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Summary. The paper contains a description and an analysis of two modifications of the
conjugate gradient method for unconstrained minimization which find a minimum of the conic
function after a finite number of steps. Moreover, further extension of the conjugate gradient
method is given which is based on a more general class of the model functions.
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1. INTRODUCTION

The conjugate gradient method was introduced by Hestenes and Stiefel [9] for
finding solutions of systems of linear equations with symmetric positive definite
matrices and, lately, by Fletcher and Reeves [7] for unconstrained minimization.
Since then it has been frequently modified and improved by many authors. Dixon
[6] and Sloboda [ 13] have proposed conjugate gradient methods which use no perfect
line search. Beale [2] and Powell [11] have described conjugate gradient methods
with improved restart procedures. Fried [8], Boland et al. [4] and Kowalik et al.
[10] have proposed further modifications of the conjugate gradient method which
are based on some nonquadratic models. Most recent papers by Sloboda [14],
Shirey [12] and Abaffy and Sloboda [1] generalize the previous results and give
conjugate gradient methods which minimize the so called I-quadratic functions
after a finite number of steps.

Another class of functions, which generalize the quadratic function, contains the
so called conic functions. These functions were introduced by Bjorstad and Nocedal
[3] for line search and by Davidon [5] and Sorensen [15], who used them for the
construction of a new class of variable metric methods. In this paper, we propose
new modifications of the conjugate gradient method, which minimize conic functions
after a finite number of steps. Section 2 contains some results concerning conic
functions. Section 3 is devoted to the derivation and analysis of a basic modification
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of the conjugate gradient method. It also contains a detailed description of a new
algorithm. Section 4 is devoted to the investigation of an imperfect version of the
conjugate gradient method. Section 5 proposes a further extension of the conjugate
gradient method, which is based on a more general class of the model functions.

2. CONIC FUNCTIONS AND CONIC INTERPOLATIONS

Let R, be an n-dimensional vector space. Let F: R, — R be a quadratic function
and I: R, — R a linear function, both defined in the space R,. Then the function

(2.1) F(x) = IP: 8

defined in the open halfspace X = {x € R,: [(x) > 0} is called a conic function.

In order to simplify the notation, we omit the parameter x. We denote by F, g, G
and F, g, G the value, the gradient and the Hessian matrix of the function F(x)
and F(x), respectively, at the point x € X. Furthermore, we denote by [ abd ¢ the
value and the gradient of the function /(x). Note that G is a constant matrix and ¢
is a constant vector. We assume throughout this paper that G is a positive definite
matrix.

Using (2.1) we get the formulae

(2.2) F =

Many properties of the conic functions have been described in the paper of Davidon
[5]. We summarize one of his results in the folloving lemma.

Lemma 2.1. Let x€ X and x, = x + a,5€ X be two different points. Then

(2.3) L _ ,__'@wm,
I F,—F -9
where
03 = (Fo = F)* — «39"sq3s .

Lemma 2.1 gives the possibility of determining the ratio I,/I from the values F
and F, and from the gradients g and g, computed at two different points x and x,.

Now we will prove a lemma, which will allow us to determine the vector ¢ from
the values F, F,, and F, and the gradients g, ¢, and g, computed at three different
points x, x,, and x, lying on a line.
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Lemma 2.2. Let xeX, x; =x+ oseX, and x, = x + a,s€X be three
different points. Then
(2.4) = — } (13!12 — Pg)o, — (lfgl - lzg) 052'
2 (I,Fy — IF)a, — (I,Fy — IF)a,

Proof. Since g, §y, and §, are gradients of the quadratic function which has the
Hessian matrix G, we can write, by (2.2),

aGs = §; — g = Ig, — I’g + 2(I,F, — IF)
for 1 £ i £ 2. Therefore

T2 ‘{2F2 —IF - g, — I’g
7] 7] %y L3

which implies (2.4). 0

Lemma 2.2 together with Lemma 2.1 offer the possibility of determining all
parameters of the linear function l(x) Therefore, we can compute the value and the
gradient of the quadratic function F (x) from the value and the gradient of the conic
function F(x), which is necessary for developing the conjugate gradient method.

We suppose throughout this paper that the conic function (2.1) is cupped (see [5])
which means that g(x) = 0if and only if x € R, is a minimizer of F(x).

3. THE BASIC CONJUGATE GRADIENT METHOD

The conjugate gradient method for minimizing a conic function F: X — R over
the open halfspace X < R, is based on the iterative scheme

(3.1) Xiyy = X; + 0;S; 5

ieN = {1,2,...}, where s; is a direction vector and o; is a steplength. We assume
in this section that the steplengths are chosen by the perfect line searches so that

(3.2) 5Tgiv1 =0

for i € N. The following lemma is essential for conjugate direction methods.
Lemma 3.1. Let F: X - R be a conic function. Consider the iterative scheme

(3.]) with the steplengths chosen by the perfect line searches. Let the direction

vectors satisfy the conditions sl.TG~sj =0for1<i<jZkandsic=0forlg
< i< k with k £ n. Then

(3.3) STgis1 = 0

for 1 £i Lk
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Proof. The equality sTg, ,, = O follows from (3.2). Using (2.2) we get

1 2 1

T ~ - T

Sidir1 = S; = Y1 T Fipic) = ——8;Gx+1
K1 lers liva

for1 < i < k, since sT¢ = 0 for 1 < i < k by the assumption. Therefore 5;gi+1 = 0
if and only if sTgxs1 = 0. Let §; = §;+1 — §; = a;Gs; for i < j < k. Then

k

T~ T T~

S;iGre1 = SiGiv1 T+ Z $;y; =
j=iHt

k
12,5701 + 2L Fipsie + Y, a;s1Gs; =0

j=i+1

by (2.2) since sfe = Oand s7Gs; = Ofor i < j < k by the assumption and s]¢:+1 = 0

by (3.2). 0

Lemma 3.1 shows that the conjugate directions have to be generated in such a way
that the first n — 1 of them lie in the subspace which is orthogonal to the vector c.
Then 57g,,, = Ofor 1 £ i £ n. Ifin addition s; = 0for 1 £ i £ n, then g,y = 0
and, consequently, x,,; is a minimizer of the conic function F. Let

T
(3.4) P=1 o
be the orthogonal projection matrix associated with the subspace which is orthogonal
to the vector ¢. It is advantageous to generate the direction vectors s;, 1 < i < n by
orthogonalizing the projected gradients Pg;, 1 < i < n. Since

Pgi=P<igi—3Fc)=l—12Pgi

I li i

for 1 £ i < n, we can derive the formulae for the direction vectors in the same way

as in the case of minimization of a quadratic function with a single linear constraint.
Thus we obtain

(3.5) s; = —Pg,
d pT_ Pg.
o s;= —Pg; + 3;1;1—9*’5:—1
Yi—1 Si-1

for 1 < i < n. These vectors are different from zero in the regular case when Pg; + 0
for 1 <i<n.

The direction vector s, cannot be determined by the above scheme since Pg, = 0
in the regular case (as follows from Lemma 3.1). Therefore g, is parallel to the vector ¢

and we have to use the general formula
"o odle
(3.6) Sp=C = ) T Sie

i=1 Js;
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The following algorithm summarizes our results.

Algorithm 3.1.

Step 1: Determine an initial point x and compute the value F := F(x) and the
gradient g := g(x). Set k := 0.

Step 2: If the termination criteria are satistied (for example if "g“ is sufficiently
small) then stop.

Step 3: If k = O then sets: = —g, k:= 1,1 := 1 and go to Step 4 else go to
Step 5.

Step 4: Use an imperfect line search procedure to determine two points x; :=
= X + 045, X, 1= x + o,5. Compute the values F, := F(x,), F, := F(x,) and the
gradients g, := g(x,), g, := g(x,) (suppose that F, = min (F, Fy, F,)). Compute
the values

e1:= J((Fy = F)* — «ig"sqs),

021= /((F2 — F)? — 0397s935)

7 o;g's

11 = N >
Fi—F -y,

. a,gTs

o= 205
Fy— F -,

and the vector
_ 1(1592 - g) oy = (Iggl - 9) o

2(1,F, — F)a, — (I,F; — F)a,

Go to Step 9.
Step 5: If k = 1 then set u := c else set

yie

ui=u——
y's

N

Step 6: Set v:= (c"g/c"c)ec — g. If either k = n or v™v < eg”g, set s:=
:= —sgn (9 u) u, k := 0 and go to Step 8.

Step 7: If k = 1 then set s := v else set

Set k := k + 1 and continue.

Step 8: Use a perfect line search procedure to determine the point x, 1= x + a,s
such that s"g(x,) = 0. Compute the value F, := F(x,) and the gradient g, := g(x,).
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If k # 0, compute the values
02 1= J((F, — F)* — a3g"sg3s)

_ %S
F, —F -9,

and the vector e
y o= (lggz - g) + —l‘(lez - F)-

Step 9: Set x 1= x,, F:= F,, g := g,, [ := [,/ and go to Step 2.

Comments. 1) The algorithm is invariant under the initial scaling. Therefore
we set I = 1 in Step 3.

2) We use the ratios I; = I,/I, I, = I,/I instead of the values /y, I, in Step 4 and
Step 8.

3) The vector § = g, — § appears both in the numerator and in the denominator
of the formula for deriving the direction vector (see (3.5) and (3.6)). Therefore we
use y = J/I* instead of § in Step 7 of the algorithm.

4) Step 4 serves for the determination of the vector ¢ only. Therefore it can be
reduced to the computation of two values F,, F, and two gradients ¢g,, g, provided
04,0, existand I; > 0,1, > 0.

Modifications. 1) The value of the linear function /{x) remains unchanged
in Step 8 of the algorithm when it is used for the conic function. Therefore we can
easily set I, = 1. However, the value I, computed by means of the parameter o,
is useful for checking the suitability of the conic function as a model for the general
objective function. In the case of perfect line search, we have gis = 0 so that g, =
= |F, — F|.

2) The vector ¢ can be recomputed in Step 8 of the algorithm. In this case, both
Step 4 and Step 8 are replaced by their combination which use a perfect line search
procedure and compute the vector ¢ from three values and three gradientsof the
objective function.

The following theorem is an immediate consequence 0f(3.5), (3.6), and Lemma 3.1,

Theorem 3.1. Algorithm 3.1 finds a minimum of the conic function F: X — R
with G positive definite after n perfect steps in the regular case.

Now we are analysing the singular case when Pg, = 0 for some i < n. If this is
the case then g; is parallel to ¢ and, consequently, x; is a minimizer of the conic
function F(x) with the constraint I(x) = [,. Therefore, it is also a minimizer of the
quadratic function F(x) with the same constraint and we can use the following
lemma.

Lemma 3.2. Let F(x) be a quadratic function with a positive definite Hessian
matrix G. Let §; = §(x;), 1 £ i £ 3, be the gradients of the function F(x) at the
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points x;eR,, 1 £ i < 3. Then §;, 1 £ i £ 3, are parallel only if x;, 1 £ i =3,
lie on a line.

Proof. We can write §; = G(x %), 1 £ i < 3, where % is a minimizer of the
function F(x). The gradients §;, 1 < i < 3, are parallel only if

g — g1 = G(xz - xl) = J,c,
g3 — g, = G(x3 - xy) = 3¢
for some vector ¢ € R,. Therefore
x, — x; = A,G7 e

X3 — Xy = A3G_1

and the points x;, 1 < i < 3 lie on a line. 0

Lemma 3.2 can be used in the singular case. Let Pg, = 0 and Pg, = 0 at two
different points x; and x,, respectively. Then §; = 1,c and §, = Z,¢ by (2.2) and
(3.4). Let x; be a minimizer of the conic function. Then g5 = 0 and, consequently,
§3 = X3¢ by (2.2). Therefore, using Lemma 3.2, we can write

(3.7 X3 = Xy + (X, — x;)

for some steplength «. The points x; and x, such that Pg, = 0 and Pg, = 0 can be
obtained in two immediately consecutive cycles of the algorithm. Therefore we can
find a minimizer of the conic function in the second cycle by the special step (3.7).

4. THE IMPERFECT CONJUGATE GRADIENT METHOD

Algorithm 3.1, described in the previous section, uses a perfect line search proce-
dure in Step 8. If the objective function F{x) is conic then the line search function
(p(cx) = F(x + ocs) is also conic and we can use the interpolation formula described
in [3]. Thus we can find a minimizer o, of the function ¢{«) by the formula

%y
(4.1) o, N gTs ]
(l) g's

so that the perfect line search procedure requires only two values F, F, and two
gradients ¢, g, of the conic function computed at two different points x and x;=
= x + o,s. Note that I,/I = 1 when s"¢ = 0 so that (4.1) reduces to the quadratic
interpolation formula in this case.

Now we are describing the algorithm which is based on the idea used in [13] and

which does not use a perfect line search procedure when s"¢c = 0. Note that it allows
us to save the computation of the value F, and the gradient g, when s"c = 0.
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Theorem 4.1. Let F: X —» R be a conic function. Consider the iterative scheme
(42) Xip1 = X; + 0;8;
i€ N, such that
(4.3) s = —hy
and
s;= —h; + :%T:——]hl— Sioq
Yi-18i-1

for 1 < i < n where

(4.4) h, = Pg,
and
sT )7
h; = Pp,_, — 2i=tlizl i
' Si-1hi-y '
Jor 1 < i< n with
(4~5) Vier = I2g; — l?—lgi—l + 2c(liFi - li—lFi—l)

for 1 < i < n. Then the direction vectors s;, 1 < i < n, are nonzero and mutually

conjugate provided Pg; + 0 and h; + 0 for 1 < i < n (regular case). Moreover,
sic=0forl £i<n.

Proof. We prove this theorem by induction. Suppose that s, # 0 and s;c = 0

and, moreover, s1Gs, = 0, sth, = 0 and hlh, = Ofor 1 £ i< k wherek < n — 2,
which certainly holds for k = 1 provided Pg, + Oand h, £ 0.

(a) Using (4.4) we get
T T Pk
Schier = 85 — = sh = 0
Sk
since s;¢ = 0, and

T~
N
Sk gy,

It
=

T _ Tx
Sibi1 =59, —
Sy

A

since sic = 0, sTh, = 0 and s} 7, = a;5]Gs, = 0 for 1 < i < k by the assumption.

(b) Using (4.3) we get

T T
hihery = —sihe, =0
and
<T
T T Jioihi 1
hihgvr = —s;h ., + ‘;T—l—]—"— Sioihy =0
Yi-15i-1

for 1 < i < Ksincesjl+1=0for1 <i < kby(a).
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(c) We have gTh,,, = 0 for 1 < i £ k by (b) since the vector Pg; is a linear
combination of the vectors h;, 1 < js <i by (4.3) and (4.5) and since i ¢ = 0
by (4. 4).

(d) The condition si,,c = 0 follows from (4.3) since hgs1¢ = 0 by (4.4) and
sfc = 0 by the assumption. Moreover, s, % Osince s, h 41 = 0 by (a)and h,, + 0
by the assumption so that hl, ;5.1 = —Hrs1hyyq + 0 by (4.3). Using (4.3) we get

T} e Ghyyy .
58Gsje1 = =5, Gl s + Z"('*Ik“ s1Gs, = =5 Ghysy + w Fasi=10
Fise sk
and
~ Th 1.
51Gsy 1 = —s1Ghyyy + 5 Tiltrs s1Gs, = — — Jilsr =
Pisi %;
1 2 2 T 2 T
= ;(lH—lgH-l - ligi) by — ; (li+1F1'+1 - liFi)c hyr =0
for 1 £ i < k since sTGs, = 0 for 1 £ i < k by the assumption, gih,,; = 0 for
1 £ i< kby(c)and bf, ;¢ = 0 by (4.4). Note that «; + 0if h; # 0. O

Theorem 4.1 shows that the vectors s;, 1 £ i < n, generated by the formula (4.3),
are nonzero and mutually conjugate in the regular case. These vectors span a sub-
space which is orthogonal to the vector ¢ so that

n—1 T /S—-1,. T7i—1
(4.6) y S g Gl

i=1 5, Gs; "G e
This equality can be easily verified by multiplying it by the linearly independent
vectors Gs;, 1 < i < n ~ 1, and ¢. Using (4.6) we can find a minimizer of both the
quadratic function F(x) and the conic function F(x) subject to the linear constraint
I(x) = I,. It is given by the formula

(47) Xpp1 = Xy T8, -
where
n—1
SiS ~ S gl+1
(48) Sp = — —fT n = _zal i+1 S;.
i=1 8;Gs; sTH;

The point x,,, € X given by (4.7) is the same as that obtained by means of n — 1
perfect steps with the directions (3.5). Therefore, we can continue in the same way
as in the previous section. Let

(4.9) Xp+2 = Xp+1 T Oy 1Sp+1
where
n~1 ~T
Ve
(410) Spe1 =€ — Z ':-;-—Si
i=1Y;8;
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and where the steplength a,, ; is chosen by the perfect line search so that s}, 1g,.; =
= 0. Then s]J,+1 = O for 1 <i < n by (4.10) and s}g,,, = O for 1 < i < n since
g+ 1 is parallel to the vector ¢. Therefore
S’irj}n-{-l = S'ir(lr%+2gn+2 - l:%—% 1gn+1) +
+ ZsiTc(ln+an+2 = L1 Foy 1) = lf+23'}gn+2 =0

for 1 £i < n, which together with s',,g,+, = 0 implies g,,, = 0 and, con-
sequently, x,, 1 is @ minimizer of the conic function F(x)

The following algorithm summarizes the above results.

Algorithm 4.1

Step 1: Determine an initial point x and compute the value F := F(x) and the
gradient g := g(x). Set k := —1.

Step 2: If the termination criteria are satisfied (for example if |g| is sufficiently
small) then stop.

Step 3: If k <O thensets:= —g, k:=1,1:=1and go to Step 4. If k = 0,
go to Step 6. If k > 0, go to Step 5.

Step 4: Use a perfect line search procedure to determine two points x; 1= x +
+ 038, X=X + a5 such that s'g(x,) = 0. Compute the values F,:= F(x,),
F, := F(x,) and the gradients g, := g(x,), g2 := g(x,). Compute the values

01 = \/((F1 = F)2 - O‘ngSQ%) >
Q2 = \/((Fz - F)Z - “ggTSggs) s

. o,g7s

[{i= - 222 L)
F,—F -9,

7 9”5

L=
Fy—F—g,

and the vector
_ 1 (Bgs—g)es — (ligs — 9)oa
2(12F2 —_ F)al "‘(llFl_‘ F)fxz

Go to Step 9.

Step 5: If k = Lthenset h:= g — (c"g/c"c) ¢, u := ¢, and v := O else set

T T T T

¢y s'y yic 52 §
h:-:y—TC——,lT‘h, u:=u—*‘T~S, UZ=U—C{[§":I2S.

cc s h y's s

If either k =n or h™h < ¢g"g thenset k:= { — k.
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Step 6: If k < 0 then set s := —sgn (¢"v) v, k := 0, and go to Step 8. If k = 0

then set s := —sgn(g"u)u, k := 1 and go to Step 4. If k > 0 then continue.
Step 7: If k = 1 then set s := —h else set
T
s:=—h + y—Tﬁs.
yTs
Sets:= —sgn(s"g)sand k 1=k + 1.

Step 8: Use an imperfect line search procedure to determine the point x, 1= x +
+ o,s. Compute the value F, := F(x,) and the gradient g, := g(x,). If k>0
then compute the values

0, := J((F, — F)* — 03g"sg3s),

and the vector
. 2¢ 4
yi=(3g, — g9) + —l—(le2 - F).

Step 9: Set x == x,, F 1= F,, g 1= g,, 4 := a,, | := 1,1, and go to Step 2.

Comments. 1) The algorithm js invariant under the initial scaling. Therefore
we set [ = 1in Step 3.

2) We use the ratios I, = I;[l, I, = 1,/l instead of the values I, I, in Step 4 and
Step 8.

3) We use y = j/I? instead of § in Step 7 of the algorithm. It only changes the
absolute values of the vectors s;, 1 < i < n, but it has no effect on their conjugacy.

4) The value of the linear function /(x) remains unchanged in Step 8 of the algo-
rithm when it is used for the conic function. Therefore we can easily set I, = 1.
However, the value I, computed by means of the parameter g, is useful for checking
the suitability of the conic function as a model for the general objective function.

5) The algorithm uses a perfect line search procedure in Step 4. It can be reduced

" to the determination of two points x, = x 4 o5 and x, = X + «,s only, when the

objective function is conic and when we use the interpolation formula (4.1).

6) The imperfect line search procedure which is used in Step 8 of the algorithm
can be reduced to the determination of the only point x, = x + a,s.

5. FURTHER EXTENSION
Consider the objective function of the form
(5.1) F(x) = o(F(x), (x))
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such that dp(F(x), I(x))/oF > 0 for all x € R,, where F(x) is a quadratic function
with a constant positive definite Hessian matrix G, and I(x) is a linear function with
a constant gradient ¢. Using the same notation as in Section 2, we can write

(52) F=o(F 1)),
g =o0§ + tc,

where ¢ = 8¢[0F and © = d¢/ol. Comparing (5.2) with (2.2), we can see that both
Algorithm 3.1 and Algorithm 4.1 can be easily generalized for the objective function
(5.1) provided it is possible to compute o(x) and 7(x) at an arbitrary point x € R,
The following lemma allows us to determine the vector ¢ from the values F, F,,
and F, and the gradients g, g,, and g, computed at three different points x, x|,
and x, lying on a line.

Lemma 5.1. Let xeR
different points. Then

g, @ o, G©
5.3 ¢ = .
(:3) <12 r) (1‘1 r)
Ty T )%
6, O 6, O

Proof. See proof of Lemma 2.2. 0

w Xy =X+ oseR,, and x, = x + oa,5€ R, be three

The most complicated problem associated with the function (5.1) is the determina-
tion of the values o and . We confine ourselves to the objective function of the form

(5.4) F(x) = F(x) I{x),

defined in the open halfspace X = {x e R,, l(x) > 0}, which is a generalization of the
conic function (2.1). Using (5.4) we get the formulae

(55) F=FI,

i

g g?lk+lch,

so that ¢ = I*and © = kF/l, and (5.3) implies

g2 g g1 g

R A T A )
(zz lk) 1 (l’: lk) ’

kF, kF kF, kF\
EETTY R VTS R

The following lemma offers the possibility of determining the ratio I,/I from the
values F and F, and the gradients g and g, computed at two different points x and x,.

(5.6) ¢ =
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Yemma 5.2, Let xe€ X and x, = x + a,5s € X be two different points. Then the
ratio L[l is a solution of the equation

(5.7)
! k+2 1 k+1 1
kF (;) (24 K F + ayT) (f) (24 B) Fy - agTs) (f) —KkF,=0.
Proof. Using (5.5) we get
F=1"*, §=1%— kFI"%*b¢,

Since the quadratic function has to satisfy the equality

F,—F= 9‘-2% (5% + §%s)

and since a,c's = I, — I, we get after substitution

I;¥F, — I"'F = ! a1 ghs + 0,1 % gTs — kF,I5* b=l kFl""lZ——l ,
2 I, I

which gives (5.7) after rearrangements. O

Using the above investigation we can see that both Algorithm 3.1 and Algorithm
4.1 find a minimum of the function (5.4) after a finite number of steps if we replace
(2.3) and (2.4) by (5.7) and (5.6), respectively, and set

oo ~ Y2 g F, F

(5~8) y*gz—g—g’*ﬁ“kQ,;—ﬂ“ﬁ)C
Note that the equation (5.5) has a real solution I,[I 2 0if FF, > 0, which is usually

satisfied for x, sufficiently close to x. The following table contains some special
models.

Table 1
k model degree of (5.7)
-3 . F(x) = F(x)/l3(x) 3
-2 F(x) = F(x)/I*(x) 2
-1 F() = F(o)i) 1
1 F(x) = }:(x) I(x) 3
2 F(x) = F(x) I*(x) 4

Note that k in (5.4) can be any real number.
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Souhrn ,
ALGORITMY SDRUZENYCH GRADIENTU PRO KONICKE FUNKCE

LADISLAY LUKSAN

Prispévek obsahuje popis a analyzu dvou modifikaci metody sdruZenych gradientlt pro
nepodmin&nou minimalizaci, které naleznou minimum konické funkce po konedném podtu
kroku. Navic je prezentovano dal§i zobecn&ni metody sdruZenych gradienti zaloZené na obecn&jsi
tfid€ modelovych funkci.

Pesome
AJIFOPU®MbI COMNPSAXEHHBIX I'PAJMEHTOB JJ1 KOHUYECKUX ®YHKILIVN
LADISLAV LUKSAN

CTaThsl COIEPKNT ONMCAHHME M AHANM3 NBYX MOAM(HKALMII MCTONA COTIPAKEHHBIX T'PAAMCHTOB
7S MUHMMUW3anuK Oe3 OrpaHMuYeHuil, KOTOpble HAXOHAAT MHHUMYM KOHMYECKOH (yHKLMH mocne
KOHEYHOTO uMcia maroB. Kpome Toro ykaszano najbHeiimee o6oGlIeHHE MeTOAa CONPSIKEHHBLIX
TPaIMEHTOR, OCHOBAHHOE HA 0OJee OOLIEM KJIACe MOJEIbHLIX HYHKIIMIA.
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