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CONJUGACY CLASSES OF n-TUPLES IN LIE
ALGEBRAS AND ALGEBRAIC GROUPS

R. W. RICHARDSON

Let G be a reductive algebraic group over an algebraically closed field F of
characteristic zero and let L(G) be the Lie algebra of G. Then G acts on G by
inner automorphisms and it acts on L(G) by the adjoint representation. By
taking the diagonal actions, we get actions of G on the spaces of n-tuples G n and
L(G)". In this paper we will prove a number of geometric properties of the orbits
of G on these spaces of n-tuples.

For n 1 the situation has been studied in great detail (see [12, 30]). For
example, if x G, then the orbit G. x is closed (resp. unstable) if and only if x
is semisimple (resp. unipotent). Let x have Jordan decomposition x su, with s
semisimple and u unipotent. Then the stabilizer G is the intersection of Gs and
Gu and G s is the unique closed orbit in the closure of G x. Let V be the affine
variety corresponding to the algebra F[G] of regular class functions on G and
let r: G V be the morphism of affine varieties corresponding to the inclusion
homomorphism F[G] F[G]. Then each fibre q./.-1(/3), /3 V, has codimen-
sion equal to the rank of G.

All of these results, plus a number of others, can be generalized to the action of
G on n-tuples. For now, we will restrict our discussion to the action of G on G n.
Let x (xl,..., x,) G" and let A(x) be the algebraic subgroup of G gener-
ated by (xl,..., x,}. We say that x is a semisimple n-tuple (resp. unipotent
n-tuple) if A (x) is a linearly reductive (resp. unipotent) algebraic group. We show
that the orbit G x is closed (resp. unstable) if and only if x is a semisimple (resp.
unipotent) n-tuple. Let L be a Levi subroup of A(x). Then each x can be written
uniquely in the form xi=YiZi, with Yi L and zi Ru(A(x)). Let y
(y,..., y,) and let z (Zl,..., z,). The decomposition x y z is called a Levi
decomposition of x. (Such a decomposition of n-tuples is not unique.) We show
that the stabilizer G,, is the intersection of Gy and G,. and that G y is the unique
closed orbit in the closure of G x. Let Gn/G be the affine variety corresponding
to the algebra F[G] of invariants and let r: G Gn/G be the morphism
corresponding to the inclusion homomorphism F[G"] F[G"]. Let x G n be
a semisimple n-tuple and let A be a maximal torus of the stabilizer G,,. Then the
dimension of the fibre r-(r(x)) depends only on the G-conjugacy class of A
and we give a precise formula for this dimension. (For n 1, A is a maximal
torus of G.) We also characterize the stable points of G" and the smooth points
of the quotient variety G"/G.
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Most of our results can be generalized to the following situation: Let S be a
linearly reductive group which acts on G by automorphisms and let K Gs be
the fixed point .subgroup. Then we consider the actions of K on G" and on
L(G) n. In this case our results seem to be new even for the case of n 1. As an
example, we prove the following: Let x (xl,..., xn) G n and let As(x) be the
smallest S-stable algebraic subgroup of G containing {x,..., x). Then the
orbit K. x is dosed if and only if As(x) is a linearly reductive algebraic group.
A number of our arguments carry over to reductive real algebraic groups or,

more generally, to real reductive Lie groups. The results on real groups are given
in 11 and 15.

In our proofs, a crucial role is played by the Hilbert-Mumford theorem in the
strengthened form due to Kempf [11]. In fact, the whole paper is, to some extent,
an exercise in the Hilbert-Mumford theorem. In most cases, the proofs for
n-tuples in the Lie algebra L(G) are exact parallels of the proofs for n-tuples in
the group G. In order to avoid constant repetition of similar proofs, we have
usually given the proofs for G (which tend to be slightly more complicated) and
omitted the proofs for L(G).

Let G GL(V) and let K be either the orthogonal group O(V) or the
symplectic group Sp(V). For the actions of G and K on L(G), many of our
results were obtained by Procesi in [22]. In these cases, one can use more
elementary methods and the Hilbert-Mumford theorem is not needed.
The hypothesis of characteristic zero is necessary for most of our theorems. In

16 we discuss a few results along the same line which hold in characteristic p.
An announcement and brief discussion of some of these results (without

proofs) was given in [27].

1. Preliminaries. We let Z denote the ring of rational integers, R the field of
real numbers, and C the field of complex numbers.

1.1. Our basic reference for algebraic groups and algebraic geometry is the
book of Borel [3] and in general we follow the conventions and notation therein.
All algebraic groups and algebraic varieties are taken over an algebraically dosed
field F. Except where explicitly indicated otherwise, we assume that F is of
characteristic zero. We always let k denote a subfield of F. By an algebraic
group, we always mean an attine algebraic group. If X is a k-variety (a variety
defined over k), then X(k) denotes the set of k-rational points of X. If the
algebraic group G acts morphically on the algebraic variety X, then we say that
X is a G-variety; we say that X is a G-variety defined over k if X, G, and the
action of G on X are all defined over k.

Let G be a grop and let X be a G-set. If g. G and x X, then g x denotes
the action of g on x, G, is the stabilizer, or isotropy subgroup, of G at x and
G. x is the G-orbit of x. We let X denote the set of fixed points of G on X.

If G is an algebraic group, we consider (the algebraic variety) G as an affine
G-variety, with G acting by inner automorphisms. Thus, if S is a closed subgroup
of G, then Gs is equal to Zo(S), the centralizer of S in G.
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Since we are in characteristic zero, every unipotent algebraic group is con-
nected. If G is a (not necessarily connected) algebraic group, then R u(G ) is the
unipotent radical of G (the maximal closed, connected, normal unipotent sub-
group of G, or of GO).
We let X(G) (resp. Y(G)) denote the set of characters (resp. one-parameter

multiplicative subgroups) of the algebraic group G. If G is a k-group, then X(G)
(resp. Y(G)k ) is the set of characters (resp. one-parameter subgroups) defined
over k. If Y(G) and / X(G), then (,,/) Z is defined by/(A(t))
t (x’) (t F*). If X is an affine G-variety and if , Y(G), then we frequently
write Xx for Ximage(h).

1.2. Linearly reductioe groups and Levi subgroups. (See [10], chap. 8.) An
algebraic group G is reductive if G is connected and if R(G)= (1). The
algebraic group G is linearly reductive if every rational representation of G is
semisimple. Since we are in characteristic zero, this is equivalent to the condition
that the identity component G O is reductive. If G is a linearly reductive group,
then Z(G), the center of G, is a diagonalizable group.
The following two results are well known"

1.2.1. Let G be a closed subgroup of GL(I/’). Then G is linearly reductive if and
only if F is a semisimple G-module.

1.2.2. Let *1" G H be a surjectioe homomorphism of algebraic groups and let
K be the kernel of rl. Then G is linearly reductive if and only if both K and H are
linearly reductive.

As an easy consequence of 1.2.1 and 1.2.2 we have

1.2.3. Let G be linearly reductive and let H be a closed subgroup of G. Then H
is linearly reductive if and only if the adjoint representation ofH on the Lie algebra
L(G) is semisimple.

We omit the proof.
Let G be a k-group. A k-subgroup L of G is a Levi k-subgroup of G if G is

the semidirect product (in the sense of algebraic groups) of L and R(G). It
follows easily that L is linearly reductive. The following result is due to Mostow
(see [10], chap. 8)"

1.2.4. Let G be a k-group. (a) There exist Levi k-subgroups of G. (b) IfL and
L2 are Levi k-subgroups of G, then there exists u Ru(G)(k ) such that uLu-L2. (c) Let M be a linearly reductive k-subgroup of G. Then M is contained in a
Levi k-subgroup of G.

1.3. The quotient ofX by G. (See [14,15].) Let G be a linearly reductive group
and let X be an affine G-variety. Then the algebra F(X)a of G-invariant regular
functions on X is a finitely generated F-algebra. Let X/G be the affine variety
corresponding to F[X] and let rx: X X/G be the morphism of affine
varieties corresponding to the inclusion homomorphism F[ X] a F[ X]. We say
that X/G is the quotient ofX by G and that ,rx is the quotient morphism.
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Remark 1.3.1. Our terminology differs from that of Borel [3], pages 172-174.
In general the variety X/G is not a "quotient of X by G" and the morphism rx
is not a "quotient morphism" in the sense of [3].

The following properties of the quotient morphism rx are known:

1.3.2. (a) rx is a surjective map. (b) For each l e X/G, the fibre ri()
contains a unique closed orbit, which we denote by T(). For x X, we have
rx(X) l if and only if the closure of the orbit G x meets T().

We shall frequently need the following property of closed orbits [25]:

1.3.3. Let x e X be such that the orbit G .x is closed. Then the stabilizer G is
linearly reductioe.

1.4. Stable and unstable points. (See [18, 20].) Let G be a linearly reductive
group and let X be an attine G-variety. Let Z fq xG denote the kernel of
the action of G on X. A point x of X is a stable point (or a G-stable point, when
reference to G is necessary) if the orbit G. x is dosed and if G/Z is finite. Let
X’ be the set of stable points of X. Then X is an open (possibly empty)
G-stable subset of X, the image rx(X’ ) is an open subset of X/G, and
X r(rx(Xt’). For each stable point x of X the fibre r(rx(X)) is equal
to the orbit G. x. The image rx(X) is an open subset of X/G and is a
"geometric quotient of X by G" in the sense of [18].

Remark 1.4.1. Our definition of stable points is a slight generalization of the
definitions in [18, 20]. A point x of X is stable in our sense if it is stable in the
sense of [18] (see p. 147) or [20] for the action of G/Z on X.

Let G be linearly reductive and let (X, Xo) be a pointed affine G-variety with
G-invadant base point x 0. Then a point x of X is unstable if x0 is in the closure
of the orbit G x. If x is unstable, we say that the orbit G x is unstable. If E is
a rational G-module, then we consider E as a pointed G-variety with base point
0. We consider G as a pointed G-variety with base point 1 (1,..., 1).

1.5. Algebraic Lie subalgebras. (See [10].) Let G be an algebraic group. Then
a subalgebra ct of the Lie algebra L(G) is an algebraic Lie subalgebra of L(G) if
there exists a connected dosed subgroup A of G such that L(A) a. In this case
the subgroup A is uniquely determined by a. We say that a is a reductioe
algebraic Lie subalgebra if the corresponding subgroup A is a reductive algebraic
group. Let G be connected. Then the algebraic Lie subalgebra a of L(G) is a
Levi subalgebra of L(G) if the corresponding algebraic group A is a Levi
subgroup of G.

2. Parabolic subgroups and one-parameter subgroups. See [14, 32]. Let :
F* --, X be a morphism of algebraic varieties. We say that limt_.o(t ) exists if
there exists a morphism k: F --, X whose restriction to F* is ; in this case we
write limt_.o(t ) for k(0). In particular, let G be an algebraic group, let X be a
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G-variety, and let , Y(G). If x X and if limt0,(t ) x exists, we often
denote limt__,o,(t ) x by ,(0). x. Clearly, ,(0). x Xx.
We shall frequently use the following strengthened form of the Hilbert-

Mumford theorem (henceforth denoted by HMT), due to Kempf [11]:

2.1 (HMT). Let G be a linearly reductive k-group and let X be an affine
G-variety defined over k. Let x X(k ) and let tP be the unique closed orbit in the
closure of G. x. Then tO is a k-variety and there exists X Y(G)k and y (9(k )
such that lim Oh(t) x y.

The proof of 2.1 is difficult. For the case when F=C and k=R, an
elementary proof is given in [2].

Let G be a linearly reductive group and let , Y(G). We define subsets P(A)
and U(A) of G and subsets () and u() of L(G) as follows:

(a) P(X) (g Gllimt_.o,(t) g exists}.
(b) U(,)= {g Gllimt_.oX(t).g 1).
(c) p(,) {x L(G)llimt_..oX(t ) x exists}.
(d) u(X) (x L(G)llim,_.oX(t). x 0}.

When reference to G is necessary, we write PG(,), UG(,), 0L((X), and
ttL((h) instead of P(X), U(X), (), and tt(X).

2.2. Let G be a linearly reductioe k-group and let , Y(G),. (a) P(X) is a
closed k-subgroup of G and U(A) is the unipotent radical of P(X). (b) If G is
connected, then P(,) is a parabolic subgroup of G. (c) O(X)= L(P(,)) and
tt(X) L(U(X)). (d) Define a morphism hx: P(,) Gx by hx(g ) ,(0) g.
Then h x is a surjectioe k-homomorphism of algebraic groups and h x(g ) =g for
gG x.

Proof. Parts (a) and (b) are proved in [14,18] and the proofs of (c) and (d)
follow easily from the proofs there.

2.3. Let G be a reductive k-group, let P be a parabolic k-subgroup of G, and let
L be a Levi k-subgroup of P. Let A be the unique maximal k-split torus of Z(L).
Then there exists Y(A) Y(A) such that P (, ) P, L G x G’, and
u(x) u(P).

Proof. This follows easily from [4], Theorem 4.15.

We need to extend 2.3 to the case of linearly reductive groups.

PROPOSITION 2.4. Let G be a linearly reductive k-group, let P be a parabolic
k-subgroup of G, and let L be a Levi k-subgroup of N(P). Then there exists

Y(G)k such that N(P) P(,), L G x, and Ru(P ) U(A).

Proof Let Z Z(L) Then Z is a k-torus and L (G)z. The finite
group L/L acts on Z by conjugation. Let I’ denote the image of L/L in
Aut(Z). Let k denote the algebraic closure of k in F. Since Z is defined over k,
the Galois group Gal(k, k) acts on Z by automorphisms. Let I"2 denote the
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image of Gal(k, k) in Aut(Z) and let I" denote the subgroup of Aut(Z)
generated by 1" and I"2. By [3], page 213, the group I’2 is finite and it is clear that
I’2 normalizes F1, so that F is a finite subgroup of Aut(Z). Let E denote the real
vector space Y(Z) (R)z R. We consider X(Z) as a subspace of the dual space E*
in the obvious way. Let xt, c X(Z) be the set of nonzero weights of Z on the Lie
algebra L(G) and let

Then Eo is an open dense subset of E. The finite group F acts on E and Eo is
F-stable.

We need the following lemma:

LEMMA 2.5. Let #1,/2 (Eo N Y(Z)). Then P(/I) P(/2) if and only if
t1 and t2 belong to the same connected component ofEo.

Proof. Let Pi P(Ixi) and let 9i (a 91(bti, a) > 0), 1,2. Then the
Lie algebra L(Pi) is spanned by L(G)z and the weight spaces L(G) with
a xI,. Thus we see that P1 P2 if and only if g’l 92. But it is clear that
xI’1 xt’2 if and only if 1 and/2 belong to the same connected component of
Eo. This proves the lemma.

Now we can finish the proof of Proposition 2.4. Let A be the unique maximal
k-split torus of Z. By 2.3, there exists / Y(A) such that P p(/)o, Lo

(G)’= (G)A and Ru(P ) U(/). Since (G)z= L= (G) ’, we see that
/ Eo. Let C be the connected component of E containing /x. Since P is a
k-subgroup and L c P, we see from Lemma 2.5 that C is F-stable. Let
h Y(Z) be defined by h Ev r "/. Since C is an open convex cone, , C
and hence P(X)= p(/)o p. It is immediate that h is a fixed point of I’. Thus
h is defined over k and L c Gx. Clearly P(,)c N(P). Since Gx is linearly
reductive and L is a Levi subgroup of N(P), we see that Gx= L. By Lemma
2.2, U(h) Ru(P) R(N(P)). This proves Proposition 2.4.

PROPOSITION 2.6. Let G be a linearly reductive k-group, let H be a k-subgroup
of G, and let L be a Levi k-subgroup of H. Then there exists Y(G)k such that
H P(X), R(H) U(X), and L G x.

Proof. We use a construction of Borel-Tits [5]. We define inductively two
increasing sequences (U,.) and (N,.) of k-subgroups of G as follows:

By [5], there exists rn > 0 such that Um U,,,/ and Nm is a parabolic subgroup
of G. It follows easily that N, is the normalizer of Nm. Let U- Um and let
p N. Clearly H c N, N(P) and R(H) U. By 1.2.4, there exists a Levi
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k-subgroup M of NG(P ) which contains L. Proposition 2.6 now follows from
Proposition 2.4.

The following elementary lemma will be needed in a later section.

LEMMA 2.7. Let G be a linearly reductive algebraic group and let Y(Z(G)).
Let x G and assume that limt_,oX(t ) x exists. Then lim/_,o,(t ) x x.

Proof. We define one-parameter subgroups / and 3, of the algebraic torus
Z(G) by/(t) x-lh(t)x and 3,(t) #(t)X(t)-. Then it is clear that

lim3,(t) limx-h(t)xh(t)-’= -11i ,() X()x
t--* O t-- O t- O

exists. But it is immediate that this implies that 3’ is the trivial one-parameter
subgroup, hence that limt_.oA(t)xh(t)- x.

3. Closed orbits and unstable orbits. In this section we consider the diagonal
action of an algebraic group G on n-tuples x (x,..., xn) in G n and L(G) n. If
x (xl,..., x) G, we let F(x) denote the (abstract) subgroup of G gener-
ated by (xl,..., x } and we let A(x) be the Zariski closure of F(x) in G; A(x) is
the algebraic subgroup of G generated by (Xl,..., x). If x (Xl,..., Xn)
L(G) n, then c(x) denotes the subalgebra of L(G) generated by (Xl,..., x ) and
a (x) denotes the algebraic hull of { x,..., xn ). (The algebraic hull of a subset X
of L(G) is the smallest algebraic Lie subalgebra of L(G) containing X.) In this
case we let A(x) be the unique closed connected subgroup of G with L(A(x))
a(x). If x is an n-tuple in either G or in L(G), then it is clear that Gx G A(x)

and that L(Gx) L(G) AO’).

LEMMA 3.1. Let : G- H be a homomorphism of algebraic groups and let
x (Xl,...,x,) be an n-tuple in G n (resp. in L(G)n). Write th(x)=
(q(Xl),...,q(x,,)) (resp. q(x)= (d(Xl),...,ddp(xn))). Then q(A(x))=
A((x)).

The proof is immediate.

LEMMA 3.2. Let G be a semisimple algebraic group and let x L(G)L (a) If
ct(x) is a semisimple Lie algebra, then ct(x) c(x). (b) If L(G) is a semisimple
a(x)-module and if L(G) a<x) (0}, then a(x) is a semisimple Lie algebra.

Proof. (a) It follows from standard properties of algebraic Lie subalgebras
that L(G) is a semisimple a(x)-module if and only if it is a semisimple
c(x)-module. Assume that ct(x) is a semisimple Lie algebra. Then L(G) is a
semisimple a (x)-module, hence a semisimple c(x)-module. This implies that (x)
is a reductive Lie algebra. If denotes the center of c(x), then is contained in
the center of ct (x), hence (0). Thus c(x) is Semisimple. But this implies that
c(x) ct(x). (b) If L(G) is a semisimple a(x)-module, then a(x) is a reductive
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Lie algebra. If, in addition, L(G)() (0}, then a(x) has trivial center, and
hence is semisimple.

LIMMA 3.3. Let G be a reductioe group. (a) There exists x G 2 such that
A(x) G. (b) There exists x L(G) 2 such that ct(x) L(G).

Proof. (a) If G is semisimple, then (a) follows from [31], Theorem 3. Let G be
reductive and let D(G) [G, G]. Let S Z(G). Let y (Yl, Y2) D(G) 2 be
such that A(y) D(G). Since S is a toms, there exists s S which generates a
Zariski dense subgroup of S. Let x (syl, Y2). Then A(x) G. (b),Let t be a
Cartan subalgebra of L(G). Then there exists a t such that the algebraic hull
of { a } is t. Let L(G) t + Y’.aL(G) be the root space decomposition of L(G)
with respect to t. Let v Y’.va EL(G) be such that each v 0. If x (o, a),
it is dear that a(x) L(G).

Definition 3.4. Let G be an algebraic group and let x G n (resp. x L(G)n).
if A(x) is a linearly reductive group, then we say that x is a semisimple n-tuple. If
A(x) is a unipotent group, then we say that x is a unipotent (resp. nilpotent)
n-tuple.

Remarks. (a) For n 1, these definitions agree with the usual definitions of
semisimple, unipotent, and nilpotent dements in G and in L(G). (b) Let :
G H be a homomorphism of algebraic groups, let x G, and let y (x)
H. if x is a semisimple (resp. unipotent) n-tuple, then y is a semisimple (resp.
unipotent) n-tuple. A similar remark holds for n-tuples in L(G).

Example, Let G be a semisimple algebraic group and let (x, h, y) be an
I-triple in L(G) (see [7], chap. 8, {ill, for definition). Then (x, y) is a
semisimple 2-tuple in L(G), although both x and y are nilpotent elements of
L(G).

LIMMA 3.5. Let G be a linearly reductive and let x G" (resp. x L(G)).
Then x is a semisimple n-tuple if and only if L(G) is a semisimple A(x)-module.

The proof follows from Lemma 1.2.3.
After all of these preliminaries, we can now give a quick proof of our first main

theorem.

TH]O 3.6. Let G be a linearly reductive group and let x (x, xn) G n

(resp. x L(G)n). Then the following conditions are equivalent: (i) x is a semisim-
ple n-tuple; and (iJ) the orbit G. x is closed.

Proof. We shall only give the proof for x G’. The proof for x L(G)" is
similar. (ii) (i). Assume that A(x) is not linearly reductive and let L be a Levi
subgroup of A(x). By Proposition 2.6, there exists h Y(G) such that A(x) c
P(,), L c G x, and Ru(A(x)) c U(,). Let hx: P(h) -) Gx be defined by
hx(g) = h(0) g. Let y hx(x), 1,..., n, and let y (y,..., y). Then
y limx(o..,0h(t ) x. It follows from Lemmas 2.3 and 3.1 that hx(A(x))=
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A(y) L. Since A(x) is not linearly reductive, the kernel of the restriction of h x
to A(x) is nontdvial and consequently A(x) is not conjugate to A(y). Thus
y G. x and therefore G. x is not closed.

(i) (ii). Assume that A(x) is linearly reductive. Let d7 be the unique closed
orbit in the closure of G.x. By HMT, there exists h Y(G) and y
(Yl,..., Yn) tV such that h(0). x y. Thus A(x) c P(X). By 1.2.4 and 2.2,
there exists u U()) such that uA(x)u- c GX. Let h x: P(X) GX be as
above. Then, for each 1,..., n, we see that uxiu

-x G x, hence hx(uxiu-)
uxiu-. On the other hand, u U(,) kemel(hx) and consequently

hx(uxiu -1) hx(x) yi. Thus y u. x and x tO.

THO.M 3.7. Let G be a linearly reductive group and let x G n (resp.
x L(G)n). Then the following conditions are equivalent" (i) x is an unstable point
of G n (resp. of L(G)n); and (ii) x is a unipotent (resp. nilpotent) n.tuple.

Proof. We shall only give the proof for x G n. Assume that x is an unstable
point. Then by HMT there exists h Y(G) such that limt_.0h(t ) x 1. It
follows that A(x) is contained in the unipotent group U(h). Thus (i) implies (ii).
Assume now that x is a unipotent n-tuple. Then there exists a Borel subgroup B
of GO such that A(x) Ru(B ). By Proposition 2.4, there exists , Y(G) such
that R(B) U(X). Thus lim oh(t) x 1 and x is an unstable point.

4. Stable n-tuples.

TI-I.OP.M 4.1. Let G be a reductive group and let x G (resp. x L(G)n).
Then the following two conditions are equivalent: (i) A(x) is not contained in any
properparabolic subgroup of G; and (ii) x is a stablepoint ofG (resp. ofL(G)n).

Remarks. (a) Forx L(G), condition (i) is equivalent to the condition that
ct(x) is not contained in any proper parabolic subalgebra of L(G). (b) If G is
nonabelian of positive dimension and if n 1, then there are no stable points,
since the centralizer of every semisimple element contains a maximal toms of G.

Proof of Theorem 4.1. We only give the proof for x G ". (i) (ii). Assume
that x is not a stable point. First consider the case in which G. x is not closed.
Then by HMT there exists h Y(G) and y G such that G. y is dosed and
limt..,0)(t ) x y. Thus A(x) c P(h). Since x y, we see that Y(Z(G))
and hence P(X) is a proper parabolic subgroup of G. Now assume that G. x is
dosed. Then the stabilizer Gx is linearly reductive by 1.3.3. Since x is not stable,
GO,, Z(G). As G,, is reductive, this implies that there exists X Y(Gx) such
that Y(Z(G)). Hence P(X) is a proper parabolic subgroup of G containing
a(x).

(ii) (i). Assume that A(x) is contained in a proper parabolic subgroup P of
G. By 2.3, there exists ? Y(G) such that P P(A). Let y (0), x. Then
A(y) c G x, hence image(A) c Gy and y is not a stable point. If G- x is closed,
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then y G. x, which shows that x is not a stable point. If G. x is not closed,
then clearly x is not a stable point.

Examples. (a) Let G GL(V). If E (0} is a proper vector subspace of V,
let Pe { g Gig" E E ). Then Pe is a maximal proper parabolic subgroup
of G and every maximal proper parabolic subgroup of G is of the form Pe for
some subspace E. Thus x G is stable if and only if V is an irreducible
A(x)-module. (b) Let G SO(V) or Sp(V). Then the maximal proper parabolic
subgroups of G are the stabilizers in G of nontrivial totally isotropic subspaces of
V. Thus x G n is stable if and only if there are no nontrivial totally isotropic
subspaces of V which are A(x)-stable.

The examples above are given in [22].
The following result gives a different characterization of stable n-tuples for the

case when, G is a semisimple group:

PROPOSITION 4.2. Let G be a semisimple algebraic group and let n > 1. (a) An
n-tuple x G is stable if and only if L(G) is a semisimple A(x)-module and
L(G)x) (0). (b) An n-tuple x L(G) n is stable if and only if c(x) is a
semisimple Lie algebra and L(G)C x) (0).

The proof follows easily from 1.2.3, Lemma 3.2, and the remark preceding
Lemma 3.1.

Remark. If G is reductive, then it follows easily from Lemma 3.3 and
Theorem 4.1 that the set of stable points of G (resp. L(G)) is nonempty if
n>l.

5. An analogue of the Jordan decomposition for n-tuples. Let G be an
algebraic group. If y (Yl,..., Y) and z (zl,..., z,) are in G n, then y. z
denotes the n-tuple (ylzl,..., ynzn). Thus y z is the product of y and z in the
product group G n.

Definition 5.1. (a) Let G be a k-group. If x G(k), then a decomposition
x y z, with y and z in G(k), is a Levi k-decomposition of x if A(y) is a Levi
k-subgroup of A(x) and if A(z) is contained in the unipotent radical of A(x). (b)
If x L(G)(k)", then a decomposition x y + z, with y and z in L(G)(k) n, is
a Levi k-decomposition of x if a(y) is a Levi subalgebra of a(x) and if
A (z) c R(A (x)).

Remarks. (a) If n 1, then the Levi decomposition of x G (resp. x
L(G)) agrees with the usual Jordan decomposition. In this case the Levi decom-
position is unique. (b) For n > 1, the Levi decomposition of x G (resp.
x L(G)) is not necessarily unique. In fact, there is a bijective correspondence
between Levi decompositions of x and Levi subgroups of A(x) (resp. Levi
subalgebras of ct (x)).
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Let x (xl,..., x,) G(k). Then Levi k-decompositions of x exist and
every Levi k-decomposition of x can be obtained as follows" Let L be a Levi
k-subgroup of A(x). For each index we may write x uniquely in the form
x yiz with y L(k) and z Ru(A(x))(k ). Let y (yl,..., y) and z
(z,..., Zn). Then I claim that x y x is a Levi decomposition of x. To prove
this, it is necessary to show that A(y) L. Let M denote the quotient group
A(x)/Ru(A(x)) and let q: A(x) ---, M be the quotient map. Then q,(xi) q,(y)
for each index and it follows from Lemma 3.1 that M-- q,(A(x)). Moreover,

O(A(x)) A(O(x)) A(O(y)) g,(A(y)).

Since q maps L isomorphically onto M, we see that A(y) L.
An analogous construction gives all Levi k-decompositions of x L(G)(k).
THEOREM 5.2. Let G be a linearly reductioe k-group and let x G(k) (resp.

x L(G)(k)n). Let x y. z (resp. x y + z) be a Levi k-decomposition of x.
Then Gx Gy N Gz and G. y is the unique closed orbit in the closure of G. x.
Moreover, there exists h Y(G)k such that limt_.0?(t ) x y.

Proof. We give the proof for x G. The Levi k-subgroup A(y) of A(x) is
linearly reductive and hence the orbit G.y is closed. By Proposition 2.6 there
exists , Y(G)k such that A(x) c P(,), A(y) c Gx and R(A(x)) c U(A). It
follows that lim/__,0,(t ) x y. Thus G.y is the unique closed orbit in the
closure of G. x. Since A(y) and A(z) are subgroups of A(x), we have Gx c Gy
Gz. Since x y. z, Gx 3 Gy N Gz. This proves the theorem.

{}6. Closed orbits for n-mples in arbitrary algebraic groups. In this section we
will prove the following theorem:

THEOREM 6.1. Let G be an algebraic group and let x G (resp. x L(G))
be a semisimple n-tuple. Then the orbit G x is closed.

The proof of Theorem 6.1 is based on the proof for n 1 given in [3]. The
proof will be given in a series of lemmas. We will only give the proof for x G.
LEMMA 6.2. Let E be a finite-dimensional vector space. For every a

(al,..., an) End(E) let

E(a) (v Elai. v= o (i= l,...,n)).

Then for every positive integer r, the set

A(r, n) (a End(E)"ldim E(a) < r }

is an open subset of End(E)".
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Proof If V and W are finite-dimensional vector spaces and s is an integer,
then it is clear that the set

H(V, W) ( A Hom(V, W)lrank(A) > s)}

is open in Hom(V, W). Define a morphism 4’: End(E)" -o Hom(E, E’) by

t(al,... an) 0 (al 0 0,..., an" 0 0),

for v E. It is clear that A(r, n) -I(Hs(E, E’), where s dim E r. Thus
A(r, n) is open. This proves the lemma.

Now let G be an algebraic group and let x G" be a semisimple n-tuple. We
may assume that G is a closed subgroup of SL(E) for some finite-dimensional
vector space E. We consider G, L(G), and SL(E)as closed G-stable subvarieties
of End(E); here G acts on End(E) by conjugation. Since A(x) is linearly
reductive, the orbit SL(E). x is closed in SL(E)", hence closed in End(E)".
Thus X (SL(E). x) N G n is closed in End(E)". For y (Yl,..-, Y,)
End(E)", let

C(y) { a End(E)lay ya (i 1,..., n) }.

It is dear that the stabilizer GL(E)y is equal to GL(E) C(y), so that
dimGL(E) y dim C(y). Set d(y) dim C(y).
The Lie algebra g L(G) is a G-stable subspace of End(E). Thus we get

representations q: G GL(g) and rl: G --> GL(End(E)/g). The representation
is the adjoint representation of G; it is a subrepresentation of the adjoint

representation of G on End(E)= L(GL(E)) and ,/ is the corresponding quo-
tient representation.

LEMMA 6.3. If r and s are integers, then the sets

(y G’ldim A(y) r) and {y G"]dim(End(E)/) (y) < s)
are open subsets of G".

Proof This follows from Lemma 6.2.

LEMMA 6.4. Let y X. Then

dim 6(Y)+ dim(End(E)/6) A(y)= d(x).

Proof Since y GL(E) x, we have d(x) dimGL(E),, dimGL(E) s"
Since A(x) is linearly reductive, A(y) is linearly reductive. Thus

d (x) dimGL ( E)y dim End(E) A(y) dim 6
"(y) + dim(End(E )/6 ) "(Y).
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Now we can prove Theorem 6.1. It follows from Lemmas 6.3 and 6.4 that the
set (y Xldim ’tY)= r} is open and closed in X. Consequently the integer-val.
ued function y dim aty) is constant on each component of X. Let Xx be the
connected component of X containing x. Since dim aty) dim Gy for all y X,
we see that all G-orbits on Xx have the same dimension. Hence all G-orbits on
X are closed. Thus G. x is closed in Xx, hence closed in End(E). This proves
Theorem 6.1.

{}7. Dimensions of fibres. In 7, G will denote a reductive algebraic group.

Definition 7.1. A torus S of G is a standard torus of G if S Z(GS).
Standard tori can be obtained in the following manner. Let T be a maximal

torus of G and let A be a basis for the set of roots (T, G). If J is a subset of A,
let Tj (f’)rker(a)). Then T is a standard torus of G and every standard
torus of G is conjugate to some T.
L.MMA 7.1. Let x G (resp. x L(G)) and let S be a maximal torus of

the stabilizer G. Then S is a standard torus of G. If n > 1, then for eoery standard
torus S of G there exists a semisimple n-tuple x G (resp. x L(G) n) such that
s=

Proof. We give the proof for x G. Let S be a maximal toms of Gx, Then
Gs is a reductive group and GS> A(x). Let A Z(Gs)= Z(Gs). Then
A S and A is a toms of G. Thus A S. Therefore S is a standard toms of G.
Now let n > 1 and let S be a standard toms of G. Then Gs is a reductive group.
By Lemma 3.3, there exists x (GS) such that A(x)= G s. Thus x is a
semisimple n-tuple and S G.

Let r: G G/G (resp. r: L(G) L(G)n/G) denote the quotient mor-
phism and, for each x G" (resp. x L(G)’), let denote the fibre r-(r(x)).
The following result is a special case of more general theorems proved in [28]’
THEOREM 7.3. Let x be a semisimple n-tuple in G (resp. L(G)) and let S be

a maximal torus of the stabilizer Gx. Let 2q(x)= dimG- dimGs and let
r(x) dimGs- dim S. If C is an irreducible component of the fibre 5r, then
dimC r(x) + (n + 1)q(x).

Remark. In [28], there is also an easy combinatorial rule for computing the
number of irreducible components of the fibre F,,.

Example. Let x be a semisimple n-tuple such that Gx contains a maximal
torus T of G. If C is an irreducible component of , then 2 dimC (n +
1)(dimG dim T).

{}8. Smooth points of the quotient variety.

TI,ORM 8.1. Let g be a semisimple Lie algebra such that each simple factor of
has rank at least two and let G be the adjoint group of . Let n > 1 and let
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g n
_

g n/G be the quotient morphism. Let x g" be a semisimple n-tuple. Then
the following conditions are equivalent: (i) Gx (1); and (ii) r(x) is a smooth
point of g n/G.

Remark. Let g g [2(F) and let a be a regular semisimple element of g. Let
x (a, 0) g2. Then Gx is a maximal toms of the adjoint group G of g. In this
case an easy argument using 8.2 below shows that r(x) is a smooth point of the
quotient variety g2/G. This shows that the restriction that each simple factor of
g has rank at least two is necessary.

The proof of Theorem 8.1 will be given in a series of lemmas. First we recall
some known results. Let K be a linearly reductive group and let E be a
(rational) K-module. Following G. Schwarz [29], we say that (E, K) is coregular
if the quotient variety E/K is a smooth variety. This is equivalent to the
condition that the algebra of invariants F[E]r is a graded polynomial algebra.

8.2. Let K be linearly reductive and let E be a K-module. (a) Let v E be such
that the orbit K v is closed. Then re( v ) is a smooth point ofE/K ifand only if the
slice representation of the stabilizer Ko at v is coregular. (b) Assume that (E, K) is
coregular. If Ex is a K-submodule of E, then (E, K) is coregular.

See [29] for the proof.

8.3. Let A be a finite subgroup of GL(E). Then (E, A) is coregular if and only
ifA is generated by pseudoreflections.

For the proof, see [6], chapter 5, [}5.
The following result is well known:

8.4. Let A be a graded polynomial algebra. Then any minimal set (ft,..., f,,)
of homogeneous generators ofA is algebraically independent.

L.MMA 8.5. Let g be a semisimple Lie algebra and let A be a nontrivial finite
subgroup of the adjoint group G of g. Then (g, A) is not coregular.

Proof Each element of A is contained in a maximal torus T of G. But it is
easy to see from the root space decomposition of g that no element of a maximal
torus of G can be a pseudoreflection.

LMMA 8.6. Let G and g be as in Theorem 8.1 and let T be a maximal torus of
G. Then ( g, T) is not coregular.

Proof Because of the assumptions on g, there exist roots a, fl (T, G)
such that a + fl is a root. Let v (resp. v2, v3, v4, v5, v6) be a nonzero element of
the root space g (resp. g0, g+t, g-, g-t, g--t)" Let E be the subspace of
G spanned by (vl,..., v6 } and let (xl,... x6) be the basis of the dual space E*
dual to the basis (ol,..., v6). It suffices to show that (E, T) is not coregular. It is
clear that

XlX4, X2X5, X3X6, XIX2X6, and x3x4x
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are in the invariant algebra F[E] r, and it is also clear that these five homoge-
neous polynomials are contained in a minimal set of homogeneous generators of
F[E] r. However, these invariants satisfy the relation

(X1X4)(X2X5)(X3X6) (X1X2X6)(X3X4Xs)

It follows from 8.4 that F[E]r is not a graded polynomial algeba, hence that
(E, T) is not coregular.

LEMM 8.7. Let G and g be as above and let S be a nontrioial standard torus of
G. Then S Z(GS). Moreover, ( g, S) is not coregular.

Proof The result is clear if S is a maximal toms. We assume that S is not a
maximal toms. Then there exists a maximal torus T containing S, a basis A of the
root system (T, G), and a proper subset J of A such that S Tj. Since
Gr= T, we have T z(Gs). Since the roots of T on L(Gs) are integral
combinations of the elements of J, we see that Z(Gs) jker(a). Let
A { a,..., ae). Since G is adjoint, the homomorphism T (F*) e given by

(ax(t),..., ae(t)) is an isomorphism. Consequently f’l:ker(a) is connected
and S z(Gs).
Now to prove that (g, S) is not coregular. By 8.2, it suffices to prove the result

for the case of simple g. Since rank(g) > 1, there exists a J and fl (A J)
such that a + fl is a root. Let ox (resp. 02, 03, 04) be a basis of the root space ga
(resp. g,+a, g-a, g-*-a)" Let E be the subspace of g with basis (v,..., 04) and
let (xx,..., x4) be the dual basis of E*. It suffices to show that (E, S) is not
coregular. There are no homogeneous elements of degree 1 in F[E] s and xlx 3,

x2x 3, xx4, and x2x4 are homogeneous invariants of degree two which satisfy the
relation (xx3)(x2x4)= (x:x4)(x2x3). It follows from 8.4 that (E, S) is not
coregular.

We can now prove Theorem 8.1. If G,,--- (1}, then it follows from 8.2 that
r(x) is a smooth point of the quotient. Thus (i) implies (ii). Let x G be such
that G x is closed and let H G,,. Let E denote the slice representation of H at
x. SinceH is linearly reductive, E is isomorphic as an H-module to L(H) gn-.
Thus it will suffice to prove the following lemma:

LEMMA 8.8. Let G and g be as in Theorem 8.1, let H q= (1} be a linearly
reductioe subgroup of G, and let S be a maximal torus of H. Assume that S is a
standard torous of G. Then (L(H) , H) is not coregular.

Proof. We need to consider three separate cases.

Case 1" S (1}. Since H is linearly reductive, this implies that H is finite. It
follows from Lemma 8.5 that (g, H) is not coregular. The lemma now follows
from 8.2.
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Case 2: S is a maximal torus of G. Let y L(S) be such that Gy=S.
Consider the point (y,0) of L(H) . Then G<y,O S. It will suffice to show
that the slice representation of S at (y,0) is not coregular. But the adjoint
representation of S on is a subrepresentation of this representation and, by
Lemma 8.6, (, S) is not coregular.

Case 3: S 4:{1 } and S is not a maximal torus. Let y L(S) be such that
Hy=S and Gy=G s. Let K=Hy. Then GSK and S=K. ClearlyK=
H<y,O). Since the stabilizer H<y,O contains the maximal torus S of H, the orbit
H. (y, 0) is closed (see [14], p. 183). Moreover, the adjoint representation of K
on is a subrepresentation of the slice representation of K at (y,0). It will
suffice to show that (, K) is not regular. If K S, this follows from Lemma 8.7.
Assume K S. Let D denote the commutator subgroup of G S; D is a semisim-
pie group and D 4: (1}, since S is not a maximal torus. Since Z(Gs) S, the
finite group K/S acts nontrivially on L(D). More precisely, the image of K in
the adjoint group M D/Z(D) of L(D) is a nontrivial finite subgroup of this
adjoint group. By Lemma 8.6, (L(D), K/S) is not coregular. Hence (L(D), K)
is not coregular and consequently (, K) is not regular. This completes the proof
of Theorem 8.1.

A similar result holds for the action of G on G".

THEOREM 8.9. Let G be a semisimple group and assume that each simple factor
of L(G) has rank at least two. Let n > 1 and let r: G ---> Gn/G denote the
quotient morphism. Let x G be such that the orbit G. x is closed. Then the
following two conditions are equivalent: (i) Gx Z(G); and (ii) r(x) is a smooth
point of G"/G.

Proof The action of G on G" induces an action of the adjoint group
Ad(G) G/Z(G) on G" and G"/G G"/Ad(G). If Ad(G)x (1}, then it
follows from 8.2 that r(x) is a smooth point. Thus (i) implies (ii). Let H Ad(G)x
and assume H {1}. Then H is linearly reductive, since the orbit Ad(G) x is
closed. The slice representation of H at x is equivalent to the representation of H
on L(H) L(G)-. We see from Lemmas 8.8 and 7.2 that (L(H) L(G), H)
is not coregular. Thus (ii) implies (i).

9. n-tuples in L(G) and conjugacy classes of subalgebras. In this section we
will prove several technical results concerning n-tuples in a Lie algebra which will
be used in [}10. Throughout this section denotes a finite-dimensional Lie
algebra over F and G is a closed subgroup of the algebraic group Aut() of all
Lie algebra automorphisms of . Recall that if x (xl,..., xn) n, then c(x)
denotes the Lie subalgebra of generated by { xl,..., x}. Two subalgebras a
and b of are G-conjugate if there exists g G such that g. a b. We let
L L(X1,..., X,) denote the free Lie algebra over F on the indeterminates
X,..., Xn. Each n-tuple x (Xl,... x) determines a Lie algebra homo-
morphism rx: L -o given by /x(Xi) xi (i 1,..., n). The image of rx is
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c(x). For each a L,, the map x ---, /x(a) is a morphism from g" to g. Let 8
denote the integer-valued function of gn given by 8(x) dim c(x).

PROPOSITION 9.1. is a lower semicontinuous function.
Proof Let x gn and let d 8(x). Then there exist dements at,..., a a of

dLn such that (r/x(at),..., ,lx(aa)) is an F-basis of c(x). The map z: gn g
given by z(y) (/y(al),..., rly(aa)) is a morphism of algebraic varieties. Thus
the set U of all y gn such that the vectors r/r(at),..., /r(aa) are linearly
independent is an open neighbourhood of x in g n. Clearly, if y U, then
(y) > 8(x). This proves that 8 is lower semicontinuous.

COROLLARY 9.2. For each d > 0, let V(d) (x g n ldim (x) < d ) and let
V(d)’ {x g n ldim c (x) d ). Then V(d ) is a closed subset of g n and V(d )’ is
relatively open in V(d).

Let Gra(g) be the Grassmann variety of all d-dimensional subspaces of g and
let A a A a(g) be the closed subvariety of Gra(g) consisting of all d-dimen-
sional subalgebras of g. Let X ((a, x) Ad g nix a n }; X is a closed
subvariety of Ad X g n. Let P t: X A d and P2" X g n denote the restrictions
to X of the projections prt: A d g n A d and pr2: A d g n g n. Then P
defines X as a vector bundle over A d; the fibre over a A d is isomorphic to ct n.
It is clear that V(d) p2(X). Let X’ pt(V(d)’). Then X’ is an open subset
of X. Let r2: X’ V(d)’ denote the restiction of P2- Then r2 is a bijection. The
inverse bijection k" V(d)’ X’ is given by if(x) (c(x), x).

LMMA 9.3. is a morphism of algebraic varieties. Thus ,r2 is an isomorphism
of algebraic varieties.

Proof Let x V(d)’ and let at,..., a d be elements of L
(,1,,(at),..., rlx(ad)) is a basis of c(x). Let

such that

E {y V(d)’lr(at) A Ar(aa) 4= 0);

then E is an open subset of V(d)’ and x E. It suffices to show that the
restriction of k to E is a morphism. Let Dd be the set of decomposable vectors in
Ad(g) and let : Dd Grd(g ) be the morphism which assigns to each decom-
posable d-vector the corresponding d-dimensional subspace of g. Define fl:
E Dd by fl(y)= r/y(at)/x A r/y(ad). Then it follows immediately that
c(y) (fl(y)) and hence that k(Y) ((fl(Y)), Y)- Thus the restriction of to E
is a morphism.
Now let a A d and let (a) denote the G-orbit of a in A d. Then (9(ct) is a

smooth locally closed subvariety of A d. Let Y pi- t(0(a)). Since p t: X A d is
a vector bundle over A d, it follows that Y is a vector bundle over (.0(a). In
particular, Y is a smooth variety. Let

Y’= Yf3X’= ((b,x)XIb(9(a)andc(x) =}.
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Then Y’ is an open G-stable subvariety of Y. Hence Y’ is a smooth subvariety
of X’.

PROPOSITION 9.4. Let a be a d-dimensional subalgebra of g. Then the set
C(n, ct)= {x g n[c(x) is G-conjugate to ct ) is a G-stable smooth connected
subvariety of g".

Proof. Let the notation be as above. Then it is clear that r2(Y’) C(n, a).
Since ,r2 is an isomorphism of varieties, the result follows.

Remark. Let G be a connected algebraic group and let g L(G). If x g,
it is not necessarily the case that

{y {n Ict (y) is G-conjugate to ct (x))

is a locally dosed subset of ". Similarly, if x G, the set

(y G"IA (y) is G-conjugate to A (x))

is not necessarily locally dosed in G. For example, if G is a nontrivial algebraic
torus, then (x GIA(x) G) is not locally dosed in G.

10. Partition of the set of stable n-tuples. In this section G denotes a
semisimple algebraic group. We always assume that n > 1.

It is known that there are only a finite number of conjugacy classes of
semisimple subalgebras of L(G) [8, 23]. Let ’1,..., r be a set of representatives
for the conjugacy classes of semisimple subalgebras of L(G). Each i is an
algebraic Lie subalgebra of L(G). We let Si be the unique closed connected
subgroup of G such that L(Si) i. Let d dim Si. Let Sa/= {x L(G)[ c (x)
is conjugate to }. Then it follows from Proposition 9.4 that 5a is a connected,
smooth G-stable subvariety of L(G). It follows from Lemma 3.3 that each 5 is
nonempty.

For each d > 0, let V(d) and V(d)’ be defined as in {}9. We have shown that
V(d )’ is locally closed in L(G).
LEMMA 10.1. Y’,. is an open subset of V(d)’.

Proof Let d d. It was shown in the proof of Lemma 9.3 that the map 0:
V(d)’ --, A a given by 0(x) c(x) is a morphism of algebraic varieties. Let O(i)
denote the G-orbit of i in A a. It is shown in [20] that () is open in A a
(semisimple subalgebras are "rigid"). Thus 6a/= 0-1((i)) is open in V(d)’.
We define a partial order on the set ( 1,..., r } by" < j ifand only if is

conjugate to a subalgebra of j."
LEMMA 10.2. For each i, j 1,..., r the following three conditions are equiv-

alent: (i) 6a/ meets the closure of Y’j; (ii) Y’i is contained in the closure of 6aj; and
(iii) < j.
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Proof. Clearly (ii) implies (i). Assume that g < gj and let x S. Then there
exists g G such that g. g

j D c(x). Let rrt g. g
j. Then x mn. By Lemma

2.3, Lemma 3.3, and Corollary 9.2, the set C {y mlc(y)= rn } is a non-
empty open subset of rn n. Thus x belongs to the closure of C and clearly 6a. D C.
Therefore (iii) implies (ii).

It remains to prove that (i) implies (iii). Assume that x 6a is in the closure
of 6a.. Since the closure of 5. is G-stable, we may assume that c (x) g

i. We will
need the following result:

10.2.1. There exists a d-dimensional subalgebra a of L(G) which contains g
and is in the closure of ().

Proof. To simplify notation, for this proof we let E L(G), V g, and
d d. Let P { g GL(E)Ig" V V }. Thus P is a parabolic subgroup of
GL(E ) and the homogeneous space GL(E)/P can be indentified with Grd(L(G)).
Let , denote the homogeneous vector bundle GL(E)e V, where P acts
diagonally on V. (If we let P act on GL(E) x V by p (g, v) (gp-1, p. v),
then the points of o can be identified with the P-orbits on GL(E) x V.) The
morphism GL(E) x V E given by (g,v) g. v is constant on P-orbits
and determines a morphism/3: o --, E n. Moreover,/3 is a proper morphism. Let
D denote the closure of d(V), the G-orbit of V gj in A d. Let ,r" Grd(E )

GL(E)/P be the bundle map. Then r-l(D) is closed in 6 and hence
fl(rr-l(D)) is closed in E n. It follows from Proposition 9.1 that fl(r-(D)) is the
closure of 6a.. Thus x fl(,r-(D)). Consequently there exists a subalgebra
ct D such that c(x)= g is contained in ct. This proves 10.2.1.

Let d dj. We see from 10.2.1 that g is contained in the d-dimensional
subalgebra a of g and that a is contained in the closure of the orbit (9(g). It
follows from [24], Theorem 9.11, that there exists an open neighbourhood N(a)
of a in A d such that if b N(a), then b contains a subalgebra c such that c is
conjugate in L(G) to g. Clearly dg(g) meets N(a). Consequently g < g. This
completes the proof of Lemma 10.2.

We index the semisimple subalgebras g,..., gr such that L(G(gi) (0} if
and only if < q, where q < r. It follows from Proposition 4.3 that an n-tuple
x L(G) is stable if and only if c(x) is conjugate to some gj with j < q. Thus
we have proved

THEOREM 10.3. Let G be a semisimple algebraic group and assume that n > 1.
Let ,...,

q be a set of representatives for the conjugacy classes of semisimple
subalgebras of L(G) such that L(G() {0}. For each j 1,..., q, let

c (x) is conjugate to j).

Let (L(G)n) (s) be the set of G-stable points ofL(G). Then each . is a smooth,
G-stable connected subvariety of (L(G)n) (s) and (L(G)) (s) is the disjoint union of
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5al,..., 5aq. For each j 1,..., q, let Aj (i= 1,..., q[i < j ). Then the
closure of 5j. in (L(G)n) (s) is the union of the 5ai, Aj.

Theorem 10.3 gives us a partition of the set (L(G)n) (s) of stable n-tuples by
the smooth, connected subvarieties 5a,., 1,..., q. Moreover, we have an
explicit description of the closure relations between the 5/’s.

{}11. n-tuples in real algebraic groups and Lie algebras. In {}11 we will carry
over many of our results on n-tuples to the case of real reductive algebraic groups
and, more generally, real reductive Lie groups. Throughout {}11, the base field F
will be the field C of complex numbers and we will always denote complex
algebraic varieties by boldface letters X, E, G, L(G), etc. If X is a complex
algebraic variety, we need to consider two distinct topologies on X, the Zarisld
topology and the classical (Hausdorff) topology induced by the usual topology of
C. In 11, all references to topological terms which refer to the Zadski topology
will be given the prefix Zariski. Thus a subset Y of X is closed (resp. Zariski-
closed) if it is closed in the classical topology (resp. the Zadski topology). If X is
a complex R-variety (a complex variety defined over the field R of real numbers),
then X(R) will be given the classical topology (the topology induced by the
classical topology on X). If G is an algebraic R-group, then G(R) is considered as
a real Lie group and G(R) denotes the identity component of G(R). It is known
that G(R)/G(R) is finite. It is not necessarily true that G(R) G(R).

Let H be a real Lie group and let x (xl,..., xn) H ". Then I’(x) denotes
the (abstract) subgroup of H generated by (xl,..., x). If x (x,..., x,)
L(H), then c(x) denotes the subalgebra of L(H) generated by {xl,..., xn).
Assume that H is a complex algebraic group and that H is a closed subgroup of
H(R) containing H(R). If x H", then A(x) denotes the Zarisld closure of I’(x)
in H. If x L(H), then ct(x) denotes the algebraic hull of c(x) in L(H) and
A(x) is the connected algebraic subgroup of H such that L(A(x)) ct (x).

For the rest of {}11, G will denote a linearly reductive complex algebraic
R-group and G will denote a closed subgroup of G(R) containing G(R).

Definition 11.1. Let x G" (resp. x L(G)"). Then x is a semisimple n-tuple
in G" (resp. in L(G)") if L(G) is a semisimple F(x)-module (resp. a semisimple
c(x)-module). We note that this definition depends only on the Lie group
structure of G.

LEMMA 11.2. Let x G" (resp. x L(G)"). Then x is a semisimple n-tuple
in G" (resp. in L(G)") if and only if x is a semisimple n-tuple in G" (resp. in

Proof We give the proof for x G". Since A(x) is the Zariski closure of
I’(x), the following three conditions are equivalent: (i) L(G) is a semisimple
I’(x)-modul; (ii) L(G) is a semisimple I’(x)-module; and (iii) L(G) is a semisim-
ple A(x)-module. The proof now follows from Lemma 3.5.
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The following result is due to Birkes [2]"

11.3. Let /" G --, GL(E) be a rational representation defined over R and let
x E(R). Then the orbit G. x is closed in E(R) ifand only if G. x is Zariski-closed
in E.

TI-IEORM 11.4. Let x G n (resp. x L(G)). Then the following conditions
are equivalent: (i) the orbit G x is closed; and (ii) x is a semisimple n-tuple.

Proof. This follows from 11.3, Theorem 3.7, and Lemma 11.2.

Definition 11.5. (a) Let x G. Then x is a unipotent n-tuple if F(x) is a
unipotent subgroup of G. (b) Let x L(G)L Then x is a nilpotent n-tuple if each
y c(x) is a nilpotent element of the real algebraic Lie algebra L(G(R)).

Definition 11.6. Let H be a real Lie group and let x H (resp. x L(H)).
Then x is an unstable point of Hn (resp. L(H)) if 1 (1,..., 1) belongs to the
closure of the orbit H. x (resp. if 0 (0,..., 0) belongs to the closure of the
orbit H. x). If x is an unstable point, we say that the orbit H. x is unstable.

TI-IEORM 11.7. Let x G (resp. x L(G)). Then the orbit G. x is
unstable if and only if x is a unipotent ( resp. nilpotent) n-tuple.

The proof follows from HMT and Theorem 3.7.

11.8. Stable points. We assume that G is a Zariski-closed subgroup of GL(E),
where E is a finite-dimensional complex vector space with real structure E. Let
E (s) be the set of G-stable points of E. Then E (s) is an R-subvariety of E. It
follows from [18], page 41, that the action of G on E (s) is proper (in the sense of
algebraic geometry). If we now consider G and E (s) with their classical topology,
it follows that the action of G on E (’) is proper in the sense of proper actions of
locally compact groups acting on locally compact spaces [13]. (It is known that a
proper mapping of complex algebraic varieties is also a proper mapping of the
corresponding complex spaces.) Let E () E() t E. Thus E () is the set of all
x E such that the orbit G. x is closed and such that the stabilizer G. is finite.
The group G is a closed subgroup of (the Lie group) G and E () is a closed
subset of (the locally compact space) E (). It follows that G acts properly on
E(S).

PROPOSITION 11.9. Let the notation be as above, let X be a closed G-stable
differentiable submanifold of E, and let X) E) X. Let X<)/G be the set of
orbits on G on X), supplied with the quotient topology. Then G acts properly on
X) and the orbit space X<)/G is a Hausdorff space. Moreover, X<)/G has the
structure of a V-manifold.

See [1] for the definitions regarding V-manifolds.

Proof Since X<) is closed in E <), the action of G on X<) is proper. Hence
the orbit space is Hausdorff [13]. By the results of Luna [16] or Palais [21], there
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exists a differentiable slice at each point x X(s). Since each stabilizer
finite, the orbit space has a natural structure of V-manifold.

11.10. Stable n-tuples for G. We may consider G as a Zadski-closed R-sub-
group of SL(E), where E has an R-structure E. Thus G and L(G) are Zadski-closed
subvarieties of Endc(E). Now G acts on Endc(E) by g. a gag- 1. We let
W--Endc(E) zG). Then W is a G-stable linear subspace of Endc(E ) with
R-structure W EndR(E ) n W. Moreover, G and L(G) are Zariski-closed G-
stable subvarieites of W. We define a linear representation r/ of G on W n by
r/(g) (at,,... an) (g. al,... g. an). Let H r(G) and let H r/(G). Then
H is a Zariski-closed linearly reductive R-subgroup of SL(W n) and H(R) c
H c H(R). Let (Wn) (s) be the set of H-stable points of W n and let (Wn)()

(Wn)) N W n. Then an n-tuple x Wn is in (wn)) if and only if the orbit
H- x is closed in W n and the stabilizer H,, is finite.

Definition 11.10.1. Let x G n (resp. x L(G)n). Then x is a G-stable point
of G n (resp. L(G) n) if the orbit G. x is closed and if Gx/Z(G) is finite.

Let (Gn)() (resp. (L(G)n) (s)) be the set of G-stable points of G n (resp.
L(G)n). Then it is clear that (Gn)() Gnn (Wn)() (resp. (L(G)n)()

PRO’OSrrXON 11.11. The action of G/Z(G) on (Gn)() (resp. (L(G)n) (s)) is
proper and the orbit space (Gn)()/G (resp. (L(G)n)()/G) has the structure of a
V-manifold.
The proof of Proposition 11.11 follows immediately from Proposition 11.9.

Remark. Let the notation be as above and let x G n (resp. x L(G)n).
Then it follows easily from the definitions that x is a G-stable point of G" (resp.
L(G) n) if and only if it is .a G-stable point of G n (resp. L(G)n). Assume that G is
connected, hence reductive. It is then a consequence of Theorem 4.1 that x is a
G-stable n-tuple if and only if A(x) is not contained in any proper parabolic
subgroup of G. However, this condition is not, in general, equivalent to the
condition that F(x) is not contained in any proper R-parabolic subgroup of G, as
one can see from elementary examples.

PROPOSITION 11.12. Assume that G is semisimple. Let x G n. Then x is a
G-stable n-tuple if and only if L(G) is a semisimple F(x)-module and L(G)r(x

{0). Let x L(G) n, Then x is a stable n-tuple if and only ifL(G) is a semisimple
c (x)-module and L(G) (x (0}.

Proof This follows from Proposition 4.3.

As a special case of Proposition 11.12 we have

COROLLARY 11.13. Let E be an odd-dimensional real vector space and let
G GL(E). Let x G (resp. x L(G)n). Then x is a G-stable n-tuple if and
only ifE is a simple F(x)-module (resp. E is a simple c(x)-module).
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Proof. We give the proof for x G n. Let D Enda(E) r(x). It is an easy
consequence of Proposition 11.12, Theorem 11.4, and Example 4.2 that x is
G-stable if and only if E is a simple F(x)-module and dimlD 1. On the other
hand, it follows from Schur’s lemma that if E is a simple I’(x)-module, then D is
a division algebra over R. There are three possibilities: (i) D R; (ii) D C;
and (iii) D H (the quaternions). Since E is odd-dimensional, possibilities (ii)
and (iii) are ruled out. This proves the corollary.

Let x G and let x y z be a Levi R-decomposition of x (considered as a
point of G). Since a unipotent real algebraic group is connected (as a real Lie
group), it follows easily that z G, and hence that y G.

PROPOSITION 11.14. Let x G n (resp. x L(G)) and let x y z (resp.
x y + z) be a Levi R-decomposition of x. Then Gx Gy N Gz and G. y is the
unique closed orbit in the closure of G. x. Furthermore, there exists Y(G)R
such that lim 0 }k(t) x y.

Proof. It follows from a result of Luna [16] that there exists a unique closed
G-orbit in the closure of G x. The other conclusions follow easily from Theorem
5.2.

Defin.ition 11.15. A real Lie group H is a real reductive Lie group if there
exists a reductive complex algebraic R-group G and a Lie group homomorphism
,/: H -, G(R) with finite kernel such that r/(H) contains G(R). Let H be a real
reductive Lie group. Then an n-tuple x Hn is H-stable if the orbit H. x is
closed in H and if Hx/Z(H) is finite.

LEMMA 11.16. LetH be a real reductive Lie group, let *l, G be as above, and let
G ,I(H). Let x (xl,... x,) H and let y r/(x) (/(Xx),... r/(xn)).
Then H. x is closed in H if and only if G y is closed in G. Moreover, x is an
H-stable point ofH if and only if y is a G-stable point of G.
We omit the proof, which is an easy exercise.

THEOREM 11.17. Let H be a real reductive Lie group and let x H. Then the
orbit H. x is closed if and only if L(H) is a semisimple F(x)-module. Assume
further that H is a semisimple Lie group. Then x is a stable point ofH n if and only
if L(H) is a semisimple F(x)-module and L(H) r<x) (0}.

The proof follows easily from Lemma 11.16 and the corresponding results
for G.

12. S-groups. Let S and G be algebraic k-groups. We say that G is an
S-group, defined over k, if S acts k-morphically on G such that for every s S,
the morphism G G given by g s.g is an automorphism of algebraic
groups.



24 R.W. RICHARDSON

Remark. Let S and (7 be k-subgroups of an algebraic k-group H, with G
normal in H. Then the action of S on G by inner automorphisms determines an
S-group structure on G defined over k. By taking semidirect products, any
S-group structure on G, defined over k, can be obtained in this way.

Let G be an S-group, defined over k, and assume that both S and G are
linearly reductive groups. Let K--- Gs be the fixed point subgroup. Then K is a
k-subgroup of G and is linearly reductive ([26], Prop. 10.1.5). In 13-15 we will
extend many of the results of earlier sections to the actions of K on G n and
L(G). In this section, we extend some of the foundational results on parabolic
subgroups and Levi subgroups given in 1 and 2 to the framework of S-groups.
For the remainder of 12, S denotes a linearly reductive k-group.

PROPOSITION 12.1. Let H be an S-group defined over k. Then there exists an
S-stable Levi k-subgroup of H.

Proof. Let C denote the semidirect product H < S; then C is a k-group. We
consider H and S as subgroups of C in the usual way. Let U R u(H). Then U
is a normal unipotent subgroup of C and it is clear that C/U is isomorphic to
(H/U) < S. By 1.2.2, (H/U) , S is linearly reductive, hence C/U is linearly
reductive. This implies that U R u(C). Since S is a linearly reductive k-sub-
group of C, there exists a Levi k-subgroup M of C which contains S. Let
L M N H. Then L is a k-subgroup of both H and M and is normalized by M.
It follows from 1.2.2 that L is linearly reductive. Thus L is contained in a Levi
k-subgroup L of H. Let x L1. We may write x au, with a M and u U.
Thus a xu -1 M( H= L. Consequently u a-Ix L U= (1}.
Therefore x a L and L L1. Since M contains S, L is an S-stable Levi
k-subgroup of H.

PROPOSITION 12.2. Let H be an S-group defined over k and let M be an
S-stable, linearly reductioe k-subgroup of H. Then M is contained in an S-stable
Levi k-subgroup of H.

Proof. Let R denote the semidirect product M < S; then R is linearly
reductive. The actions of M (by inner automorphisms) and S on H are
compatible and hence determine a k-morphic action of R on H (see [26], 2).
Thus H is an R-group defined over k. By Proposition 12.1, there exists an
R-stable Levi k-subgroup L of H. Thus Lis S-stable and Nn(L) M. It is dear
that L is a Levi subgroup of Nn(L ). Since L is normal inNn(L ) and all Levi
subgroups of Nn(L) are conjugate in Nn(L), we see that L is the unique Levi
subgroup of Nn(L ). Since M is linearly reductive, it follows from 1.2.4 that
LM.

PROPOSITION 12.3. Let G be a linearly reductive S-group defined over k and let
K G s. Let P be an S-stable parabolic k-subgroup of G. IfL is an S-stable Levi
k-subgroup of N(P), then there exists , Y(K) k such that Nv(P) e(,),
L G x, and R(P) U(X).
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Proof. The actions of L (by inner automorphisms) and S on G are compati-
ble and determine a k-morphic action of the semidirect product M L t S on
G. The group M is a linearly reductive k-group and P, L, and U R u(P ) are
M-stable k-subgroups of G. Let Z-- Z(L). Then Z is the unique maximal
central torus of L. The toms Z is an M-stable k-subgroup of G. Let A be the
unique maximal k-split torus of Z (see [4], 1). It follows easily from 2.3 that
there exists # Y(A) Y(A)k such that P(/x)= P, (G) ’ (G)A L=
(G) z, and U(#)= U. Let 9 be the set of nonzero weights of Z on L(G). If
a xI,, then an easy argument shows that (/, a) 4= 0. An argument similar to the
argument given in the proof-of Proposition 2.4 now shows that there exists

Y(K)k such that N(P) P(,), L G x, and R,(P) U(,).

PROPOSITION 12.4. Let G be a linearly reductive S-group defined over k and let
K G s. Let H be an S-stable k-subgroup of G and let L be an S-stable Levi
k-subgroup of H. Then there exists Y(K) such that P(h ) H, Gx L, and
U(X) R(H).

The proof is almost exactly the same as the proof of Proposition 2.6. We omit
the details.

{}13. K-orbits on G" and L(G)". In {}13 S denotes a linearly reductive
k-group, G is a linearly reductive S-group defined over k, and K G s.

In the next few sections, we will study the actions of K on G n and on L(G).
Let x (xt,...,x) G. We let As(x) be the intersection of all closed

S-stable subgroups of G containing (xt,..., x). Similarly, if x (xt,..., x)
L(G), we let as(X) be the algebraic hull of (s. xils S, i= 1,..., n) and

we let As(x) be the unique closed connected subgroup of G such that L(As(x))
as(x).

Definition 13.1. Let x H G n (resp. x H L(G)n). Then x is an S-semisimple
n-tuple if As(x) is a linearly reductive group. The n-tuple x is S-unipotent (resp.
S-nilpotent) if As(x) is a unipotent group.

THEOREM 13.2. Let x H G (resp. x H L(G)). Then the following conditions
are equivalent: (i) the orbit K. x is closed; and (ii) x is an S-semisimple n-tuple.

Proof We only give the proof for x G.
(i) = (ii). Assume that As(x) is not linearly reductive and let U R(As(x)).

By Proposition 12.4, there exists h H Y(K) such that P(X) 3 As(x) and U(X) D
U. Let y h(0) x. Define the homomorphism hx: P(X) Gx by hx(g) h(0)
g (g H P(X)). Since h H Y(K), the subgroup P(X) is S-stable and hx(s. g)

s. hx(g) (s H S, g H G). It is an easy consequence of this that hx(As(x))
As(y). Since dimU > 0 and U is contained in the kernel of h x, we see that
dim As(y) < dim As(x). Thus y K. x and the orbit K. x is not closed.

(ii) = (i). Assume that As(x) is linearly reductive. Let T be a maximal torus of
the stabilizer K,,. It follows from a result of Luna [17] that the orbit K. x is
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closed in G if and only if K r. x is closed in (GT) n. It is clear that Gr is
S-stable and that As(x) c G r. Thus we can reduce to the case G G 7" and
K K r. So we may assume that T is a central torus in G and in K. Assume now
that K. x is not closed. By HMT there exists h Y(K) and y G such that
limt Oh(t) X y and such that the orbit K. y is closed. Since P(?) is
S-stable, we see that As(x) c P(?). It follows from Lemma 2.7 that X
Y(Z(G)), hence that P p(h)0 is a proper parabolic subgroup of G. Let
Q N(P). Then P(?) c Q and Q is S-stable. By Propositions 12.2 and 12.3,
there exists/ (K) such that P(/) Q and As(x) c G. Let T be the torus
generated by T and image(). Then T Kx. Since P(/) Q0 p 4: G,
image(/) is not contained in T. Thus dim T > dim T, which contradicts the
choice of T.

Example. Let G be a semisimple group and let O be an automorphism of G
of period two. Let K= Go= (g GIO(g) g). Let x G. Then the orbit
K. x is closed in G if and only if A((x, 0(x)}) is a linearly reductive group.
More generally, let 0 be an automorphism of G of finite order r and let K G.
Let x G. Then K. x is closed if and only if A((x, O(x),..., 0r-l(x)}) is a
linearly reductive group.

THEOREM 13.3. Let x G (resp. x L(G)). Then the following conditions
are equioalent: (i) the orbit K. x is unstable; and (iJ) x is an S-unipotent (resp.
S-nilpotent) n-tuple.

Proof. We give the proof for x G. (ii)= (i). Assume that As(x is
unipotent. Then, by Proposition 12.4, there exists 2 Y(K) such that U(?)
contains As(x). This shows that K. x is unstable. (i)= (ii). Assume that
x (x,...,x,) is K-unstable. By HMT, there exists h Y(K) such that
lim/_.0h(t ) x= (1,...,1) Thus each x U(?). Since U(?) is S-stable,
U(?) D As(x), which shows that As(x) is a unipotent group.

13.4. The Leoi S-decomposition.

Definition 13.4.1. (a) Let x G(k) n. Then a decomposition x y.z, with
y,z G(k), is a Leoi S-decomposition of x defined over k if the following
conditions hold: (i) As(y) is an S-stable Levi k-subgroup of As(X); and (ii)
Ru(As(x) As(z). (b) Let x L(G)(k) n. Then a decomposition x y + z,
with y,z L(G)(k), is a Leoi S-decomposition of x defined over k if the
following conditions hold" (i) As(y) is a Levi k-subgroup of As(x); and (ii)
(s(X)) s(Z).

Let x (x,...,x) G(k) and let L be an S-stable Levi k-subgroup of
As(x). For each index i, we may write x uniquely in the form x yz i, with

Yi L(k) and z Ru(As(X))(k ). An argument similar to the argument preced-
ing the statement of Theorem 5.2 shows that As(y) L. Hence x y. z is a
Levi S-decomposition of x defined over k. Conversely, a straightforward argu-
ment shows that every Levi S-decomposition of x defined over k can be obtained
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in this way. Thus there is a bijective correspondence between Levi S-decomposi-
tions of x defined over k and S-stable Levi k-subgroups of As(x). One can give a
similar construction for Levi S-decompositions defined over k for an n-tuple
x

THEOREM 13.5. Let x G(k) n (resp. x L(G)(k)) and let x y z (resp.
x y + z) be a Levi S-decomposition of x defined over k. Then Kx K
and K. y is the unique closed orbit in the closure of K. x. Moreover, there exists
h Y(K), such that limt__,oh(t), x y.

The proof is paralld to the proof of Theorem 5.2 and follows easily from
Proposition 12.4 and Theorem 13.2. We omit details.
We recall that an algebraic k-group H is k-anisotropic if Y(H)k (0}, where

0 denotes the trivial one-parameter subgroup of H. The following result is an
immediate consequence of HMT.

13.6. Let H be a linearly reductive k-group which is k-anisotropic and let H act
k-morphically on an affine k-variety X. If x X(k ), the the orbit H. x is closed.

PROPOSITION 13.7. Assume that K is k-anisotropic. Let M be an S-stable
k-subgroup of G. Then M is linearly reductive.

Proof. Choose xl,...,x L(M)(k) which generate L(M). Let x=
(xl,..., x). Then dearly as(X) L(M). By 13.6, the orbit K. x is closed. Thus
As(x) M is a reductive algebraic group by Theorem 13.2. Therefore M is
linearly reductive.

Proposition 13.7 generalizes a well-known result used in representation theory
([33], Cor. 1.1.5.4, p. 42).

13.8. Fibres of the quotient morphism. Assume now that G is reductive. Let
G G/K (resp. r: L(G) ---> L(G)/K) denote the quotient morphism. For
each n-tuple x G (resp. x L(G)n), let x denote the fibre r-x(r(x)). We
let m(K) be the dimension of the flag manifold of K; thus dim K 2re(K) +
rank(K). If T is a subtorus of K, we define d(T)= m(K)+ m(K r) +
rank(K) dim T.
The following result is proved in [28], Propositions 10.3 and 10.4.

PROPOSITION 13.8.1. Let x G (resp. x L(G)) be such that the orbit
K x is closed and let T be a maximal torus of the stabilizer Kx. Then the fibre x
is equidimensional and

dimx d(T) + n(dim L(G) dim L(G) r).

In [28], there is also a combinatorial rule giving the number of irreducible
components of the fibre.
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14. K-stable n-tuples. In 14, S denotes a linearly reductive group, G is a
reductive S-group, and K G s.
An n’tuple in G (resp. L(G)) is K-stable if it is stable for the action of K on

G n (resp. L(G)").

THEOREM 14.1. Let x G (resp. x L(G)n). Then the following two condi-
tions are equioalent" (i) x is K-stable; and (ii) A(x) is not contained in any S-stable
proper parabolic subgroup of G.

Remarks. (a) If Q is an S-stable parabolic subgroup of G, then A(x) is
contained in Q if and only if As(x) is contained in Q. Thus, in condition (i)
above, A(x) can be replaced by As(x). (b) We see from Theorem 14.1 and
Theorem 4.1 that a G-stable n-tuple is also K-stable. It is not necessarily true that
a K-stable n-tuple is G-stable. (c) If G is nonabelian and of positive dimension,
then there are no G-stable dements in G or L(G). However, we will show that,
with a few obvious exceptions, there are always K-stable elements in G and
L(G).

Proof of Theorem 14.1. We only give the proof for x G. (i) (ii). Assume
that there exists a proper S-stable parabolic subgroup P of G which contains
A(x). By Proposition 12.3 there exist , Y(K) such that P PG(’). Since
P G, , Y(Z(G)). Let y limt__.0,(t ) x. There are two possible cases. (1)
y K. x. In this case, K. x is not closed and hence x is not K-stable. (2)
y K. x. Then image(X) is contained in Ky and thus y is not K-stable.
Consequently x is not K-stable.

(ii) = (i). Assume that x is not K-stable. Again we have two possible cases. (1)
K. x is not closed. Then by HMT there exists y G" and , Y(K), ,
Y(Z(G)), such that lim/_.0(t ) x y and K. y is closed. Thus PG(k) contains
A(x) and Pa(k) is a proper S-stable parabolic subgroup of G. (2) K. x is closed.
By 1.3.3, Kx is linearly reductive. Since x is not K-stable, dim Kx > dim(K n
Z(G)). It follows from this that there exists X Y(Kx), , Y(Z(G)). Thus
Pa(,) is a proper S-stable parabolic subgroup of G which contains A(x).

14.2. Existence of K-stable points. We wish to give a necessary and sufficient
condition for the existence of K-stable points in G and in L(G). First we need
a few results concerning parabolic subgroups. Let P be an S-stable parabolic
subgroup of G and let 9 be the set,of all G-conjugates of P. We identify 9 with
the coset space G/P in the usual way. If Q #, then Q =gP for some g G.
Thus, if s S, we have s. Q =s(g)p. (Here we have written s(g) for s.g to
avoid confusing notationS) Hence S acts on 9. Under the identification of #
with G/P, this corresponds to the action of S on G/P given by s (gP) s(g)P.

Let P act on itself by conjugation. Let d d(P) denote the homogeneous
fibre bundle G ’P with base space G/P 9 and standard fibre P. Define a
morphism 0: G P G by 0(g, x)= gxg-. Then 0 determines a mor-
phism : o - G. The morphism is a proper surjective morhpism and dim o

dim G. Let ’: o 9 be the bundle map and let ’ o’(P) ’-(9s). Then
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d" is a closed subset of d’ and (d") is a closed subset of G. The set (d") is the
set of all g G which are contained in an S-stable parabolic subgroup of G
which is conjugate to P. Since dim d’ dim G, it is clear that g,(d") G if and
only ifs .
THOaM 14.3. Assume that G K. Then the following four conditions are

equivalent: (i) there exist K-stable points of G; (i’) there exist K-stable points of
L(G); (ii) ifP is a proper S-stable parabolic subgroup of G, then there exists g G
such that sP is not S-stable; and (iJi) L(K) does not contain any nonabelian ideal
of L(G).

Proof We shall only prove the equivalence of (i), (ii), and (iii).
(i) = (ii). Let x G be a K-stable point and let P be a proper parabolic

S-stable subgroup of G. Then x sP for some g G and we see from Theorem
14.1 that sp is not S-stable.

(ii) = (i). Let Px,..., P, be proper S-stable parabolic subgroups of G such that
every proper S-stable parabolic subgroup of G is conjugate in G to exactly one of
the P’s. (Note that is there are no proper S-stable parabolic subgroups of G, then
(i) holds by Theorem 14.1.) For each i= 1,..., r, let o d’(P), o{ d"(P),
and q: d’ G be defined as in 14.2. If (ii) holds, then each (o{) is a proper
dosed subset of G. Thus D { g Gig cki(oi’) (i 1,..., r)) is a nonempty
open subset of G. It follows from Theorem 14.1 that D is precisely the set of
K-stable points of G.

It suffices to prove the equivalence of (ii) and (iii) in the case when G is
semisimple.

(ii) = (iii). Assume that L(K) contains a nontrivial ideal b of L(G). Then
L(G) is the direct sum of ideals b and m, and and rrt are semisimple Lie
algebras. There exist dosed, normal semisimple subgroups H and M of G with
L(H) b and L(M) m. It is clear that K contains H and that the product
map H M G, (h, m) --) hm, is an isogeny. Furthermore, the ideal rrt is
S-stable and hence M is S-stable. Let Pt be a proper parabolic subgroup of H.
Then P PtM is an S-stable proper parabolic subgroup of G. If g G and
s S, then

Thus (G/p)S G/P and (ii) does not hold.
(iii) = (ii). Assume that there exists a proper S-stable parabolic subgroup of G

such that (G/P)s G/P. Let denote the set of all G-conjugates of P. For
each sS, define a morphism rl,: GG by /,(g)=g-ts.g. If Q,
s S, and g G, then ,S)Q =gQ, since Q and SQ are S-stable. Therefore
rl,(g) N(Q) Q. Set M f’lQ,Q. Then r/(G) M and hence r/,(G)
M, since ,(G) is irreducible. The group M is a closed, connected normal
subgroup of G. Since K G, there exists s S such that ,/,(G) {1}. Thus M
is a proper, nontrivial, normal S-stable subgroup of G. Therefore, there exists a
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nontrivial S-stable ideal 9 of L(G) such that L(G)= L(M) . The Lie
algebra is a semisimple Lie algebra. Let H be the unique closed connected
normal subgroup of G such that L(H)= b. Then H is an S-stable normal
subgroup of G. For s S, We have ,L(H)c *L(G)c M and, since H is
S-stable, ,L(H)c H. Thus L(H) is contained in (H n M)= (1). But this
implies that H c K, hence that L(H) L(K).

15. Real semisimple S-groups. In this section F C and we use the conven-
tions of 11. In particular, complex linear algebraic groups will be denoted by
boldface letters and we distinguish between the classical topology and the Zariski
topology
We let G be a semisimple real Lie group with finite center and let S be an

(abstract) subgroup of Aut(G), the group of all Lie group automorphisms of G.
Then S acts on L(G) by Lie algebra automorphisms. In {}15, we will always
assume that L(G) is a semisimple S-module. Let K= G s. We consider the
action of K on G n and L(G) n. For x (xl,..., xn) G, we let Fs(x ) denote
the (abstract) subgroup of G generated by (s. xils S, i= 1,..., n). If x
L(G), then Cs(X) denotes the Lie subalgebra of L(G) generated by (s xiis S,

1,...,n}.
THEOREM 15.1. Let the notation be as above Let x G n (resp. x L(G)n).

Then the following two conditions are equivalent: (i) K. x is closed; and (ii) L(G)
is a semisimple Fs(X)-module ( resp. a semisimple cs(x)-module ).

The proof of Theorem 15.1 will occupy most of the rest of 15. First we reduce
to the case of real algebraic groups. Let G1 denote Aut(L(G)), the identity
component of the real Lie group Aut(L(G)) of all Lie algebra automorphisms of
L(G). It is known that the adjoint representation Ada: G --, Aut(L(G)) maps G
onto Gx and has kernel Z(G). By assumption, Z(G) is finite. Let y AdG(x),

1, n, and let y (y,..., yn). The group S acts on Aut(L(G)) by inner
automorphisms and hence acts on G. Let K Gs. It is clear that K1
AdG(K) c K1. By [34], Aut(L(G))s has only a finite number of components.
Thus K/Ada(K) is finite.

LEMMA 15.2. The orbit K x is closed in G ifand only ifK y is closed in G.
We omit the proof, which is a straightforward exercise.
It is dear that Ada(Fs(X)) is generated by (s’yls S, i= 1,..., n ). Thus

Lemma 15.2 reduces the proof of Theorem 15.1 to the case in which G G.
From now on, we assume that G G 1.

Let G denote the adjoint group of the complex semisimple Lie algebra
L(G) (R)RC. Then G is a semisimple complex algebraic group and L(G) can be
identified with L(G)(R)RC. Thus we have G G(R) and L(G)= L(G)(R).
Each element of S gives an automorphism of L(G). Hence we may consider S as
a subgroup of Aut(L(G)) and S acts on G Aut(L(G)) by conjugation. Let M
denote the Zariski closure of S in Aut(L(G)). Then M is an R-subgroup of
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Aut(L(G)) and S is contained in M(R). Clearly G s GM. Since L(G) L(G)(R)
is a semisimple S-module, it follows that L(G) is a semisimple M-module and
hence M is a linearly reductive algebraic group. Let K GM GS. Then K is a
linearly reductive group and it is clear from the definitions that K G s satisfies
K(R) c K c K(R).

Consider the following two conditions on an n-tuple x G (resp. x L(G)):
(iii) K. x is Zariski-closed in G (resp. in L(G)); and (iv) L(G) is a semisimple
A(x)-module. Then it follows from 11.3 that condition (i) of Theorem 15.1 and
condition (iii) are equivalent. It follows from Theorem 13.2 that (iii) and (iv) are
equivalent. Since Is(x) is Zadski-dense in A(x), we see that (iv) is equivalent to
(ii) of Theorem 15.1 for x G n. For the case x L(G), an easy argument
shows that aM(X) is the algebraic hull of Cs(X) in L(G). Thus (iv) and (ii) are
equivalent for x L(G). This proves Theorem 15.1.

THEOREM 15.3. Let x L(G)". Then the closure of K. x contains 0
(0,..., O) if and only if adL()(y ) is nilpotent for every y Cs(X).

We omit the proof, which follows in a straightforward manner from Theorem
13.1 and HMT.

Example. Let G be as above and let 0 be an involutive automorphism of G.
Let K be the fixed point subgroup of 0. For x G, let Is(x ) be the subgroup of
G generated by (x, 0(x)}. Then it follows easily from Theorem 15.1 that the
following three conditions are equivalent: (i) K. x is closed in G; (ii) G. (x, O(x))
is closed in G2; and (iii) L(G) is a semisimple F0(x)-module.

16. The case o| characteristic p. In this section, the base field F is of
arbitrary characteristic and G denotes a reductive group.
The proof of most of our results in earlier sections depended on the character-

istic zero hypothesis and, in many cases, the corresponding results in positive
characteristic p are not true. In this section, we will give a characterization of
those n-tuples x G such that the orbit G. x is closed which holds for
arbitrary characteristic.

Definition 16.1. Let H be a closed subgroup of G and let S be a maximal
torus of G n. Then H is strongly reductioe in G if H is not contained in any
proper parabolic subgroup of G s.

It is dear that the definition does not depend on the choice of the maximal
torus S of G /. In characteristic zero, it is not difficult to show that H is strongly
reductive in G if and only if H is linearly reductive. However, in characteristic p
the situation is more complicated.

LEMM 16.2. Let H be a closed subgroup of GL(E). Then H is strongly
reductioe in GL(E) if and only if E is a semisimple H-module.
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Proof Let S be a maximal toms of GL(E)n and let xI, be the set of weights
of S on E. The condition that H is not contained in any proper parabolic
subgroup of GL(E)s is equivalent to the condition that each weight space E,
(a xI,), is a simple H-module. This proves the lemma.

LEMM 16.3. Let H be a closed subgroup of G which is strongly reductive in G.
Then H is reductive.

Proof Let S be a maximal toms of G n. Then Gs is a reductive group.
Assume that Ru(H ) 4: (1}. Then by a result of Borel-Tits [5] there exists a
(proper) parabolic subgroup P of Gs such that H c P and Ru(H) c R,(P).
This contradicts the hypothesis that H is strongly reductive in G.

If x G n, then A(x) is defined as in 3. The following theorem characterizes
closed orbits in G n.
THEOREM 16.4. Let x G". Then the orbit G x is closed if and only ifA(x) is

strongly reductive in G.

Before giving the proof of Theorem 16.4, we need some preliminary results.

16.5. Let X be an affine G-variety and let S be a linearly reductive subgroup of
G. Let x Xs. Then G x is closed.in X if and only if Gs x is closed in Xs.

See [26], Theorem C.
The result below gives a nice characterization of closed orbits in an affine

G-variety.

LEMMA 16.6. Let X be an affine G-variety, let x X, and let S be a maximal
toms of the stabilizer Gx. Then the following two conditions are equivalent" (i) G. x
is closed; and (ii) x is a stable point for the action of Gs on Xs.

Proof (ii) (i). If x is stable for (Xs, GS), then Gs. x is closed in Xs. It
follows from 16.5 that G. x is closed. (i) = (ii). If G. x is closed, then Gs. x is
closed. Hence, by [25], the identity component of the stabilizer H (GS)x is
reductive. Since S is central in H and is a maximal toms of H, we see that
H S. Therefore x is stable for the action of Gs on Xs.
We note that the results of 2.1, 2.2, and 2.3 hold for a reductive k-group G if k

is perfect.
Proposition 16.7 below shows that the characterization of stable points of G"

given in Theorem 4.1 carries over to characteristic p.

PROPOSITION 16.7. Let x G n. Then x is a stable point of G if and only if
A(x) is not contained in any proper parabolic subgroup of G.

Proof Assume that A(x) is not contained in any proper parabolic subgroup
of G. Then it is an easy consequence of HMT that the orbit G. x is closed.
Hence, by [25], Gx is a reductive group. Let S be a maximal torus of G,,. If
S : Z(G), then there exists Y(S), h Y(Z(G)). Clearly A(x) c Gx c
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P(A), which gives a contradiction. Thus S Z(G). Since Gx is reductive, this
implies that Gx Z(G), and thus x is a stable point.

For the converse, assume that A(x)c P(A), where A is a noncentral one-
parameter subgroup of G. Let y (0) x. Then A Y(Gy), and thus dim Gy >
dim Z(G), so that y is not a stable point. If y G- x, then x is not stable. On
the other hand, if y G x, then the orbit G x is not closed and hence x is not
a stable point.
We can now prove Theorem 16.4. Let S be a maximal torus of Gx. Assume

that A(x) is strongly reductive in G. Then by Proposition 16.7, as applied to G s,
x is a stable point for the action of Gs on (GS). In particular, the orbit Gs x is
closed and hence, by 16.5, the orbit G. x is closed. Assume now that G. x is
closed. By Lemma 16.6 and Proposition 16.7, A(x) is not contained in any proper
parabolic subgroup of G s. Thus A(x) is strongly reductive in G. This completes
the proof.

In characteristic p, the condition that a closed subgroup H of G be strongly
reductive is hard to pin down concretely. If H is a linearly reductive group, then
it follows from [26], Proposition 6.1, that H is strongly reductive in G for any
reductive group G which contains H as a closed subgroup. However, if H is
reductive but not a torus, then the property that H be strongly reductive in G
depends not only on H but on the embedding of H in G. For example, let H be
a reductive group which is not a torus. Then, by [19], there exists a faithful linear
representation rl" H GL(E) which i not semisimple. It follows from Lemma
16.2 that r/(H) is not strongly reductive in GL(E).

In order to get a few more examples of strongly reductive subgroups, we will
use the following result ([26], Theorem C):

16.8. Let G be a closed connected normal subgroup of the algebraic group H and
assume that G is a reductive group. Let S be a linearly reductive subgroup ofH and
let K G s. Let H act morphically on the affine variety X and let x Xs. Let (9

denote the unique closed G-orbit in the closure of the orbit G. x. Then there exists
A Y(K) and y such that lim t_. oA(t) x y. In particular, G. x is closed
if and only if K. x is closed.

As an application of 16.8, we prove the following result:

PROPOSITION 16.9. Let S be a linearly reductive group, let G be a reductive
S-group, and let K G s. Let H be a closed subgroup ofK. Then H is a strongly
reductive subgroup ofK o if and only if it is a strongly reductive subgroup of G.

Proof We may assume that the base field F is of prime characteristic p. It
follows from [26], Proposition 10.1.5, that K is a reductive group. It is clear that
the property of being a strongly reductive subgroup is preserved if the base field
is extended to an algebraically closed field which is transcendental over the prime
field Fp. Thus we may assume that F is transcendental over Fp. By Lemma 16.3,
we may assume that H .is reductive. Under the assumptions on F, a straightfor-
ward argument shows that there exists an integer n > 0 and x K n such that
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A(x) H. (The essential point is that every one-dimensional group over F is
generated, as an algebraic group, by one element.) It follows from 16.8 that
K. x is closed in (K) if and only if G. x is closed in G n. It follows from
Theorem 16.4 that K. x (resp. G x) is closed in (K) n (resp. G n) if and only if
H A(x) is strongly reductive in K (resp. Gn). This proves Proposition 16.9.

COROLLARY 16.10. (char(F) 2). Let 1 be a finite-dimensional vector space
with a nondegenerate symmetric (resp. alternating) bilinear form and let 0(I)
( resp. Sp(l)) be the corresponding orthogonal ( resp. symplectic) group. Let H be a
closed subgroup of SO(I) (resp. Sp(l/’)). Then H is a strongly reductive subgroup of
SO(I/’) (resp. Sp(I/’)) if and only if 1 is a semisimple H-module.
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