
CONJECTURES ON CONVERGENCE AND SCALAR CURVATURE

CHRISTINA SORMANI AND PARTICIPANTS AT THE IAS EMERGING TOPICS
WORKSHOP ON SCALAR CURVATURE AND CONVERGENCE

Abstract. Here we survey the compactness and geometric stability conjectures
formulated by the participants at the 2018 IAS Emerging Topics Workshop on
Scalar Curvature and Convergence. We have tried to survey all the progress
towards these conjectures as well as related examples, although it is impossible
to cover everything. We focus primarily on sequences of compact Riemannian
manifolds with nonnegative scalar curvature and their limit spaces. Christina
Sormani is grateful to have had the opportunity to write up our ideas and has
done her best to credit everyone involved within the paper even though she is the
only author listed above. In truth we are a team of over thirty people working
together and apart on these deep questions and we welcome everyone who is
interested in these conjectures to join us.
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1. Introduction

One of the greatest challenges in Geometric Analysis today is to develop a
deeper understanding of the geometry of manifolds with lower bounds on their
scalar curvature and their limit spaces. Even in three dimensions, manifolds with
positive scalar curvature can have arbitrarily thin and deep wells and arbitrarily
long or short tunnels (see Figure 1). The existence of a single increasingly thin
well prevents the existence of a smooth or Lipschitz limit. If there are increasingly
many wells, the sequence has no Gromov-Hausdorff (GH) limit either. For this
reason we must consider weaker notions of convergence and at the same time work
to develop a notion of convergence which is strong enough to preserve the key
properties of scalar curvature. In Section 2 we review the key geometric proper-
ties of scalar curvature including new low regularity notions of nonnegative scalar
curvature.

Figure 1. A sequence of M3
j with positive scalar curvature that

converges to a round sphere, S3, in theVF sense but have no GH
limit.

In [64], Gromov suggested that we apply the notion of intrinsic flat (F ) conver-
gence which was defined by Sormani-Wenger in [138] for sequences of oriented
Riemannian manifolds with boundary using Ambrosio-Kirchheim theory [11]. In-
trinsic flat convergence has the advantage of having an existing compactness the-
orem by Wenger which requires only global volume and diameter bounds while
at the same time producing rectifiable limit spaces [144] [138]. Although points
may disappear in the limit, balls about points which do not disappear will converge
to balls about the limit points, the boundaries of those balls will converge, and
their filling volumes will converge. In fact volume preserving intrinsic flat (VF )
convergence, (which is F convergence combined with a requirement that the total
volumes converge) even implies convergence in measure. There have already been
significant advances exploring howVF convergence can be applied to understand
the limits of sequences of Riemannian manifolds with uniform lower bounds on
their scalar curvature. In Section 46, we will survey the definitions and properties
of F ,VF , and other notions of weak convergence that might be applied to explore
the geometry of Riemannian manifolds with scalar curvature bounds.

Here we present seven key conjectures that were formulated or reformulated by
various mathematicians during the 2018 Emerging Topics at IAS on Scalar Curva-
ture and Convergence. There are three compactness conjectures:
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• MinA Scalar Compactness [Gromov-Sormani]
• NoMin Boundary Scalar Compactness [Gromov]
• Scalar Mass Compactness [Sormani]

each of which has different suggested hypotheses that would provide enough con-
trol on a sequence of manifolds, M j, with nonnegative scalar curvature so that a
subsequenceVF converges to a limit space which has some generalized notion of
nonnegative scalar curvature. There are four geometric stability conjectures:

• Geometric Stability of Scalar Torus Rigidity [Gromov-Sormani]
• Geometric Stability of Scalar Prism Rigidity [Gromov-Li]
• Geometric Stability of Scalar Sphere Rigidity [Marques-Neves]
• Geometric Stability of Zero Mass Rigidity [Lee-Sormani]

each of which states that a manifold which almost satisfies the hypotheses of a
known rigidity theorem must beVF close to the rigid manifold that exactly satis-
fies those hypotheses. If we prove one of the compactness conjectures and prove
the rigidity theorems hold on the class of limit spaces, then these geometric stability
conjectures would follow. They might also be proven directly without a compact-
ness theorem either in full generality or in special settings. All these conjectures
concern Riemannian manifolds which are three dimensional.

Each of these seven conjectures will be discussed in its own section where we
will provide a precise statement of the conjecture, review the history of the conjec-
ture, survey progress towards the conjecture, discuss related examples, and finally
describe the consequences of each conjecture. Throughout we will also list open
problems at various levels of difficulty. Some of the open problems are suggested
special cases of the conjectures while others involve proving the consequences of
the conjectures directly.

In the final section of the paper we return to the properties of VF and VADB
convergence with brief survey of known results and a list of open questions. As it
impossible to discuss all conjectures and ideas that arose during discussions at the
Emerging Topics at IAS on Scalar Curvature and Convergence (IAS) and subse-
quent workshops including the 2020 Virtual Workshop on Ricci and Scalar Curva-
ture (VWRS) we recommend the reader consult Gromov’s surveys in [62] and [61]
and other chapters within this volume.

Acknowledgements: The writer would like to thank all the participants in the
workshop at IAS and subsequent events including Misha Gromov, Brian Allen,
Lucas Ambrozio, Alessandro Carlotto, Otis Chodosh, Fernando Coda Marques,
Michael Eichmair, Bernhard Hanke, Lan-Hsuan Huang, Jeff Jauregui, Nicos Kapouleas,
Demetre Kazaras, Anusha Krishnan, Sajjad Lakzian, Dan Lee, Chao Li, Yevgeny
Liokumovich, Siyuan Lu, Elena Maeder-Baumdicker, Andrea Malchiodi, Yashar
Memarian, Pengzi Miao, Alex Nabutovsky, Robin Neumayer, Andre Neves, Raquel
Perales, Jacobus Portegies, Regina Rotman, Rick Schoen, Shengwen Wang, Guo-
fang Wei, Ruobing Zhang, and Xin Zhou for deep conversations at IAS. We would
also like to thank Yuguang Shi, Robert Young, Armando Cabrera Pacheco, Jorge
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Basilio, Lisandra Hernandez Vasquez, Paula Burkhardt-Guim, Daniel Stern, Ed-
ward Bryden, Marcus Khuri, James Isenberg, Martin Lesourd, Chritian Ketterer,
Armando Cabrera Pacheco, Aaron Naber, Man-Chun Lee, Robin Neumeyer, Nicola
Gigli, Shoehei Honda, Richard Bamler, Jintian Zhu, Guofang Wei, Paolo Piazza,
and Blaine Lawson for conversations at Stony Brook, NYU, and VWRS. We try
to credit everyone within for their specific suggestions where possible. I would
especially like to give thanks to Raquel Perales, Jeff Jauregui, Chao Li, Pengzi
Miao, Dan Lee, Brian Allen, Lan-Hsuan Huang, and Michael Eichmair for extra
assistance in the final stages of preparation of this work.

2. The Geometry of Scalar Curvature

Before we state our conjectures or define any notions of convergence, we review
some of the key geometric properties of three dimensional Riemannian manifolds
with scalar curvature bounds. We have chosen to focus on the following four rigid-
ity theorems:

• The Scalar Torus Rigidity Theorem [Schoen-Yau] [Gromov-Lawson]
• The Scalar Prism Rigidity Theorem [Gromov] [Li]
• The Scalar Sphere Rigidity Theorem [Marques-Neves]
• Zero Mass Rigidity [Schoen-Yau][Witten][Shi-Tam]

Note that we quite deliberately avoid using differentiability in the definitions and
in the statements of these theorems. This allows us to see how these notions might
be defined and theorems might be stated on limit spaces of lower regularity.

Let us begin by recalling that a compact Riemannian manifold, (M, g), with a
C0 metric tensor g may be viewed as a compact metric space, (M, d), by taking
(1)

d(p, q) = inf{Lg(C) |C(0) = p, C(1) = q} where L(C) =

∫ 1

0
g(C′(t),C′(t))1/2 dt.

This infimum is achieved by a geodesic, so we say (M, d) is a compact geodesic
metric space. The diameter of the manifold is

(2) Diam(M) = sup{d(x, y) : x, y ∈ M}.

Balls are then defined B(p, r) = {x | d(x, p) < r} and the exponential map provides
a biLipschitz chart from a ball in Euclidean space to a ball in (M, d). The man-
ifold is oriented if a preferred orientation has been chosen for all charts so that
that Jacobian of the biLipschitz transition maps has positive determinant almost
everywhere.

Volumes of regions, U ⊂ M, can be defined either by integrating
√

det g on
disjoint charts or equivalently using the Hausdorff measure
(3)

Vol(U) = Hn(U) = lim
δ→0

inf

cn

∞∑
j=1

(Diam(U j))n : U ⊂
∞⋃
j=1

U j, Diam(U j) ≤ δ

 .
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To compute the scalar curvature at p we need only take the limit

(4) Scal(p) = lim
r→0

6(n + 2)
(
Vn(r) − Vol(B(p, r))

r2Vn(r)

)
where Vn(r) is the volume of a Euclidean ball of radius r in dimension n. Note
that a three dimensional round sphere, (S3, gS3), with diameter π has Scal = 6
everywhere. An example with Scal = 0 everywhere is a flat three torus, (M3, g0)
which is a manifold homeomorphic to a torus

(5) T3 = S1 × S1 × S1

such that balls about every point are isometric to Euclidean balls.

2.1. Stable Minimal Surfaces. The area of a surface may also be defined either
by integration or equivalently by using the Hausdorff measure. A surface Σ2 ⊂ M3

is a closed minimal surface if it has no boundary and locally minimizes area:

(6) Area(Σ2 ∩ U) ≤ Area(Σ′) ∀Σ′ s.t. ∂Σ′ = ∂(Σ2 ∩ U).

It is a stable closed minimal surface if it minimizes area of any continuous defor-
mation, Σt:

(7) Area(Σ2) ≤ Area(Σt) ∀Σt s.t. Σ0 = Σ.

In [125], Richard Schoen and Shing-Tung Yau proved that if g is C2 then by taking
the second variation of the area and applying the Gauss-Bonnet Theorem, the only
stable closed minimal surfaces in a manifold with nonnegative scalar curvature are
tori and spheres. If a compact M3 with nonnegative scalar curvature contains a
minimal torus, then M3 is a flat three dimensional torus. See Figure 2. Thus in
particular they proved the following:

Theorem 2.1. Scalar Torus Rigidity [Schoen-Yau] If M3 is homeomorphic to a
torus and has nonnegative scalar curvature then is isometric to a flat torus.

.

Figure 2. Two manifolds Mi with Scal ≥ 0: the first contains
a stable minimal sphere, Σ1 ⊂ M1, and the second has a stable
minimal torus Σ2 ⊂ M2. Thus M2 is isometric to a flat three torus.
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This theorem was generalized to higher dimensions by Misha Gromov and Blaine
Lawson [60] with a new proof that also works for dimension three. Recently Stern
has presented a new proof using harmonic maps from the torus to the circle S1

[139].
In addition to the Scalar Torus Rigidity Theorem, there are a number of other

rigidity theorems which similarly involve the existence of a stable minimal or CMC
surface in a Riemannian manifold with lower bounds on scalar curvature. In the
asymptotically flat setting there is the Rigidity of the Positive Mass Theorem of
Schoen-Yau [127] which we will discuss later along with the hyperbolic version
of this theorem and other noncompact theorems. In the compact setting there is
the Minimal Torus Scalar Rigidity Theorem of Cai-Galloway [39], the Hemispher-
ical Scalar Rigidity Theorem of Eichmair [50], the Cover Splitting Scalar Rigidity
Theorem of Bray, Brendle, and Neves [29], and the RP3 Scalar Rigidity Theorem
by Bray, Brendle, Eichmair and Neves [28]. All of these involve minimal surfaces
in three dimensional manifolds, but there is also one involving minimal surfaces
in four dimensional manifolds by Zhu in [146]. Ambrozio has a rigidity theorem
involving stable minimal surfaces with free boundary [12].

We should also keep in mind the lack of rigidity discovered in work of Corvino
[47], Lohkamp [96], Hang-Wang [68], and Brendle-Marques-Neves [32]. We
should also keep in mind the Schoen-Yau and Gromov-Lawson tunnel construc-
tions in [124] and [59], and the more recent sewing constructions of Basilio-Dodziuk-
Sormani in [22] using those tunnels. In dimension 4 and up there is an intriguing
set of examples by Lee-Naber-Neumayer in [87] using a new method altogether.

2.2. Prism Rigidity of Gromov and Li. Gromov proposed the following theorem
in [64] and it was proven using Schoen-Yau style methods by Chao Li in [91]. For
simplicity we state the theorem for cubes but Li’s proof holds for more general
prisms.

Theorem 2.2. Prism Rigidity [Gromov][Li] If M3 has Scal ≥ 0, then any cube
P ⊂ M3 satisfies prism rigidity. That is: if the faces of P3 are mean convex and
dihedral angles, θp ≤ π/2, at any p lying on an edge of P3, then P is isometric to a
rectangular prism in Euclidean space.

Mean convexity of the boundaries can be defined by stating that local continuous
inward deformations of the boundary are area nonincreasing:

(8) Area(Σt) ≤ Area(Σ0)

where Σ0 ⊂ ∂M lies in a face of ∂M avoiding an edge, and Σt ⊂ M is a variation of
Σ0 with ∂Σt = ∂Σ0. So this includes boundaries whose faces are minimal surfaces.

The dihedral angle at p ∈ ∂P can be defined using volumes:

(9) θp(P) = lim
r→0

2πVol(B(p, r) ∩ P)/V3(r).

See Figure 3. Note that the hypotheses of the theorem only depend on area and
volume. In the conclusion distances are controlled because the lengths, x, y, and z,
of the sides of a rectangular prism in Euclidean space are determined by the total
volume divided by area of the perpendicular face: x = (xyz)/(yz).
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Figure 3. On the left is a prism P ⊂ M3 with mean convex bound-
aries has Area(Σt) ≤ Area(Σ0) for local deformations that has di-
hedral angles θp ≤ π/2. If Scal ≥ 0 on P then P is isometric to a
rectangular prism in Euclidean space as depicted on the right.

Gromov’s proof of prism rigidity of cubes begins by reflecting the cube across
the mean convex faces to create a torus with a C0 metric tensor. He then smooths
the metric on the cube to a metric with nonnegative scalar curvature to reduce the
problem to the torus rigidity theorem [64]. He also proves that if all the small
cubes in a smooth manifold M3 satisfy the prism rigidity property, then M3 has
nonnegative Scalar curvature. He has proposed this as a natural low regularity
definition of nonnegative scalar curvature.

Question 2.3. If a C0 manifold satisfies prism rigidity for small prisms, is the limit
of the ratio of volumes in (4) nonnegative?

Chao Li proves the prism rigidity theorem for more general prisms using a capil-
lary flow [91]. His prisms do not need to be cubes. The faces are still mean convex
and the dihedral angles are chosen in comparison to a corresponding Euclidean
prism. It is important to note there are no assumptions on the lengths of edges or
the areas of faces in these prism rigidity theorems. This version of the proof does
not apply the Torus Rigidity Theorem and is instead a direct proof which might
be said to be in the style of a Schoen-Yau minimal surface proof as the levels of
the capillary flow are minimal surfaces, but the boundaries are not free and they
have corners. He applies Jean Taylor’s proof of the existence of capillary surfaces
as integral currents [142] and then improves the regularity of the surfaces so that
he can apply the technique Bray-Brendle-Neves used in [29] to prove the Scalar
Cover Splitting Theorem. He has also proven a hyperbolic version of this theorem
assuming Scal ≥ −1 in [90].

2.3. Widths and Unstable Minimal Surfaces. Marques and Neves have proven
a rigidity theorem involving an unstable minimal surface in [100]. Let us begin by
reviewing the definition of Width:

(10) Width(M3) = inf
Σt∈Λ

sup
t∈[0,1]

Area(Σt)

where Λ is the collection of all sweepouts of M3. More precisely, when M3 is a
sphere, viewed as a subset of E4, a sweepout consists of a foliation by surfaces:

(11) Σt = Ft
(
x−1

4 (t)
)

where Ft : M3 → M3
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is a smooth family of diffeomorphisms. Note that sweepouts could be defined using
a Lipschitz family of biLipschitz maps in place of diffeomorphisms. The width is
achieved by a minimal surface which may be unstable. For example the width of a
round sphere S3 is 4π and it is achieved by any equatorial sphere. The equatorial
sphere is unstable because it can be globally deformed to a surface of smaller area.
See Figure 4. Marques and Neves proved the following rigidity theorem for spheres
in [100]:

Theorem 2.4. Scalar Sphere Rigidity [Marques-Neves] Suppose M3 is a sphere
with a metric that has Scal ≥ 6 and Width(M3) = 4π then M3 is isometric to a
round sphere, S3.

Figure 4. The Riemannian manifold on the left has Scal ≥ 6 ev-
erywhere and an unstable minimal surface achieving the width of
area < 4πwhile the manifold on the right has Scal ≥ 6 everywhere
and an unstable minimal surface achieving the width of area = 4π
so it is isometric to S3.

This theorem is proven using Hamilton’s Ricci Flow. Hamilton proved that
under Ricci flow scalar curvature remains positive and evolves in a beautiful way
[67]. Colding and Minicozzi studied the evolution of Width under Ricci flow to
prove finite time extinction of the Ricci flow. See for example their expository
article [46]. Marques and Neves then applied the Ricci flow in combination with
minmax theory to prove their rigidity theorem stated above in [100].

2.4. Schoen-Yau and Zero Mass. Schoen and Yau’s original Positive Mass Theo-
rem states that a complete noncompact Riemannian manifold, M3, which is asymp-
totically flat that has nonnegative scalar curvature has positive ADM mass unless
the manifold is isometric to Euclidean space [127]. See Figure 5. Although we are
considering compact manifolds here, the techniques applied to prove this theorem
and quasilocal versions of this theorem, may be applied in the compact setting as
well.

While the ADM mass was originally defined in [17] using a high level of reg-
ularity, Huisken introduced an isoperimetric mass in [74] which requires only no-
tions of volume and area. The ADM mass has recently been shown by Miao using
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Figure 5. On the left is Riemannian Schwarzschild space which
has Scal = 0 everywhere and a minimal boundary which is the
horizon of a black hole with mADM(M) =

√
Area(∂M)/(16π). The

manifold on the right has Scal ≥ 0 and the same ADM mass due
to its asymptotic behavior at infinity. It has a well and a minimal
surface in the neck of a bubble.

volume estimates of Fan-Shi-Tam in [52] to be equal to Huisken’s isoperimetric
mass:

(12) mADM(M3) = mIS O(M3) = lim sup
r→∞

(Ωr)

where Ωr are increasingly large round regions and

(13) mIS O(Ω) =
2

Area(∂Ω)

(
Vol(Ω) −

Area(∂Ω)3/2

6
√
π

)
.

See also work of Jauregui-Lee in [77] and Chodosh-Eichmair-Shi-Yu in [42].
Here we will state the rigidity part of the positive mass theorem in dimension

three as follows:

Theorem 2.5. Zero Mass Rigidity [Schoen-Yau] If M3 is asymptotically flat with
Scal ≥ 0 everywhere and mADM(M3) = 0 then M3 is isometric to Euclidean Space.

Witten proved the Positive Mass Theorem for Spin manifolds in [145]. Lohkamp
has another approach outlined in [97]. It should be noted that Lohkamp introduced
a method of reducing the proof of the Positive Mass Theorem to the Torus Rigidity
Theorem. This is explained in more detail in Schoen-Yau’s paper on the Positive
Mass Theorem in dimensions greater than 8 [128]. There is a Ricci flow proof
by Yu Li in [93]. Most recently there is a new proof in three dimensions using
harmonic maps to circles by Bray-Kazaras-Khuri-Stern [31].

The Zero Mass Rigidity Theorem has been proven for smooth manifolds with
corners by Miao [104] and by Shi-Tam in [130]. More recent papers with even
lower regularity have been written by McFeron-Székelyhidi [102], Shi-Tam in
[131], Lee-LeFloch [84], and Jiang-Shen-Jang [80].

Huisken-Ilmanen proved the Penrose Inequality:

(14) mADM(M3) ≥
√

Area(∂M)/(16π)
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if ∂M is a connected minimal surface and there are no closed interior minimal sur-
faces in M3 [75]. They proved the Penrose Rigidity Theorem which states that if
equality is achieved in (14) then M3 is the Riemannian Schwarzschild manifold
depicted in Figure 5. The Penrose Inequality has been proven when ∂M3 has more
than one connected component by Bray using a completely different approach [30].
It should be noted that the Penrose Inequality fails if there are closed interior min-
imal surfaces surrounding the boundary of M3. In General Relativity closed min-
imal surfaces are apparent horizons of black holes, and it is well understood that
anything can happen beyond the horizon of a black hole. This intuition can prove
helpful when studying compact manifolds with Scal ≥ 0 as well.

There are quasilocal notions of mass defined for regions with boundaries that are
mean convex with positive Gauss curvature. In addition to the isoperimetric mass
mentioned above, there is the Hawking mass, which can take negative values even
on regions in Euclidean space. Christoudoulou-Yau have proven it is nonnegative
on round regions in [43]. Sun has proven rigidity of the boundaries of round regions
with zero Hawking mass in [141] and Shi-Sun-Tian-Wei have proven rigidity of the
interiors in [129]. Huisken-Ilmanen have proven the Hawking mass is nonnegative
on regions defined using inverse mean curvature flow. This flow is not defined for
compact manifolds [75], however it can be applied to regions in compact manifolds
which have extensions to complete noncompact manifolds with no closed interior
minimal surfaces. The Bartnik mass of a region is defined as the infimum of the
ADM mass over all such extensions [21].

Finally there is the Brown-York mass which has been proven to be equal to

(15) mBY (∂Ω) =
1

8π

(
A′0(0) − A′(0)

)
where A(r) is the area of the boundary of the tubular neighborhood,

(16) A(r) = Area(∂(Tr(Ω)))

and

(17) A0(r) = Area(∂(Tr(Ω0)))

where Ω0 ⊂ E
3 is a convex region in Euclidean space determined by the existence

of a Riemannian isometric embedding from ∂Ω into Euclidean space that is unique
up to isometry by a result of Nirenberg [113] and Pogorelov [119]. If the metric
is only C1 the isometric embedding may not be unique. To define the Brown-
York mass in a lower regularity setting: we could perhaps choose among convex
embeddings, an embedding with the maximum value for A′0(0) .

Shi and Tam have proven a rigidity theorem for the Brown-York mass in [130].
Imitating the statement of Gromov’s Prism Rigidity, we state their theorem as fol-
lows:

Theorem 2.6. Zero Local Mass Rigidity [Shi-Tam] If M3 has Scal ≥ 0, then any
region Ω ⊂ M3 satisfies local mass rigidity. That is: if ∂Ω is mean convex and
has positive Gauss curvature and mBY (∂Ω) ≤ 0 then Ω is isometric to a region in
Euclidean space and consequently mBY (∂Ω) = 0.
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Shi and Tam proved this theorem by extending the region Ω to a manifold N
containing Ω that is asymptotically flat. They prove the extension has mADM(N) =

0 and thus by the positive mass theorem with corners, the extension, N, is isometric
to Euclidean space. Thus the region Ω ⊂ N is a flat region in Euclidean space. The
theorem has been extended by Eichmair, Miao, and Wang to more general shaped
regions using a different proof in [51].

Remark 2.7. A smooth manifold M3 whose small balls satisfy local mass rigidity
has nonnegative scalar curvature. This is a consequence of the fact that

(18) lim
r→0

12mBY (∂B(p, r))/r3 = Scal(p)

proven by Fan, Shi, and Tam for a manifold with a C2 metric tensor in [52].

Question 2.8. If a C0 manifold satisfies local mass rigidity for small balls, is the
limit of the ratio of volumes in (4) nonnegative?

Question 2.9. Is there a direct relationship between local mass rigidity and prism
rigidity?

Question 2.10. Can we define a natural quasilocal mass for prisms which depends
only on areas, mean curvature, and dihedral angles?

The above two questions were discussed at IAS and are being investigated by
various mathematicians. See in particular recent work of Miao in [105] and by
Miao-Piubello in [103].

Remark 2.11. All the quasilocal masses are defined depending on the mean cur-
vature of the boundary of Ω, which is why they are written as M(∂Ω) rather than
M(Ω). Suppose we have a surface Σ with prescribed mean curvature. It is natural
to ask whether it has a filling Ω with nonnegative scalar curvature whose boundary
with the induced metric is isometric to Σ. One consequence of Shi-Tam’s Rigidity
Theorem is that such a filling only exists if the resulting Brown-York mass is posi-
tive using the integral of the prescribed mean curvature in the place of A′(0). Miao
and Tam note in [106] that it is unknown what the smallest volume of such a pos-
sible filling might be even when ∂Ω is isometric to the boundary of a Euclidean
ball. They observe in this case that the Euclidean filling is definitely not the one
of smallest volume because the volume functional is unstable at the Euclidean fill-
ing. See also their joint work with Jauregui in [79] and the more recent work of
Yuguang Shi, Wenlong Wang, Guodong Wei, and Jintian Zhu in [132]. This ques-
tion is discussed further by Gromov in [62].

The rigidity of asymptotically hyperbolic manifolds with Scal ≥ −6 were first
considered by Min-Oo in [107]. The mass of such manifolds is studied in Wang
in [143] and Chrusciel-Herzlich [44]. The rigidity has been proven in work of
Andersson-Dahl [14], of Andersson-Cai-Galloway [13], and of Huang-Jang-Martin
[70].

Other rigidity theorems for complete noncompact manifolds with scalar cur-
vature bounds are the Hyperbolic Scalar Cylinder Rigidity Theorem of Nunes in
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[114] and Moraru in [110] and the Rigidity of Regions between Minimal surfaces
of Carlotto-Chodosh-Eichmair [40]. There is also the Cylindrical Splitting Theo-
rem of Chodosh-Eichmair-Moraru in [41] and the Warped Scalar Splitting Theo-
rem of Galloway-Jang in [55]. See also the Vacuum Static Rigidity Theorem of
Qing-Yuan [122]. Finally there is the rigidity of manifolds with bad ends proven
by Lesourd-Unger-Yau in [89].

This concludes our very limited survey of the geometric properties and geomet-
ric rigidity theorems for three dimensional Riemannian manifolds with scalar cur-
vature bounds. These results are the ones we will be discussing below in relation
to convergence, but keep in mind there are many other beautiful results concerning
manifolds with scalar curvature bounds which will be surveyed in other chapters
of this volume. It should be noted that we only consider lower bounds on scalar
curvature throughout because Lohkamp has proven in [95] that any Riemannian
manifold can be achieved as the C0 limit of sequences of manifolds with scalar
curvature bounded uniformly from above.

3. Geometric Notions of Convergence

Here we will present the following notions of convergence reviewing their geo-
metric properties:

• Gromov-Lipschitz (Lip) convergence
• Intrinsic flat (F ) convergence
• Volume preserving intrinsic flat (VF ) convergence
• Measure convergence (m)
• Volume above distance below (VADB) convergence

We will describe how these notions are related to one another and how they relate
to less geometric notions of convergence defined by the convergence of metric
tensors. We may view this section as a very brief review of the key ideas and a
survey of the existing literature.

3.1. Lipschitz Convergence. We begin with Lipschitz convergence of compact
metric spaces as defined by Gromov in [63], not to be confused with the Lipschitz
convergence of metric tensors. First recall that the Lipschitz constant of a function
F : (X0, d0)→ (X1, d1) is defined

(19) Lip(F) = sup
p,q

d1(F(p), F(q))
d0(p, q)

Note that

(20) d1(F(p), F(q)) ≤ Lip(F) d0(p, q)

immediately implies that the rectifiable length of a curve,

(21) Ld(C[a, b]) = sup

 N∑
i=1

d(C(ti),C(ti−1)) : a = t0 < · · · < tN = b, N ∈ N

 ,
satisfies

(22) Ld1((F ◦C)[a, b]) ≤ Lip(F)Ld0(C([a, b])
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and similarly the Hausdorff measures of sets satisfy

(23) Hm
d1

(F(U)) ≤ (Lip(F))mHm
d0

(U).

We say that a sequence of metric spaces (M j, d j) converges to (M∞, d∞) in the
Gromov-Lipschitz sense [63],

(24) (M j, d j)
Lip
−−−→ (M∞, d∞)

if there exists biLipschitz maps, Ψ j : M∞ → M j, such that

(25) max
{
Lip(Ψ j),Lip(Ψ−1

j )
}
≤ 1 + ε j → 1.

Given a fixed manifold with a sequence of metric tensors g j → g0 in the C0

sense then

(26) (M, d j)
Lip
−−−→ (M, d∞)

where d j are defined as in (1). In fact the Lipschitz constant of the identity map
from (M, d j) to (M, d∞) is bounded above by maxv∈T M g0(v, v)/g j(v, v) and vice
versa.

Note that under Lipschitz convergence, it is easy to see that

(27) Diam(M j)→ Diam(M∞) and Vol(M j)→ Vol(M∞).

So we say Lipschitz convergence is diameter preserving and volume preserving.
If M j has a boundary, ∂M j, then we could restrict the distances on M to distances

on the boundary. With the restricted distances, we get Lipschitz convergence of the
boundaries. That is Lipschitz convergence is boundary preserving:

(28) (∂M j, d j)→ (∂M∞, d∞)

and thus also preserves the area of the boundary:

(29) Area(∂M j)→ Area(M∞).

Within the paper there will be further discussion of restricted vs induced distances
on the boundaries. One advantage of using restricted distances is that the bound-
ary can have many components and all are considered part of the same discon-
nected metric space. For more information about the convergence of manifolds
with boundary see the survey by Perales [116].

Lipschitz convergence preserves lengths in the following sense: any rectifiable
curve in C : [0, 1]→ M∞ has a sequence of rectifiable curves Ψ j ◦C : [0, 1]→ M j
which ”converge” to this limit curve and whose lengths converge:

(30) L j(Ψ j ◦C)→ L∞(C)

as a consequence of (22). Conversely, if we start with curves C j : [0, 1]→ M j with
a uniform upper bound on their lengths, the Arzela-Ascoli Theorem implies that
they have a subsequence which converges to rectifiable curves in C∞ : [0, 1]→ M∞
in the sense that Ψ−1

jk
◦C jk : [0, 1]→ M∞ converge uniformly to C∞ : [0, 1]→ M∞.

We even have

(31) lim inf
k→∞

L jk (Ψ jk ◦C) ≥ L∞(C)



14 SORMANI ET. AL.

but the lengths may drop in the limit and the limit curve might even be a single
point. This can be seen by considering a constant sequence M = T2 with g j = g0
the standard flat metric, and Ψ j the identitiy map and taking a sequence of C j as in
Figure 6.

Figure 6. The sequence of jagged curves, C j, converge to a
straight line segment, C∞, but lim j→∞ L j(C j) > L∞(C∞).

Let us now consider rectifiable surfaces, Σ ⊂ M3
∞. As above we have surfaces

Ψ j(Σ) ⊂ M j and the Hausdorff measures converge:

(32) Area(Ψ j(Σ))→ Area(Σ).

In this sense Lipschitz convergence is area preserving. Conversely, if we have
closed surfaces Σ j ⊂ M j, it is possible for them to disappear in the limit, even
if they are stable minimal surfaces. For example if M j = [0, π] × f j S

2 and f j(t)

converge to sin(t) in the C0 sense then M j
Lip
−−−→ S3. Choose a sequence of such

f j such that f ′j (t j) = 0 and f j”(t j) > 0 we have Σ j = f −1
j (t j) is a stable minimal

sphere. If we choose t j → 0 we have Area(Σ j) → 0 and the Σ j disappear in the
limit. See Figure 7 . Even if the Σ j don’t disappear, they might converge to a
surface which is no longer stable as seen by taking t j → π/2 or a surface which is
no longer minimal as seen by taking t j → π/4. This will be discussed more within
the paper, as will a discussion of the limits of mean convex surfaces and constant
mean curvature surfaces.

If we assume that we have oriented rectifiable surfaces Σ j ⊂ M j such that

(33) Area(Σ j) ≤ A and Length(∂Σ j) ≤ L

then

(34) Area(Ψ−1
j (Σ j)) ≤ A′ and Length(Ψ−1

j (∂Σ j)) ≤ L′.

Thus we may apply the Federer-Flemming Compactness Theorem [53], to con-
clude that a subsequence converges in the flat (FF) sense as integral currents to a
limit

(35) [Ψ−1
j (Σ j)]

F
−−→ T∞

where T∞ is an integral current, which either corresponds to a weighted oriented
countablyH2 rectifiable surface or is the 0 current.
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Figure 7. This sequence of warped two spheres are Lipschitz con-
verging to a standard sphere. They have stable minimal geodesics
that disappear in the limit due to shortening length. These spheres
can also be viewed as a sequence of warped three spheres with
stable minimal surfaces that disappear in the limit.

Let us explain this more clearly. A subset S of a metric space, (M, d), is said to
be countably Hm rectifiable and oriented if it has a preferred collection of count-
ably many disjoint biLipschitz charts, ϕi : Ai → U defined on Borel sets, Ai ⊂ E

m,
such that

(36) Hm

 S \
∞⋃

i=1

ϕi(Ai)

 = 0.

We can integrate m dimensional forms, ω, over such a set to define a current:

(37) [S ](ω) =

∫
S
ω =

∞∑
i=1

∫
Ai

ϕ∗iω.

If we add integer weights ai ⊂ N, we obtain what is called an integer rectifiable
current:

(38) T (ω) =

∞∑
i=1

ai[ϕi(Ai)] where T (ω) =

∞∑
i=1

ai

∫
Ai

ϕ∗iω.

When M is a Riemannian manifold, T has a mass which is its weighted volume:

(39) M(T ) =

∞∑
i=1

|ai|H
m(ϕi(Ai)).

The boundary of a current is defined abstractly by Stokes Theorem

(40) (∂T )(ω) = T (dω)

so that if Σ is a smooth surface with boundary we have ∂[Σ] = [∂Σ] the two notions
of boundary agree with the correct orientation.

All these ideas have been extended to metric spaces by Ambrosio-Kirchheim
[11] which we will describe within. The formula for mass of a rectifiable current
in a metric space is more complicated than just a weighted volume. Neither notion
of mass has anything to do with ADM mass or quasilocal mass.



16 SORMANI ET. AL.

An integral current is an integer rectifiable current that has a boundary that is
also integer rectifiable. We say a sequence of integral currents T j converges in the
flat (F) sense as integral currents to T∞ if

(41) dM
F (T j,T∞)→ 0

where flat distance between currents is defined as in Federer-Flemming [53] as

(42) dM
F (T j,T∞) = inf{M(A) + M(B) : T j − T∞ = A + ∂B }

where A is also an m dimensional integral current and B is an m + 1 dimensional
integral current whose boundary is built from T j, T∞, and A with appropriate ori-
entations defined by the signs above. See Figure 8. Note that if T j is a sequence
such that M(T j)→ 0 then T j converges to the 0 current.

Figure 8. The sequence of jagged curves are represented by cur-
rents, T j = [C j], which F-converge to the line segment, T∞ =

[C∞]. This can be seen by taking B j = [Ω j] where Ω j is the region
between the connected curves and A j to be the vertical segments
on either side oriented so that T∞ − T j − A j = ∂B j.

It is easy to see from the definition that T j
F
−−→ T∞ implies the boundaries

converge: ∂T j
F
−−→ ∂T∞. Furthermore the masses are lower semicontinuous:

(43) lim inf
j→∞

M(T j) ≥M(T∞);

so the same is also true for the boundaries:

(44) lim inf
j→∞

M(∂T j) ≥M(∂T∞).

Another beautiful property of flat convergence that will be described further within
is the convergence of slices. If we have a Lipschitz function h : M → R and a
rectifiable surface Σ ⊂ M then we can define slices < h, [Σ], t > which correspond

to the sets h−1(t) ∩ Σ for almost every t. If [Σ j]
F
−−→ [Σ∞] then for almost every

t ∈ R, a subsequence of the slices converge

(45) < h, [Σ jk], t >
F
−−→ < h, [Σ∞], t > .

Federer-Flemming’s flat convergence has been a fundamental part of the study of
Geometric Measure Theory since the 1950’s and we recommend Morgan’s text-
book for an intuitive introduction [111]. We recommend Ambroisio-Kirchheim’s
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Currents on Metric Spaces [11] for a rigorous and elegant extension of the theory to
metric spaces that works beautifully as an introduction to the theory on Euclidean
Space as well.

3.2. Intrinsic Flat Convergence. As mentioned in the introduction, Lipschitz
convergence of Riemannian manifolds is too strong a notion of convergence to con-
sider for sequences of M3

j with nonnegative scalar curvature. We will still consider
it as an important test case for checking which properties of scalar curvature might
be conserved when taking a limit of such manifolds, but it is not a weak enough
notion of convergence to apply to consider more general sequences of manifolds
with nonnegative scalar curvature.

Sormani and Wenger weakened the notion of Lipschitz convergence of oriented
Riemannian manifolds using the idea of flat convergence of integral currents in
[138]. A sequence of compact oriented Riemannian manifolds with boundary con-
verges in the intrinsic flat (F ) sense

(46) Mn
j
F
−−→ Mn

∞ ⇐⇒ dF
(
Mn

j ,M
n
∞

)
→ 0

where

(47) dF
(
M j,M∞

)
= inf dZ

F

(
[Ψ j(M j)], [Ψ∞(M∞)]

)
,

where the infimum is taken over all complete metric spaces, (Z, dZ), and all distance
preserving maps

(48) Ψ j : M j → Z such that dZ
(
Ψ j(p),Ψ j(q)

)
= d j(p, q) ∀p, q ∈ M j.

They use Ambrosio-Kirchheim theory to rigorously define the integral currents,
[Ψ(M)], on the metric space Z. This F convergence is also referred to as Sormani-
Wenger Intrinsic Flat (SWIF) convergence in some later papers. See Figure 1 for
a sequence of manifolds which converge in the intrinsic flat sense to a sphere and
note that there is no requirement that the topology of the manifolds may change in
the limit.

Sormani and Wenger proved that

(49) dF (M j,M∞) = 0

iff there is an orientation preserving isometry between M j and M∞. They also

proved that if M j
F
−−→ M∞ then there exists a common complete metric space Z,

and distance preserving maps Ψ j : M j → Z such that

(50) [Ψ j(M j)]
F
−−→ [Ψ∞(M∞)] as integral currents in Z.

Thus intrinsic flat convergence has all the same properties as flat convergence:

(51) M j
F
−−→ M∞ =⇒ ∂M j

F
−−→ ∂M∞

and

(52) lim inf
j→∞

Vol(M j) ≥ Vol(M∞) and lim inf
j→∞

Vol(∂M j) ≥ Vol(∂M∞).
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In [136] Sormani has also proven that

(53) lim inf
j→∞

Diam(M j) ≥ Diam(M∞).

Sormani and Wenger defined a larger class of oriented rectifiable weighted met-
ric spaces, called integral current spaces, which include the 0 space, and defined
the F convergence of such spaces in [138]. Oriented Alexandrov spaces are inte-
gral current spaces as seen in work of Jaramillo, Perales, Rajan, Searle, Siffert, and
Mitsuishi [76][109][108]. Integral Current Spaces need not be connected nor have
geodesics, and they even include the 0 space [138]. A sequence of Riemannian
manifolds F converges to the 0 space if they are collapsing,

(54) M j
F
−−→ 0 if Vol(M j)→ 0,

or if they are cancelling as depicted in an example in [138]. Two beautiful prop-
erties about integral current spaces are that they have boundaries (which are also
integral current spaces) satisfying

(55) M j
F
−−→ M∞ =⇒ ∂M j

F
−−→ M∞

and at almost every point they have a unique tangent cone which is a normed space
by [11]. For integral current spaces it is the Ambrosio-Kirchheim mass of the space
which is semicontinuous rather than the volume:

(56) M j
F
−−→ M∞ =⇒ lim inf

j→∞
M(M j) ≥M(M∞)

This mass is more than just a weighted volume as it also has an area factor that
depends on the structure of the tangent spaces. Sormani and Wenger prove that
if the intrinsic flat distance between two integral current spaces is 0 then there is
a current preserving isometry between them which preserves the orientation, the
integer-valued weights, and the area factors [138].

In [144], Wenger proved that if a sequence of Riemannian manifolds has

(57) Diam(M j) ≤ D and Vol(M j) ≤ V and Area(∂M j) ≤ A

then a subsequence converges in the F sense to an integral current space which is
possibly the 0 space (c.f. [138]). It should be noted that F limits do not necessarily
agree with Gromov-Hausdorff limits. Even when a Gromov-Hausdorff limit exists,

M j
GH
−−−→ MGH , the F limit is only known to be a subset M∞ ⊂ MGH . Since M∞ is

always the same dimension as M j, we know M∞ is the 0 space when MGH is lower
dimensional [138].

In [120], Portegies and Sormani have proven that the filling volume is continu-
ous:

(58) M j
F
−−→ M∞ =⇒ FillVol(M j)→ FillVol(M∞)

where the filling volume is defined using the Ambrosio-Kirchheim mass:

(59) FillVol(M) := inf{M(N) | (∂N, dN) = (M, dM)}.

Here the infimum is taken over all integral current spaces N whose boundary with
the restricted distance from N has a current preserving isometry to M. Gromov’s
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Filling Volume defined in [58] might have a different value. The relationship be-
tween these two filling volumes is not well studied yet, but Gromov’s theorems
seem likely to carry over and so far have been easily adapted and proven as needed
to apply to this Ambrosio-Kirchheim mass filling volume. Note that there is a
wealth of literature further developing and applying Ambrosio-Kirchheim Theory
that can be consulted when working with their notion of mass. There is also a
sliced filling volume defined by Portegies and Sormani in [120] which behaves
well under F convergence.

We can localize the above theorems and apply them to balls in our converging
spaces. In [136], Sormani proved that if a sequence of points p j ⊂ M j converge
to p∞ ⊂ M∞ in the sense that Ψ j(p j) → Ψ∞(p∞) for Ψ j satisfying (50) then for
almost every r > 0 there is a subsequence such that

(60) B(p jk , r)
F
−−→ B(p∞, r).

Thus we have semicontinuity of the volumes of balls and areas of their boundaries.
See Figure 9.

Figure 9. If M j
F
−−→ M∞ and p j → p∞ then for almost every

r > 0 a subsequence B(p jk , r)
F
−−→ B(p∞, r). If q j lie on collapsing

regions then B(q j, r)
F
−−→ 0 and q j disappear in the limit.

Combining this with the work of Portegies and Sormani in [120], we have con-
tinuity of the filling volumes of balls and spheres about converging points. In fact,
we can prevent the disappearance of points p j by proving that

(61) ∃R > 0 s.t. for a.e. r ∈ (0,R) ∃Cr > 0 s.t. FillVol
(
∂B(q j, r)

)
≥ Cr.

Applications of this technique will be described further below.
Sormani also proves in [136] that any p ∈ M∞ has a sequence p j → p∞ in

the above sense. In fact there are regions U j ⊂ M j which GH converge to M∞.
Sormani applies this to prove two Arzela-Ascoli type theorems. If M j and X are
compact and

(62) M j
F
−−→ M∞ , 0 and F j : M j → X have Lip(F j) ≤ K

then a subsequence converges to a Lipschitz function F∞ : M∞ → X where
F∞(p∞) = lim j→∞ F j(p j) for a sequence p j → p∞. If sequences of compact
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spaces with compact limits

(63) M j
F
−−→ M∞ , 0 and N j

F
−−→ N∞ , 0

and F j : M j → N j is an isometry on balls of uniform radius R > 0, then a subse-
quence converges to a local isometry. Both of these theorems require an assump-
tion that the spaces have a uniform upper bound on their volume and on the areas
of their boundaries.

To estimate the intrinsic flat distance between M j and M∞ and prove conver-
gence, we need only construct a sequence of metric spaces Z j, find distance pre-
serving maps Ψ j : M j → Z j and Ψ′j : M∞ → Z j and then measure the volume
between their images. It is important to note that the distance preserving maps
cannot just be Riemannian isometries. Riemannian isometries are only length pre-
serving, do not guarantee that we have

(64) dZ(ϕ j(p), ϕ j(q)) = d j(p, q) ∀p, q ∈ M j

as it is possible that the points in Z could be joined by a short path in Z that does not
lie in ϕ j(M j). For example the map ϕ : M = S1 → Z = E2 that maps the circle to a
unit circle in the Euclidean plane is not distance preserving but ϕ : M = S1 → S2

that maps the circle to the equator is distance preserving. See Figure 10.

Figure 10. The map to the left from S1 into a closed Euclidean
disk is not distance preserving but the map to the right into a lon-
gitude of S2 is distance preserving.

Lee and Sormani have proven a theorem estimating the intrinsic flat distances
between manifolds when there are Riemannian isometric embeddings of those
manifolds into a common Riemannian manifold, N, which are not distance pre-
serving [86]. Their theorem, which was applied to study M j with Scal ≥ 0, requires
estimating an embedding constant

(65) CM = sup
p,q∈M

dM(p, q) − dN(ϕ(p), ϕ(q))

and is proven by explicitly gluing together a metric space

(66) Z = (Mi × [0, hi]) tϕi(Mi) N

where hi depends on CMi [86].
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Using a different construction, Lakzian and Sormani proved in [82] that

(67) (M, g j)
Lip
−−−→ (M, g∞) =⇒ (M, g j)

F
−−→ (M, g∞)

by taking Z j = M × [0, h j] endowed with a metric tensor created using a combina-
tion of the metric tensors g j and g∞ so that

(68) ϕ j : (M, d j)→ M × {h j} ⊂ Z j and ϕ′j : (M, d∞)→ M × {0} ⊂ Z j

are both distance preserving. They set B j = Z j and A j = 0, so that

(69) dF ((M, g j), (M, g∞)) ≤M(B j) + 0 = Vol(Z j)→ 0.

In the same paper, Lakzian and Sormani proved a frequently applied theorem in
which only open sets U j ⊂ M j and U∞ ⊂ M∞ are required to be bi-Lipschitz close.

They prove M j
VF
−−−−→ M∞ as long as there exists φ j : U j → U∞ whose biLipsschitz

constants converge to 1, constants

(70) λ j = max{ |d j(p, q) − d∞(φ j(p), φ j(q))| : p, q ∈ U j} → 0,

(71) Vol(M j \ U j)→ 0,

and there are uniform upper bounds Vol(M j), Area(∂U j), and Diam(M j). In their
paper, this theorem was applied to prove sequences of manifolds converging smoothly
away from a singular set have a variety of possible F limits. Applications to study
M j with Scal(M j) ≥ 0 will be surveyed further within.

3.3. Volume Preserving Intrinsic Flat and Measure Convergence. We say that
a sequence of compact oriented Riemannian manifolds without boundary con-
verges in the volume preserving intrinsic flat sense

(72) M j
VF
−−−−→ M∞ ⇐⇒ M j

F
−−→ M∞ and Vol(M j)→ Vol(M∞).

When M j are only integral current spaces, we require mass convergence rather
than volume converging. The additional requirement that the volumes or masses
converge is unexpected powerful and has important consequences.

Portegies has proven that

(73) M j
VF
−−−−→ M∞ =⇒ M j

m
−−→ M∞

in [121]. We say that a sequence of Riemannian manifolds converges in measure
to a limit space M j

m
−−→ M∞ if and only if there exists a common complete metric

space Z, and distance preserving maps Ψ j : M j → Z such that

(74) ||[Ψ j(M j)]]|| → ||[Ψ∞(M∞)]|| weakly as measures in Z.

That is, for anyHm measurable set A ⊂ Z we have

(75) ||[Ψ j(M j)]||(A) = Vol j
(
Ψ−1

j (A)
)
→ ||[Ψ∞(M∞)]||(A) = Vol∞

(
Ψ−1
∞ (A)

)
as long as ||[Ψ∞(M∞)]||(∂A) = 0 as in Portmanteau’s Theorem. For more informa-
tion about convergence in measure see Lott-Villani and Sturm’s papers [98] [140]
and the more recent work of Ambrosio, Gigli, Mondino, and Savare [10] [56].
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Note that convergence in measure does not imply VF convergence as it does not
control orientations nor boundaries.

Portegies then applied his theorem and techniques of Fukaya [54] to prove that
the Laplace spectrum of the M j is semicontinuous underVF convergence:

(76) M j
VF
−−−−→ M∞ =⇒ lim sup

j→∞
λk(M j) ≤ λk(M∞)

where λk(M) is the kth eigenvalue of the Laplacian counting multiplicity when M
is a Riemannian manifold [121]. If M has boundary then λk(M) is a Neumann
eigenvalue. Portegies also describes what happens when the limit space is only
an integral current space. Note that Fukaya’s work in [54] concerned measured
Gromov-Hausdorff convergence in which the sequence converges in measure and
in the GH sense, while theVF sequences studied by Portegies need not even have
GH limits.

In general GH and VF limits do not agree. However, Matveev-Portegies and
Honda have proven in [101] and [69] that when

(77) Ricci(Mn
j ) ≥ −(n − 1)H and Vol(Mn

j ) ≥ V0 > 0 and ∂Mn
j = 0

then the GH, measured, and VF limits all agree. With appropriate bounds on the
boundary, Perales has proven they agree when ∂Mn

j is nonempty but has uniform
bounds in [117]. If we replace Ricci curvature in (77) by Scal(M j) > 0 then one can
create counter examples. The simplest would be a sequence of manifolds formed
by taking a pair of three dimensional spheres joined by an increasingly thin tunnel
as in Figure 11. Such tunnel constructions were first described in the work of
Schoen-Yau [124] and Gromov-Lawson [59]. The GH limit of such a sequence
is a pair of spheres with a line segment between them, while the VF limit of the
sequence is just the pair of spheres with the distance restricted from the GH limit.
For a detailed construction of a tunnel of arbitrary length and width see the work
of Dodziuk [49].

Figure 11. This sequence of warped three spheres (M j, g j) with
Scal j ≥ 0,VF converge to a pair of disjoint spheres M∞ = S3tS3

with a distance d∞ that is restricted from the GH limit which is a
length metric on two spheres joined by a line segment.

Jauregui and Lee have done further work on the properties ofVF convergence
and its relationship with scalar curvature in [78]. They’ve proven that if a sequence
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of points p j ⊂ M j converge to p∞ ⊂ M∞ in the sense that Ψ j(p j) → Ψ∞(p∞) for
Ψ j satisfying (50) then for almost every r > 0

(78) B(p j, r)
VF
−−−−→ B(p∞, r)

and so we have continuity of the volumes of balls. Note it is still possible for balls
to disappear but only if Vol(B(q j, r))→ 0 as depicted in Figure 9. Jauregui and Lee
have also proven continuity of the areas of their boundaries and also of the areas of
level sets of other Lipschitz functions [78]. They applied their work to prove the
semicontinuity of ADM mass under intrinsic flat convergence.

3.4. VADB Convergence. Allen, Bryden, Perales, and Sormani have completed
a series of papers relating GH, F , and VF convergence to various notions of
convergence of metric tensors on a fixed Riemannian manifold [9][8][4][7] [6].
This includes examples demonstrating that Lp convergence of metric tensors does
not necessarily imply F convergence of the manifolds [9]. Nevertheless Allen,
Perales, and Sormani were able to prove that if we have Lp convergence of metric

tensors for p ≥ n/2 and g j ≥ (1 − (1/ j))g∞ then we have (Mn, d j)
VF
−−−−→ (Mn, d∞)

[7].
We say a sequence of compact oriented Riemannian manifolds without bound-

ary has volume above distance below (VADB) convergence: M j
VADB
−−−−−−→ M∞ if

(79) Vol(M j)→ Vol(M∞) and Diam(M j) ≤ D

and there exists C1 diffeomorphisms Ψ j : M∞ → M j with

(80) d j(Ψ j(p),Ψ j(q)) ≥ d∞(p, q) ∀(p, q) ∈ M∞ × M∞.

Note that M j
VADB
−−−−−−→ M∞ when M j = (M, g j) with g j ≥ g∞ satisfying (79). We

can even rescale M j to study manifolds with g j ≥ g0 − 1/ j satisfying (79).
Allen, Perales, and Sormani have proven in [7] that

(81) M j
VADB
−−−−−−→ M∞ =⇒ M j

VF
−−−−→ M∞.

The first step towards proving this theorem appeared in [8] as Theorem 2.6, where

Allen and Sormani showed M j
VADB
−−−−−−→ M∞ implies

(82) lim
j→∞

d j
(
Ψ j(p),Ψ j(q)

)
≥ d∞(p, q) pointwise a.e. (p, q) ∈ M∞ × M∞.

Allen-Perales-Sormani then prove there exists δ j → 0 and V j → 0 and domains
W j ⊂ M∞ such that

(83) Vol j
(
M j \ Ψ j(W j)

)
≤ V j and

(84) δ j ≥ d j
(
Ψ j(p),Ψ j(q)

)
− d∞(p, q) ≥ 0 ∀ p, q ∈ W j

Finally they estimate the intrinsic flat distance

(85) dF (M j,M∞) ≤ 2V j + V
√

2δ jD + δ2
j
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by constructing a metric space as follows:

(86) Z j = (M∞ × {0}) t
(
W j × [0, h j]

)
t

(
M j × {h j}

)
.

and embedding both M j and M∞ into the top and bottom of Z j with distance pre-
serving maps.

Allen and Perales have proven similar theorems for VADB convergence of man-
ifolds with boundary [6]. They have a variety of different hypotheses we may
assume on the boundary. The simplest version is to assume the interiors of the
manifolds are convex and the areas of the boundaries are uniformly bounded above.
In each of their theorems, they prove their hypotheses combined with (79) and (80)

imply M j
VF
−−−−→ M∞.

Applications of VADB convergence to prove VF convergence of sequences of
manifolds with lower bounds on their scalar curvature appear in work of Cabrera
Pacheco, Ketterer, and Perales [38], work of Huang, Lee, and Perales [72], and
work of Allen [3]. These will be discussed in more detail below.

4. MinA Scalar Compactness [Gromov-Sormani]

The first Scalar Compactness Conjecture was suggested by Gromov in [65] and
further refined by Sormani in [135] building upon work with Basilio and Dodziuk
in [22] and work of Park-Tian-Wang in [115]. First recall the definition:

(87) MinA(M3) = min{Area(Σ) |Σ is a closed minimal surface in M3}.

Recall that a minimal surface is locally area minimizing. See Figure 12 for images
of stable minimal surfaces which are globally area minimizing and unstable min-
imal surfaces which are not. Schoen-Yau proved that stable minimal surfaces in
manifolds with nonnegative scalar curvature are spheres or tori [125].

Figure 12. The minimal spheres Σi are stable and Σ′ are unstable.

Conjecture 4.1. MinA Scalar Compactness Conjecture [Gromov-Sormani] Sup-
pose M3

j are oriented three dimensional Riemannian manifolds with

(88) Scal j ≥ 0 and MinA(M3
j ) ≥ α > 0

satisfying

(89) Diam(M j) ≤ D and Vol(M j) ≤ V and ∂M j = ∅
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then a subsequence M3
jk

VF
−−−−→ M∞ where M∞ is a three dimensional rectifiable

geodesic metric space with Euclidean tangent cones satisfying generalized notions
of nonnegative scalar curvature like the Prism Rigidity Property or the Local Mass
Rigidity Property.

Note by Wenger’s Compactness Theorem as stated in [138] and the hypotheses
in (89) imply that a subsequence that converges in the F sense. The first challenge
then is to prove that the limit is not the 0 space. Without the MinA condition
the sequence Vol(M3

j ) could collapse to the 0 space. For example, a sequence of
increasingly thin flat tori

(90) M3
j = S1

1/ j × S
1 × S1

which has

(91) MinA(M3
j ) = Area(S1

1/ j × S
1) = (2π/ j)(2π) = 4π2/ j→ 0.

Note that the definition of MinA must include unstable minimal surfaces as can be
seen by considering

(92) M3
j = S1

1/ j × S
2

which has minimal surfaces diffeomorphic to S1
1/ j × S

1 of area 2π/ j × 2π→ 0.
Even if the sequence has a uniform lower bound on volume, without the MinA

condition, the M j canVF -converge to a pair of disconnected spheres and thus fail
to be a geodesic metric space. See Figure 11. An example by Basilio, Kazaras, and
Sormani demonstrates that without the MinA condition the limit space might fail
to have any geodesics at all. Indeed they produce a sequence of M3

j with Scal > 0
satisfying (89) thatVF converge to a three sphere with the restricted metric from
Euclidean space [23]. See Remark 4.14 for a discussion as to how we might to
prove the limit M∞ of Conjecture 4.1 is geodesic.

Conjecture 4.1 has been proven in the warped product setting by Park-Tian-
Wang in [115]. They assume the M j are three dimensional spheres and that the
metric tensor has the form dt2+ f 2

j (t)g0 where f (0) = 0 and f j(L j) = 0 and f j(t) > 0
between. Using the various hypotheses they were able to prove that a subsequence
of the f j converges in the H1

loc sense to f∞ ≥ 0 which is positive on an interval
(a, b). They then prove

(93) M j
VF
−−−−→ M∞ where M∞ = (S3, dt2 + f 2

∞(t)g0)

They prove that the scalar curvature is nonnegative in a generalized sense defined
using the fact that this is an H1

loc metric tensor. LeFloch and Sormani had previ-
ously defined nonnegative scalar curvature in the same way when investigating a
related compactness problem involving Hawking mass [88].

A more simply stated definition of scalar curvature in a manifold of lower regu-
larity is to say that

(94) Scal(p) = lim inf
r→0

6(n + 2)
(
Vn(r) − Vol(B(p, r))

r2Vn(r)

)
.
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In [22], Basilio, Dodziuk, and Sormani construct sequences of closed Riemannian
manifolds, M3

j , satisfying all the hypotheses of Conjecture 4.1 except the MinA
condition, whichVF and mGH converge to a space, M∞, which has a point where
this limit is −∞. The example is constructed by taking a curve in the sphere and
sewing along the curve with a sequence of precisely spaced increasingly tiny in-
creasingly dense tunnels so that the limit M∞ is a sphere with the curve identified
to a point. In [24], Basilio and Sormani prove an entire region can be sewn to a
point by locating the endpoints of the tunnels in a precisely described way within
the region.

Question 4.2. If we have a sequence M3
j satisfying all the hypotheses of Conjec-

ture 87 and we assume the sequence converges in the C0, Lipschitz, m, GH, VF ,
VADB, or H1

loc sense, is

(95) lim inf
r→0

6(n + 2)
(
Vn(r) − Vol(B(p, r))

r2Vn(r)

)
≥ 0

at every p or perhaps at almost every p? It is known for C0 convergence if we
assume the limit space is smooth by work of Gromov and Bamler mentioned above.

Remark 4.3. Gromov has suggested that we should require that the limit space in
our compactness theorem satisfy the Scalar Prism Rigidity Theorem for all prisms
that can be drawn in the space. In [64], Gromov has checked that under C0 con-
vergence, the Scalar Prism Rigidity Property is conserved. It would be interesting
to check if a Riemannian manifold, M∞, that is a VADB limit of a sequence of Rie-
mannian manifolds, M j, satisfying the hypotheses of the above conjecture satisfies
the Scalar Prism Rigidity Property as well. For more general limit spaces, we must
ensure that dihedral angles and the notion of mean convexity is preserved under
convergence.

Remark 4.4. We might also ask whether the limit spaces satisfy the Local Mass
Rigidity Property. This property might be easier to define on general limit spaces
than the Prism Rigidity Property because we would not need to define dihedral an-
gles or find cubes. However we would need to find a way to embed the boundaries
of small balls in Euclidean space. It would be interesting to first check whether this
property is conserved under Lip or even VADB convergence if we know the limit is
a smooth Riemannian manifold.

Remark 4.5. Bamler has proven in [18] that nonnegative scalar curvature is con-
served under C0 convergence of metric tensors applying a theorem of Simon con-
cerning the properties of Ricci flows [133]. using Ricci flow methods and [18]. His
method might possibly be applied to verify if nonnegative scalar curvature is con-
served under VADB convergence of C2 Riemannian manifolds to a C2 Riemannian
manifold.

Remark 4.6. Burkhardt-Guim has applied Ricci flow starting at a C0 manifold to
define the scalar curvature at a point in a C0 manifold [35] . It is unknown how her
notion relates to the H1

loc definition of scalar curvature or the (95) definition but it
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is quite powerful. She has proven this notion is conserved under C0 convergence.
How well does her notion behave under VADB convergence?

Remark 4.7. A first step towards proving Conjecture 4.1 would be to prove by
contradiction that a sequence satisfying the hypotheses cannot VF converge to
the 0 space. We could try to prove that when this happens, a minimal surface must
appear. In [126], Schoen and Yau prove that a minimal surface can be forced to
appear within a region with a strong concentration of positive scalar curvature.
Andersson and Metzger have a theorem providing upper bounds on the areas of
minimal surfaces in [15] that might be applied to contradict the MinA hypotheses.

Remark 4.8. This conjecture is three dimensional because we have no reason to
believe minimal surfaces will be strong enough to prevent the collapse of higher
dimensional manifolds. There are important four dimensional examples of Man
Chun Lee, Aaron Naber, and Robin Neumayer that would need to be better under-
stood before stating a higher dimensional version of this conjecture. In their paper
they prove that assuming a uniform lower bound on entropy suffices to prove that
there is a dp-converging subsequence Mm

jk
for m ≥ 3. It would be interesting to

explore how their dp convergence relates to F convergence and how their entropy
bound relates to MinA in dimension three. However in dimension four, they pro-
vide a sequence of manifolds satisfying their theorem’s hypotheses for which the F
limit is the 0 space [87].

Remark 4.9. Li-Mantoulidis present intriguing examples in dimension 3 of Rie-
mannian manifolds with positive scalar curvature away from skeleton singularities,
which can be desingularized to smooth Riemannian manifolds with positive scalar
curvature [92]. They conjecture that their sequences converge in the pointed VF
sense, but generally not in the Gromov-Hausdorff sense. They also conjecture such
desingularization works for Riemannian manifolds with skeleton singularities in
all dimensions (currently, this is proved for edge-cone singularities, a special class
of skeleton singularities).

Let us consider the various consequences that would follow from Conjecture 4.1.
Each of these conclusions leads to natural questions that might be examined on its
own to find a counter example to the conjecture. Proving one of the conclusions
directly might have interesting applications that could be pursued even while the
full conjecture remains open.

The simplest to state is that there is a uniform lower bound on volume for se-
quences of manifolds satisfying its hypotheses. This follows because the conjec-
ture concludes that the limit space, M∞ is a nonzero space, so it has mass in the
sense of Ambrosio-Kirchheim, and under F convergence:

(96) lim inf
j→∞

Vol(M j) ≥M(M∞) > 0.

This conclusion does not even require VF convergence. All we would need to
prove is F convergence to a nonzero limit. This leads to a natural question:

Question 4.10. If we have a sequence M3
j satisfying all the hypotheses of Con-

jecture 87 can we find a lower bound on the volume of a manifold satisfying the



28 SORMANI ET. AL.

hypotheses of Conjecture 4.1 as a formula depending on α, D, and V? Can we
directly prove the lower bound is positive without proving Conjecture 4.1 first?

Another consequence ofVF convergence is the semiconvergence of the eigen-
values which was proven by Portegies in [121].

Question 4.11. If we have a sequence M3
j satisfying all the hypotheses of Conjec-

ture 87 can we find an upper bound on the first eigenvalue of these manifolds as a
formula depending only on α, D, and V? Can we directly prove the upper bound is
finite without proving Conjecture 4.1? What can we say about the eigenmaps and
heat kernels of the manifolds?

Question 4.12. If we have a sequence M3
j satisfying all the hypotheses of Con-

jecture 4.1, then can we find a positive lower bound on the filling volume of these
manifolds as a formula depending only on α, D, and V? Note that very little is
known about the lower bounds of filling volumes. It is not even known what the
filling volume is for a round S3. So it would perhaps be easier to directly prove
the lower bound is positive rather than to find a value for it. Finding such a lower
bound would also be a possible first step towards proving Conjecture 4.1, because
a lower bound on the filling volumes of a sequence guarantees that the sequence
will not collapse to the 0 space.

Remark 4.13. Note that Alexander Nabutovsky and Regina Rotman have theorems
which state that when the Gromov Filling radii of three dimensional manifolds
converge to 0 then MinA(M j)→ 0 in [112]. One would need to extend theorems of
Gromov from [58] and their results to our filling volume defined using Ambrosio-
Kirchheim mass.

Remark 4.14. Let us consider how we might prove that the limit spaces, M∞, found
in Conjecture 4.1 are geodesic metric spaces. If we wish to imitate Gromov’s proof
in [63] that GH limits are geodesic, we start by taking an arbitrary pair of points
p, p′ ∈ M∞ and prove they have a midpoint q ∈ M∞, such that

(97) d(p, p′) = 2d(p, q) = 2d(q, p′).

Gromov proved this by first finding p j, p′j ∈ M j converging to p, p′ ∈ M∞ respec-
tively and we can do the same applying the work in [136]. He then takes midpoints
q j between p j and p′j and proves a subsequence of the q j converge to a midpoint q
between p and p′ using the Bolzano-Weierstrass Theorem. We can also find mid-
points q j between p j and p′j. To obtain a limit for the midpoints, by [120], we need
only to prove that

(98) ∃R > 0 s.t. for a.e. r ∈ (0,R) ∃Cr > 0 s.t. FillVol
(
∂B(q j, r)

)
≥ Cr.

Sequences of points, q j, like those in Figure 9, can disappear in the limit and fail
to satisfy (61). In that figure, the disappearing q j either lie in wells or in tunnels.
Those that are on the tips of wells are not midpoints of pairs of points, p j, p′j that
have limits p, p′ ∈ M∞. The disappearing q j that are in thin tunnels might be
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midpoints, but they are close to increasingly small minimal surfaces. It would

suffice to prove the following conjecture for M3
j
VF
−−−−→ M∞:

(99) if B(p j,R)
F
−−→ B(p∞,R) , 0 and B(p′j,R)

F
−−→ B(p′∞,R) , 0

and q j are midpoints of p j and p′j such that

(100) ∃r > 0 s.t. FillVol(B(q j, r))→ 0

then there exist minimal surfaces Σ j ⊂ M j such that Area(Σ j)→ 0.

Conjecture 4.1 itself is not likely to be proven for over a decade. This will
become more clear as we discuss the various geometric stability theorems below,
some of which will follow from a proof of this conjecture with a sufficiently strong
notion of generalized scalar curvature. Solving any of the questions above or prov-
ing anything suggested in one of the remarks is worthy of a paper. It would also
be worthwhile to prove the conjecture under additional hypotheses. Some natural
additional hypotheses are:

• M j are all conformal to a fixed manifold
• M j are all doubly warped product manifolds
• M j are all graphs over a fixed manifold

The scalar curvature is well understood in these settings and we might even be able
to prove VADB convergence which would then imply VF convergence. Some of
the geometric stability theorems have already been solved under these hypotheses
as will be discussed below. We recommend that anyone interested in proving one
of these special cases to please contact the authors of the corresponding geometric
stability theorems as well as any one of us before proceeding to ensure that some-
one is not already working on the problem. There are so many open questions in
this area that there is no reason for people to work on the same problem with the
same additional hypotheses unless they are working together.

5. A Compactness Conjecture withMinimal Boundary

This next compactness theorem was formulated in conversations with Gromov
at IAS and NYU in 2018 and has not been published before. It addresses concerns
that Gromov had that we might not be able to estimate MinA and so instead we
might choose to cut up the sequence of manifolds along their stable minimal sur-
faces and study each region separately. See Figure 13. The following conjecture
could then be applied to the regions within the manifold. As the hypotheses no
longer prevents collapsing, it is possible the limit region might be the 0 space.

Conjecture 5.1. NoMin Boundary Scalar Compactness [Gromov] Suppose M3
j

are oriented three dimensional Riemannian manifolds with boundaries such that

(101) ∂M j are stable minimal surfaces

such that

(102) Scal j ≥ 0 and there are no closed interior minimal surfaces in M j
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Figure 13. If we cut the manifolds from Figure 1 at stable minimal
spheres, the regions on top converge to a sphere but the regions on
the bottom collapse and disappear underVF convergence.

and furthermore

(103) Diam(M j) ≤ D and Vol(M j) ≤ V and Area(∂M j) ≤ A

then a subsequence M3
jk

VF
−−−−→ M∞ where M∞ is either the zero space or it is a

three dimensional rectifiable geodesic metric space with Euclidean tangent cones
satisfying generalized notions of nonnegative scalar curvature.

Recall that Wenger’s Compactness Theorem [144] the hypotheses in (103) imply
a subsequence converges to M∞ that is either the zero space or a three dimensional
rectifiable metric space called an integral current space (cf. [138]). Note that by
Ambrosio-Kirchheim theory, integral current spaces have tangent cones at almost
every point that are normed vector spaces but they might not be Euclidean [11]. So
the fact that a subsequence converges in the intrinsic flat sense is already known
for both of these compactness conjectures. The challenge is proving the volumes
converge Vol(M j) → Vol(M∞) to obtain VF convergence and to prove the limit
spaces are geodesic and satisfy the generalized notions of nonnegative scalar cur-
vature. Proving just one of these conclusions would be of interest even in a special
case.

It is an important open question to find properties these limit spaces might satisfy
that would allow us to prove the various stability conjectures we discuss below.
Note that while we do suggest a list of properties that might be useful, we do not
list everything being explored in this direction by experts in scalar curvature. In
particular we do not discuss Spin approaches to defining scalar curvature here,
although we do believe such an approach might prove fruitful.

Although we have called these conjectures ”compactness conjectures” they are
in reality, precompactness conjectures as the limit spaces are not Riemannian man-
ifolds. This is not such a serious concern when discussing our first Conjecture 4.1.
In that setting we would conjecture that if the limit happened to be a Riemannian
manifold then it would satisfy the same hypotheses as the sequence approaching
it. Volume would be preserved by definition of VF convergence. Diameter was
proven to be lower semicontinuous in [136]:

(104) M j
VF
−−−−→ M∞ =⇒ lim inf

j→∞
Diam(M j) ≥ Diam(M∞).
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Part of the conjecture is that the scalar curvature is nonnegative in some weak sense
that implies nonnegative scalar curvature when M∞ is smooth. Finally we would
conjecture that

(105) M j
VF
−−−−→ M∞ =⇒ lim sup

j→∞
MinA(M j) ≤ MinA(M∞)

under the hypotheses of Conjecture 4.1, although it is unlikely that (105) with-
out the scalar curvature bound in light of examples appearing in work of Sinaei-
Sormani [134].

Figure 14. A sequence satisfying the hypotheses of Conjec-
ture 5.1 whose smooth limit has interior closed minimal surfaces.

In contrast Conjecture 5.1 includes hypotheses that are known not to be pre-
served in the limit. Imitating examples of Lee-Sormani in [85], we can con-
struct sequences of M j satisfying the hypotheses of Conjecture 5.1 which converge
smoothly to a limit M∞ that has many interior minimal surfaces. In fact the region
near the boundary can converge to cylinder as seen in Figure 14. Although no ex-
amples have yet been constructed, it is also not clear that limit spaces necessarily
have boundaries that are minimal surfaces, so this is not part of the conjecture.

6. A Compactness Conjecture involvingMass

A third compactness conjecture has boundaries that are mean convex and mini-
mal. It first appeared in [135] although we have revised it slightly here:

Conjecture 6.1. Scalar Mass Compactness Given a sequence of three dimen-
sional oriented manifolds M3

j satisfying

(106) Vol(M j) ≤ V0 Vol(∂M j) = A0 Diam(M j) ≤ D0.

(107) Scal j ≥ 0 H∂M j > 0 mH(∂M j) ≤ m0

and either no closed interior minimal surfaces or MinA(M j) ≥ A1 > 0, then a
subsequence converges in the intrinsic flat sense

(108) M jk
VF
−−−−→ M∞ and M(M jk )→M(M∞)

where M∞ is a geodesic metric space which satisfies (107) in some generalized
sense. We might replace Hawking mass with another quasilocal mass in this con-
jecture.
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Question 6.2. Does this conjecture require the volume bound as a hypothesis or is
the upper bound on volume a consequence of the other hypotheses?

Question 6.3. Can one find a uniform lower bound on the volume depending on the
parameters in the hypotheses? This is related to a question of Miao and Gromov
discussed in Remark 2.11 and [62]. If the conjecture is true, then there is a nonzero
limit and so there is a uniform lower bound by the volume convergence.

LeFloch-Sormani have proven this conjecture in the rotationally symmetric set-
ting without the volume bound assuming that there are no closed interior minimal
surfaces in [88]. In fact they proved H1

loc convergence to the F limit and thus the
nonnegative scalar curvature is defined in the H1

loc sense as are the mean curvature
and the Hawking mass.

Remark 6.4. It is important to note H1
loc convergence does not imply F conver-

gence. We believe that counter examples can be found (without scalar curvature
bounds) by adapting Allen and Sormani’s examples which fail to have g j ≥ g0−1/ j
in [9]. This would be a nice project for a masters/doctoral student. See Allen-
Bryden [4] for more about Sobolev convergence and F convergence.

Remark 6.5. One possible approach to this conjecture is to assume that M j can be
extended to an asymptotically flat manifold and that ∂M j is a level set of the inverse
mean curvature flow so that one can apply Huisken-Ilmanen’s equations relating
Hawking mass to the geometric properties of the level sets [75]. Indeed a key step in
the LeFloch-Sormani proof of this conjecture in the rotationally symmetric setting
was to use the monotonicity of the Hawking mass. It would be interesting to see if
we can prove this compactness theorem in the setting where M j are covered by a
smooth inverse mean curvature flow from an inner minimal boundary to an outer
boundary. Such regions might be studied using techniques developed by Brian
Allen in [2].

Remark 6.6. There is nothing particularly special about the Hawking mass in
Conjecture 6.1. We could assume Brown-York Mass is uniformly bounded above
instead or just that the sequence of manifolds have extensions with a uniform upper
bound on the ADM mass of the extension. The LeFloch-Sormani proof works for
all these masses as well because they are all uniformly bounded at the same time
in the rotationally symmetric setting.

Remark 6.7. Examples of Lee-Sormani in [85] demonstrate that, under the hy-
potheses of Conjecture 6.1, even if a sequence converges smoothly, the limit space
may have a cylindrical region near the inner boundary. so the limit space may con-
tain closed interior minimal surfaces. Examples of Mantoulidis and Schoen [99]
and of Cabrera Pacheco, Cederbaum, McCormick, and Miao [37] should also be
kept in mind. See also the important work of Corvino in [47].

Remark 6.8. It is possible that Gromov’s symmetrization and band approach de-
scribed in [66] might be useful towards proving this conjecture and others within
this paper.

Further discussion of this conjecture appears later.
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7. Geometric Stability of the Scalar Torus Rigidity Theorem

Let us begin with the geometric stability of the scalar torus rigidity theorem
where our manifolds are still homeomorphic to three dimensional tori but we only
have almost nonnegative scalar curvature: Scal j ≥ −1/ j. See Figure 15.

Conjecture 7.1. Geometric Stability of Scalar Torus Rigidity [Gromov-Sormani]
Suppose M3

j are three dimensional Riemannian manifolds homeomorphic to tori
with

(109) Scal j ≥ −1/ j and MinA(M3
j ) ≥ α > 0

satisfying

(110) Diam(M j) ≤ D and Vol(M j) ≤ V

then a subsequence M3
jk

VF
−−−−→ M∞ where M∞ is isometric to a flat torus.

Figure 15. A sequence of Riemannian manifolds satisfying the
hypotheses of Conjecture 7.1 which has no GH limit.

If we replace the scalar curvature condition with Ricci curvature, this conjecture
was proven by Colding (see Lemma 3.11 in [45]). He did not need the MinA
condition, just a uniform lower bound on volume to prevent collapsing. Note that
a sequence of collapsing flat tori, M j = S1 × S1 × S1 with

(111) g j = (1/ j)2dx2 + dy2 + dz2

has

(112) MinA(M j) = (2π/ j)(2π)→ 0 and Vol(M j) = (2π/ j)(2π)(2π)→ 0,

so theyVF converge to the 0 space.
Gromov vaguely stated the conjecture for scalar curvature in [64]. There he

proved that if a sequence of M3
j satisfying the hypotheses converged in the C0 sense

to the limit M∞, then M∞ is isometric to a flat torus. Bamler proved the same result
in [19] using Ricci flow. Without C0 convergence, the upper bound on diameter and
volume must be added to avoid convergence to a cylinder or Euclidean space. With
the upper bound on diameter and volume, Wenger’s Compactness Theorem implies
there is aF limit [144]. Due to the possibility of the existence of increasingly many
increasingly thin wells, as in Figure 15, we cannot hope for GH convergence.
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The MinA condition was added to the hypothesis by Sormani when stating the
conjecture in [135] in light of examples with bubbling which will appear in work
of Basilio-Sormani [25]. See Figure 16. We briefly describe the construction here.
Take a standard flat torus with a fixed ball of radius r0 < π/4. On this ball we
deform the metric tensor to

(113) g j = h j(r)2dr2 + f j(r)2g2
S for r ≤ π/8

so that h j(r) = 1 and f j(r) = sin(
√

K jr)/
√

K j for r ≤ π/16. If we allow K j → 0
we can obtain such g j which converge smoothly to a flat torus. Then Scal j → 0 as
well. Once we have a region of constant sectional curvature on the manifold we can
add a well (cf. [86]) or increasingly many wells attached at a point as in Figure 15.
We can also attach a tunnel as in [22], and at the far side of the tunnel attach it to a
sphere of constant curvature K > K j. In the examples Basilio-Sormani construct in
[25], the tunnels becomes thinner and thinner as K j → 0, which causes bubbling:
the VF and mGH limit is proven to be a torus attached to a sphere of constant
curvature K. The MinA condition prevents the formation of bubbles in this way
because minimal surfaces form inside the tunnels with increasingly small area.

Remark 7.2. One also needs the MinA condition to avoid examples converging to
tori which have pulled regions identified to a point which will appear in work of
Basilio-Sormani [25]. Those examples involving sewing techniques just like those
in [22] and [24] applied to the constant curvature sections described above.

Remark 7.3. Kazaras and Sormani believe that it may also be possible to construct
a sequence satisfying all the hypotheses other than the MinAF hypothesis that
converges to a torus with the taxi distance. This example would contradict the
conjectured conclusion that the limit space has Euclidean tangent cones.

Figure 16. A sequence of Riemannian manifolds satisfying all the
hypotheses of Conjecture 7.1 except the MinA hypothesis which
forms bubbles and fails to converge to a torus.

Question 7.4. Do the hypotheses of Conjecture 7.1 imply the existence of a uniform
lower bound on volume? This would follow from the conjecture, because a counter
example would imply there was a collapsing sequence converging to the 0 space.
It would be interesting to investigate this question directly.
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The conjecture has been proven in the special case where the manifold is a
warped product by Allen, Hernandez-Vazquez, Parise, Payne, and Wang in [5].
That is they assume the metric tensor is of the form

(114) a2
j(z) dx2 + b2

j(z) dy2 + dz2 or dx2 + dy2 + f 2
j (x, y) dz2

on S1 × S1 × S1. In fact they are able to prove uniform convergence, mGH conver-
gence and VF convergence to a flat torus because neither wells not bubbles can
form under these strong hypotheses.

Remark 7.5. It would be interesting to prove Conjecture 7.1 for locally warped
product metric tensors of the form g j where g j = dx2 + dy2 + dz2 away from a
collection of balls and g j = h j(r)2dr2 + f j(r)2gS2 within each ball. Such sequences
can develop increasingly many increasingly thin wells (one in each ball) using
the construction described above applied to increasingly many increasingly small
balls. Techniques that might help prove the conjecture in this setting appear in the
work of Lee-Sormani [86] and LeFloch-Sormani [88]. Another approach would be
to prove VADB convergence and then apply [7] of Allen-Perales-Sormani.

Cabrera Pacheco, Ketterer, and Perales have proven Conjecture 7.1 in [38] as-
suming the manifold is a graph over a flat torus, (M, g0). That is they assume

(115) g j = g0 + d f 2
j where f j : Tn → R

with additional hypotheses on f j related to the hypotheses in earlier work of Lam
[83] and Huang-Lee [71]. It is worth noting that they first announced this paper
at IAS with stronger hypotheses on f j than they required in the published ver-
sion. They weakened the hypotheses after an in depth discussion with Gromov and
Huang. In the final published version, they prove VADB and Sobolev convergence
for a subsequence when the base torus, (Tn, g0), is fixed. They then proveVF con-
vergence of a subsequence in the setting where the base tori are allowed to change
using a diagonalization argument.

Remark 7.6. It would be interesting to prove Conjecture 7.1 assuming that M j are
tori with metric tensors

(116) g j = g0 +

N∑
k=1

dxk 2
j where xk

j : Tn → R.

We would need only prove Vol j(M) → Vol0(M) and then we could apply VADB
convergence to obtain theVF convergence. We could then proveVF convergence
of a subsequence in the setting where the base tori are allowed to change using the
same diagonalization argument that appears in [38]. Note that this setting is quite
flexible allowing for the existence of increasingly many wells. It also seems to
allow for the existence of bubbles if we abandon the MinA condition.

Remark 7.7. It would be interesting to prove Conjecture 7.1 assuming that M j are
conformally flat tori with metric tensors

(117) g j = f 2
j g0 where f j : Tn → R.
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In [3], Allen has proven the conjecture replacing the MinA hypothesis with a hy-
pothesis that prevents the concentration of volumes. Thus we need only prove such
a concentration of volume causes the existence of minimal surfaces of increasingly
small area.

Remark 7.8. It would be interesting to explore if Daniel Stern’s new approach in
[139] to proving the torus rigidity theorem can be applied to prove Conjecture 7.1
perhaps with some additional hypotheses. Recall that he proves his theorem by
constructing harmonic maps to S1 and studying their level sets. If we assume these

harmonic maps are uniformly Lipschitz for a sequence of manifolds, M j
VF
−−−−→ M∞,

then we might apply the Sormani’s Arzela-Ascoli Theorem in [136] to study the
limits of these harmonic maps defined on M∞. Alternatively we might consider
harmonic functions on M∞ and study the level sets as limits of level sets in M j
adapting methods of Portegies-Sormani [120] and Jauregui-Lee [77]. One of the
great advantages ofVF convergence is control of level sets of Lipschitz functions.

7.1. Consequences of Torus Stability.

Remark 7.9. Recall that Portegies proved M j
VF
−−−−→ M∞ implies the spectrum

semi-converges [121]. So Conjecture 7.1 implies that that the spectrum of M j semi-
converge to the spectrum of a flat torus. It is impossible here to survey all the results
concerning the spectra of tori and flat tori and the first few eigenvalues on tori. It
would be worth studying the consequences of Portegies’ result and possibly trying
to prove these consequences directly.

Remark 7.10. We believe that the filling volume of a sphere in Euclidean space
with the restricted distance from Euclidean space, is the volume of the Euclidean
ball:

Vol(B(0,R)) = FillVol(∂B(0,R)) := inf
{
M(N) | (∂N, dN) = (∂B(0,R), dB(0,R))

}
,

where the infimum is taken over all integral current spaces N whose boundary
with the restricted distance from N is isometric to the boundary of the Euclidean
ball with the restricted distance from Euclidean space. On any flat torus there
is a radius r > 0 such that B(p, r) with the restricted distance from the torus is
isometric to B(0, r) with the restricted distance from Euclidean space. Consider

M j
VF
−−−−→ M∞ where M∞ is a torus. As mentioned above if p j ∈ M j do not

disappear then the filling volumes and volumes converge. Thus we expect

(118) |FillVol(∂B(p j, r)) − Vol(B(p j, r))| → 0.

This would even be true for disappearing p j since both would converge to 0. Is
there any possible way of proving this directly without proving Conjecture 7.1 first?

7.2. Compactness and Torus Stability. If we prove the MinA Scalar Compact-
ness Conjecture, then the M j in Conjecture 7.1 would have a converging subse-

quence M jk
VF
−−−−→ M∞. We might then be able to prove that M∞ is a flat torus

after obtaining the convergence. After all there are versions of the Scalar Torus
Rigidity Theorem proven for spaces satisfying weak notions of nonnegative scalar



CONJECTURES ON CONVERGENCE AND SCALAR CURVATURE 37

curvature. Recall that Gromov has proven rigidity for spaces satisfying the Prism
Property in [64]. For this reason the MinA Scalar Compactness Conjecture was
formulated at IAS requiring that the limit space satisfy the Prism Property and in
particular the limit space should have a notion of dihedral angle and mean convex-
ity.

Remark 7.11. It is important to note that if we do not require some notion of angle
in our limit space then there are natural counter examples to torus rigidity. Recall
that the Lott-Villani and Sturm CD(n, 0) notion of generalized nonnegative Ricci
curvature on metric measure spaces defined using optimal transport in [98][140]
includes the taxicab space with Hausdorff measure:

(119) (R3, dtaxi,H
3) where dtaxi((x1, x2, x3), (y1, y2, y3)) =

3∑
i=1

|xi − yi|.

This is the universal cover of tori that satisfy the CD(n, 0)-notion of nonnegative
Ricci curvature that are not isometric to flat tori. Note that these taxi tori have
zero scalar curvature in the sense defined by (4). While one can easily imagine
sequences of three dimensional Riemannian manifolds with Scal ≥ 0 that converge
to a taxi torus in the GH sense, these sequences are created using thinner and
thinner tunnels around tighter and tighter 3D lattices, so their MinA(M j) → 0.
Thus Conjecture 4.1 and Conjecture 7.1 do not include such sequences.

Remark 7.12. Ambrosio-Gigli-Savare added an infinitesimally Euclidean condi-
tion to define RCD(n,K) spaces in [10] and proved that the mGH limits of noncol-
lapsing sequences of manifolds with nonnegative Ricci curvature lie in this class.
Gigli-Rigoni have proven that RCD(0, n) spaces that are tori are isometric to flat
tori [57]. Thus one way to prove Conjecture 7.1 is to first prove the limit space is
an RCD(0, n) space. We know that not all limits obtained in Conjecture 4.1 are
RCD(0, n) spaces because any Riemannian manifold with negative Ricci curvature
at a single point fails this condition. Thus we would need to prove it is RCD(0, n)
using the fact that the limit is a torus not just a limit.

Remark 7.13. Lee and LeFloch have defined and studied nonnegative scalar cur-
vature defined as a distribution on a Riemannian manifold (M, g) with metric tensor
g ∈ C0 ∩ W1,p(M) in [84]. Jiang-Sheng-Zhang have proven torus rigidity for in
this setting when p ∈ [n,∞] in [80]. They first prove that (M, g) is an RCD(0, n)
space and then apply Gigli-Rigoni’s Theorem that RCD(0, n) spaces that are tori
are isometric to flat tori [57]. It would be interesting to explore under what addi-
tional hypotheses can we guarantee that a sequence of manifolds converges to a
Riemannian manifold with a C0 ∩W1,p(M) metric that has distributional Scal ≥ 0.
Would VADB convergence suffice? See related work by Allen-Bryden in [4].

Remark 7.14. Burkhard-Guim has proven torus rigidity for spaces satisfying her
weak notion of scalar curvature defined using Ricci flow [35]. Under what hypothe-
ses on the sequence would we be guaranteed to have a limit space with a C0 metric
in her class? She has investigated C0 convergence but it would also be worthwhile
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to investigate when her property persists under VADB convergence (which allows
for the formation of wells).

Remark 7.15. Lee-Naber-Neumayer have proven a compactness theorem for se-
quences of manifolds with nonnegative scalar curvature satisfying entropy bounds
in [87]. It is unclear if their entropy bounds are satisfied by sequences developing
increasingly thin wells. Their proof involves Ricci flow and it would be interesting
to relate their work to that of Burkhardt-Guim and Jiang-Sheng-Zhang mentioned
above. They apply this theorem to obtain a torus stability theorem in all dimen-
sions. They explain that their notion of dp-convergence is not geometric: more
precisely they obtain Gromov-Hausdorff convergence of the Riemannian manifolds
viewed as metric spaces using the distance

(120) dp(x, y) = sup{ | f (x) − f (y)| |
∫

M
|∇ f |p dvolg ≤ 1, f ∈ W1,p ∩C0

loc}

rather than the usual distance dg defined by the infimum of lengths of curves. They
explain is not geometric. In dimension 3, it would be interesting to explore how
their notion of convergence relates to VADB and VF convergence. They do dis-
cuss the relationship to various examples of Allen-Sormani in [8] and [9] but it
is unknown what the dp limits are of the examples of Basilio, Dodziuk, Kazaras,
Sinaei, and Sormani appearing in [22] [23] [24] [25] [134].

Remark 7.16. Keep in mind that Conjecture 7.1 does not immediately follow if we
prove the MinA Scalar Compactness Conjecture where the limits are in a class of
spaces that satisfies the Scalar Torus Rigidity Theorem. We must also prove that
the limit is homeomorphic to a torus. This becomes an interesting question on its

own. If M j satisfy the hypotheses of Conjecture 7.1 and M j
VF
−−−−→ M∞, is M∞

homeomorphic to a torus? An investigation into the change in topology under F
convergence with no assumption on curvature appears in work of Sinaei-Sormani
[134].

8. Geometric Stability of Scalar Prism Rigidity [Gromov-Li]

The geometric stability of the Scalar Prism Rigidity Theorem was formulated
at the IAS Emerging Topics Workshop in 2018 in discussions with Misha Gromov
and Chao Li. As with torus almost rigidity conjecture above, the scalar curvature
is assumed to be almost negative, Scal j ≥ −1/ j. We add diameter and volume
bounds from above to keep the sequence bounded and a bound on the area of the
boundary allows us to use Wenger’s Compactness Theorem to find a F converging
subsequence.

To avoid collapse and other counter examples, we require a lower bound on the
area of minimal surfaces with free boundary. Recall that Σ ⊂ M is a free boundary
minimal surface if it is either a closed minimal surface or it has a boundary, ∂Σ ⊂

∂M and local variations sliding along the boundary are minimizing. So in particular
Σ intersects the boundary at right angles. We define
(121)

MinAF(M3) = min{Area(Σ) |Σ is a free boundary minimal surface in M3}.
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Note that we also include Σ with no boundary in this minimum.

Conjecture 8.1. Geometric Stability of Scalar Prism Rigidity [Gromov-Li] If P j ⊂

M3
j are mean convex domains with 6 faces, 8 corners, and 12 edges such that the

dihedral angles, θp, at any p lying on an edge of P3 have θp ≤ π/2 and

(122) Scal j ≥ −1/ j and MinAF(M3
j ) ≥ α > 0

satisfying

(123) Diam(M j) ≤ D and Vol(M j) ≤ V and Area(∂M j) ≤ A

then a subsequence P3
jk

VF
−−−−→ P∞ where P∞ is isometric to a rectangular prism in

Euclidean space.

Note that by Wenger’s Compactness Theorem and (123) we know a subsequence
F converges possibly to the zero space. First one needs to show the limit is not
the zero space using the fact that it is 3 dimensional and (122). In dimension
4, one can probably adapt the example of Lee-Naber-Neumayer [87] to obtain a
counter example satisfying all the other hypotheses. Without MinAF one can find
collapsing flat prisms [0, 1/ j] × [0, 1] × [0, 1]. Kazaras and Sormani believe that it
may also be able to construct a sequence satisfying all the hypotheses other than
the MinAF with volume bounded below which converges to a cube with the taxi
distance or something similar.

At this time Conjecture 8.1 is completely open with no partial solutions. How-
ever the techniques applied to complete the special cases of the Geometric Stability
of the Scalar Torus Conjecture should apply equally well to prove the correspond-
ing special cases of this conjecture. Graduate students might be asked to prove the
conjecture in the warped product setting using the techniques developed by Allen-
Hernandez-Parise-Payne-Wang in [5] or in the graph setting using techniques de-
veloped by Cabrera Pacheco, Ketterer, and Perales have proven Conjecture 7.1 in
[38]. A graduate student might also consider the case where the sequence is known
to converge in the VADB sense with boundary as in the work of Allen-Perales [6]
and verify that the limit is flat.

In light of Gromov’s work in [64] we have considered whether it is possible
that Conjecture 7.1 and Conjecture 8.1 are equivalent, and whether one might then
apply Torus Stability to prove Prism Stability and finally use both to help prove the
compactness in Conjecture 4.1. We discuss this further in the next three remarks
which arise from conversations with Misha Gromov, Pengzi Miao, and Chao Li.
These three remarks are part of an overarching vision and should not be viewed as
solvable by a doctoral student.

Remark 8.2. Suppose one has a sequence of prisms satisfying the hypotheses of
Conjecture 8.1. Miao and Li suggest that we might imitate Gromov’s technique
reflecting each prism across its faces and glueing it together to form a torus as in
Figure 17. We would have a sequence of tori that can be smoothed retaining the
lower bound on scalar curvature. We could check if the tori satisfy the hypotheses
of Conjecture 7.1. This is one reason Li decided to have the MinAF condition
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in Conjecture 8.1. If the Torus Stability Conjecture holds then we would have
a subsequence which converges to a flat torus. By [136], sufficiently small balls
about points in the tori which do not disappear converge to Euclidean balls. This
would guarantee that the F limit of of the prisms did not disappear. Then we might
again apply this to prove that the F limit of the prisms is flat in the sense that
small balls about points in the limit are Euclidean balls. More difficult would be
describing the boundary of the limit.

Figure 17. Starting with a prism on the left, Gromov reflects for-
ward, up, and to the right. Then he attaches the opposite sides and
smoothens the metric to obtain a torus on the right as explained in
Remark 8.2.

Remark 8.3. Suppose one has a sequence of tori, M j, satisfying the hypotheses of
Conjecture 7.1. Miao and Li note that we could find a sequence of stable minimal
surfaces, Σ j ⊂ M j, as in Figure 18, and then cut open the M j along the Σ j to
get a manifold, M′j. diffeomorphic to a torus crossed with an interval. Next one
takes a stable free boundary minimal surface Σ′j ⊂ M′j and cut the manifold open
again to set a manifold M′′j diffeomorphic to a circle crossed with a square region.
Finally we find another stable free boundary minimal surface Σ′′j ⊂ M′′j and cut the
manifold open again to get a prism P j diffeomorphic to a cube. We could check if
the P j satisfy the hypotheses of Conjecture 8.1, and assuming this conjecture holds,
find a subsequence which converges to a flat prism. By [136], sufficiently small
balls about points in the P j which do not disappear converge to Euclidean balls.
This would guarantee that the F limit of of the original tori did not disappear.
Then we might again apply this to prove that the F limit of the tori is flat in the
sense that small balls about points in the limit are Euclidean balls. More difficult
would be proving that the limit is a torus.

Remark 8.4. Note that Prism Stability would be very useful as a step towards
proving that the limits obtained in Conjecture 4.1 satisfy Prism Rigidity. We would
need to first prove the limits are not zero, and that one can even define a prism
on the limit space. Then we might imitate theorems from [136] or [77], to find
regions in the M j converging to the prism in the limit space. We would then wish
to show those regions could be chosen to be prisms satisfying the hypotheses of
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Figure 18. Starting with a torus on the left, we cut along a stable
minimal surface, and then along free boundary minimal surfaces
to form a prism as described in Remark 8.3.

Conjecture 8.1. It is quite possible we might need to adjust the conjecture to include
more general regions thatVF converge to prisms in order to achieve this.

9. Geometric Stability of Scalar Sphere Rigidity [Marques-Neves]

The following conjecture was proposed by Marques and Neves soon after the
IAS Emerging Topics meeting in 2018. They’ve graciously allowed us to include
the conjecture here:

Conjecture 9.1. Geometric Stability of Scalar Sphere Rigidity [Marques-Neves]
Suppose M3

j homeomorphic to spheres with

(124) Scal j ≥ 6 − 1/ j and MinA(M3
j ) ≥ 4π − 1/ j

satisfying

(125) Diam(M j) ≤ D and Vol(M j) ≤ V

then M3
j
VF
−−−−→ S3 where S3 is the standard round three sphere.

Remark 9.2. Note that in this conjecture Marques and Neves force the width to be
almost maximal using the fact that the width is achieved by a minimal surface and
thus:

(126) Width(M3
j ) ≥ MinA(M3

j ) ≥ 4π.

In S3 we have equality above and Scal j = 6. If MinA(S3, g) > 4π/3 and Scalg ≥ 6,
then (S3, g) has no stable minimal spheres. In that case, it follows from [100]
that MinA(S3, g) = Width(S3, g). They proved in that paper that if Rg ≥ 6 and
A(g) ≥ 4π, then g has constant sectional curvature one.

Remark 9.3. Note that the volume and diameter bounds in the conjecture guaran-
tee a subsequence converges in the intrinsic flat sense by Wenger’s Compactness
Theorem [144]. The goal is to prove the limit must be a round sphere and that the
volume converges to the volume of the sphere. It would be an interesting first step
to prove that under the hypothesis of this theorem we have

(127) Vol(M j)→ Vol(S3).
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Figure 19. Here is an example of a sequence of M3
j with un-

stable minimal surfaces Σ j such that Area(Σ j) = MinA(M j) =

Width(M3
j ) such that M3

j
VF
−−−−→ S3. However, it is unknown if

Scal j ≥ 6 − 1/ j at the base of the wells.

Remark 9.4. Note that there are not yet examples precisely constructed related
to this conjecture. We believe that someone should perhaps be able to construct
sequences of spheres with increasingly many increasingly thin wells which satisfy
the hypothesis of Conjecture 9.1 as in Figure 19. Such a sequence would have no
GH limit but would converge in the VADB and VF sense to a standard sphere.
However it is not completely clear that a well construction has been precisely de-
fined with Scal ≥ 6 − 1/ j rather than just Scal > 0. Note that the long thin part of
the well and the tip easily have large scalar curvature, but the part where the well
attaches to the sphere would need to be calculated precisely.

Remark 9.5. Bamler and Maximo have proven this conjecture with the additional
hypothesis that M j have positive sectional curvature in [20]. In fact with such
strong additional hypothesis they are able to prove C0 convergence. Their proof
builds on work of Brendle and Schoen [33] and can also be applied to prove al-
most rigidity or geometric stability of the RP3 Rigidity Theorem of Bray-Brendle-
Eichmair-Neves [28]. The sectional curvature condition is quite strong, and with-
out it we expect there are counter examples to C0 convergence as in Figure 19.

Remark 9.6. Daniel Stern has proven the scalar sphere rigidity theorem using his
level sets of harmonic maps approach in [139]. Perhaps his approach might be ap-
plied to prove Conjecture 9.1. We might test this with some additional hypotheses.
As mentioned earlier, his approach might be combined with work of Jauregui, Lee,
Portegies, and Sormani in [77][136] [120].

Remark 9.7. As a test for this conjecture, we might consider M j as in the conjec-

ture and assume M j
VADB
−−−−−→ M∞ and try to prove that M∞ is a standard sphere.

Remark 9.8. Recall that Portegies proved M j
VF
−−−−→ M∞ implies the spectrum

semi-converges [121]. So Conjecture 9.1 implies that that the spectrum of M j semi-
converge to the spectrum of a sphere. It is impossible here to survey all the results
concerning the spectra of spheres and their eigenfunctions. It would be worth
studying the consequences of Portegies’ result and possibly trying to prove these
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consequences directly. It is even possible that one might use the one of the spectral
rigidity theorems for a sphere as a step towards proving Conjecture 9.1 in its full
generality or at least a special case.

Remark 9.9. It is believed that the filling volume of a standard round three sphere
with the restricted distance from Euclidean space, is the volume of a four dimen-
sional hemisphere:

(128) Vol(S4
+) = FillVol(S3) := inf{M(N) | (∂N, dN) = (S3, dS3)},

where here M(N) is the Ambrosio-Kirchheim mass and the infimum is taken over
all integral current spaces N whose boundary with the restricted distance for N is
isometric to the standard sphere with its standard distance. Observe that the four
dimensional Euclidean ball is not a filling for the sphere because its boundary with
the restricted distance is not isometric to the sphere. In [120], Portegies-Sormani
proved the filling volumes converge, so if one has M j satisfying the hypotheses of
Conjecture 9.1, and the conjecture is true, we expect

(129) FillVol(M j)→ Vol(S4
+).

It would be interesting to check if one is able to prove this directly without proving
the conjecture first.

Remark 9.10. Gromov has stated a different Spherical Stability Conjecture in [62]
based on Llarull’s Scalar Rigidity Theorem [94]. Llarull proved that if there is
degree one distance nonincreasing map from Mn to Sn and Scal(Mn) ≥ n(n − 1)
then Mn is isometric to Sn. Gromov has suggested that if there are degree one
distance nonincreasing maps from Mn

j to Sn and Scal(Mn
j ) ≥ n(n − 1) − (1/ j) then

Mn F
−−→ Sn. We expect a MinA condition might be required to avoid bubbling when

n = 3 and possibly something stronger in higher dimensions.

10. Geometric Stability of ZeroMass Rigidity [Lee-Sormani]

The final conjecture concerns the geometric stability of the various zero mass
rigidity theorems. This conjecture was first proposed by Dan A. Lee and Christina
Sormani in [86] where it was proven in the spherically symmetric setting.

Conjecture 10.1. Geometric Stability of Zero Mass Rigidity [Lee-Sormani] Sup-
pose M3

j are asymptotically flat with no closed interior minimal surfaces and pos-
sibly minimal boundary with Scal ≥ 0 everywhere and mADM(M3) ≤ 1/ j. Sup-
pose Ω j ⊂ M3

j are regions inside M j containing ∂M j whose outer boundaries
Σ j = ∂Ω j \Ω j have constant mean curvature and

(130) Diam(Ω j) ≤ D and Area(Σ j) = A0

then Ω j
VF
−−−−→ Ω0 where Ω0 is a ball in Euclidean space such that Area(∂Ω0) = A0.

See the final section of [86] for a variety of restatements of this conjecture with
different requirements on the regions Ω. The regions might have their boundaries
within uniformly asymptotically flat regions of M j or they might have positive
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Gauss curvature. Note also that we might consider compact regions Ω j satisfying
these hypotheses whose Hawking masses or Brown-York masses converge to 0
without assuming they have asymptotically flat extensions M j whose ADM masses
converge to 0.

Remark 10.2. Note that proving that Vol(Ω j) → Vol(Ω0) under the hypotheses
of Conjecture 10.1 would be an important result on its own. Keep in mind that
without the diameter bounds preventing increasingly deep wells the volumes can
diverge to infinity. Without the hypothesis that there are no closed interior minimal
surfaces, bubbles could form preventing the volume from converging as well. Both
these phenomena can occur even in the spherically symmetric setting. It is possible
that Huisken’s Isoperimetric mass and work of Fan-Shi-Tam in [52] might help, but
one needs more control in the interior. See Remark 2.11.

In order to prove a geometric stability or almost rigidity theorem like Conjec-
ture 10.1, we must look for estimates on the mass of the manifold or the quasilocal
mass of the region that depend upon the geometry of the interior. The Schoen-Yau
proof of the Zero Mass Rigidity Theorem is a proof by contradiction, so it cannot
be applied to control the M j. In the special cases of this conjecture that have been
proven, we do have such formulas for the mass. In Lee and Sormani’s proof in
the spherically symmetric setting they use the monotonicity of the Hawking mass
of the spheres which increases to the ADM mass. With the Hawking mass of all
spheres close to zero, they were able to control the warping function strongly away
from a possible central well whose volume converges to 0.

Remark 10.3. In [137], Sormani and Stavrov have proven Conjecture 10.1 for
regions in geometrostatic manifolds M′j of the form

(131) (R3 \ {p j
1, ...., p j

N}, g j)

where g j is conformally flat

(132) g j =

1 +

N j∑
i=1

a j
i

ρi


2 1 +

N∑
i=1

b j
i

ρi


2

g0

with ai > 0, bi > 0, and ρi(x) = |x − pi|. In such manifolds

(133) mADM(M j) =

N j∑
i=1

(a j
i + b j

i ).

So mADM(M j) → 0 immediately implies that regions which are a definite distance
away from the poles converge smoothly to the Euclidean metric g0. However, each
pole is a new asymptotically flat end. See Figure 20. To find M j ⊂ M′j which
satisfy the hypotheses of Conjecture 10.1, Sormani and Stavrov cut along minimal
surfaces whose locations were previously unknown. They locate the surfaces in
annuli by assuming the ai and bi are small relative to min |pi − p j|. They then
find domains in the M j which are biLipschitz close to Euclidean domains. They
complete the proof by estimating theF distance using the work of Lakzian-Sormani
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[82]. It would be interesting to study where the minimal surfaces are when the ai
and bi are large relative to min |pi − p j|.

Figure 20. This geometrostatic manifold M′ has three poles pi
with necks whose depth and area depend on ai and bi. The region
M ⊂ M′ lying above the minimal surfaces satisfies the hypothesis
of Conjecture 10.1 and isVF close to E3.

Remark 10.4. We believe the techniques of Sormani-Stavrov in [137], of Benjamin-
Stavrov in [26], of Benjamin-McDermott-Stavrov in [27], and more recent work of
Stavrov announced at VWRS could be applied to prove Conjecture 6.1 for regions
in geometrostatic manifolds with uniform upper bounds on their ADM masses and
uniform bounds on the locations of the poles p j

i . We would first choose a subse-
quence such that

(134) p j
i → p∞i and a j

i → a∞i and b j
i → b∞i

and then we would have to devise an hypothesis that guarantees we can locate the
minimal surfaces for a subsequence and complete the proof. We would recommend
this as doctoral dissertation project and suggest that students interested in this
project contact Sormani and Stavrov to ensure they have reserved it for themselves.

Remark 10.5. Conjecture 10.1 has also been proven in the graph setting under a
variety of hypotheses by Huang-Lee-Sormani [73], Allen-Perales [6], and Huang-
Lee-Perales [72]. The original approach in [73] in which Huang-Lee-Sormani first

proved Ω j
VF
−−−−→ Ω∞ and then proved Ω∞ is a Euclidean ball was very intrigu-

ing but the endplay was not completed rigorously. It would be very interesting to
complete their proof as originally outlined but this would require a deeper analy-
sis of Ambrosio-Kirchheim theory. Those who are interested should communicate
with Perales as she has studied this problem closely. The proof of the conjecture
in the graph setting was eventually completed correctly by Allen, Huang, Lee, and
Perales in [6] and [72] by first proving VADB convergence using Allen, Perales, and
Sormani’s work in [7]. Note that the techniques in these papers might be applied
to prove the Hawking Compactness Conjecture 6.1 for geometrostatic manifolds.
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This could be quite challenging as the VADB convergence might not work and so
we do not recommend it as a doctoral dissertation project.

Remark 10.6. In light of Zero Local Mass Rigidity Theorem of Shi-Tam in [130],
we expect Conjecture 10.1 should hold for regions Ω j whose Brown-York mass
converges to 0. Initial work in this direction has been completed in the graph
setting by Alaee, Cabrera Pacheco, and McCormick in [1].

Remark 10.7. There are also asymptotically hyperbolic versions of this conjec-
ture with Scal ≥ −6 proven by Sakovich and Sormani in the spherically symmetric
setting [123] and announced work by Cabrera Pacheco and Perales in the graph
setting [36]. It would be intriguing to see if there might be a asymptotically hyper-
bolic manifolds with Scal ≥ −6 similar to the geometrostatic manifolds studied by
Sormani-Stavrov in [137]. If so, we would suggest trying to prove the asymptoti-
cally hyperbolic version of this conjecture in that setting as well. See also Chao
Li’s paper [90].

Remark 10.8. There are partial results towards proving Conjecture 10.1 in special
settings which do not quite achieveVF convergence but do obtain Sobolev bounds
on the metric tensors. Allen controls regions Ω j that are covered by smooth inverse
mean curvature flow with bounds on their Hawking masses in [2]. Bryden controls
regions in axisymmetric manifolds in [34]. For a survey of earlier results see [86].
In these papers the metric tensors are shown to converge with various levels of
regularity and some also prove volume convergence. We believe these results might
now be improved to achieve VADB and thusVF convergence using the more recent
methods developed by Allen-Perales-Sormani in [7]. However it is not yet clear
how we can obtain lower bounds on distances in these settings.

Remark 10.9. As with the other stability conjectures, we may consider M j satis-
fying the hypotheses and assume the Ω j converge in a stronger sense to a limit M∞
and then prove M∞ is Euclidean space. For example, if we assume C0 convergence
to a smooth M∞ we can use Gromov’s Prism Property as in [64] to conclude that
M∞ has Scal ≥ 0. Jauregui and Lee have proven in [77] that under C0 convergence

(135) mADM(M∞) ≤ lim inf
j→∞

mADM(M j)

and then we can apply Zero Mass Rigidity for smooth manifolds to complete the
proof. If one assumes less regularity on the limit space, but assumes the con-
vergence is C0 and H1

loc, then we could apply low regularity zero mass rigidity
theorems of Lee and LeFloch [84] and Jiang-Sheng-Zhang in [80] to prove M∞ is
Euclidean space.

10.1. Using Compactness Theorems. Note that Wenger’s Compactness Theo-
rem and the hypotheses of Conjecture 10.1 guarantee a subsequence of the Ω j F

converge to some Ω∞ which might be the 0 space. We would ”only” need to show
that Ω∞ is always a Euclidean ball and thus the original sequence converges as re-
quired in the conjecture. If we assume the M j are uniformly asymptotically flat in
a strong enough way for R ≥ R0 that their asymptotically flat ends converge to an
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asymptotically flat end E∞ and we require that ∂Ω j lie in this asymptotically flat
regions, we might hope to prove ∂Ω j cannot converge to 0 space. This approach
was suggested in Sormani’s survey article [135] and attempted in the graph setting
by Huang-Lee-Sormani in [73].

We must ensure that extrinsic distances between points in ∂Ω j do not all con-
verge to 0 which requires knowledge of geodesics which pass through Ω j. Basilio-
Sormani have constructed examples in [24] where entire regions in manifolds
with positive scalar curvature disappear in the limit because all distances between
points in those regions converge to 0. These examples contain increasingly many
tiny tunnels and so they have many closed interior minimal surfaces. To prove

∂Ω j
F
−−→ ∂Ω∞ , 0 we could try controlling distances from below using the fact that

there are no closed interior minimal surfaces in the hypotheses of Conjecture 10.1.
This is related to Remark 4.14. Keep in mind also that in light of the examples
of Lee-Naber-Neumayer we need the hypothesis that we are in dimension three as
well [87].

Alternatively we could require as a hypothesis that ∂Ω j lie deep within the uni-
formly asymptotically flat ends where R ≥ 2R0 so that when their distances are
strongly estimated by

(136) dM j(p, q) ≥ dE j |∂E j(p, q) ∀p, q ∈ ∂Ω j

where

(137) dE j |∂E j(p, q) = min{dE j(p, q),min{dE j(p, x) + dE j(q, y) | x, y ∈ ∂E j}.

If so, we believe it might be possible to prove that

(138) FillVol(∂Ω j, dM j) ≥ FillVol(∂Ω j, dE j |∂E j)→ FillVol(∂Ω∞, dE∞ |∂E∞) > 0

because

(139) ∂Ω∞ = R−1(2R0) and E∞ = E3 \ B(0,R0).

This would require new theorems about filling volumes but intuitively it seems
true. If we are able to prove this then we can try gluing Ω∞ to E∞ to obtain a limit
space M∞ that we hope to prove is Euclidean using a weak version of the Zero
Mass Rigidity Theorem. The Arzela-Ascoli Theorems in [136] can be useful for
gluing. Assuming all of this works we have F convergence to a region Ω∞ ⊂ M∞.

If someone has proven volumes converge as discussed in Remark 10.2, then we
haveVF convergence. Jauregui and Lee have proven semicontinuity of (135) for
VF limits in [78] using isoperimetric methods. Thus we would have mADM(M∞) =

0. We could then complete this vaguely outlined proof of Conjecture 10.1 by prov-
ing M∞ has some low regularity notion of nonnegative scalar curvature and then
proving the Zero Mass Rigidity Theorem for such limit spaces. In particular prov-
ing the Prism Property holds on the limit space and proving the Prism Stability
Conjecture might complete the proof.

Alternatively we could use one of our stronger conjectured compactness theo-

rems to prove Ω j
VF
−−−−→ Ω∞ and that Ω∞ , 0 and satisfies the Prism Property.

We would still need to use many of these outlined steps even in this setting. Note
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also that the concerns mentioned in this outline are also concerns when proving
the compactness conjectures and in those settings we would not be able to use the
trick where we assume ∂Ω j lie deep within the uniformly asymptotically flat ends
unless we extend the manifolds to create such ends.

It is essential that we be very cautious not to simply solve one part of this outline
or a few parts and then claim one of the conjectures is true following the approach
suggested here. Anyone proving these theorems needs to complete the proof care-
fully themselves checking every step or piecing together the proof carefully citing
different papers and verifying the hypotheses match. This outline has been pre-
sented to suggest interesting problems to study and to warn people away from
jumping to conclusions too quickly. Significant further study must be completed
to better understand the properties of filling volumes as defined in [120] and the
properties of integral current spaces.

10.2. Possible Approaches to a Quantitative Proof. To directly prove Conjec-
ture 10.1 we must estimate dF (Ω j,Ω0) and |Vol(Ω j)−Vol(Ω0)|. This approach has
been successful in the special cases outlined above. Here we suggest a few possible
approaches towards proving this conjecture in full generality in a direct quantita-
tive way. If anyone attempts one of these proofs and needs to add an hypothesis
to do so then they will have proven an interesting result as long as the hypothesis
is natural. Or perhaps someone might find a counter example, in which case the
hypotheses of our conjectures would have to change.

Remark 10.10. Huisken has suggested that we apply Huisken and Ilmanen’s mono-
tonicity of the Hawking mass under their weak inverse mean curvature flow [75].
Their flow covers some regions smoothly and those regions might be controlled us-
ing the techniques developed by Allen in [2]. Their flow skips over some regions
which Huisken has suggested might be shown to have total volume converging to
0 using ordinary mean curvature flow back inwards. The volume estimates of Fan-
Shi-Tam in [52] might be useful. We might then use Lakzian-Sormani’s estimates
on the intrinsic flat distance as in [82] to complete the proof. We expect this would
be quite challenging to implement but would be well worth investigating even if we
only achieve partial results. It would even be interesting just to prove the volume
convergence perhaps in this way.

Remark 10.11. We must of course suggest that it is possible that an investigation
into Witten’s proof of the Zero Mass Rigidity for Spin manifolds in [145] would lead
to a partial result. Work in this direction has been completed by Lee-LeFloch [84].
There was some concern in the discussions at IAS that the Spin approach might not
lead to VF convergence but a different type of convergence. The biggest concern
was that we could not devise a way to relate Spin to the existence of minimal
surfaces.

Remark 10.12. Yu Li has proven Zero Mass Rigidity using Ricci Flow in [93]. It is
possible his proof can be investigated in the setting where the ADM mass is small.
Note that in three dimensions he applies Ricci flow with surgery. It might be helpful
to apply the work of Lakzian in [81] which demonstrates that manifolds which flow
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through a neck pinch singularity in the sense of Angenant-Caputo-Knopf [16] are
evolving continuously with respect toVF convergence.

Remark 10.13. In [31] Bray-Kazaras-Khuri-Stern have proven zero mass rigidity
using harmonic maps to circles. Some of these authors are investigating what can
be determined about the harmonic maps when the mass is small in this setting.

11. Additional Related Conjectures and Thoughts

In light of our discussions throughout it seems essential to investigate the fol-
lowing questions:

Question 11.1. What happens to the Width under VF and VADB convergence?
Width varies continuously under Lipschitz convergence as can be seen for example
by examining the proofs in Colding and Minicozzi’s paper [46] which demonstrates
how Width evolves under Ricci flow.

Question 11.2. What happens to Hamilton’s Ricci flow underVF or VADB con-
vergence of the initial manifolds? Simon proved C0 convergence of C2 metric ten-
sors g j → g∞ with Scal j ≥ κ implies smoother convergence of the flows g j,t → g∞,t
in [133]. This would be particularly interesting in light of the work of Bamler in
[19] and Burkhardt-Guim in [35].

Question 11.3. What happens to heat kernels under VF or VADB convergence?
It is known how they converge under Lipschitz convergence and weaker settings as
proven in work of Yu Ding [48].

Question 11.4. What happens to harmonic maps under VF or VADB conver-
gence? This would be particularly interesting to study in light of work of Daniel
Stern [139].

We might also consider additional geometric stability conjectures:

Question 11.5. Can we formulate and prove aVF geometric stability conjecture
for Hemispherical Scalar Rigidity Theorem of Eichmair [50]?

Question 11.6. Can we formulate and prove aVF geometric stability conjecture
for the Cover Splitting Scalar Rigidity Theorem of Bray, Brendle, and Neves [29]?

Question 11.7. Can we formulate and prove aVF geometric stability conjecture
for the RP3 Scalar Rigidity Theorem by Bray, Brendle, Eichmair and Neves [28]?

Question 11.8. Can we formulate and prove aVF geometric stability conjecture
for Hyperbolic Scalar Rigidity Theorem of Nuñez [114]?

For each one, it would be natural to weaken the hypothesis on scalar curvature,
preserve the other hypotheses, require uniform upper bounds on volume and di-
ameter, and a uniform lower bound on MinA. However we must be cautious with
each such conjecture, particularly with regard to the preservation of the hypotheses
under VF convergence. See for example [135]. It would be worthwhile to test
hypotheses of these other possible conjectures by proving them in special cases
like those discussed throughout this paper.
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In addition to the conjectures and questions posted in this article, there are more
concerning about F and VF convergence without scalar curvature bounds posed
by Gromov, Perales, Portegies, Nuñez Zimbrón, Sinaei, Sormani, and Wenger that
appear in [64][65][136][120][118], [134][135]. Progress on these questions can be
checked on my website:

https://sites.google.com/site/intrinsicflatconvergence/

which includes a regularly updated bibliography of all papers concerning intrinsic
flat convergence including their abstracts with comments.
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12. A final review

Let us quickly summarize everything:

(140) M j
Lip
−−−→ M∞ =⇒ M j

VF
−−−−→ M∞

was proven by Sormani-Wenger in [138] and more constructively by Lakzian-
Sormani in [82]. In [7]. Allen-Perales-Sormani proved:

(141) M j
VADB
−−−−−−→ M∞ =⇒ M j

VF
−−−−→ M∞.

Finally there is the obvious fact that

(142) M j
VF
−−−−→ M∞ =⇒ M j

F
−−→ M∞

which further implies that
• volumes/masses converge [138],
• boundaries converge [138],
• diameters subconverge [136],
• balls converge [136],
• filling volumes converge [120],
• sliced filling volumes converge [120],
• unif. bounded Lip. functions to a compact metric space converge [136],
• uniformly local isometries converge [136],

• there exist subsets U j ⊂ M j such that U j
GH
−−−→ M∞ [136].

If one further has M j
VF
−−−−→ M∞ then

• M j
m
−−→ M∞ [121]

• lim sup j→∞ λk(M j) ≤ λk(M∞) [121]
• volumes of balls converge [78]
• areas of spheres converge [78]
• various isoperimetric types of regions converge [78]

If we assume M j
VF
−−−−→ M∞ or M j

VADB
−−−−−−→ M∞, we ask the following questions:

• What happens to Width(M j)?
• What happens to the Ricci flow of M j?
• What happens to the heat kernals of the M j?
• What happens to harmonic maps h j : M j → X?

Hopefully these properties will not only provide new insight into methods towards
proving our compactness and geometric stability conjectures but also lead to a
deeper understanding of three dimensional oriented compact Riemannian mani-
folds with lower bounds on their scalar curvature.
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