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CONJUGACY CLASSES OF HYPERBOLIC MATRICES

IN Sl(n, Z) AND IDEAL CLASSES IN AN ORDER

BY

D. I. WALLACE

Abstract. A bijection is proved between Sl( n, Z)-conjugacy classes of hyperbolic

matrices with eigenvalues {A,,_A,,} which are units in an n-degree number field,

and narrow ideal classes of the ring Rk = Z[A,]. A bijection between Gl(«,Z)-con-

jugacy classes and the wide ideal classes, which had been known, is repeated with a

different proof.

In 1980, Peter Sarnak was able to obtain an estimate of the growth of the class

number of real quadratic number fields using the Selberg Trace Formula and a

bijection between hyperbolic elements of Sl(2, Z) and quadratic forms. The "class

number" counted was the number of congruence classes of quadratic forms as

studied by Gauss [1]. In this paper we will translate this bijection into modern

number-theoretic terms by counting ideal classes in a ring of integers associated to a

given field. In this way a bijection is proved between conjugacy classes of hyperbolic

matrices in Sl(2, Z) with a given set of eigenvalues and ideal classes in a certain order

(i.e. subring of dimension n over Z) associated to the ring of integers 0K in a real n th

degree number field K. This more direct method is necessary for generalizing the

bijection to higher dimensional cases because Sarnak's result depends upon quadratic

forms, Pell's equation and other things which are well understood only in the case of

S1(2,Z).
We must mention the work of Latimer and MacDuffee [3] who first proved

Theorem 2 in a slightly different fashion. Important also is the extensive work of

Taussky [7-9], who simplified the results of Latimer and MacDuffee and extended

them in certain directions, as well as doing much work on the Sl(2, Z) case.

It follows from a brief examination of the characteristic polynomial for a matrix A

in Sl(n,Z) that the eigenvalues of A are conjugate units in an extension of Q. We

shall insist in the remainder of this paper that A be "hyperbolic" with irreducible

characteristic polynomial, that is, A will have distinct real eigenvalues A(,), each of

which is of degree n over Q.

Proposition I. IfX is an eigenvalue for a matrix A e SL( n, Z), then for any field K

containing X there exists an eigenvector co, Tu = (w,,..., wn), with w, e 0K.
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Proof. We can construct an eigenvector for A by solving A ° x = Xx for x =

(1, x2,..., xn)T. This matrix identity yields n simultaneous equations with coeffi-

cients in Z © ZA. Therefore the solution constructed lies in Q(A). If we multiply the

solution vector by a constant it will still be an eigenvector, so this allows us to clear

the denominators of x2,— xn. The resulting vector co has entries which all lie in

0K-

Proposition 2. For a given ideal I in 0K and ordered set of elements rco = (w,,...,

co„) which are a Z-basis of I, and for X a unit with norm equal to 1, there exists a matrix

A in Sl(n, Z) such that A ° co = Aco.

Proof. Because A is a unit, A^co = (Aw,,..., Aco„) is also a Z-basis of /. Therefore,

some matrix A in Gl(«, Z) takes co to Aw. If we inspect the action of A on K{J), the

jth conjugate field of K, we see that Iij) has a Z-basis 7w(/> = (co1/1_, u„J)).

Furthermore, Au{J) = A0)co0). Thus the eigenvalues of A are A(1).A("\ conjugate

units in a field. Therefore det A = n,A(/) = 1 and A is in S1(«,Z).

Proposition 3. Let I, co, A, X be as in Proposition 2. Let Ta be another vector whose

elements are a basis of I.  Then there exists B in S1(«,Z) with eigenvalues A(1),

A(2),..., A*'0 and eigenvectors a(X).a"", and B is conjugate to A by an element of

Gl(n,Z).

Proof. Because {«,} and {a,} are bases of / there exists C in G1(«,Z) with

C ° a = co. Let B = CXAC. Thus

B ° a = C~xACa = C~lA ° co = C~x ° Aco = AC"1 ° to = Aa.

Corollary to Proposition 3. If n is odd then we can choose the C of Proposition

3 to be in Sl(n,Z).

Proof. If det C = -1 then replace C by -1 • C.

Proposition 4. An ideal class in K = Q( A) uniquely determines a conjugacy class in

Gl(n, Z) of matrices with eigenvalue X (and determinant +1).

Proof. If co is a vector whose entries are a basis for an ideal / and if J is another

ideal in the same ideal class as /, then there is a constant k such that Ac co is a basis of

/. By Proposition 2 there is a matrix A with eigenvalue A and eigenvector co, thus Acco

is also on eigenvector of A. We can therefore take co to represent an entire ideal class,

of which each ideal has a basis A-co which is an eigenvector of A. It suffices then to

show the converse of Proposition 3; this is, if B is conjugate to A then it corresponds

to the same ideal class. But the eigenvector of B = C~XAC with eigenvalue A is

exactly C"1 ° co, and C"1 ° co has entries which are also a basis of /.

Gauss [1] showed several examples of symmetric 2 X 2-matrices for which the

number of equivalence classes under Sl(2, Z) is twice the number of classes under

Gl(2, Z). The import of these examples for our purposes lies in calculating conjugacy

classes of a determinant 1 hyperbolic. Sarnak [5] shows that a correspondence exists

between congruence classes of symmetric matrices of a given determinant and

Sl(2, Z)-conjugacy classes of associated hyperbolic matrices in Sl(2, Z) with certain
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eigenvalues. Consequently, we do not expect the number of Gl(n, Z)-conjugacy

classes of a hyperbolic to agree with the number of S\(n, Z)-conjugacy classes when n

is even. However, we already have a weak result which follows directly from

Proposition 4, which we can now state.

Theorem 1. Let K be an nth degree extension of Q and let X e K+ be a unit. If

K = Q(A) then the number ofGl(n, Z)-conjugacy classes of matrices in Sl(n, Z), which

are hyperbolic with eigenvalues { A(1>, A,2),..., A'"'}, is greater than the class number of

K.

Proof. The proof follows immediately from Proposition 4.

The application Sarnak makes of his version of this information is in a compu-

tation involving the Selberg trace formula. One term in the trace formula contains a

sum over the Sl(2, Z)-conjugacy classes of a hyperbolic matrix with multiplier A2. It is

clear that the number of Sl(2, Z)-conjugacy classes of such matrices is greater than or

equal to the number of Gl(2, Z)-conjugacy classes. But it would be useful to have

some bound on how many more of these classes there are under Sl(2, Z) than under

Gl(2, Z). This estimate is quite easy to make. In fact, the bound is the same for any

Gl(n, Z) when n is even.

Proposition 5. Let { A(1),..., A<n)) be n distinct conjugate units. Then the number

of conjugacy classes in Sl(«, Z) of matrices with eigenvalues { A(1),..., A'"'} is less than

or equal to twice the number of Gl(n, Z)-conjugacy classes of the same matrices.

Proof. Let A and B be conjugates in Gl(«, Z). Then B is conjugate to either A or

DAD in Sl(n, Z), where D = Dl and det D = -1, e.g.

1-1 0 \
+ 1

/>= +1
0

+11

Suppose CXBC = A and det C = -1. Then DC'lD ■ DBD ■ DCD = DAD, so DC1

■ B ■ CD = DAD because D2 = I and (CD)~XB(CD) = DAD because D = Dx. But

det CD = 1. Therefore a conjugacy class in Gl(n, Z) divides into at most two classes

in Sl(n, Z) by sending an element B to either the class whose representative is A or

the class represented by DAD.

To fully generalize Samak's result to the Sl(«, Z) case, it is necessary to establish a

bijection between conjugacy classes of a family of matrices and ideal classes in 0K,

where K is some field. It is possible to make this bijection easily in a special case,

namely, when 0K is generated as a Z-module over (1, A, A2,..., A"1}, where A is

the unit corresponding to the given family of matrices in Sl(«, Z). In other cases, the

bijection will still be between classes of matrices and ideal classes in Z[A], a subring

ofcv
Definition 1. Let R = Z[A], Two ideals / and J in R are said to be in the same

ideal class if there is some constant r in the quotient field of R such that rl = J.
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Proposition 6. Let {I) be the ideal class containing I. Then {I) is well defined;

that is, membership to an ideal class is an equivalence relation on ideals.

Proof. Suppose J e { /}. Then there is c e (quotient field of R) such that

cl = I. Therefore c~xI = J and I e. (J). Also if J e { /} and H <= [J), then there

are c and d in the quotient field of R with cJ = / and dH = J. Thus cdH = I and

H e { /). Obviously / e { /). Therefore membership to an ideal class in /? is an

equivalence relation on ideals. Thus ( /} is well defined.

It is worthwhile to note here the need for Proposition 6. R = Z[X] is a ring

consisting of integers but is not in general the complete ring of integers for a field K,

although it is contained in 0K; K = Q(A). R is not necessarily Dedekind, although

principal ideals in R are invertible. Thus, if we wished to make ideals in the same

class differ by a principal ideal or principal inverse ideal, we could do so without

changing or invalidating Definition 1. However, because R is not necessarily

Dedekind we do not have an ideal class group, as in the case of 0K.

Proposition 7. Let A be in S1(«,Z) with eigenvalues (A(1).A"")  distinct

conjugate units. Let R = Z[X]. Suppose A ■ co = Xu for some vector Tu> = (ul.co„).

Then { <ol9..., co„} are a Z-basis for an ideal in R.

Proof. It suffices to show that for re/i, rco, e © Z«,-. But r = K~1a/A-',

a ■ e Z. Thus it suffices to show that Xj • co, is in © Zco,. But rco = (uv_co„) is an

eigenvector of A' with eigenvalue XJ. Thus A-'co, is a linear combination of the co,.

Therefore ©Zco, is an ideal in R.

Theorem 2. Let UK be the set of Gl(n,Z)-conjugacy classes of matrices in S1(«,Z)

whose elements have eigenvalues { A(1>, A<2\..., A*"1). Let R = Z[X]. Let {I) be the

set of ideal classes of R. Then there is a well-defined map <I>X: Ux —>{/,} which is

one-to-one and onto.

Proof. We choose $A({ A)) to be the ideal generated by the entries of the

A-eigenvector of any representative of ( A). 0A({ A)) exists and is an ideal generated

as a Z-module by {co,}, (the entries of the eigenvector) by Proposition 7. $x is thus

well defined by Proposition 3 and onto by Proposition 2. By Proposition 4, $^ is

also well defined and onto. Therefore $x is one-to-one and onto.

For convenience, let h(K) denote the class number of K and let H(X) denote the

number of Gl(rc,Z)-conjugacy classes of matrices with eigenvalues ( A(1), A(2),...,

A(n>}. Then from Theorem 2 we have

Corollary to Theorem 2. If R = Ok then h(K) = H(X).

Proof. The proof follows immediately from Theorem 2.

The following proposition and theorem give yet another criterion for the equality

of h(K) and H(X). They will yield a large class of discriminants for which the

number field has the desired property.

Proposition 8. Let X be a unit with minimal polynomial of degree n and let

A°u> = Aco for A e Sl(n, Z) and co e R". Let rco = (col5 co2,..., co„). Then {co,) is a

linearly independent set over Q.
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Proof. Suppose not. Then Aco, = Ef'/fc-co, for all i. Thus B ° co = Aco, where B has

rational entries and the nth column is zero. Therefore A is an eigenvector of the

((n - I) X (n - l))-matrix in the upper left-hand corner of B. Therefore the minimal

polynomial of A has degree less than n.

Theorem 3. Suppose K = Q(X) is a number field of degree n and X is a unit. If the

discriminant of A is square-free then h(K) = H(X), where A = (1, A,..., A""1).

Proof. A = (1, A, A2,..., A"-1) is a Z-basis for R. It is also a Q-basis for K. Let

£ = (e1(..., e„) be a Z-basis of 0K. By a theorem in Samuel [4], if £^(1, A,..., A""1)

is square-free then (1, A,... ) is a Z-basis of 0K. But £^(1, A,..., A""1) = D(K),

which is assumed to be square-free. Therefore R = 0K and by Corollary to Theorem

2,h(K) = H(X).

We should note that in the Selberg trace formula the conjugacy classes of

hyperbolics are always taken to be conjugates by elements of Sl(2, Z). The bijection

obtained in Theorem 2 of this paper, however, is between (wide) ideal classes in a

ring R K associated to a field K and Gl(n, Z)-conjugacy classes of hyperbolic

matrices. We can convert the problem of study of Sl(n, Z)-conjugacy classes if we

count the narrow ideal classes of RK instead of the usual (wide) ideal classes.

Definition 2. Two ideals / and J of a ring Ok of integers of a number field K are

said to be narrowly equivalent if / = rJ, r e 0K, or J = rl, r e K, such that r is a

number of positive norm.

It is well known that the above equivalence relation divides the set of ideals of 0K

into classes which are called the narrow ideal classes. The number of these is the

narrow class number. It is easy to see that if RK is the order described previously

which is associated to the number field K, the ideals of RK can be grouped into

narrow ideal classes by the same definition. For the remainder of this paper we will

be referring (unless otherwise stated) to the narrow ideal classes and narrow class

number of RK rather than 0K.

Let A be a unit of degree n and let Q(A) = K. Let RK and Ok be the rings

associated with K as before, namely, 0K being the ring of integers and RK = Z[A].

Let R = RK or 0K in general. We now begin a process of associating to every narrow

ideal class a basis vector and two sets of basis vectors on which we will study the

action of S1(«,Z).

Let (Ix},...,(Ik) be the wide ideal classes of ring R. Let Iv..., Ik be arbitrary

choices of representatives of each class. Let co1,..., co* be arbitrary choices of vectors

consisting of ordered bases for /, respectively. To each ideal /, in the same wide

ideal class as / associate the basis vector r ■ co/ r ^ K, choosing r such that

n(r)> Oiflj and / are in the same narrow ideal class. Thus to every ideal/ in R we

have associated a basis ruJ which, although uJ is chosen arbitrarily, we shall

consider fixed.

We know that all bases of / can be obtained by the action of Gl(«, Z) on co/ We

can then split the set of bases elements of an ideal L into two sets, namely those

which arise from the action of elements of Sl(n, Z) on uJ and the rest. Define B/ to

be the set of all v = A ■ co/ A e S1(«,Z), and define ti] to be all the other basis
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vectors. Note that if v e fi; then B ■ v = co', det B = -1, B e G1(«,Z), although

the converse is not necessarily true.

It is easy to see that the following holds:

1. The elements &] are equivalent under the action of Sl(«, Z).

2. We can define £2/ and fij analogously for all / widely equivalent to I.

3. Any v e Qj is related to any v' e 8/ o«/v by a matrix B of negative

determinant.

Proposition 9. To each element v e B,+ we can associate a unique matrix Av e

Sl(n, Z) .swc/i f«af ./!„ • vJ = Xv.

Proposition 10. To fi^ we can associate a conjugacy class under the action of

Sl(n, Z) of matrices equivalent to Av.

The proofs of these propositions are exactly the same as those given for Proposi-

tions 2 and 3, hence will not be repeated.

Needless to say, we are attempting to construct a bijection between (Sl(n, Z) -con-

jugacy classes of hyperbolic matrices and narrow ideal classes of the ring RK,

K = Q(A). This bijection has been partially supplied by Theorem 2, which reduces

the problem to the case of two ideals in the same wide ideal class but different

narrow ideal classes. We can prove the desired result after the next lemma.

Lemma 1. If J = r/, r e K, and co7 is the basis associated to L, then there exists a

matrix C of positive determinant and having rational entries, and a basis v1 of Ij such

that Cv' = rco/ the canonical basis of J. Furthermore, vJ e £2^ // and only if

n(r)> 0.

Proof. Because J and / are in the same wide ideal class, there is a matrix B with

rational entries such that B ■ u>' = ruJ. By inspecting the action of B on the

conjugate fields of K we see that

B- (a{i)) = r(iyw{i),

hence det B = n(r). If n(r) > 0, we are done. Otherwise let D = D1 and det £> =

-1, e.g.

1-1 0 \
+ 1

D= +1
0

\ +1/

Then £>co7 = vJ and det BD = -n(r)> 0. If C = BD then C • v>' = ruJ and det C

> 0 and v1 e 12:.'j

Theorem 4. Let Ux be the set of Sl(n, Z)-conjugacy classes of hyperbolic matrices

with eigenvalues { A(1),..., A'"1}. Let RK= Z[ A] and let {Ij) be the set of narrow ideal

classes of R. Then there is a well-defined map $x: Ux -» (If) which is one-to-one and

onto.
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Proof. By Theorem 2 it suffices to show that if L and IK are two widely

equivalent ideal classes (/•/• = IK) with associated bases co7 and co* such that

rco7 = co*, and if AwJ = Aco7 and B(uk) = Aco*, we have the following:

(1) If CAC'1 = B and if det C = +1 then /• and Ik are narrowly equivalent.

(2) If Ij and IK are narrowly equivalent then there exists C with det C = +1 such

that CAC1 = B.

Proof of (1). Suppose CAC1 = B and det C = +1. Note that co7 e £2,+ and

rco7 = co* e £2/. Let co* = C_1co*. Then co* e £2^ by the definition of 8^. Also we

have that AcoJ = Aco7 and

/4c5* = ClBC • C-V = CXB ■ co* = C"1 • Aco* = A • co*.

Therefore co* = r ■ co7 and by Lemma 1, n(r) > 0. Therefore L and Ik are narrowly

equivalent.

Proof of (2). Suppose / and Ik are narrowly equivalent and Au>j = Aco7,

5co* = Aco*. Then there exists r (n(r) > 0) such that co* = rco7 is a basis of IK. By

Lemma 1, co* e £2^ . By the definition of Q/ there exists a matrix C e Sl(n, Z) such

that Ceo* = co*. We then have Auk = Aco* because co* is a multiple of co7 and

CAC-lak = CAuk = C • Aco* = A • co*.

By noting the action of CAC~X on conjugate fields of K, we have the CAC1 has

the same eigenvalues and eigenvectors as B and hence CAC~X = B.

By comparing the result of this theorem with the Corollary to Proposition 3,

Proposition 5, and Theorem 1, we can conclude the following corollaries. Let A" be a

field with irreducible minimal polynomial P(X) for A a unit.

Corollary 1. If the degree n of K is odd, then the wide class number of RK equals

the narrow class number.

Corollary 2. The narrow class number of RK is less than or equal to twice the wide

class number of RK.

Corollary 3. The narrow class number of Ok is less than or equal to the narrow

class number of RK.

Thus we see that for a hyperbolic element of Sl(n,Z) with nth degree irreducible

characteristic polynomial P(A), the coefficient associated to that term in the

n-dimensional version of the trace formula will, in part, be the narrow class number

of the ring RK = Z[X]. When n is odd it will also be the wide class number of RK. In

either case there will be number-theoretic information associated to that particular

term which may possibly be retrieved by estimates involving the trace formula. For

further information on the Selberg trace formula and number-theoretic applications

thereof, please see [2,6,10,12].
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