coordinate �Qx2

, the

interstate coupling vector) to produce a circular cone (in the
‘branching space’ �Qx1

and �Qx2
with k ¼ kA1 ¼ kB1 ¼ kAB

2 ),

V ¼
1
2
o �Q

2

x1
þ 1

2
o �Q

2

x2
0

0 1
2
o �Q

2

x1
þ 1

2
o �Q

2

x2

0

B

@

1

C

A

þ
k �Qx1

k �Qx2

k �Qx2
�k �Qx1

0

@

1

A

ð16Þ

Notice the term in �Qx2
that appears on the off-diagonal. The

above potential matrix describes the E # e Jahn–Teller case,

which is the prototypical circular cone shown in Fig. 4. The

coordinates used are equivalent in this example because they
transform as an E irrep of the point group, i.e., the gradient

difference and interstate coupling vectors can be interchanged
due to the symmetry of the system. If quadratic coupling is

included the effect is to produce ‘bumps’ in the Jahn–Teller
‘moat’ (see Fig. 5). The number of minima in the ‘moat’

depends on the largest Cn rotation axis of the point group.
Notice that the saddle-points in the moat in Fig. 5 are the result

of quadratic coupling within the ‘branching space’, i.e., differ-
ent curvatures of the potential surface along the gradient

difference (eqn. (1)) and interstate coupling (eqn. (2)) co-
ordinates.

If the ‘branching space’ is expressed in polar coordinates i.e.,
a radial coordinate r and an angular coordinate W, then the

form of the potential surfaces obtained from eqn. (16) is
expressed as,28

V� ¼ 1

2
Kr2 � ½krþ gr2 cosðnWÞ� ð17Þ

where n is an integer and corresponds to the largest Cn rotation

axis, and,

K ¼ (4p2Mc2)o2 (18)

whereM is the reduced mass of the mode, c is the speed of light
and o is the zeroth-order unperturbed vibrational frequency

discussed above. Obviously if the second-order coupling (g) is
zero, then the surfaces are those of a double-cone (the lower

state surface being the famous ‘mexican hat’ potential). The
inclusion of a non-zero g causes ‘bumps’ in the ‘trough’ of the

moat. In Fig. 5 this is shown for a six-fold rotation axis, for
example the benzene radical cation. The standard form of

polar coordinates used in Jahn–Teller studies is the complex
combination. For the ‘branching space’ this is,

re�iW ¼ �Qx1
� i �Qx2

(19)

This form is particularly useful for decomposing degenerate

irreducible representations (irreps) in the Cn subgroup (i.e., the
subgroup of pure rotations), since degenerate irreps appear in

complex conjugate pairs in these groups.76

Returning now to the linear potential (eqn. (16)), but redu-

cing the symmetry: the potential matrix given in eqn. (20) is the
eqn. for an elliptic cone (when the gradient difference and

interstate coupling vectors cannot be interchanged). If we
restrict the expansion to the ‘branching space’ and when

Fig. 3 One-dimensional potential energy curves obtained from the
E# b Jahn–Teller Hamiltonian including linear and quadratic coupling.

Fig. 4 Two-dimensional circular cone obtained from the E# e Jahn–
Teller Hamiltonian including linear coupling.

Fig. 5 Two-dimensional circular cone obtained from the E# e Jahn–
Teller Hamiltonian including linear and quadratic coupling.
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This example corresponds to an E # (b1 " b2) Jahn–Teller

system, i.e., a degenerate electronic state (transforming as the E
representation of the point group) has its degeneracy lifted to

first-order by vibrations of b1 and b2 symmetry. This occurs in
molecules where the principal axis of symmetry is C4, and in

such cases the gradient difference transforms as b1 and the
interstate coupling as b2 (or vice versa dependent upon a

unitary transformation of the states). Note that along �Qx2
,

the local minimum is actually a saddle point in the space of

both coordinates: the distortion along one coordinate does not
produce the same shift as along the other, because the value of

k is not the same for both coordinates (see Fig. 6). For the E#
(b1" b2) Jahn–Teller system, saddle points occur in the ‘moat’

even at the linear vibronic coupling level i.e., when terms
proportional to first derivatives lift the degeneracy. If quad-

ratic coupling is included, additional minima may occur.
The quadratic terms in the potential matrix lift the degen-

eracy at second-order. Let us consider an E # e Jahn–Teller
system. Let us choose two of the 3N� 8 coordinates that define

the ‘intersection space’ as �Qa and �Qb. For the E # e Hamil-

tonian the pair �Qa, �Qb must be components of a degenerate
vibrational mode. For these modes, which are not Jahn–Teller

active modes as they are in the intersection space, we have,

V ¼
1
2
o �Q

2

a þ 1
2
o �Q

2

b 0

0 1
2
o �Q

2

a þ 1
2
o �Q

2

b

0

@
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þ
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�Qb
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�Qb gBð �Q2
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2

bÞ

0

@

1

A
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where o is the frequency of each component of the degenerate
vibration before the splitting (equal at zeroth-order). The g

terms split the frequency of the mode to give frequencies of
o þ gA and o þ gB. Thus the difference in the g terms lifts the

degeneracy at second-order. In the absence of the second term
in eqn. (21) each surface would have the same curvature and

they would remain degenerate along either �Qa or �Qb. For
practical reasons we now neglect the off-diagonal77,78 terms

involving �Qa
�Qb. The rationale behind this approximation is

discussed in ref. 41. In this context, we note that the bilinear

couplings ZAB
ij along the branching-space modes are also

neglected, although it has been argued that these terms have

to be included in the second-order expansion to reproduce
Jahn–Teller spectra accurately.108,109 These terms can be ob-

tained from the calculated CASSCF Hessians, and future
extensions of our work will include their evaluation. However,

we note that our topological analysis, which is based on
calculating the curvature of the seam, is not significantly

affected by these terms, since our characterization of the higher-
symmetry conical intersection points of fulvene and the cyclo-

propenyl radical as ‘saddle points in the degenerate space’ is
confirmed by the optimization of lower-energy points of

degeneracy with lower symmetry.
In summary, our vibrational coordinate basis (eqn. (11)) has

the following properties: (1) the linear coupling is contained
solely within the ‘branching space’ and is not spread over

several modes with the same symmetry, and (2) the differences
in the harmonic frequencies for degenerate vibrational modes

gives the quadratic coupling constants for a representation of
the ‘intersection space’ based on the projected state-averaged

Hessian for each component of the degenerate electronic state.

Using first- and second-order potential constants to

represent the seam

In this section we briefly review the concept of the conical

intersection seam, and in particular, how a representation can
be obtained using the first- and second-order potential con-

stants (eqns. (5)–(10) above). The following is a brief summary
of the key equations developed in ref. 41. We then use this

methodology to determine a portion of the E# e seam in the
cyclopropenyl radical, and show that theD3h Jahn–Teller point

is in fact a third-order saddle-point on the seam of intersection.
We refer to ref. 41 for a detailed mathematical discussion of the

seam curvature.

Eqn. (12) above can be written as,

V ¼E þ
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where E is a diagonal matrix with diagonal elements equal to

E 0
A and E 0

B (energies at the conical intersection point). In eqn.
(22) above, we have neglected any cross-quadratic coupling

terms and any second-order interstate coupling. Diagonalisa-
tion of V yields a quadratic representation of the potential

surfaces in the vicinity of the conical intersection.

EA;B ¼ l �Qx1
þ
X
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2
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2

b

� 1
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v
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ð23Þ
l ¼ (kB þ kA)/2 (24)

dk ¼ kB � kA (25)

oi ¼ ( gBi þ gAi )/2 (26)

Fig. 6 Two-dimensional elliptic cone obtained from the E# (b1"
b2) linear vibronic coupling Jahn–Teller Hamiltonian.
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dgi ¼ gBi � gAi (27)

where we have dropped the redundant double lower index on
the g terms.

Thus the energy difference between the two states is

DE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�Q
2

b

 !2

þ 2kAB �Qx2

� �2

v

u

u

t

ð28Þ

The conical intersection seam is defined as the locus of points
where the two electronic states remain degenerate, e.g., both

components of an E state in a Jahn–Teller molecule. Setting the
energy difference (eqn. (28)) to zero (and neglecting the second-

terms in the ‘branching space’), we obtain eqn. (29) that defines
the seam in terms of ‘branching space’ (BS) and ‘intersection

space’ (IS) coordinates, i.e., the rectilinear set computed by our

frequency analysis.

dk �Qx1
þ
X

b2IS
dgb

�Q
2

b

 !2

þ 2kAB �Qx2

� �2¼ 0 ð29Þ

In order to concentrate on the curvilinear nature of the seam
we now assume that the two terms in parentheses on the left of

eqn. (29) are linearly independent. This is rigorously true for all
of the examples studied in this paper; indeed it is always true if

the two degenerate electronic states transform as different
irreducible representations of some non-Abelian point-group

(see ref. 41 for a discussion of this). Thus the seam is a
combination of the gradient difference coordinate and the

rectilinear ‘intersection space’ coordinates, i.e.,

dk �Qx1
þ
X

b2IS
dgb

�Q
2

b ¼ 0 ð30Þ

As we have shown elsewhere,41 the seam has the local geometry

of a hypercurve. Eqn. (30) is the eqn. of a paraboloid, while the
seam is locally a central (hyper)conic section (a hyperboloid or

an ellipsoid) when the second-order splitting in the ‘branching
space’ is also included. There are 3N � 8 linearly independent

solutions to eqn. (30), i.e.,

dk �Qx1
þ dgi

�Q
2

i ¼ 0 i 2 IS ð31Þ

Each curvilinear coordinate is now obtained as a solution to
eqn. (31). The curvilinear coordinate transformation from the

rectilinear to the seam coordinates (ti) is obtained by writing
eqn. (31) in terms of a parameter t for each of the 3N � 8 pairs

of solutions,

�Qx1
¼ � 1

dk
t2i ¼ �at2i a ¼ 1

dk
ð32Þ

�Qi ¼
1
ffiffiffiffiffiffi

dgi
p ti ¼ biti bi ¼

1
ffiffiffiffiffiffi

dgi
p ð33Þ

The expression for the energy of one of the states along the �Qx1

and �Qi coordinates is obtained from eqn. (28) and is,

Eseam ¼ l �Qx1
þ g1

�Q
2

x1
þ gi

�Q
2

i þ dk �Qx1
þ dgi

�Q
2

i
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�Q
2

x1
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�Q
2

i i 2 IS ð34Þ

Substituting from eqns. (32) and (33) we have,

Eseam ¼ �akAt2i þ gA1 a
2t4i þ gi

Ab2t2i ¼ gA1 a
2t4i

þ (gAi b
2
i � akA)t2i i A IS (35)

Eqn. (35) gives the energy of the states along a degeneracy-

retaining coordinate ti. We refer to it as the energy of the
intersection seam (hyperline) along the curved coordinate ti.

The expression required to characterize the curvature of the
hyperline is then,

@2E

@t2i

� �

t¼0

¼ 2ðgAi b2i � kAaÞ ¼ 2
gAi
dgi

� �

� kA

dk

� �� 	

ð36Þ

Thus a knowledge of the first- and second-order terms in eqn.
(36) are sufficient to determine if an optimized point on the

degenerate hyperline is a minimum or saddle point.

In ref. 41 we have used the above analysis to map the S0–S1
seam of intersection in fulvene. In fulvene, we find that the

planar intersection is a second-order saddle point on the seam,
and that there are two separate branches of the seam leading to

lower symmetry critical points of C2 and Cs symmetry. These
points represent minima on the seam, with the C2 point being

the global minimum on the seam. Part of the seam of inter-
section is shown in Fig. 7. The S0 and S1 adiabatic potential

surfaces are plotted against the gradient difference coordinate
( �Qx1

) and the methylenic torsion coordinate ( �Qf). The curved

nature of the seam is apparent from Fig. 7; this curvature arises
from the fact that a combination of first- and second-order

coordinates is needed to preserve the degeneracy.
Obviously this type of analysis holds at Jahn–Teller points as

well, and the surprising result is that a high-symmetry Jahn–
Teller crossing can be a saddle-point on the seam. The cyclo-

propenyl radical is an example of this, where two separate
degeneracy-preserving coordinates lead to lower-energy C3v

and Cs minima on the seam.

Computational details

To determine the second-order effects, we project the ‘branch-
ing space’ from the full 3N-dimensional Hessian for each state.

The projection technique is based on that first used by Baboul
and Schlegel79 to compute vibrational frequencies orthogonal

to a reaction path. The projected Hessian �H is given by,

�H ¼ PwHMWP (37)

where HMW is the mass-weighted Cartesian Hessian and P is

the following projection matrix,

P ¼ 1 � txtx
T � tyty

T � tztz
T � rara

T � rbrb
T � rcrc

T

� x1x1
T � x2x2

T (38)

where the vectors corresponding to translation of the centre
of mass (ti), and rotation around the principal axes of inertia

Fig. 7 The S0–S1 seam of intersection in fulvene (adapted from
ref. 41).
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(a, b and c) are given by,

tx ¼ 1
ffiffiffiffiffi

mi
p ð1; 0; 0; 1; 0; 0; :::; 1; 0; 0ÞT ð39Þ

ty ¼
1
ffiffiffiffiffi

mi
p ð0; 1; 0; 0; 1; 0; :::; 0; 1; 0ÞT ð40Þ

tz ¼
1
ffiffiffiffiffi

mi
p ð0; 0; 1; 0; 0; 1; :::; 0; 0; 1ÞT ð41Þ

ðraÞij ¼
ððWyÞiXj;3 � ðWzÞiXj;2

ffiffiffiffiffi

mi
p ð42Þ

ðrbÞij ¼
ððWzÞiXj;1 � ðWxÞiXj;3

ffiffiffiffiffi

mi
p ð43Þ

ðrcÞij ¼
ððWxÞiXj;2 � ðWyÞiXj;1

ffiffiffiffiffi

mi
p ð44Þ

where j ¼ x, y, z and i runs over all nuclei;W is the dot product

of the centre of mass vector with the corresponding row of the
inertia tensor (for details see the classic treatise on vibrational

spectroscopy by Wilson et al.,69 and for details of the standard
vibrational analysis in Gaussian80 see ref. 81). The ‘branching

space’ is thus projected from the Hessian in the same manner as
the translational and rotational modes are normally projected

during a single surface Born–Oppenheimer harmonic vibra-
tional frequency analysis. The state-averaged Hessian matrix is

expensive to compute, but this is available from a conical
intersection optimization provided the coupled-perturbed

MCSCF (CP-MCSCF) eqns. are solved. For details on the
computation of state-averaged second-derivatives see ref. 82.

All computations were performed using SA-CASSCF with
the aug-cc-pVTZ basis for the HCCS radical and the cc-pVDZ

basis set for the CnHn radicals. For HCCS, the active space
consisted of the six p-orbitals plus the s-lone pair orbital of the

sulfur. There are seven p-electrons plus the two electrons of the
lone-pair giving an (9,7) active space. For the CnHn radicals the

unambiguous choice of active spaces consisted of the

pp-electrons distributed in the pp-orbitals. Thus for C3H3

a (3,3) active space was used, for C4H4
1 a (3,4) active space

was used, while for C5H5 (Cp) a (5,5) active space was used. All
computations were performed on an IBM SP2 using a devel-

opment version of the Gaussian80 program.

The Renner–Teller effect in HCCS

An example of a frequency analysis of a linear molecule
exhibiting the Renner–Teller effect61,63 provides a useful intro-

duction to the frequency analysis of the ‘intersection space’ at a
conical intersection. In a Renner–Teller active molecule the

degeneracy of electronic states is not lifted to first-order in
nuclear displacements and there is no conical intersec-

tion.47,61,62 Rather, there is a ‘glancing’ or ‘touching’ of the
two surfaces. Indeed Herzberg62 suggested that Renner–Teller

geometries should be referred to as ‘glancing intersections’. It

can be shown using simple group theoretical arguments that
there is no linear vibronic coupling term in the expansion in

eqn. (4) given above for linear molecules belonging to the C
Nv

and D
Nh point-groups (see for example ref. 83). Thus, the

optimized linear geometries are simultaneously critical points
on both surfaces and can be optimized and characterized using

standard analytical derivative techniques. The 3N � 5 frequen-
cies and normal modes for each surface of a Renner–Teller

system are analogous to the frequencies and normal modes in
the projected (3N � 8)-dimensional space at an optimized

conical intersection. We are able to rationalize the Renner–
Teller topology with simple valence bond electronic structure

arguments. The degenerate X̃ 2P and A 2P states of the HCCS
molecule illustrate some general concepts with regards to the

second-order degeneracy lifting.
The 3N � 5 normal modes for each surface at a Renner–

Teller point are equivalent. Likewise, the set of frequencies for
one surface also match those of the other surface. The Renner–

Teller effect manifests itself in the fact that the frequency of a
component of a degenerate bending vibration on one surface is

the same as the frequency of the other component of the
bending vibration on the other surface. Let us consider this

in more detail. The molecule is linear, and we shall orientate it
such that the z-axis coincides with the inter-nuclear axis.

Bending vibrations can therefore take place in the xz- or
yz-planes, and each of these motions is completely equivalent.

The bending vibrations therefore transform as degenerate P

representations of the point group (C
Nv or DNh). The normal

mode and frequency of the xz-component of a bending vibra-
tion for one of the electronic states exactly matches that for the

yz-component of the bending vibration for the other electronic
state. However, the xz-bending mode and frequency are dif-

ferent from the yz-bending for the same electronic state.84 This
is a very general property of Renner–Teller surfaces, which we

later show also occurs for the ‘intersection space’ at an
optimized Jahn–Teller conical intersection. Thus if we plot

the energy as a function of one of the components of a bending
vibration the degeneracy is lifted, since the frequency for the

bending is different on each surface (Fig. 1).
If the frequencies on both surfaces are real, they both have

positive curvature and the potential energy curves along a

bending mode have the form of two parabolas with coinciden-
tal minima but having different curvatures (see Fig. 1, Renner–

Teller type-I). If the frequencies on both surfaces are imagin-
ary, they both have negative curvature and the potential energy

curves have two coincidental maxima (see Fig. 1, Renner–
Teller type-III). The final type of topology occurs when one

surface has a minimum at the linear geometry, while the other
has a saddle point (see Fig. 1, Renner–Teller type-II). In this

case one frequency is real while the other is imaginary. For a
detailed discussion on the five unique Renner–Teller surface

topologies we refer the reader to refs. 63 and 85.
The ground electronic state (X̃ 2P) and first excited state

(A 2P) of HCCS are each orbitally degenerate doublets,86,87

and exhibit a Renner–Teller effect. However, the topology of

the Renner–Teller surface is different in each case. The ground
state shows a type-I topology for both degenerate bending

vibrations, while the excited state shows a type-III topology
along one bending vibration and type-I topology along the

other. The different topologies can be rationalized by consider-
ing the electronic structure of each state. The electronic

Fig. 8 Renner–Teller potential energy surface topology for the degen-
erate X̃ 2P ground state of HCCS. The topology is Renner–Teller
type-I i.e., both surfaces have a positive force constant with respect to
the bending vibration shown.
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structure of the doubly degenerate X̃ 2P state is shown in Fig.
8. There is a triple bond between the carbon atoms, with the

singly occupied orbital being either the sulfur px or py, giving
rise to the degeneracy. The linear geometry of the X̃ 2P state

was optimized using state-averaged orbitals and is given to the
left hand side of Fig. 8. For the energetics see Table 1.

A state-averaged frequency analysis has been performed for
both the D0 and D1 component states of X̃ 2P. The 3N � 5 ¼ 7

normal modes obtained for each state are identical. There are
two degenerate bending vibrations (P symmetry) and three

non-degenerate stretching vibrations (S1 symmetry). The fre-
quencies for these modes on each surface are given in Table 2.88

It should be noted that the set of frequencies exactly match one
another on each surface, but within a degenerate bending mode

the frequencies do not match. The Renner–Teller effect be-
comes apparent when the same bending vibration on both

surfaces is compared. The first degenerate vibration (shown
in Fig. 8) has two component frequencies of 258 cm�1 and

302 cm�1. On D0 these correspond to bending in the yz- and
xz-planes respectively, while on D1 they correspond to bending

in the xz- and yz-planes. The modes therefore swap between
the two surfaces.

Fig. 8 shows the potential energy curves for the D0 and D1

(X̃ 2P) states along one component of the bending vibration.

The surface topology is seen to be Renner–Teller type-I. This is
consistent with the valence bond structure shown. The carbons

are triply bonded in both electronic resonance structures, and
upon any bending the energy will rise. The reason that the

frequencies differ for each component of the bending vibration
is that the degenerate electronic states have a lone pair and a

singly occupied orbital. Bending towards the lone pair will
raise the energy more sharply than bending towards the singly

occupied orbital, due to the different electrostatic repulsions

with the CC triple bond. The frequency for bending in the
plane of the lone pair is therefore greater than that for bending

in the plane of the singly occupied orbital. The second degen-
erate bending vibration shows the same effect with the same

surface topology (and for the same reason). The stretching
modes have the same frequencies on both surfaces. Therefore

motion along these modes preserves the degeneracy to sec-

ond-order in nuclear displacements. This is to be expected

since the stretch modes maintain the orbitally degenerate linear
geometry.

The first excited state involves an excitation of the p-system
(9s22p43p3- 9s22p33p4). This state can be represented by the

valence bond structure shown in Fig. 9, while the optimized
geometry is shown to the top left in the same figure. The carbon

atoms are double bonded and there is a three-electron allyl like
resonance between either the px or py orbitals of the two

carbon atoms and the sulfur atom. This three-electron reso-
nance provides the driving force for the type-III Renner–Teller

topology of the first bending vibration, since stable minima
exist on both the D2 and D3 surfaces with similar bent

geometries (see Fig. 10). Indeed recent experimental and
theoretical studies indicate that HCCS is bent in the first

optically active excited state.89

The harmonic vibrational frequencies for both states are

given in Table 3, which shows that the frequencies of both
components of the first bending vibration are imaginary. The

linear geometry is therefore simultaneously a second-order
saddle-point on both D2 and D3 (A2P) surfaces. The mode

swapping is again observed, 579i cm�1 for bending in the xz

plane and 290i cm�1 for bending in the yz-plane on one

surface, and the reverse on the other surface. The topology is
therefore Renner–Teller type-III, and is shown in Fig. 9.

The E# e Jahn–Teller effect in the cyclopropenyl

radical: a saddle-point and minimum Jahn–Teller

points on the seam

To introduce some of the ideas discussed above in relation to

the Jahn–Teller effect we proceed to discuss the cyclopropenyl
radical. This molecule is a prototype system for the E# e Jahn–

Teller effect in a molecule with several vibrational degrees of
freedom. Indeed at D3h geometries the symmetrical hydrogen

Table 1 HCCS: CAS(9,7)/aug-cc-pvTZ energetics

Geometry State Energy/Eh Rel. energy/

kJ mol�1

Linear ground state X̃ 2P (D0/D1) �473.866 116 0.00

Linear vertically excited A 2P (D2/D3) �473.738 937 333.93

Linear relaxed SO

saddle-point

A 2P (D2/D3) �473.744 442 319.45

Bent minimum D2 �473.750 225 304.26

Bent minimum D3 �473.746 764 313.34

Table 2 State-averaged harmonic vibrational frequencies for the X̃ 2P

state of HCCS at its optimized linear geometry

D0 D1

o/cm�1 Symmetry

(C
Nn

)

Vibration o/cm�1 Symmetry

(C
Nn

)

Vibration

Non-degenerate modes

761 S1 Stretch 761 S1 Stretch

1993 S1 Stretch 1993 S1 Stretch

3619 S1 Stretch 3619 S1 Stretch

Degenerate modes

258 P yz-bend 258 P xz-bend

302 xz-bend 302 yz-bend

373 P yz-bend 373 P xz-bend

557 xz-bend 557 yz-bend

Fig. 9 Renner–Teller potential energy surface topology for the degen-
erate A2P first excited state of HCCS. The topology is Renner–Teller
type-III i.e., both surfaces have a negative force constant with respect
to the bending vibration shown.

Fig. 10 State-averaged optimised geometries for the (a) D2 and (b) D3

states of HCCS. The existence of these minima provides the driving
force for the Renner–Teller type-III topology of the A 2P state at linear
geometries.
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skeleton surrounding the C3 shell can be seen as an extension

from the thoroughly investigated triatomic (X3) Jahn–Teller
system.47–49

Before discussing the spectroscopic constants computed with
our method we shall first of all determine the local minimum

energy point on the Jahn–Teller seam. Surprisingly, the highly-
symmetrical D3h geometry is not the minimum on the seam,

but rather a third-order saddle-point (see Fig. 11). At D3h

geometries the molecule exists in a 2E00 electronic state and is
therefore Jahn–Teller unstable. It was previously assumed that

the lowest energy D3h geometry was a minimum on the seam of
intersection. As we shall show this is not the case (compare the

following results for the cyclopropenyl radical with those of the
cyclobutadienyl radical cation and the cyclopentadienyl radical

to follow).
Using the group theoretical arguments discussed in the

appendix the non-vanishing potential constants can be deter-
mined. In this example the first-order constants are non-zero

only for vibrations symmetrical about the sh reflection plane.
Thus the gradient difference and interstate coupling vectors lie

in the molecular plane (and will span E0). The second-order
potential constants however have no such restriction (since the

direct product of two double-primed representations is a
primed one). Our vibrational frequency analysis shows that

the degenerate out-of-plane CH bending vibration has a
Renner–Teller type-II topology for both vibrational compo-

nents. This, together with eqn. (36) allows the curvature of the
curvilinear seam to be determined. It follows that the D3h

geometry is in fact a third-order saddle-point on the seam.
The canonical vibrational normal coordinates at D3h span

the following irreps: 2A0
1 " A0

2 " 3E0 " A00
2 " E00. Note

that there are three vibrations of E0 symmetry and if eqn. (4)

was used (i.e. without separating first- and second-order con-
tributions), then each of these can have non-zero linear poten-

tial constants. However if our alternative vibrational
coordinate basis (eqn. (11)) is used then only one mode (i.e.,

the �Qx1
, �Qx2

pair) has a non-zero linear coupling constant. The
quadratic-coupling constants are then obtained for all the

remaining E modes (both E0 and E00). The values of the
harmonic frequencies are given in Table 4. Note that there

is a degenerate mode with a Renner–Teller type-II topology

(Fig. 1). Thus this mode has a very large quadratic-coupling
constant.

The global minimum energy point on the seam has C3v

symmetry and is shown in Fig. 11. This point is reached by

following the a002 normal mode from the D3h geometry, as
shown in Fig. 11b. The values of the harmonic frequencies

for this mode require some further comment. Obviously fol-
lowing the a002 bending mode from the D3h Jahn–Teller point

leads directly to a C3v geometry (which is also a Jahn–Teller
point, as C3v is a non-Abelian point group). One would there-

fore expect the harmonic vibrational frequencies on each sur-
face to be the same (i.e., both imaginary but the same

magnitude). Table 5 shows that this mode has a Renner–Teller
type-III topology. This splitting is in fact caused by a bilinear

coupling between the a002 mode and one component of the e00

mode. These two modes can couple since A00
2# E00 ¼ E0, and

since the symmetrized direct product of the electronic state
irrep with itself is [E00 # E00] ¼ E0. In the C2v subgroup A00

2-

B1 and E00
- A2" B1, therefore it is the b1 component of the

e00 bending vibration which is coupled to the a002 vibration. The
effect of this bilinear coupling is observed in the mixing of the
two normal coordinates. In this case the a002 normal coordinate

Table 3 State-averaged harmonic vibrational frequencies for the A 2P

state of HCCS at its optimized linear geometrya

D2 D3

o/cm�1 Symmetry

(C
Nn

)

Vibration o/cm�1 Symmetry

(C
Nn

)

Vibration

Non-degenerate modes

795 S1 Stretch 795 S1 Stretch

2220 S1 Stretch 2220 S1 Stretch

3623 S1 Stretch 3623 S1 Stretch

Degenerate modes

579i P yz-Bend 579i P xz-Bend

290i xz-Bend 290i yz-Bend

265 P yz-Bend 265 P xz-Bend

310 xz-Bend 310 yz-Bend

a i ¼
ffiffiffiffiffiffiffi

�1
p

.

Fig. 11 (a) Cyclopropenyl radical: the degenerate Jahn–Teller state,
shown with the gradient difference (gd) and interstate coupling (dc)
vectors, which lift the degeneracy at first-order. (b) The curvilinear
seam obtained as the non-degenerate out-of-plane vibration (a002),
bilinearly coupled to the out-of-plane degenerate (e00) vibration, leading
to the global minimum in the ‘intersection space’. (c) The curvilinear
seam obtained by combining the gd vector and the degenerate out-of-
plane vibration (e00), leading to symmetry equivalent local minima in
the ‘intersection space’.

Table 4 Projected state-averaged harmonic vibrational frequencies

for the cyclopropenyl radical atD3h and C3v critical points on the E# e

Jahn–Teller seama

D3h D0 o/cm
�1 D1 o/cm

�1 C3v D0 o/cm
�1 D1 o/cm

�1

a002 713.6i 117.9i a1 543.9 539.3

e00 915.3i 551.7 e 673.6 898.2

745.0 1040.7i 902.7 679.7

a02 1111.4 1004.4 a2 1048.4 1059.5

e0 938.3 1151.9 e 1157.6 1182.3

1092.0 986.0 1662.6 1129.4

a01 1574.3 1574.3 a1 1553.5 1553.4

e0 3311.4 3317.4 e 3363.5 3391.4

3316.4 3310.3 3386.3 3360.1

a01 3519.0 3519.0 a1 3445.7 3444.1

a i ¼
ffiffiffiffiffiffiffi

�1
p

.
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does not have exact symmetry since the other mode is slightly
mixed in.

Eqn. (36) allows the curvature of the seam to be determined.
Let us illustrate this with respect to the out-of-plane e00 bending
vibration. The first term in eqn. (36) is equal to the ratio of one
component mode frequency to the frequency difference, and

from Table 4 this can be calculated as 0.6015 (adopting a sign
convention based upon which component mode is chosen i.e.,

the mode we assign to state A or B). The second term is the
ratio of the linear coupling constant for the gradient difference

mode for one of the states ( �Qx1
) to the difference in the linear

couplings for the �Qx1
mode. In the E# e Jahn–Teller case this

will always be 0.5 since the coupling constants in eqn. (16) have
equal magnitude but opposite sign; we must remember to keep

track of the sign convention adopted previously. Taking the

first component mode of the e00 pair as �Qi in eqn. (36) gives the
following value for the seam curvature: 2(�0.6015 þ 0.5) ¼

�0.2030. Thus if we follow the curvilinear combination of the
bending mode and the gradient difference mode, we stay on the

seam but lower the energy (see Fig. 12). Since the bending
mode in question is doubly degenerate, the seam will lead to

two distinct lower energy critical points. Overall, the D3h point
is a third-order saddle-point, when the a002 mode is also con-

sidered.
The above example highlights the fact that the point around

which the expansion of the potential energy is taken in eqns. (4)
or (12) above must be carefully chosen. Clearly the global

minimum on the E# e seam (Fig. 11a) is more suitable than
the D3h third-order saddle-point, even though the two points

are only 10.80 kJ mol�1 apart. It would be interesting future
work to compute the photoelectron and/or electron-attach-

ment spectra of cyclopropenyl in detail to determine how the
presence of lower-lying seam critical points affects the compari-

son to experiment.
Finally, the cyclopropenyl radical highlights an important

aspect in multimode problems that has until now not been
considered: namely that the ‘obvious’ Jahn–Teller point may

not be the minimum on the seam. A schematic of the seam is
shown in Fig. 12. We have shown that the symmetry is broken

by some suitable (non-linear) combination of the gradient
difference (gd) vector (one component of the first-order e0

pair), with either component of the degenerate (e00) out-of-
plane vibration (Fig. 11) leading to a critical point on the seam

of Cs symmetry. Thus, while the Jahn–Teller theorem predicts
that separately each of these vibrations will lift the degeneracy,

when combined via some suitable curvilinear transformation,

the degeneracy is retained even though the (non-Abelian)
symmetry is broken.

The E# (b1" b2) Jahn–Teller effect in the

cyclobutadienyl radical cation

The cyclobutadienyl radical cation provides an example of the

Jahn–Teller E# (b1" b2) effect. When a molecule contains a
single C4 axis of symmetry the gradient difference (eqn. (1)) and

interstate coupling (eqn. (2)) vectors do not transform as a
degenerate irrep of the point-group, but rather as different

non-degenerate irreps. From this it follows that the gradients
of the components of the degenerate electronic state (1Eg) will

be different (i.e., the constant computed from eqn. (5) above is
not equal to that computed from eqn. (6)).

To demonstrate some of the ideas discussed so far we will
now focus our attention on the photoelectron spectrum of

cyclobutadiene. This provides an example of computing the
spectrum from wavepacket propagation. The object here is not

to generate a high-quality photoelectron spectrum, but rather
to show that using a very minimal model the qualitative

features can be reproduced. We refer the reader to the body
of work by Köppel et al.50,66–68,90,91 for quantitative simulation

of photoelectron spectra using wavepacket dynamics methods.
The ground state of cyclobutadiene (in D4h symmetry) is

1A1g and therefore not subject to the Jahn–Teller effect.

Cyclobutadiene is however subject to the related pseudo-Jahn–
Teller (pJT) effect which we shall briefly discuss. The pJT effect

is unfortunately sometimes called the second-order Jahn–Teller
effect, but this is not ‘second-order’ as we use the term in this

article. The pJT effect is due to a quadratic term in the
interaction potential which lowers the molecular symmetry

and increases the energy gap between two non-degenerate
states.92 However, the ‘real’ second-order (quadratic) Jahn–

Teller effect is the lifting of a degeneracy at second-order in
nuclear displacements (eqns. (4) and (12)). The pJT effect has

been investigated in great detail47,49,92–98 and used to explain
such low-symmetry phenomena as solid-state structural distor-

tions,95 molecular fluxionality96 and the preference for low
coordination numbers to the right of the d-block.97 The pJT

Fig. 12 Schematic of the seam of intersection in the C3H3 radical. The
coordinates are the gradient difference (e0 in D3h symmetry) and the
symmetric out-of-plane bending vibration (a002 in D3h symmetry). Both
of these coordinates combine in a curvilinear manner to produce the
seam shown in red.

Table 5 Projected state-averaged harmonic vibrational frequencies

for the cyclobutadienyl radical cation at the D4h minimum on the E"

(b1# b2) Jahn–Teller seam

Non-

Abelian

symmetry

(D4h)

D0 o/

cm�1

Symmetry

(Abelian

subgroup-

D2h)

D1 o/

cm�1

Symmetry

(Abelian

subgroup-

D2h)

D/

cm�1

Non-degenerate modes

b2u 123 b1u 123 b1u 0

a2u 750 b1u 750 b1u 0

b2u 936 b1u 936 b1u 0

b2g 1134 b1g 1134 b1g 0

a2g 1359 b1g 1359 b1g 0

a1g 1360 ag 1360 ag 0

b1g 2862 ag 2862 ag 0

a1g 3418 ag 3418 ag 0

Degenerate modes

eg 741 b3g 741 b2g 362

1103 b2g 1103 b3g
eu 937 b2u 937 b3u 186

1123 b3u 1123 b2u
eu 1434 b2u 1434 b3u 101

1535 b3u 1535 b2u
eu 3386 b2u 3386 b3u 27

3413 b3u 3413 b2u
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effect is the distortion of a high symmetry non-degenerate
species to a lower symmetry geometry along a single non-

totally symmetric vibrational coordinate. An energy stabiliza-
tion occurs due to a mixing of the ground and excited states

along this vibrational coordinate. Geometries subject to pJT
distortion are saddle-points on the potential energy surface,

rather than minima. Our group has recently proposed a test for
pJT activity based on symmetry restrictions to the Hessian.92 If

the Hessian is computed using only configuration state func-
tions (CSFs) of the appropriate symmetry for the electronic

state then all eigenvalues are real at the pJT point. On the other
hand, if all CSFs are included in the Hessian computation then

one imaginary eigenvalue will appear (corresponding to the
non-totally symmetric pJT active coordinate). This is because

interstate coupling contributions to the Hessian mix the states;
these are not present in symmetry-restricted computations.

In cyclobutadiene, the symmetry restricted frequency compu-
tation (i.e., using only CSFs of A1g symmetry) at the D4h

optimized geometry gives the lowest frequency mode as 507
cm�1 (having a2u symmetry). When all CSFs are included in the

frequency computation an imaginary frequency of 1448 cm�1

appears (see Fig. 13). The corresponding eigenvector has b2g
symmetry and leads to a rectangular geometry. The fact that the
rectangular geometry is a minimum was also verified by a

frequency computation using all CSFs. The pJT stabilization
from the square-planar to rectangular geometry is 0.641 eV.

To test the reliability of our SA-CASSCF calculations for
cyclobutadiene, the photoelectron spectrum was computed

from a model Hamiltonian (using the potential from eqn.

(20)). If the Franck–Condon (FC) point for ionization is on
the conical intersection seam of the ion, as often is the case for

Jahn–Teller problems, then the important linear modes are the
gradient difference and interstate coupling (lifting the degen-

eracy at first-order). However, totally symmetric modes, which
cannot lift the degeneracy at any order, can be important to

obtain the correct vibrational structure in the spectrum when
this is not the case. The C4H4 seam minimum is at symmetrical

D4h geometries and our computations show that this seam does
not extend to lower symmetry structures as in the previous

C3H3 example. Thus, the minimum on the seam is displaced
from the ionization FC point and it is important to include at

least one totally symmetric mode in the model Hamiltonian.
For a discussion of the inclusion of totally symmetric modes

see ref. 99.
The model Hamiltonian included three modes: one totally

symmetric mode with frequency 1516 cm�1, in addition to the
gradient difference and interstate coupling modes. This fre-

quency is taken from the D2h ground state minimum. The force

at the Franck–Condon geometry along this mode was then

calculated to provide the relevant linear parameter and this was
combined with the linear parameters for the branching space

modes to give the full Hamiltonian. The parameters used are
collected in Table 6.

The photoelectron spectrum was obtained as the Fourier
transform of the autocorrelation function obtained from a

wavepacket propagation over 150 fs using the Heidelberg
MCTDH package.100 It is shown in Fig. 14. For more details

about the MCTDH method, including further examples of the
computation of photoelectron spectra of Jahn–Teller active

molecules see refs. 99 and 101 and references therein. A good
qualitative agreement with experiment32 is obtained using only

the parameters given in Table 6, which indicates that all the

Fig. 13 Schematic potential surfaces for neutral C4H4 (subject to a
pseudo-Jahn–Teller distortion) and the photoionised radical cation
(subject to a linear E # (b1 " b2) effect). The p-orbitals involved
are shown to the right, labelled in D4h symmetry.

Table 6 Parameters used in the linear vibronic coupling model to

simulate the photoelectron spectrum of cyclobutadiene. The coordi-

nates used were mass-frequency scaled normal modes with the D4h

minimum energy conical intersection point as the reference geometry.

In these coordinates, the D2h Franck–Condon point is at �1.86, �1.86,

0.68 along the gradient difference and interstate coupling vectors, and

the totally-symmetric vibration respectively

Linear coupling along �Qx1
0.184 eV

Linear coupling along �Qx2
0.240 eV

Harmonic vibrational frequency for �Qx1

a 983.99 cm�1

Harmonic vibrational frequency for �Qx2

a 959.80 cm�1

Harmonic vibrational frequency for Ag modea 1516.31 cm�1

DE (neutral � radical cation) 7.65 eVb

8.10 eVc

a Taken from the neutral D2h minimum. b SA-CASSCF/

cc-pVDZ c Experimental value taken from ref. 32.

Fig. 14 (a) Experimental (taken from ref. 32 with permission) and (b)
computed photoelectron spectrum for C4H4

1. Simulated spectrum
computed using the gradient difference, interstate coupling and a
totally symmetric mode. All parameters in the linear model Hamil-
tonian were calculated using SA-CASSCF. The spectral envelope
includes a phenomenological broadening to match the experiment.
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important vibronic coupling data needed to reproduce the first
photoelectron band can be obtained from the SA-CASSCF

frequency analysis (Fig. 14). It should be noted that the
second-order terms would merely broaden the spectra since

in this particular example the first-order and second-order
effects are rigorously separable due to the symmetry of the

Hamiltonian.

The Jahn–Teller effect in Cp

The cyclopentadienyl radical has a degenerate ground state at
D5h geometries (2E00

1), which is subject to a Jahn–Teller distor-

tion.23,24,102 The D5h symmetry is broken by the Jahn–Teller
distortion and the 2E00

1 electronic state is split into two different

states which transform as 2A2 and 2B1 in the C2v subgroup.

These two states can be classified as a dienyl state (2B1) and an
allyl state (2A2): see Fig. 15 for a VB representation of the

states and the Jahn–Teller distortion which lifts the degeneracy
at first-order.

The modes which lift the degeneracy at first-order have e02
symmetry. Thus, the interstate coupling and gradient difference

vectors transform as e02. The gradient difference vector is totally
symmetric in the C2v subgroup and corresponds to the dienyl

distortion, while the interstate coupling vector transforms as b2
in the C2v subgroup and corresponds to the allyl distortion.

By projecting these modes from the Hessian we remove the
components of the gradient along the three remaining normal

modes of e02 symmetry in the ‘intersection space’. As discussed
in the previous section (eqn. (11)) all linear coupling is now

contained within the space spanned by the gradient difference
and interstate coupling vectors i.e., the branching space. For

the other modes of e02, the degeneracy is not lifted at first-order
in our vibrational coordinate basis.

The results of the vibrational frequency analysis are pre-
sented in Table 7. It can be seen that the non-degenerate modes

have the same frequency on each surface. For an E# e Jahn–

Teller conical intersection, this is expected since non-degener-
ate modes do not lift the degeneracy at first or second-order

i.e., only two-component modes that together transform as a
degenerate irreducible representation of the molecular point

group can lift the degeneracy of the electronic state in an E# e
Jahn–Teller system.

The modes which lift the degeneracy at second-order are of
e01 and e001 symmetry. The frequency splittings for these modes

can be seen to be quite small (Table 7). The largest splitting of
87 cm�1 corresponds to an out-of-plane bending motion. This

can be understood if one considers the valence bond resonance
structures. For example, there will be less resistance to the b2
component vibration for the allylic state; therefore the fre-
quency will be lower. The splitting is relatively small though.

This is in agreement with findings of Applegate, Miller and
Barckholtz,23 who find that all the second-order couplings in

Cp are quite small in magnitude.
Modes n10 and n13 show a small splitting (Table 7). This

requires some further comment. These modes are of e002
symmetry and the quadratic coupling constant between com-

ponents of these vibrations is zero by symmetry. The only way
the degeneracy can be lifted at second-order along these modes

is by invoking a cross-quadratic term, which is normally
neglected. The cross-quadratic coupling can take place via

the coupling of components of modes of e001 symmetry with
those of e002 symmetry.23 Note that the components of these

degenerate vibrations transform as the same irreps in the C2v

subgroup (Table 7). Within our computations splittings of this

type can occur since there are no symmetry restrictions placed
upon the calculation of the state-averaged Hessian. The value

of the splitting in both of these modes is 7 cm�1. Since there is
only one mode of e001 symmetry, only this mode can be

responsible for the splitting, explaining why the 7 cm�1 split-

ting is the same for both modes. This also explains why the
splitting in the E 00

1 mode is large compared to the other modes,

since it will also show this effect with both modes of e002
symmetry. Within our vibrational coordinate basis (eqn.

(11)), the modes n10, n12 and n13 show an effective splitting
due to the terms in eqns. (8)–(10), which are second-order

intra- and interstate couplings.

Fig. 15 The Jahn–Teller effect for the Cp radical (D5h). Distortion along the gradient difference vector ( �Qx1
) (a1 symmetry in C2v subgroup) leads to

a dienylic species, while distortion along the interstate coupling vector ( �Qx2
) (b2 symmetry in C2v subgroup) leads to an allylic species.

Table 7 Projected state-averaged harmonic vibrational frequencies

for both components of the degenerate 1E00
1 state of cyclopentadienyl

(Cp)

Mode Non-Abelian

symmetry

(D5h)

D0 o/

cm�1

Symmetry

(Abelian

subgroup-

C2v)

D1 o/

cm�1

Symmetry

(Abelian

subgroup-

C2v)

D/

cm�1

Non-degenerate modes

n11 a002 687 b2 687 b2 0

n5 a01 1172 a1 1172 a1 0

n6 a02 1388 b1 1388 b1 0

n1 a01 3408 a1 3408 a1 0

Degenerate modes

n10 e002 529 b2 536 b2 7

548 a2 540 a2

n12 e001 690 b2 690 a2 87

777 a2 777 b2

n13 e002 867 b2 860 a2 7

868 a2 874 b2

n9 e02 919 a1 919 a1 0

919 b1 919 b1

n8 e01 1059 a1 1059 b1 9

1068 b1 1068 a1

n7 e02 1232 b1 1232 b1 0

1232 a1 1232 a1

n4 e02 1539 b1 1539 a1 12

1551 a1 1551 b1

n3 e02 3373 a1 3373 a1 0

3373 b1 3373 b1
n2 e02 3391 a1 3391 b1 1

3392 b1 3392 a1
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Conclusions

In this perspective we have shown how one can obtain second-
order degeneracy splittings at a conical intersection. This is

based on the projection of the ‘branching space’ from the state-
averaged nuclear Hessian for each component of the degen-

erate electronic state, and the second-order effects are obtained
as the differences in the eigenvalues. The corresponding eigen-

vectors define a set of rectilinear vibrational coordinates, which
form a representation of the (3N� 8)-dimensional ‘intersection

space’. The potential surfaces along these coordinates show
analogous topologies to the well-known Renner–Teller topol-

ogies of linear molecules with non-zero electronic angular
momentum.

The seam of intersection is a hypercurve and a second-order
approximation to it can be obtained using both the ‘branching

space’ and the ‘intersection space’. A curvilinear transforma-
tion of the two sets of coordinates provides a representation of

the seam to second-order, i.e., for small finite displacements
along the hypercurve. Using the second-derivative of the

electronic potential energy with respect to the curvilinear seam
allows us to characterise optimised points on the seam as

minima or saddle-points. Our analysis shows (e.g. for the
cyclopropenyl radical) that a Jahn–Teller geometry may not

be a minimum on the seam. Thus, even at a Jahn–Teller point
the symmetry may be lowered while the degeneracy is retained.

It has recently become apparent that, for photochemical
problems in which the reaction path does not lie within the

‘branching space’, segments of the seam of intersection need to

be mapped out.14,16 This is because higher energy domains on
the seam can provide different points for radiationless decay

and a variety of photoproducts may result. For example, see
ref. 14 where direct dynamics has been used to elucidate the

mechanism of photochromism in diarylethylenes, which in-
volves decay at various points on the seam of intersection away

from its minimum. In the future, we expect our methodology to
be used to characterise and map out important segments of the

intersection seam.
Returning to Jahn–Teller symmetry imposed conical inter-

sections: when the Jahn–Teller geometry is a minimum on the
seam, the original rectilinear ‘branching space’ and ‘intersec-

tion space’ coordinates can be used to define an alternative
vibrational coordinate basis set to simulate vibronic spectra,

using either wavepacket dynamics or by diagonalizing a model
vibronic Hamiltonian. Our method for obtaining the potential

constants which would be necessary in either case is very
similar to that of Miller et al.23,26–28 One advantage our

method has is that the Jahn–Teller surfaces are all computed
at the same level of theory, based around a Taylor expansion at

the conical intersection. This is in contrast to the Barckholtz–
Miller model in which a (fictitious) average potential is used to

obtain the second-order potential constants in the expansion.
Future work will include the computation of Jahn–Teller

spectra on some well-studied molecules (e.g., the methoxy
radical and the benzene radical cation) in order to parameterise

a model Hamiltonian in a more systematic manner, and to
further decompose each contribution from the state-averaged

Hessian, so that more terms may included (e.g., all second-
order interstate coupling).

It should also be straightforward to extend the above
methodology to higher degeneracies in the cubic or icosahedral

point groups. For example the von Neumann–Wigner theorem

states that the ‘branching space’ for a triply degenerate state
will be five-dimensional. This corresponds to the T# (t2" e)

Jahn–Teller effect. In principle our method could be extended
to such cases. Recent studies have shown the possible impor-

tance of triply-degenerate states in general.103,104

Many photochemical reaction mechanisms are now known

to involve reaction paths via conical intersections. The main
spectroscopic technique used has been time-resolved pump–

probe spectroscopy, on the picosecond to femtosecond time-
scale. It is not yet possible to obtain ‘static’ high-resolution

electronic spectra and hence detailed vibrational structure in
the region of the conical intersections that typically occur in

photochemical reactivity problems, as the molecules are not in
the crossing region for long enough. However, for the specia-

lised case of a Jahn–Teller crossing, high resolution spectra can
often be obtained, yielding detailed information concerning the

intersecting potential energy surfaces which can in turn be used
to fit the experimental spectrum. Here, theory and experiment

can be compared and calibrated directly,105 in contrast to a
typical photochemical reaction. However, this distinction is

not fundamentally between ‘photochemistry’ and ‘Jahn–Teller
spectroscopy’, but has to do with whether the molecule is

constantly in the vicinity of the crossing (often the case for
Jahn–Teller systems), or whether the crossing is encountered

briefly along a reaction path leading elsewhere (often the case
photochemically).

We have recently shown14 that an extended seam away from
the crossing minimum is important for photochemistry. In this

article, we report that for a simple Jahn–Teller system (cyclo-
propenyl, C3H3), there is also an extended crossing seam, and

there must be many other Jahn–Teller systems for which this
occurs. Studying model Jahn–Teller systems can therefore help

in understanding the nature of the extended seam now reco-
gnised as important for photochemistry. Moreover, greater

interaction between experimental and theoretical groups study-
ing photochemical mechanisms and Jahn–Teller spectroscopy

would be beneficial, as each can generate complementary

insights into surface crossings. As has been pointed out else-
where recently,106 there is still a ‘strange orthogonality between

the conical intersection and Jahn–Teller communities’.

Appendix: Group theoretical considerations

An understanding of the symmetries of the modes inducing a
first- and/or second-order Jahn–Teller effect often reduces the

complexity of eqn. (4), since only certain modes can give non-
zero potential constants (eqns. (5)–(10)). In this appendix we

shall expand on some of the group theoretical ideas using the
examples discussed above.

Let us begin with pseudo-Jahn–Teller (pJT) effect as dis-
cussed for the C4H4 radical cation. The pJT effect is based on

the Herzberg–Teller expansion of the electronic energy,62

E ¼ E0 þ C0
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where C0 is the electronic ground state wavefunction, Ci are
excited electronic wavefunctions, V is the potential energy and

Q is a normal coordinate obtained at a critical point on the
non-degenerate potential surface. Since the expansion is at a

critical point only the last term survives. In order for this term
to be non-zero the direct product of the irreducible representa-

tions labelling the electronic states must be equal to that of the
vibrational normal coordinate, i.e.,

G0# Gi ¼ GQ (46)

Thus for C4H4 at D4h geometries any b2g vibration can lower

the ground state energy by allowing the ground (1A1g) and
excited (1B2g) states to mix. Of course the pJT interaction is

governed by the energy difference in the denominator of eqn.
(45), which is of course not true for actual conical intersection

geometries where the energy gap is exactly zero and the
geometry is not a critical point on the potential energy surface.

We now consider the case of an accidental intersection
(between states Cn and Cm) in an Abelian point-group. For a
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first-order potential constant (eqn. (5)–(7)) to be non-vanish-
ing, the condition is that the direct product of the irreps

labeling the electronic states and the irrep labeling the vibra-
tional coordinate �Q should contain the totally symmetric irrep

(GA).
50,99

Gn# Gm# G �Q
GA (47)

Obviously the intrastate couplings (eqns. (5) and (6)) can

only be non-zero for the totally symmetric modes. Further-
more in our vibrational coordinate basis (eqn. (11)) the only

non-zero first-order term is the one involving the gradient
difference vector ( �Qx1

). For the off-diagonal interstate coupling

terms (eqn. (7)) the symmetry of the vibrational coordinates �Qi

is therefore determined by the direct product of the irreps of

the electronic states, e.g., in the C2v point group if the states
have A2 and B1 symmetry then only modes of A2# B1 ¼ B2

symmetry have non-zero interstate coupling terms. In the
vibrational coordinate basis of eqn. (11) this reduces to only

the interstate coupling vector, and the potential constant (eqn.

(7)) is the length of this vector.
In the Jahn–Teller effect the direct products in eqn. (47) now

involve degenerate point-groups, and as a result the symmetries
of the Jahn–Teller active modes are taken as the symmetrized

direct product of the electronic state irrep with itself.107 In non-
cubic point groups this leads to the well-known E # e and

E# (b1" b2) cases.
47–50

Similar to the linear Jahn–Teller coupling, the possibility of

quadratic coupling can be evaluated group theoretically.26 For
specific point-groups the symmetries of first- and second-order

Jahn–Teller modes may be determined;26 the number of such
modes of course being determined by the symmetry-adapted

vibrational coordinates of the particular molecule. For a vibra-
tional coordinate to lift the degeneracy at second-order the

symmetrized square of the direct product of the irrep of the state
with itself must contain that of the direct product of the (appro-

priately symmetrized) irrep of the two vibrational coordinates.

[GE# GE] ¼ [G �Qi
# G �Qj

] (48)

where GE is the irrep of the electronic state, and G �Qi
, G �Qj

are the
irreps of the vibrational coordinates. For example in the C4H4

radical cation, the molecular point-group is D4h. The electronic
state is 1Eg, thus the linear Jahn–Teller active coordinates span

[Eg# Eg] ¼ b1g" b2g. The direct product of the quadratically
active coordinates must therefore also span b1g" b2g. In the

D4h point-group both degenerate irreps have the desired direct
products since [Eg# Eg] ¼ b1g" b2g and also [Eu # Eu] ¼
b1g" b2g. However there can be no cross-quadratic coupling
since [Eg# Eu] ¼ b1u" b2u. For evaluating whether certain

cross-quadratic couplings are possible it is often easier to use
an Abelian subgroup. As another example, the cyclopentadie-

nyl radical (Cp) has a degenerate electronic 2E00
1 ground state at

D5h geometries.23,24,102 The modes which lift the degeneracy at

first-order are of e02 symmetry, while the modes that lift the
degeneracy at second-order are of e001 or e

00
1 symmetry. It is also

possible that the degeneracy can be lifted at second-order, by
coupling the components of modes of e001 and e002 symmetry. In

the C2v subgroup of D5h, both the E00
1 and E00

2 irreps are
decomposed to A2 " B2. Therefore cross-quadratic coupling

can occur between both component modes with the same
subgroup symmetry. For the general set of vibrational coordi-

nates Qi (in eqn. (4)), all modes of e02 symmetry can lift the

degeneracy at first-order (i.e., there is a non-zero ki for all
modes with this symmetry). There are four modes of this

symmetry for Cp. Thus the coupling ki is spread over all these
modes (see discussion in Barkholtz and Miller23,26,28). Our

alternative set of vibrational coordinates, where the degeneracy
is lifted at first-order only in the branching space, simplifies

eqn. (4) and allows a separation of those modes that lift the
degeneracy at first-order from the rest of the space.
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67 J. Schmidt-Klügmann, H. Köppel, S. Schmatz and P. Botsch-

wina, Chem. Phys. Lett., 2003, 369, 21.
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