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Abstract. Learning in a multiagent environment is complicated by the fact that as other agents learn, the envi-
ronment effectively changes. Moreover, other agents’ actions are often not directly observable, and the actions
taken by the learning agent can strongly bias which range of behaviors are encountered. We define the concept
of a conjectural equilibrium, where all agents’ expectations are realized, and each agent responds optimally to
its expectations. We present a generic multiagent exchange situation, in which competitive behavior constitutes a
conjectural equilibrium. We then introduce an agent that executes a more sophisticated strategic learning strategy,
building a model of the response of other agents. We find that the system reliably converges to a conjectural
equilibrium, but that the final result achieved is highly sensitive to initial belief. In essence, the strategic learner’s
actions tend to fulfill its expectations. Depending on the starting point, the agent may be better or worse off than
had it not attempted to learn a model of the other agents at all.
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1. Introduction

Machine learning researchers have recently begun to investigate the special issues that mul-
tiagent environments present to the learning task. Contributions in this journal issue, along
with recent workshops on the topic (Grefenstette et al, 1996, Sen, 1996, Sen, 1997), have
helped to frame research problems for the field. Multiagent environments are distinguished
in particular by the fact that as the agents learn, they change their behavior, thus effectively
changing the environment for all of the other agents. When agents are acting and learning
simultaneously, their decisions affect (and limit) what they subsequently learn.

1.1. Learning and Equilibrium

The changing environment and limited ability to learn the full range of others’ behavior
presents pitfalls, both for the individual learning agent and for the designer of multiagent
learning methods. For the latter, it is not immediately obvious even how to define the
goal of the enterprise. Is it to optimize the effectiveness of an individual learning agent
across a range of multiagent configurations, or to optimize the joint effectiveness of a
configuration of learning agents? Of course, either problem may predominate depending
on the circumstance. In any case, we require a framework for characterizing a multiagent
learning process, and analyzing the behaviors of alternative learning regimes.
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We argue that a central element of such a multiagent learning framework is anequilibrium
concept, that is, a characterization of some steady-state balance relationship among the
agents. This follows by direct analogy from the static knowledge (i.e., no learning) case.
In single-agent decision theory, the agent’s problem is to maximize its utility. This remains
true in the multiagent (i.e., game-theoretic) case, but there all the agents are simultaneously
optimizing. The equilibrium (consistent joint optimization) thus represents the logical
multiagent extension of individual optimization. Although from any individual agent’s
perspective the other agents may well be treated as part of the environment, a decision on
the analyst’s part to accord all of themagentstatus (i.e., to treat the system as multiagent)
imposes an essential symmetry on the problem.

Note that equilibrium is an idealization of multiagent behavior, just as optimization is
an idealization of single-agent behavior. Whether or not we actually expect a complicated
system to reach equilibrium (or analogously, an individual to optimize successfully), it is
quite useful for analysts to understand what these equilibria are. Any nonequilibrium gives
at least one agent a motivation to change, just as a nonoptimum is a cause for change in the
single-agent case.

Game theory bases its solutions on equilibrium actions (or more generally,policies). An
agent behaving within an equilibrium is often explained in terms of the agent’sbeliefs
about the types or policies of other agents. How agents reach such beliefs through repeated
interactions is what game theorists mean bylearning(Milgrom & Roberts, 1991), and that
is the sense of the term we adopt as well.

The distinction between learning and nonlearning agents, for our purposes, is simply that
the former change their beliefs, whereas the latter’s beliefs are static.1 Thus, a learning
regime defines a dynamic process, and the outcomes achieved in likely trajectories of such
processes distinguish the effectiveness of alternative regimes. In the multiagent context,
we are interested particularly in whether a learning regime leads to equilibrium behavior,
and if so, then how, and when, and which one.

In the approach to multiagent learning proposed here, we characterize an agent’s belief
process in terms ofconjecturesabout the effects of their actions. We define learning in terms
of the dynamics of conjectures, and equilibrium in terms of consistency of conjectures within
and across agents.

1.2. A Study in Conjectural Equilibrium

We proceed in the next section to define our basic solution concept, that ofconjectural
equilibrium. In the sequel, we investigate the concept by exploring a simple multiagent
environment representing a generic class of exchange interactions. We identify some inter-
esting phenomena in this context that—while specific to the particulars of the environment
and agent assumptions—we suspect to be prevalent in many other circumstances. Fol-
lowing the empirical analysis of this particular environment, we undertake a theoretical
analysis that establishes some equilibrium and convergence properties within a somewhat
more general setting.

In our basic setup, one class of agents (calledstrategic) attempt to learn models of the
others’ behavior, while the rest learn a simple reactive policy. We find the following:
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1. The system reliably converges to a conjectural equilibrium, where the strategic agents’
models of the others are fulfilled, all the rest correctly anticipate the resulting state, and
each agent behaves optimally given its expectation.

2. Depending on its initial belief, a strategic agent may be better or worse off than had it
simply behaved reactively like the others.

The apparent paradox in this situation is that the learning itself is highly effective: the
other agents behave exactly as predicted given what the agent itself does. The paradox is
easily resolved by noting that the learned model doesnot correctly predict what the result
would be if the agent selected an alternative action. Nevertheless, it is perhaps surprising
how easy it is for the agent to get trapped in a suboptimal equilibrium, and that the result is
often substantially worse than if it had not attempted to learn a model at all.

We refer to the above situation asself-fulfilling bias, because the revisions of belief and
action by the agent reinforce each other so that an equilibrium is reached. Here bias is
defined as in the standard machine learning literature—the preference for one hypothesis
over another, beyond mere consistency with the examples (Russell & Norvig, 1995). In
reinforcement learning, the initial hypothesis is a source of bias, as is the hypothesis space
(in multiagent environments, expressible models of the other agents). The combination
of a limited modeling language (in our experiments, linear demand functions) with an
arbitrarily assigned initial hypothesis strongly influences the equilibrium state reached by
the multiagent system.

Much early work on multiagent learning has investigated some form of reinforcement
learning (e.g., (Tan, 1993, Weiß, 1993)). The basic idea of reinforcement learning is
to revise beliefs and policies based on the success or failure of observed performance
(Kaelbling, Littman & Moore, 1996). The complication in a multiagent environment is
that the rewards to alternative policies may change as other agents’ beliefs evolve simulta-
neously (Claus & Boutilier, 1998, Ono & Fukumoto, 1996).

2. Conjectural Equilibrium

In game-theoretic analysis, conclusions about equilibria reached are based on assumptions
about what knowledge the agents have. For example, choice of iterated undominated strate-
gies follows from common knowledge of rationality and the game setup (Brandenburger, 1992).
In the standard game-theoretic model of complete information (Fudenberg & Tirole, 1991,
Gibbons, 1992), the joint payoff matrix is known to every agent. Uncertainty can be ac-
commodated in the game-theoretic concept ofincomplete information, where agents have
probabilities over the payoffs of other agents.

A learning model is an account of how agents form such beliefs. Notice that the beliefs
need not be expressed in terms of other agents’ options and preferences. In particular, igno-
rance about other agents might be captured more directly, albeit abstractly, as uncertainty
in the effects of the agent’s own actions.2

Consider ann-player one-stage gameG = (A,U, S, s). A = A1 × · · · ×An is the joint
action space, whereAi is the action space for agenti. U = (U1, . . . , Un) represents the
agent utility functions.S = S1 × · · · × Sn is the state space, whereSi is the part of the
state relevant to agenti. A utility function U i is a map from the agent’s state space to real
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numbers,U i : Si → <, ordering states by preference. We divide the state determination
functions : A→ S, into components,si : A→ Si, allowing each agent’s part of the state
to depend on the entire joint action. Each agent knows only its own utility function, and
the actions chosen by each agent are not directly observable to the others.

Each agent has some belief about the state that would result from performing its available
actions. We represent this by a function,s̃ : Ai → Si, wheres̃i(ai) represents the state that
agenti believes would result if it selected actionai. Agenti chooses the actionai ∈ Ai it
believes will maximize its utility.3

We are now ready to define our equilibrium concept.

Definition 1. In gameGdefined above, a configuration of beliefs(s̃1∗, . . . , s̃n∗), together
with a joint actiona∗ = (a1∗, . . . , an∗), constitutes aconjectural equilibriumif, for each
agenti,

s̃i∗(ai∗) = si∗(a1∗, . . . , an∗),

whereai∗ ∈ Ai maximizesU i(s̃i∗(ai)).

If the game is repeated over time, the agents can learn from prior observations. Letai(t)
denote the action chosen by agenti at timet. The state at timet, σ(t), is determined by the
joint action,

σ(t) = s(a1(t), . . . , an(t)).

We could incorporate environmental dynamics into the model by defining statetransitions
as a function of joint actions plus the current state. We refrain from taking this step in order
to isolate the task of learning about other agents from the (essentially single-agent) problem
of learning about the environment.4 In consequence, our framework defines a repeated game
where agents are myopic, optimizing only with respect to the next iteration.

The dynamics of the system are wholly relegated to the evolution of agents’ conjectures.
At the time agenti selects its actionai(t), it has observed the sequenceσ(0), σ(1), . . . , σ(t−
1). Its beliefs, s̃i, therefore, may be conditioned on those observations (as well as its
own prior actions), and so we distinguish beliefs at timet with a subscript,̃sit. We say
that a learning regimeconvergesif limt→∞(s̃1

t , . . . , s̃
n
t ) is a conjectural equilibrium. Our

investigation below shows that some simple learning methods are convergent in a version
of the game framework considered above.

A Nash equilibrium for gameG is a profile of actions(a1, . . . , an) such that for alli, ai

maximizesU i(si(ai, a−i)). Our notion of conjectural equilibrium is substantially weaker,
as it allows the agent to be wrong about the results of performing alternative actions. Nash
equilibria are trivially conjectural equilibria where the conjectures are consistent with the
equilibrium play of other agents. As we see below, competitive, or Walrasian, equilibria
are also conjectural equilibria.

The concept ofself-confirming equilibrium(Fudenberg & Levine, 1993) is another re-
laxation of Nash equilibrium which applies to a situation where no agent ever observes
actions of other agents contradicting its beliefs. Conjectures are on the play of other agents,
and must be correct for all reachable information sets. This is stronger than conjectural
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equilibrium in two respects. First, it applies at each stage of an extensive form game, rather
than for single-stage games or in the limit of a repeated game. Second, it takes individual
actions of other agents as observable, whereas in our framework the agents observe only
resulting state.

The basic concept of conjectural equilibrium was first introduced by Hahn, in the context
of a market model (Hahn, 1977). Though we also focus on market interactions, our central
definition applies the concept to the more general case. Hahn also included a specific model
for conjecture formation in the equilibrium concept, whereas we relegate this process to the
learning regime of participating agents.

3. Multiagent Market Framework

We study the phenomenon of self-fulfilling bias in the context of a simple market model
of agent interactions. The market context is generic enough to capture a wide range of
interesting multiagent systems, yet affords analytically simple characterizations of conjec-
tures and dynamics. Our model is based on the framework of general equilibrium theory
from economics, and our implementation uses thewalras market-oriented programming
system (Wellman, 1993), which is also based on general equilibrium theory.

3.1. General Equilibrium Model

Definition 2. A pure exchange economyoverm goods,E ≡ {〈Xi, U i, ei〉 | i =
1, . . . , n}, consists ofn consumer agents, each defined by:

• aconsumption set,Xi ⊆ <m+ , representing the bundles of them goods that are feasible
for i,

• autility function, U i : Xi → <, ordering feasible consumption bundles by preference,
and

• anendowment, ei ∈ <m+ , specifyingi’s initial allocation of them goods.

For example, each of a collection of software agents may have some endowment of
various computational resources, such as processing, storage, and network bandwidth. The
amounts of these resources controlled by the agent determine which tasks it can accomplish,
and at what performance level. The consumption set would describe the minimal amount of
these resources required to remain active, and the utility function would describe the value
to the agent of results producible with various amounts of the respective resources.

In an exchange system, agents may improve their initial situations by swapping resources
with their counterparts. For instance, one network-bound agent might trade some of its
storage for bandwidth, while another might use additional storage obtained to improve the
result achievable with even a somewhat reduced amount of processing.5

The relative prices of goods govern their exchange. Theprice vector, P ∈ <m+ , specifies
a price for each good, observable by every consumer agent. Acompetitiveconsumer takes
the price vector as given, and solves the following optimization problem,
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max
xi∈Xi

U i(xi) s.t.P · xi ≤ P · ei. (1)

That is, each agent chooses a consumption bundlexi to maximize its utility, subject to the
budget constraintthat the cost of its consumption cannot exceed the value of its endowment.

A competitive—also calledWalrasian—equilibrium is a price vector and associated al-
location,(P ∗, (x1, . . . , xn)), such that

1. at price vectorP ∗, xi solves problem (1) for each agenti, and

2. the markets clear:
∑n
i=1 x

i =
∑n
i=1 e

i.

It is sometimes more convenient to characterize the agents’ actions in terms ofexcess
demand, the difference between consumption and endowment,

zi = xi − ei,

and to write the market clearing condition as
∑n
i=1 z

i = 0. Theexcess demand setfor
consumeri isZi = {zi ∈ <m | ei + zi ∈ Xi}.

A basic result of general equilibrium theory (Takayama, 1985) states that if the utility
function of every agent is quasiconcave and twice differentiable, thenE has a unique
competitive equilibrium.6

Observe that any competitive equilibrium can be viewed as a conjectural equilibrium, for
an appropriate interpretation of conjectures. The action spaceAi of agenti is its excess
demand set,Zi. Let the state determination functions return the desired consumptions
if they satisfy the respective budget constraints with respect to the market prices, and
zero otherwise. Utility functionU i simply evaluatesi’s part of the allocation. The agents’
conjectures amount to accurately predicting the budget constraint, or equivalently, the prices.
In competitive equilibrium, each agent is maximizing with respect to its perceived budget
constraint, and the resulting allocation is as expected. Thus, the conditions for conjectural
equilibrium are also satisfied.

3.2. Iterative Bidding Processes

The basic definition of competitive behavior (1) implicitly assumes that agents aregiventhe
prices used to solve their optimization problem. But it is perhaps more realistic for them to
form their own expectations about prices, given their observations and other knowledge they
may have about the system. Indeed, the dynamics of an exchange economy can be described
by adding a temporal component to the original optimization problem, rewriting (1) as

max
xi(t)

U i(xi(t)) s.t. P̃ i(t) · xi(t) ≤ P̃ i(t) · ei(t), (2)

wherexi(t) denotesi’s demand at timet, andP̃ i(t) denotes itsconjecturedprice vector at
that time.7

A variety of methods have been developed for deriving competitive equilibria through
repeated agent interactions. In many of these methods, the agents do not interact directly,
but rather indirectly through auctions. Agents submit bids, observe the consequent prices,
and adjust their expectations accordingly.
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Figure 1. An aggregate excess demand curve for goodj. P ′j is the market clearing price.

Different ways of forming the expected pricẽP (t) characterize different varieties of
agents, and can be considered alternative learning regimes. For example, thesimple com-
petitive agenttakes the latest actual price as its expectation,

P̃ i(t) = P (t− 1). (3)

More sophisticated approaches are of course possible, and we consider one in detail in the
next section.

In the classic method oftatonnement, for example, auctions announce the respective
prices, and agents act as simple competitors. Depending on whether there is an excess
or surfeit of demand, the auction raises or lowers the corresponding price. If the ag-
gregate demand obeysgross substitutability(an increase in the price of one good raises
demand for others, which hence serve as substitutes), then this method is guaranteed to
converge to a competitive equilibrium (under the conditions under which it is guaranteed
to exist) (Negishi, 1962).

Thewalras algorithm (Cheng & Wellman, 1998) is a variant of tatonnement. Inwal-
ras, agenti submits to the auction for goodj at timet its solution to (2), expressed as a
function ofPj , assuming that the prices of goods other thanj take their expected values.
In other words, it calculates ademand function,

xij(P̃
i
1(t), . . . , Pj , . . . , P̃ im(t)).

The bid it then submits to the auctioneer is its excess demand for goodj,

zij(Pj) = xij(P̃
i
1(t), . . . , Pj , . . . , P̃ im(t))− eij(t).

The auctioneer sums up all the agents’ excess demands to get anaggregate excess demand
function,

zj(Pj) =
n∑
i=1

zij(Pj).
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Figure 1 depicts an aggregate demand curve. We assume thatzj(Pj) is downward sloping,
the general case for normal goods. Given such a curve, the auctioneer determines the price
P ′j such thatzj(P ′j) = 0, and reports thisclearing priceto the interested agents.

Given the bidding behavior described, with expectations formed as by the simple com-
petitive agent, thewalras algorithm is guaranteed to converge to competitive equilibrium,
under the standard conditions (Cheng & Wellman, 1998). Such an equilibrium also repre-
sents a conjectural equilibrium, according to the definition above. Thus, the simple com-
petitive learning regime is convergent, with respect to both the tatonnement andwalras
price adjustment protocols.

4. Learning Agents

As defined above, agentslearnwhen they modify their conjectures based on observations.
We distinguish alternative learning regimes by the form of the conjectures produced, and
the policies for revising these conjectures.

4.1. Competitive Learning Agents

An agent iscompetitiveif it takes prices as given, ignoring its own effect on the clearing
process. Formally, in our learning framework, this means that the conjectured pricesP̃
do not depend on the agents’ own actions—the excess demands they submit as bids. For
example, the simple competitive agent described above simply conjectures that the last
observed price is correct. This revision policy is given by (3).

Adaptive competitive agentsadjust their expectations according to the difference between
their previous expectations and the actual observed price,

P̃ i(t) = P̃ i(t− 1) + γ
(
P (t− 1)− P̃ i(t− 1)

)
.

This updating method is a kind of reinforcement learning method. The learning parameter,
γ, dictates the rate at which the agent modifies its expectations. Whenγ = 1, this policy is
identical to the simple competitive agent’s. Variations on this adaptation, for example by
tracking longer history sequences, also make for reasonable conjecture revision policies.

4.2. Strategic Learning Agents

In designing a more sophisticated learning agent, we must take into account what informa-
tion is available to the agent. In our market model, the agents cannot observe preference,
endowment, or the complete demand functions of other agents. What the agent does observe
is the price vector. It also knows the basic structure of the system—the bidding process and
the generic properties we assume about demand.

This fragmentary information is not sufficient to reconstruct the private information of
other agents. In fact, it provides no individual information about other agents at all. The
best an agent can do is learn about the aggregate action it faces.

Because they know how the auctions work, the agents realize that their individual demands
can affect the market price. This effect will be significant unless the agent is of negligible
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size with respect to the aggregate system. An agent that takes its own action into account
in forming its expectation about prices is calledstrategic. For a strategic agenti, P̃ i is a
function of excess demand,zi(t), and thusi’s optimization problem is subject to a nonlinear
budget constraint.

In our experiments with strategic learning, we adopt a simple model of an agent’s influence
on prices. Specifically, the agent assumes that its effect on price is linear for each goodj,

P̃ ij (t) = αij(t) + βij(t)z
i
j(t),whereβij(t) ≥ 0. (4)

As in our usual reinforcement-learning approach, the coefficients are adjusted according to
the difference between the expected price and actual price,

αij(t+ 1) = αij(t) + γ1

(
Pj(t)− P̃ ij (t)

)
, (5)

βij(t+ 1) = βij(t) +
γ2

zij(t)

(
Pj(t)− P̃ ij (t)

)
, (6)

whereγ1 andγ2 are positive constants.
Thus, by substituting (4) into (2) and omitting the time argument, we obtain the optimiza-

tion problem of the strategic agent,

max
zi

U i(zi + ei) s.t.(αi + βizi) · zi ≤ 0. (7)

In the appendix, we prove that this problem indeed has a unique solution.

5. Experimental Results

We have run several experiments inwalras, implementing exchange economies with
various forms of learning agents. Our baseline setup explores the behavior of a single
strategic learning agent (as described above), included in a market where the other agents
are simple competitors. Additional trials consider different numbers of strategic agents,
and varying initial conditions.

Agents in our experiments have logarithmic utility functions,

U(x1, . . . , xm) =
∑
j

aj lnxj .

This utility function is strategically equivalent to the Cobb-Douglas form, which is a standard
parametric family often employed for analytic convenience.8 For the experiments, we set
aj = 1 for all j, for all agents.

Because its price conjecture is a function of its action, the strategic agent faces a nonlinear
budget constraint, and thus a more complex optimization problem (7). This special form fa-
cilitates derivation of first-order conditions, which we solve numerically in our experimental
runs to calculate the strategic agent’s behavior.

In our simulations, the competitive agents form conjectures by Equation (3). The strategic
agent forms conjectures by (4), and revises them given observations according to (5) and (6),
with γ1 = γ2 = 1

2 . Agents bid according to the solutions of their optimization problems.
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The auctioneer in each market receives bids from agents, and then posts the price that clears
its market. The process terminates when the price change from one iteration to the next
falls below some threshold.

We performed a series of experiments for a particular configuration with three goods
and six agents. The agents’ endowmentsei were randomly generated from a uniform
distribution, with results displayed in Table 1. Figure 2 presents results for the case where
agent 1 behaves strategically, and the rest competitively. Each point on the graph represents
one run of this economy, with various settings of the strategic agent’s initial conjecture.
The vertical axis represents the utility achieved by the strategic agent when the system
reaches equilibrium. The horizontal axis represents the strategic agent’s starting value
for its β coefficient. For comparison, we also ran this configuration with the designated
agent behaving competitively, that is, forming expectations independent of its own behavior
according to (3). The utility thus achieved is represented by the horizontal line in the graph.

Table 1. Initial endowments for agents in
the example experiment.

Agents Good 1 Good 2 Good 3

Agent 1 231 543 23

Agent 2 333 241 422

Agent 3 43 21 11

Agent 4 33 24 42

Agent 5 431 211 111

Agent 6 12 23 87

As Figure 2 demonstrates, the learning agent can achieve higher or lower payoff by
attempting to behave strategically rather than competitively. Forβ1(0) < 0.03, the agent
improves utility by learning the strategic model. Greater than that value, the agent would be
better off behaving competitively. (We also ran experiments for higher values ofβ1(0) than
shown, and the trend continues. In some other instances of the market game, the strategic
agent also does worse than competitive for excessively low values ofβ(0).) Intuitively, the
initial estimate of the agent’s effect on prices moves it toward a demand policy that would
fulfill this expectation.

The utility achieved by the other agents also depends on the initialβ of the strategic agent.
Figure 3 depicts the results for the competitive agents, using as a measure the ratio of utility
achieved when agent 1 is strategic to that achieved when it is competitive. For these agents,
we find that two (3 and 5) are better off when agent 1 behaves strategically, and the rest are
worse off. Moreover, their resulting utilities are monotone inβ1(0). Note that the agents
that do better have endowment profiles (see Table 1) relatively similar to agent 1, and thus
agent 1’s effect on the price turns out to their benefit. The other agents have relatively
differing endowment profiles, and thus opposing interests.

In general, results need not be so uniform. We have observed cases where competitive
agents do not perform uniformly better or worse as another becomes strategic, and indeed
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Figure 2. Utility achieved by the strategic agent, as a function ofβ1(0). (Since utility is only ordinally scaled, the
shape of the curve and degrees of utility difference are not meaningful. Hence, we do not report numeric values
on the vertical axis.)

it is possible that aggressive strategic behavior can even make all agents worse off. In
contrast, it is not possible that strategic behavior can simultaneously make all better off, as
competitive equilibria are guaranteed to be Pareto efficient.
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Figure 3. Performance of the competitive agents, as a function ofβ1(0). The vertical axis measures the ratio of
utility when agent 1 is strategic versus when it is competitive.
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As we increase the number of competitive agents, the general patterns of Figures 2 and 3
still hold. We also ran experiments with multiple strategic agents in the system. For
example, Figure 4 compares strategic agent 1’s performance profile for the cases where
agent 3 behaves strategically and competitively. In most of our experiments, the system
reliably converges to a conjectural equilibrium, although the particular equilibrium reached
depends on the initial model of the strategic learning agents.9 The exceptions are cases where
the combined power of the strategic agents is relatively large, opening the possibility that
markets will not clear for significantly erroneous conjectures. This situation is explained
in more detail in Section 6.2.
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U
til

ity
 o

f A
ge

nt
 1

Figure 4. Utility achieved by strategic agent 1, as a function ofβ1(0), with agent 3 strategic and competitive,
respectively.

6. Theoretical Analysis

The sensitivity of outcomes to initial conjectures arises from lack of information. When an
agent has incomplete knowledge about the preference space of other agents, its interaction
with them may not reveal their true preferences even over time. Nevertheless, agents adopt-
ing myopic decision rules (e.g., best response) may well achieve conjectural equilibrium
anyway.

In this section, we specialize the concept of conjectural equilibrium to the multiagent
exchange setting. We define themarket conjectural equilibrium, and discuss its existence
and multiplicity for particular classes of learning agents. We then consider the dynam-
ics of strategic learning in this framework, and conditions for convergence to conjectural
equilibrium.
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6.1. Market Conjectural Equilibrium

Our experimental analysis considered agents whose conjectures were either constant (com-
petitive) or linear (strategic) functions of their actions. Using Hahn’s notion of aconjecture
function(Hahn, 1977), we provide some more general notation for characterizing the form
of an agent’s conjectures.

Definition 3. The conjecture function, Ci : <m −→ <m+ , specifies the price system,
Ci(zi), conjectured by consumeri to result if it submits excess demandzi.

Note thatCi defines a conjecture about prices, whereas conjectural equilibrium is defined
in terms of agent’s conjectures about the effects of their actions. In the multiagent exchange
setting, actions are excess demands, and an agent’s conjecture about the resulting state,s̃i,
is that it will receive its demanded bundle if and only if it satisfies its budget constraint.

s̃i(zi) =
{
zi if Ci(zi) · zi ≤ 0
0 otherwise.

(8)

Theactualresulting state is as demanded if the aggregate demands are feasible.10 For all
i,

si(z1, . . . , zn) =
{
zi if

∑
k z

k ≤ 0
0 otherwise.

(9)

In conjectural equilibrium, the expected and actual consequences of optimizing behavior
coincide.

Definition 4. A market conjectural equilibriumfor an exchange economy is a point
(C1, . . . , Cn) such that for alli, s̃i(zi) = zi, where

zi = arg maxU i(zi + ei) s.t.Ci(zi) · zi = 0,

and
∑
i z
i ≤ 0.

Intuitively,Ci(zi) = P , whereP is the price vector determined by the market mechanism.
However, nothing in the definition actually requires that all agents conjecture the same price,
as the price is not part of an agent’s action or the resulting state (9). It is nevertheless worth
noting that equivalent price conjectures with overall feasibility is a sufficient condition for
market conjectural equilibrium.

Theorem 1 LetE be an exchange economy where all agents are allowed to form arbitrary
price conjectures. Thenanyfeasible allocation in which each agent prefers the result to its
endowment can be supported by a market conjectural equilibrium inE.

Proof: Let z∗1, . . . , z∗n represent a set of excess demands satisfying the conditions, that
is, z∗i ∈ Zi andU i(z∗i + ei) ≥ U i(ei) for all i, and

∑
i z
∗i ≤ 0. Consider azi that agent

i prefers toz∗i, that is,U i(zi + ei) > U i(z∗i + ei). It is easy to construct a conjecture
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function for agenti such thatCi(zi) · zi > 0 for any suchzi, in which casei believes
that choosingzi would violate its budget constraint and therefore result in consumption of
ei. SinceU i(z∗i + ei) ≥ U i(ei), z∗i maximizes utility with respect to the conjecture.

With restrictions on the form of individual conjectures, the set of equilibria may be
somewhat constrained, but not very much. More realistic situations account for the fact
that agents’ conjectures are connected to each others viaprices.

If prices are observed by the agents in an exchange economy, then conjectures inconsistent
with the observed prices represent implausible agent behavior. We can capture the notion
of consistency among price conjectures in a stronger equilibrium concept.

Definition 5. A market conjectural equilibrium(C1, . . . , Cn) is price-ratified if there
exists a price vectorP such that at the equilibrium actions,

zi = arg maxU i(zi + ei) s.t.Ci(zi) · zi = 0,

Ci(zi) = P for all i.

Because prices are known by agents in typical market settings (albeit often with some
delay), price-ratified equilibrium is usually the more relevant concept. Indeed, the equilibria
reached in our experiments of Section 5 are all price-ratified. We can now characterize the
existence of price-ratified market conjectural equilibria in terms of the allowable conjecture
functions.

Theorem 2 SupposeE has a competitive equilibrium, and all agents are allowed to form
constant conjectures. ThenE has a price-ratified market conjectural equilibrium.

Proof: Let P ∗ be a competitive equilibrium forE. ThenCi(zi) = P ∗, for all zi ∈ Zi,
i = 1, . . . , n, is a market conjectural equilibrium, ratified byP ∗.

Theorem 3 LetE be an exchange economy, with all utility functions quasiconcave and
twice differentiable. Suppose all agents are allowed to form constant conjectures, and
at least one agent is allowed to form linear conjectures. ThenE has an infinite set of
price-ratified market conjectural equilibria.

Proof: Without loss of generality, let agent 1 be the agent with linear conjectures. A
linear conjecture functionC1 may be decomposed into conjectures for individual goods
C1(z1) = (C1

1 (z1
1), . . . , C1

n(z1
n)), whereC1

j (z1
j ) = αj + βjz

1
j . Agent 1 is therefore

strategic, with an optimal excess demand expressible as a function ofα andβ.11 Let agents
i 6= 1 adopt constant conjectures of the formCij(z

i
j) = Pj . In equilibrium, the markets

must clear. For allj,

z1
j (α, β) +

n∑
i=2

zij(P ) = 0. (10)

For price-ratified equilibrium, we also require that agent 1’s price conjecture for all goods
j be equivalent to the other agents’ conjectures,αj + βjz

1
j = Pj . We define a function
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F (P, (α, β)) =
[
z1
j (α, β) +

∑n
i=2 z

i
j(P )

Pj − αj − βjz1
j

]
,

wherej = 1, . . . ,m−1. From the discussion above we have thatF (P, (α, β)) = 0 implies
price-ratified market conjectural equilibrium. Sinceα, β, andP are eachm-vectors with
m− 1 degrees of freedom,F represents the mappingF : <m−1 × <2(m−1) → <2(m−1).
The conditions on utility functions ensure that excess demand functions are continuous,
and thus thatF is continuously differentiable. The conditions also ensure the existence
of a competitive equilibriumP ∗, and therefore there is a point(P ∗, (P ∗, 0)) such that
F (P ∗, (P ∗, 0)) = 0. Then by the Implicit Function Theorem (Spivak, 1965), there exists
an open setP containingP ∗ and an open setB containing(P ∗, 0) such that for each
P ∈ P, there is a uniqueg(P ) ∈ B such thatF (P, g(P )) = 0. All of these points
(P, g(P )) constitute market conjectural equilibria forE.

Note that the conditions of Theorem 3 are satisfied by our experimental setup of Section 5.
In that situation, the initialβ determined which of the infinite conjectural equilibria was
reached. Adding more strategic learning agents (those that could express non-constant
conjecture functions) can only add more potential equilibria.

6.2. Dynamics

The dynamics of a multiagent market system are dictated by how each agent changes its
conjecture function,Ci, as it observes the effects of its chosenzi on the price vectorP .
The strategic learning process given by Equations (5) and (6) can be transformed into the
following system of differential equations, assuming that we allow continuous adjustment.
For all j,

α̇j = γ1(Pj − αj − βjzj),
β̇j = γ2(Pj − αj − βjzj)/zj .

Note that all variables are functions of time. Thezj solve the strategic agent’s optimization
problem (7), thus each is a function ofα andβ.12

Since the market determines prices based on specified demands, we can usually express
Pj as a functionα andβ as well. The exception is when Equation 10 has no solution, for
example when the strategic agent demands resources that the competitive agents are not
willing or able to supply at any price.13 This can happen only when the strategic agent’s
conjecture is highly inaccurate—but this is not ruled out by the system dynamics. An
alternative price-adjustment algorithm—one that does not require an exact market clearing
at each stage—may not be as sensitive to this problem.

For cases where the market always clears, the system of differential equations can be
rewritten as

α̇j = γ1fj(α, β)

β̇j = γ2fj(α, β)/zj(α, β),
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wherefj(α, β) = Pj(α, β)− αj − βjzj(α, β).
The equilibrium(ᾱ, β̄) of this system is the solution of the following equations:

fj(α, β) = 0, j = 1, . . . ,m− 1.

Since there arem− 1 equations with2(m− 1) unknowns, the equilibrium is not a single
point but a continuous surface, expressed as(ᾱ, β̄(ᾱ)), whereᾱ ∈ <m−1.

Characterization of conditions under which this learning process converges to a stable
equilibrium remains an open problem.

6.3. Perfect Conjectures

Our experiments demonstrate that a learning agent might be rendered better or worse off
by behaving strategically rather than competitively. However, the ambiguity disappears if
it has sufficient knowledge to make a perfect conjecture. In the case where all the other
agents are effectively competitive, perfect conjectures correspond to perfect knowledge of
the aggregate demand function faced by the agent.

Theorem 4 Let economyE satisfy conditions for existence of competitive equilibrium.
Then knowledge of the aggregate excess demand function of the other agents is a sufficient
condition for an agent to achieve utility at least as great as it could by behaving competitively.

Proof: Let agent 1 be the strategic agent, andz1 its excess demand. Suppose the strategic
agent knows the aggregate excess demand function of the other agents,z−1(P ). Agent 1
knows that in market equilibrium,

z1 + z−1(P ) = 0. (11)

Therefore, the choice setΓ for the strategic agent consists of all excess demand bundles
that could make the markets clear:

Γ = {−z−1(P ) : P ∈ <m}.

If agent 1 behaves competitively, then any outcome it obtains must be part of a competitive
equilibrium at some pricesP ∗. But by the market clearing condition (11), such an outcome
must be contained in the strategic choice setΓ. Therefore, by optimizing overΓ, the
knowledgeable strategic agent can achieve utility at least as great as obtained through
competitive behavior.

Intuitively, if the agent makes a perfect conjecture, then it makes its choice based on the
actual optimization problem it faces. Any other choice would either have lower (or equal)
utility, or violate the budget constraint.

As we have seen, however, when a strategic agent has imperfect information of the
aggregate excess demand—for instance, a linear approximation—it may actually perform
worse than had it used the constant approximation of competitive behavior.
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7. Related Work

There is a growing literature on learning in games, much of it concerned with condi-
tions under which particular protocols converge to Nash equilibria. Numerous stud-
ies have investigated the behavior of simple learning policies such as Bayesian update
or fictitious play, or selection schemes inspired by evolutionary models. Researchers
typically explore repeated games (especially coordination games), and have tended to
find some sort of convergence to coordinated, equilibrium, or near-equilibrium behav-
ior (Claus & Boutilier, 1998, Gilboa & Akihiko, 1991, Shoham & Tennenholtz, 1997).

Economists studying bidding games (Boyle, 1985, Samples, 1985) have noticed that bi-
ased starting bid prices strongly influence final bids. More generally, researchers have ob-
served that the results of learning or evolution in games are often path-dependent (Young,
1996), with selection among multiple equilibria varying according to initial or transient
conditions.

Most models in the literature assume that agents observe the joint action, as well as
the resulting state. Our framework allows unobservable actions, and in the market game
studied in depth, agents can reconstruct only an aggregate of other agents’ actions. Boutilier
(Boutilier, 1996) also considers a model where only outcomes are observable, demonstrating
how to adapt some of the methods for the observable-action case to this setting. Interestingly,
he finds that in some circumstances, uncertainty about other agents’ actions actually speeds
up the convergence to equilibrium for simple coordination games.

The last five years has seen some study of learning methods for agents participating in
simple exchange markets. (Cliff’s recent contribution (Cliff, 1998) includes a substantial
bibliography.) Some of this work directly compares the effectiveness of learning strate-
gic policies with competitive strategies. Vidal and Durfee examine a particular model
of agents exchanging information goods (Vidal & Durfee, 1998), and find that whether
strategic learning is beneficial (or how much) is highly context-dependent. We provide
further data distinguishing the cases in our recent experiments within a dynamic trading
model (Hu & Wellman, 1998a).

Finally, Sandholm and Ygge (Sandholm & Ygge, 1997) investigate a general-equilibrium
scenario very similar to ours. Like us, they find that strategic behavior can be counterproduc-
tive when agents have incorrect models. Moreover, their study quantifies the costs of acting
strategically and competitively as a function of model error, confirming that competitive
behavior is far less risky for a range of environment parameters.

8. Conclusion

The fact that learning an oversimplified (in our case, linear) model of the environment
can lead to suboptimal performance is not very surprising. Perhaps less obvious is the
observation that it often leads to results worse than remaining completely uninformed, and
adopting an even more oversimplified (constant) model. Moreover, the situation seems to
be exacerbated by the behavior of the agent itself, optimizing with respect to the incorrect
model, and thus “self-fulfilling” the conjectural equilibrium.14

Future work may shed some light on the situations in which self-fulfilling bias can arise,
and how it might be alleviated. Random restart of the learning process is one straightforward
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approach, as is any other deviation from myopic optimization aimed at trading exploitation
for exploration. One could also expand the space of models considered (e.g., admitting
higher-order polynomials), although it is clear that extending the class of conjecture func-
tions can only add to the possible equilibria.

Another way to handle self-fulfilling bias is to transform this problem into a more tradi-
tional problem of decision under uncertainty. Agents that form probabilistic expectations
may be less prone to get trapped in point equilibria. However, there is certainly a possibility
of non-optimal expectations equilibrium even in this expanded setting.

A simple lesson of this exercise is that attempting to be a little bit more sophisticated than
the other agents can be a dangerous thing, especially if one’s learning method is prone to
systematic bias. From a social perspective (or that of a mechanism designer), the prospect of
disadvantageous conjectural equilibria might be a desirable property—discouraging agents
from engaging in costly counterspeculations and potentially counterproductive strategic
behavior.

More generally, our investigation serves to illustrate the role of equilibrium concepts—
and specifically the application of conjectural equilibrium—in the analysis of multiagent
learning. The interaction among dynamically evolving conjectures is what distinguishes
the multiagent problem from its single-agent counterpart, and is thus arguably the learning
phenomenon most worthy of the attention of multiagent systems researchers.

Appendix

The Strategic Agent’s Optimization Problem

The nonlinear budget constraint faced by our strategic agents presents a problem more
complicated than that of the standard competitive consumer. The specific form of the
constraint depends on the conjecture function; our results below apply to strategic agents
with linear conjectures, and thus quadratic budget constraints.

Theorem 5 Let the consumption set include all nonnegative bundles (i.e.,X = <m+ ),
and letU be a continuous function onX. Then there exists a solution to the strategic
agent’s optimization problem (7):

max
z∈Z

U(z + e) s.t.(α+ βz) · z ≤ 0. (A.1)

Proof: To establish the existence of an optimum, we apply Weierstrass’s Maximum
Theorem (Horst, Pardalos, & Thoai, 1995): ifS is a nonempty compact set in<m, and
f(x) is a continuous function onS, thenf(x) has at least one global optimum point inS.

By assumption, the objective functionU is continuous onX, and therefore also on
Z = {z|z + e ∈ X}. LetS be the constraint set specified by (A.1), that is

S = Z ∩ {z|(α+ βz) · z ≤ 0}.

We need to prove thatS is a nonempty compact set in<m. S is nonempty, since(0, . . . , 0) ∈
S. To show thatS is compact is equivalent to showing thatS is bounded and closed. It is
obvious thatS is closed. We prove thatS is bounded.



CONJECTURAL EQUILIBRIUM 197

From the constraint (A.1),∑
j

(
αjzj + βjz

2
j

)
≤ 0, which implies

∑
j

(
βj(zj +

αj
2βj

)
2
)
≤ K,

whereK =
∑
βj

α2
j

4β2
j

. Let β̂ = min{β1, . . . , βm}.∑
j

(zj +
αj
2βj

)
2
≤ K

β̂∣∣∣∣zj +
αj
2βj

∣∣∣∣ ≤ (
K

β̂

) 1
2

|zj | ≤
(
K

β̂

) 1
2

+
∣∣∣∣ αj2βj

∣∣∣∣
ThusS is bounded. By Weierstrass’s theorem,U has at least one global maximum inS.
Therefore there exists a solution to the stated optimization problem.

Theorem 6 Let U be a continuous, strictly concave function onX = <m+ . Then the
optimization problem defined by (A.1) has a unique solution.

Proof: Given the strict concavity of the objective function, and the existence of a solution
(Theorem 5), it suffices to show that the constraint setS is convex.

Let z′, z′′ ∈ S, andz = λz′ + (1− λ)z′′, whereλ ∈ [0, 1]. We need to show thatz ∈ S.
Let

∆1 =
∑
j

αjzj + βjz
2
j

=
∑
j

αj(λz′j + (1− λ)z′′j ) + βj(λz′j + (1− λ)z′′j )2

∆2 = λ
∑
j

(
αjz
′
j + βj(z′j)

2
)

+ (1− λ)
∑
j

(
αjz
′′
j + βj(z′′j )2

)
Sincez′, z′′ ∈ S, we have∑

j

(
αjz
′
j + βj(z′j)

2
)
≤ 0,and

∑
j

(
αjz
′′
j + βj(z′′j )2

)
≤ 0,

thus∆2 ≤ 0. Therefore,

∆1 ≤ ∆1 −∆2

= −λ(1− λ)
∑

βj(z′j − z′′j )2

≤ 0,
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sinceβj ≥ 0 for all j. ∆1 ≤ 0 implies z ∈ S. Thus we proved thatS is a convex set.
Therefore the solution is unique.

The logarithmic utility function used in our experiments (Section 5) satisfies the condi-
tions above, and thus our agent’s problem has a unique solution. We solve the problem
numerically using Lagrangean techniques.
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Notes

1. Where exactly one draws the line between a change in beliefs and a simple update (incorporation of observa-
tional evidence) is fundamentally a matter of definition, and often quite arbitrary. We take no position, except
to argue that any study that purports to characterize a learning process must clearly define this line, as does
the framework proposed here.

2. Elsewhere, following Vidal and Durfee (Vidal & Durfeee, 1997, Vidal & Durfee, 1998), we have distinguished
between 0-level learning agents, which form models of the effects of their own actions, and 1-level learning
agents, which form models of other agents (as 0-level agents). Recursive application defines higher levels. The
question of which hypothesis space to adopt for multiagent learning problems is an interesting current research
issue. Our investigations to date suggest that the appropriate form of target model can be highly problem spe-
cific, depending on observations available, and relative sophistication of other agents (Hu & Wellman, 1998a).
We formulate our conjectural equilibrium concept in 0-level terms, to which higher levels can be reduced.

3. A more sophisticated version of this model would have agents form probabilistic conjectures about the effects
of actions, and act to maximize expected utility.

4. Investigations of multiagent learning within the Markov game framework brings state dynamics to the
fore (Filar & Vrieze, 1997, Hu & Wellman, 1998b, Littman, 1994).

5. The relationship between basic computational resources and results of computation can be modeled explicitly
by extending the exchange economy to includeproduction. See our prior work for detailed examples of general-
equilibrium models of computational problems (Mullen & Wellman, 1995, Wellman, 1993, Wellman, 1995).

6. It is possible to express somewhat more general sufficient conditions in terms of underlying preference orders,
but the direct utility conditions are adequate for our purposes.

7. In the standard model, no exchanges are executed until the system reaches equilibrium. In so-callednon-
tatonnement processes(Takayama, 1985), agents can trade at any time, and so the endowmente is also a
function of time. In either formulation, we still assume that agents are myopic, optimizing only with respect
to the current time period.

8. Cobb-Douglas utility is a limiting case of the CES form (constant elasticity of substitution),

U(x1, . . . , xm) =

(∑
j

ajx
ρ
j

) 1
ρ

,

with ρ → 0 (Arrow, et al., 1961). CES is commonly used in general equilibrium modeling (Shoven &
Whalley, 1992), including some of our prior work. We also performed experiments with CES agents (ρ = 1

2
,

andaj = 1 for all j), with results qualitatively similar to those reported for the logarithmic case.
9. For configurations with only competitive agents (whether adaptive or simple), the system converges to the

unique competitive equilibrium regardless of initial expectations.
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10. In both (8) and (9), violation of feasibility results in consumption of the agent’s own endowment. Reasonable
definitions differing in the “otherwise” condition are also conceivable.

11. Here we refer to the vectorsα = (α1, . . . , αm) andβ = (β1, . . . , βm), since the excess demand for good
j generally depends on conjectures about the prices for all goods.

12. For a proof that a unique solution exists, see the appendix.

13. For example, the strategic agent’s demand could exceed total endowments. For our example case of uniformly
weighted logarithmic (Cobb-Douglas) utility, any demand exceeding(m− 1)/m times the total endowment
of the competitive agents for any good is infeasible.

14. Kephart et al. (Kephart, Hogg, & Huberman, 1989) describe another setting where sophisticated agents that
try to anticipate the actions of others often make results worse for themselves. In this model, the sophisticated
agents’ downfall is their failure to account properly for simultaneous adaptation by the other agents.
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