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We conjecture a new entropic uncertainty principle governing the entropy of complementary obser-

vations made on a system given side information in the form of quantum states, generalizing the entropic

uncertainty relation of Maassen and Uffink [Phys. Rev. Lett. 60, 1103 (1988)]. We prove a special case for

certain conjugate observables by adapting a similar result found by Christandl and Winter pertaining to

quantum channels [IEEE Trans. Inf. Theory 51, 3159 (2005)], and discuss possible applications of this

result to the decoupling of quantum systems and for security analysis in quantum cryptography.
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One of the central mysteries of quantum mechanics is
complementarity, the strange phenomenon that a given
physical attribute can only be exhibited at the expense of
another, complementary, attribute. The canonical example,
wave-particle duality, is illustrated in the double slit ex-
periment. Coherent light (or matter) traveling through both
slits produces an interference pattern, a wavelike property
which is, however, destroyed if one determines which path
has been taken, a particlelike property. Such behavior
vividly differentiates quantum from classical mechanics
and led Feynman to famously observe that the double slit
experiment ‘‘has in it the heart of quantummechanics’’ [1].

The new field of quantum information theory takes a
pragmatic approach to the mysteries of quantum mechan-
ics, seeking to better understand them by asking which
information processing tasks can or cannot be accom-
plished in this new arena. The results have been stunning.
Quantum information cannot be copied but can be ‘‘tele-
ported’’ from place to place. It can be used to improve the
precision of everything from clock synchronization to
gravitational-wave detectors to lithography. It can dramati-
cally speed up certain computational tasks, such as search-
ing an unordered list and factoring large integers. Quantum
information cannot, however, be shared between many
parties. For instance, maximal entanglement can be shared
by only two parties, and entangling more parties means
making the entanglement between any two of themweaker.
This effect also enables cryptographic tasks which are
impossible classically, such as unconditionally secure key
exchange. This property of exclusiveness or privacy in-
forms many aspects of how we reason about quantum
information and quantum information processing [2].

The connection between complementarity and privacy
stems from the entropic uncertainty relation due to
Maassen and Uffink [3], then successively extended by
Hall [4] and Cerf et al. [5]. The original version constrains
the entropies of two noncommuting observables OA and
~OA of a system A, and the latter versions extend this to
explicitly include classical side information about the ob-
servables, stored either jointly in one external system R

(Hall) or separately in two, B and E (Cerf et al.). These
external systems might, for example, be ancillary systems
used in von Neumann measurement processes, possibly of

OA or ~OA or both. Giving the B and E systems to parties
Bob and Eve, respectively (the names are chosen in antici-
pation of the cryptographic implications to follow), the
complementarity statement of Cerf et al. says that the
information one party (Bob) could obtain about one ob-
servable (OA) by measuring his system B, plus the infor-

mation Eve could obtain about the other observable ( ~OA)
by measuring E, cannot exceed a prescribed bound.
Equivalently, one can say that there is a certain unavoid-
able amount of uncertainty or entropy about the two ob-
servables conditioned on respective measurements of the
two systems B and E.
In this Letter we generalize the tradeoff to restrict the

amount of conditional entropy the parties can have about
noncommuting observables on A when they possess quan-
tum side information. Quantum and classical side informa-
tion behave differently and, in particular, the information
represented by the quantum state may be significantly
larger than the amount of classical information that can
be extracted from it by measurement, a statement known as
the Holevo bound [2,6]. Relatedly, classical side informa-
tion is subject to locking, meaning that a modest amount of
additional classical side information can greatly increase
the total [7]. Quantum side information, in contrast, cannot
be locked in this manner. We find numerical evidence for
the generalized tradeoff for arbitrary observables and pro-
vide a proof for conjugate observables [8] related by a
Fourier transform based on the proof of a related entropic
inequality for quantum channels given by Christandl and
Winter [9].
We then exhibit a family of states which saturate the

bound before discussing some applications of our result.
Building on [9,10], we derive a rigorous statement of the
idea that if the AB system has nearly maximal quantum
correlations, as measured by appropriately small quantum
conditional entropies, then the AE system is nearly de-
coupled, i.e., in a product state. This is akin to the monog-
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amy of entanglement, the fact that maximal entanglement
cannot be shared by more than two parties, at the level of
quantum correlations. In the context of quantum cryptog-
raphy, this means composable security—that the key gen-
erated in quantum key distribution is secure in any further
cryptographic application [11,12]—can be established by
bounding the information that the (quantum) system B has
on a basis conjugate to the basis of A used to encode the
key.

Basic entropic uncertainty principles.—We begin by
reviewing the existing entropic uncertainty principles.
For a physical system A, consider any two observables

OA and ~OA represented by operators on a finite-

dimensional Hilbert space. Let c ¼ maxjkjhjj~kij, where
jji and j~ki are the eigenvectors ofOA and ~OA, respectively.

Define HðOAÞ� and Hð ~OAÞ� to be the respective Shannon

entropies of the outcome probabilities of the measurements

of OA and ~OA on a given state �A. Maassen and Uffink [3]
showed that regardless of �A,

HðOAÞ� þHð ~OAÞ� � �2log2c; (1)

meaning the entropies of observables sharing no common
eigenstates cannot both be arbitrarily small. The constant c
can be as large as log2d

A, for dA the dimension of the
Hilbert space describing system A, and is exactly log2d

A if
and only if the observables are conjugate. For conjugate
observables, certainty regarding one observable implies
complete uncertainty regarding the other.

Suppose now that we have some side information or
background information relevant to A, for instance the
result of measurement on some external system R which
is correlated with A. Intuitively, the entropic uncertainty
relation should still hold, since this information would
simply factor into the description �A of A. Indeed, the
entropic uncertainty principle can be adapted to this case,
and is equivalent to a result by Hall which he terms the
information-exclusion principle [4]. Its derivation pro-
ceeds as follows.

Consider an arbitrary bipartite quantum state �AR where
A and R are two finite-dimensional Hilbert spaces. Let �R

be a positive operator-valued measure representing an
arbitrary measurement on the system R (i.e.,

P
j�

R
j ¼ 1R

and �R
j � 0 for all j). Measurement of �R gives the out-

come j with probability qj ¼ Tr½�AR�R
j �, and leaves the

marginal state of A given by �A
j
:¼ 1

qj
TrR½�AR�R

j � [13].
Applying the inequality Eq. (1) to each of the states �j

gives HðOAÞ�j
þHð ~OAÞ�j

� �2log2c, where the entro-

pies are computed using the conditional state �j. Since

this state is determined by the classical outcome of mea-
surement on R, we can write HðOAÞ�j

as HðOAj�R
j Þ� and

likewise for observable ~OA, whereHðOAj�R
j Þ� is the condi-

tional entropy of the OA observable given the result of the
�R measurement. Averaging over all outcomes yields the
information-exclusion principle:

HðOAj�RÞ� þHð ~OAj�RÞ� � �2log2c: (2)

This equation is particularly useful if we consider R to
be a composite system, consisting of subsystems B and E,

and �R to be a composite measurement �R
jk ¼ �B

j � ~�E
k , as

put forth in [5]. Since conditioning reduces entropy, one
obtains a tradeoff in the amount of information about OA

and ~OA which can be simultaneously stored in separate
auxiliary systems B and E. We call this the (weak) com-
plementary information tradeoff (CIT):

HðOAj�BÞ� þHð ~OAj~�EÞ� � �2log2c: (3)

Now the information held by one party, in possession of
system B, say, limits the information which another party
could in principle obtain about a noncommuting observ-
able. This tradeoff is immediately applicable in quantum
cryptography, and in [14] we used it to motivate a new
approach to the distillation of entanglement and secret
keys. Our present goal is to find a stricter tradeoff.
Strong complementary information tradeoff.—What if

we regard the quantum state of the auxiliary system itself
as the side information? Is there any limit to the uncertainty
of complementary observables in this case? One might
conjecture that the quantum version of Eq. (2) holds,
replacing the conditional Shannon entropy HðOAj�RÞ
with the conditional von Neumann entropy SðOAjRÞ� ¼
Sð�AR

OAÞ � Sð�RÞ, where �AR
OA is the quantum state obtained

after measuring the observable O on the state � and
averaging over all outcomes. However, this is false in
general. To take an extreme example, the singlet state of
two spin- 12 particles is perfectly anticorrelated in every

basis, meaning that SðOAjRÞ ¼ Sð ~OAjRÞ ¼ 0 for any non-
degenerate observables. This is merely the statement that
quantum correlations, in the form of entanglement, are
stronger than classical correlations.
Instead, the conjecture should be applied to the weak

CIT, Eq. (3), and the result is the strong CIT:

SðOAjBÞ� þ Sð ~OAjEÞ� � �2log2c: (4)

The strong CIT immediately implies the weak CIT via the
Holevo bound SðOAj�BÞ � SðOAjBÞ for any measurement
� [2,6], and also the original entropic uncertainty principle
by taking B and E to be one dimensional.
The claim is supported by numerical investigation of

small dimensions dA, dB, dE � 12, which has found no
counterexample when testing at least 2000 random states in
each of the 113 combinations of dimensions. By itself this
is relatively weak evidence, but for conjugate observables

OA, ~OA related by a Fourier transform, e.g., ~OA ¼
FAOAFAy, Eq. (4) follows from strong subadditivity
(SSA) of the von Neumann entropy. Assuming that the
eigenvectors ofOA define a standard basis, we can redefine
the eigenvalues of the observables so that O ! Z ¼P

k!
kjkihkj and ~O ! X ¼ P

kjkþ 1ihkj, where ! ¼
e2�i=d, the generalized Pauli operators [15]. Then the vari-
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ous properties of X and Z can be used to construct a proof,
in a manner entirely similar to [9], who establish a similar
tradeoff for the ability of a quantum channel to transmit
conjugate information. In the present context, the proof
goes as follows.

Proof of special case.—Consider any �ABE where
dimðAÞ ¼ d. We can assume that �ABE is a pure state
without loss of generality, since E can always be redefined
to include the purification. As a consequence of SSA, the
value of SðOAjEÞ� cannot be increased by enlarging E

(cf. [2], Theorem 11.15). So if the inequality is true for
any pure state then it must also be true for any mixed state.

Using the properties of X and Z one can write ��ABE
XA ¼

1
d

P
kX

A
k �

ABEXyA
k and ��ABE

ZA ¼ 1
d

P
kZ

A
k�

ABEZyA
k . Here we

have used a nonstandard notation, defining XA
k
:¼ ðXAÞk

and ZA
k
:¼ ðZAÞk. Now let �ABE

jk
:¼ XA

j Z
A
k�

ABEZyA
k XyA

j and

define

�A0B0AB :¼ 1

d2
X

jk

PA0
j � PB0

k � �AB
jk ; (5)

for Pj ¼ jjihjj. A0 and B0 are two new systems such that

dimðA0Þ ¼ dimðB0Þ ¼ d. The sum of j and k is understood
to be over all values from 1 to d. Direct calculation shows
that

SðA0jABÞ� ¼ Sð ��AB
ZA Þ � Sð�BÞ ¼ SðZAjBÞ�; (6)

SðB0jABÞ� ¼ Sð ��AB
XA Þ � Sð�BÞ ¼ SðXAjBÞ�; (7)

SðA0B0jABÞ� ¼ log2dþ SðAjBÞ�: (8)

Strong subadditivity is just the statement that
SðA0B0jABÞ � SðA0jABÞ þ SðB0jABÞ (cf. [2], Theorem
11.16), so

SðZAjBÞ� þ SðXAjBÞ� � log2dþ SðAjBÞ�: (9)

Define the probability distribution pk and quantum
states j’kiBE such that j�iABE ¼ P

k
ffiffiffiffiffiffi
pk

p jkiAj’kiBE.
Using Sð ��AB

ZA Þ ¼ HðpkÞ þ
P

kpkSð’B
k Þ ¼ HðpkÞ þP

kpkSð’E
k Þ ¼ Sð ��AE

ZA Þ, a simple calculation reveals that

SðZAjBÞ� � SðZAjEÞ� ¼ SðAjBÞ� and hence for an arbi-

trary pure �ABE,

SðXAjBÞ� þ SðZAjEÞ� � log2d: h

Saturating the bound.—Since the bound relies solely on
SSA, saturating the bound means fulfilling the SSA equal-
ity conditions. A useful form of these is given in [16],
which states in the present case that the AB state space
must decompose as H AB ’ L

sH
Ls �H Rs , so that

�A0B0AB ¼ M

s

rs�
A0Ls �!B0Rs (10)

for some states �A0Ls ,!B0Rs and probabilities rs. Projecting

A0B0 onto the jkth outcome gives �jk ¼ d2
L

srs�
Ls

j �
!Rs

k , where �Ls

j ¼ Tr½PA0
j �

A0Ls� and similarly for !Rs

k .

Thus, the action of XA
j and ZA

k on �AB must be on different

subsystems within each s sector.
Oneway to arrange for this is to take �AB to be one of the

Bell states j�jkiAB ¼ 1ffiffi
2

p XB
j Z

B
k ðj00i þ j11iÞAB. Then there

is only one s sector, and the spaces H L, H R are
two dimensional, so that j�jki ’ jjki. Bell states saturate
the bound in the most trivial manner possible: both
SðXAjBÞ and SðZAjBÞ ¼ 0.
A more interesting example is afforded by the state

jc iABE ¼ 1ffiffi
d

p P
kjkiAj’kiBE, where we set j’kiBE ¼

P
uv

ffiffiffiffiffiffiffiffi
quv

p juiBj�uviE1ZE2

k jviE2 with arbitrary states j�u;vi
and distribution quv. Here the entropies SðXAjBÞ and
SðZAjEÞ do not necessarily take on extremal values, but
their counterparts SðZAjBÞ and SðXAjEÞ do. For starters,
SðZAjBÞ ¼ log2d since ’B

k is independent of k. Mean-

while, SðXAjEÞ ¼ 0 can be quickly derived by making

the substitution jkiAZE2

k jviE2 ¼ ZA
vjkiAjviE2 in the defini-

tion of jc i. Thus, the �AB
jk derived from jc imeet the equal-

ity conditions, and therefore SðXAjBÞ þ SðZAjEÞ ¼ log2d.
In more concrete terms, the �AB

jk meet the equality

conditions because c AB ¼ P
vqv ~P

A
v � �B

v , with �B
v ¼P

uu0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qujvqu0jv

p h�uvj�u0vijuihu0jB. Thus, the action of XA
j

has no effect on c AB, as it is already diagonal in the XA

basis. Therefore we need only keep one s sector and can
dispense entirely with H Ls in the decomposition of �AB

jk ,

settingH Rs ¼ H AB. It remains an open question whether
any state can saturate the bound SðXAjBÞ þ SðZAjEÞ �
log2d and its counterpart SðZAjBÞ þ SðXAjEÞ � log2d
without taking on extremal values in either case.
Privacy criterion.—An immediate application of the

strong CIT is in bounding the correlations between two
systems A and E, possessed by Alice and Eve, respectively,
using the known correlations between A and B, possessed
by Bob. The weak form can also be used for this purpose,
but the types of correlations that can be bounded are
weaker as we now explain.
Consider the state �ABE and suppose that there exists a

measurement ~�B such that Hð ~OAj~�BÞ� � �. This implies

HðOAj�EÞ� � �2log2c� �, or equivalently, IðOA:�EÞ �
�þHðOAÞ� þ 2log2c. Supposing further that HðOAÞ� �
�2log2c, as would necessarily be the case for conjugate
observables, we obtain a bound on Eve’s information about
OA: IðOA:�EÞ � �. Applied to a quantum key distribution
scenario where Alice’s key is given by the measurement of
the observableOA, this ensures a certain level of privacy of
the key [5]. However, due to locking, this security criterion
is not universally composable [17], meaning that the key
cannot be safely used in arbitrary further cryptographic
protocols. For a precise definition of universal compos-
ability and an exhaustive explanation on why a suitable
security criterion should be composable, see [11,12].
On the other hand, the strong CIT can be used to obtain a

composable security criterion. The same conditions as
above now imply that the eavesdropper’s Holevo informa-
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tion is small, IðOA:EÞ � �, which is a composable security
criterion [11]. We can use the strong CIT to give an even
more direct statement, in the form of sufficient conditions
for decoupling Alice from Eve.

Decoupling theorem.—Suppose �ABE is a tripartite state
subject to the conditions Sð�AÞ � �2log2c, SðOAjBÞ� �
�1, and Sð ~OAjBÞ� � �2. Then

Tr j�AE � �A � �Ej � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 þ �2

p
: (11)

Proof.—The proof assumes that the strong CIT holds for

the observables OA and ~OA. Observe that the mixed state
case follows from the pure state case since the trace
distance cannot increase when removing the purifying
system. Thus, we can assume that �ABE is a pure state.
Then a straightforward calculation reveals that

Sð ~OAjEÞ� ¼ SðAjEÞ� þ Sð ~OAjBÞ�, using the fact that

given the value of ~OA, the entropy of Eve’s state is identical
to the entropy of Bob’s state. Using this to substitute for

Sð ~OAjEÞ� in the strong complementary information trade-

off, the three given conditions yield Sð�AÞ � SðAjEÞ� �
�1 þ �2. This can be written as Sð�AEjj�A � �EÞ � �1 þ
�2, and since the relative entropy and the trace distance
are related by ðTrj�AE � �A � �EjÞ2 � 4Sð�AEjj�A � �EÞ
[18], this concludes the proof. h

This theorem makes rigorous the intuition that full
quantum correlations, in the sense of small quantum condi-
tional entropy, between two systems A and B is equivalent
to being decoupled from any other system E. The same
intuition has different, though related, rigorous expres-
sions. When thinking of quantum correlations as entangle-
ment, this goes under the heading of monogamy of
entanglement [19]. Or, instead of using quantum mutual
information, one can imagine there exist measurements on
B which could predict both the outcome of XA and ZA, and
the same sort of decoupling result holds [14,20].

Conclusion.—We have proposed a tradeoff in the
amount of information simultaneously available about
complementary observables, formulated in terms of the
quantum conditional entropy. It can be seen as the natural
extension of the reformulation by Cerf et al. of the
information-exclusion principle and the entropic uncer-
tainty principle. It is also the ‘‘static’’ version, applicable
to quantum states, of Christandl and Winter’s ‘‘dynamic’’
conjugate information tradeoff, which is formulated for
quantum channels. The proof of the latter leads immedi-
ately to a proof of the strong complementary information
tradeoff, and numerical investigation reveals that the trade-
off appears to hold for arbitrary observables. We have also
discussed conditions under which the tradeoff can be satu-
rated, as well as described some applications to quantum
cryptography and derived a decoupling criterion for quan-
tum states.

It would be interesting to determine if a similar bound
holds for the smoothed conditional max entropies and/or
max entropies, which are generalizations of the classical
Renyi entropes of order 1 and 1=2, respectively, and have
direct operational interpretations [21]. They are often rele-
vant in studying information processing protocols at the
single-shot rather than asymptotic level, and are therefore
more fundamental. Note that the original derivation of
Maassen and Uffink already gives the unconditional result
Hmin þHmax � �2log2c.
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