
Conjugate Gradient Bundle Adjustment

Martin Byröd and Kalle Åström�

Centre for Mathematical Sciences, Lund University, Lund, Sweden
{byrod,kalle}@maths.lth.se

Abstract. Bundle adjustment for multi-view reconstruction is tradi-
tionally done using the Levenberg-Marquardt algorithm with a direct
linear solver, which is computationally very expensive. An alternative to
this approach is to apply the conjugate gradients algorithm in the inner
loop. This is appealing since the main computational step of the CG
algorithm involves only a simple matrix-vector multiplication with the
Jacobian. In this work we improve on the latest published approaches to
bundle adjustment with conjugate gradients by making full use of the
least squares nature of the problem. We employ an easy-to-compute QR
factorization based block preconditioner and show how a certain property
of the preconditioned system allows us to reduce the work per iteration
to roughly half of the standard CG algorithm.

1 Introduction

Modern structure from motion (SfM) systems, which compute cameras and 3D
structure from images, rely heavily on bundle adjustment. Bundle adjustment
refers to the iterative refinement of camera and 3D point parameters based on
minimization of the sum of squared reprojection errors and hence belong to the
class of non-linear least squares problems. Bundle adjustment is important both
as a final step to polish off a rough reconstruction obtained by other means as well
as a way of avoiding accumulation of errors during an incremental reconstruction
procedure.

A recent trend in SfM applications is to move from small and medium size
setups to large scale problems (typically in the order 103-104 cameras or more),
cf. [1,2,3,4]. Bundle adjustment in general has O(N3) complexity, where N is the
number of variables in the problem [5]. In the large scale-range of the spectrum,
bundle adjustment hence starts to become a major computational bottleneck.

The standard algorithm for bundle adjustment is Levenberg-Marquardt with
Cholesky factorization to solve the normal equations [6,7]. An interesting alter-
native to this is the method of conjugate gradients (CG), which has recently
been applied in the context of bundle adjustment [8,1]. The conjugate gradient

� The research leading to these results has received funding from the swedish strategic
research project Elliit, the European Research Council project Globalvision, the
Swedish research council project Polynomial Equations and the Swedish Strategic
Foundation projects ENGROSS and Wearable Visual Systems.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 114–127, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Conjugate Gradient Bundle Adjustment 115

algorithm can be applied both as a non-linear optimization algorithm replac-
ing Levenberg-Marquardt or as an iterative linear solver for the normal equa-
tions, where the latter approach seems to be the right choice for non-linear least
squares.

In [8], which is of a speculative nature, the graph structure of the problem
was used to derive multiscale preconditioners for bundle adjustment and con-
jugate gradients. While the authors show some promising preliminary results,
they were not able to overcome some fundamental limitations yielding the pre-
conditioners themselves expensive to construct and apply. In this paper we take
a more straightforward approach and make use of the inherent sparsity structure
of the problem to design a light-weight matrix based preconditioner. Doing bun-
dle adjustment with conjugate gradients and block diagonal preconditioning was
mentioned in the work of Agarwal et al on large scale structure from motion [1].
Compared to the work of Agarwal et al , where essentially the standard conju-
gate gradient algorithm was applied to the normal equations, the main novelty
of this work is to make explicit use of the least squares nature of the problem
for maximum efficiency and precision. Here we make use of the least squares
property in several ways. Our main contributions are:

– We apply the CGLS algorithm (instead of the standard CG algorithm),
which allows us to avoid forming JT J , where J is the Jacobian, thus saving
time and space and improving precision.

– A QR factorization based block-preconditioner, which can be computed in
roughly the same time it takes to compute the Jacobian.

– We note that the preconditioned system has ”property A” in the sense of
Young [9], allowing us to cut the work per iteration in roughly half.

– An experimental study which sheads some new light on when iterative solvers
for the normal equations may be successfully used.

2 Problem Formulation

We consider a setup with m cameras C = (C1, . . . , Cm) observing n points
U = (U1, . . . , Un) in 3D space. An index set I keeps track of which points are
seen in which views by (i, j) ∈ I iff point j is seen in image i. If all points
are visible in all views then there are mn projections. This is not the case in
general and we denote the number of image points nr = |I|. The observation
model f(Ci, Uj) yields the 2D image coordinates of the point Uj projected into
the view Ci. The input data is a set of observations f̂ij such that

f̂ij = f(Ci, Uj) + ηij , (1)

where ηij is measurement noise drawn from a suitable distribution. The unknown
parameters x = (C, U) are now estimated given the set of observations by ad-
justing them to produce a low re-projection error as realized in the following
non-linear least squares problem

x∗ = argmin
x

∑

(i,j)∈I
‖f̂ij − f(Ci, Uj)‖2. (2)

116 M. Byröd and K. Åström

The standard algorithm for dealing with non-linear least squares problem is
the Gauss-Newton algorithm. Rewriting (2), our task is to solve the following
optimization problem

x∗ = argmin
x

‖r(x)‖2, (3)

where r is the vector of individual residuals rij = f(Ci, Uj) − f̂ij .
A first order expansion inside the norm in the non-linear sum of squares

expression yields a linear least squares problem

min
x

‖r(x + δx)‖2 ≈ ‖r(x) + J(x)δx‖2, (4)

where solving for δx in the usual least squares sense yields the equation for the
update step:

J(x)T J(x)δx = −J(x)T r(x). (5)

If the system matrix JT J does not have full rank, or if there are significant
non-linearities then it is common to add a damping term λI to JT J and solve
the damped system

(JT J + λI)δx = −JT r. (6)

We use the strategy by Nielsen [10] to update λ based on how well the decrease
in error agrees with the decrease predicted by the linear model.

In the case of bundle adjustment, it is possible to partition the Jacobian into
a camera part JC and a point part JP as J = [JC JP], which gives

JT J =
[
JT

C JC JT
C JP

JT
P JC JT

P JP

]
=

[
U W

WT V

]
, (7)

where U and V are block diagonal. One can now apply block wise Gaussian
elimination producing the simplified system

(U − WV −1WT)δxC = bC − WV −1bP (8)

and then substituting the obtained value of δxC into

V δxP = bP − WT δxC (9)

and solving for δxP . This procedure is known as Schur complementation and
reduces the computational load from solving a (6m+3n)× (6m+3n) system to
solving a 6m × 6m system followed by a quick substitution and block diagonal
solve. In applications m is usually much smaller than n so this typically means
substantial savings. For systems with up to a couple of hundred cameras, the
most expensive step actually often lies in forming WV −1WT , since W is often
quite dense. However, for larger problems the cost of solving the Schur system
will dominate the computations. With the method of conjugate gradients we can
avoid both Schur complementation and Cholesky factorization, thus avoiding the
two dominant steps in terms if time and memory requirements. The price for
this can be slower convergence especially near the optimum.

Conjugate Gradient Bundle Adjustment 117

3 The Linear and Non-linear Conjugate Gradient
Algorithms

The conjugate gradient algorithm is an iterative method for solving a symmetric
positive definite system of linear equations

Ax = b, (10)

introduced by Hestenes and Stiefel [11,12]. In its basic form it requires only
multiplication of the matrix A with a vector, i.e no matrix-matrix multiplications
and no matrix factorizations.

Conjugate Gradient Algorithm(x0, A, b)
// An initial solution x0 (possibly zero) has to be provided
s0 = b − Ax0, p0 = s0, k = 0
while |sk| > threshold

αk = skT
sk

pkT Apk

xk+1 = xk + αkpk

sk+1 = sk − αkApk

βk = sk+1T
sk+1

skT sk

pk+1 = sk+1 + βkpk

k = k + 1

The basic way to apply the conjugate gradient algorithm to the bundle ad-
justment problem is to form the normal equations JT Jδx = −JT r and set
A = JT J, b = −JT r.

The linear CG method corresponds to minimization of the quadratic form
q(x) = 1

2xT Ax − bT x. Fletcher and Reeves generalized the procedure to non-
quadratic functions yielding the non-linear conjugate gradients algorithm [13].
Here, only the function f(x) and its gradient ∇f(x) are available.

4 Conjugate Gradients for Least Squares

A naive implementation of the conjugate gradient algorithm for the normal equa-
tions would require forming A = JT J which is a relatively expensive operation.
However, we can rewrite the updating formulas for αk and sk+1 as

αk =
skT

sk

(Jpk)T (Jpk)
, (11)

sk+1 = sk − αkJT (Jpk), (12)

implying that we only need to compute the two matrix-vector multiplications
wk = Jpk and JT wk in each iteration. The resulting algorithm is known as
CGLS [14]. The conjugate gradient method belongs to the wider family of Krylov

118 M. Byröd and K. Åström

subspace optimizing algorithms. An alternative to CGLS is the LSQR algorithm
by Paige and Saunders [15], which is based on Lanczos bidiagonalization. Math-
ematically CGLS and LSQR are equivalent, but LSQR has in some cases been
observed to be slightly more stable numerically. However, in our bundle adjust-
ment experiments these two algorithms have produced virtually identical results.
Since LSQR requires somewhat more storage and computation than CGLS we
have stuck with the latter.

5 Inexact Gauss-Newton Methods

As previously mentioned, there are two levels where we can apply conjugate
gradients. Either we use linear conjugate gradients to solve the normal equations
JT Jdx = −JT r and thus obtain the Gauss-Newton step or we apply non-linear
conjugate gradients to directly solve the non-linear optimization problem.

Since c(x) = rT (x)r(x), we get ∇c(x) = −JT (x)r(x) and we see that com-
puting ∇c implies computing the Jacobian J of r. Once we have computed J
(and r) we might as well run a few more iterations keeping these fixed. But,
since the Gauss-Newton step is anyway an approximation to the true optimum,
there is no need to solve the normal equations very exactly and it is likely to be
a good idea to abort the linear conjugate gradient method early, going for an
approximate solution. This leads to the topic of inexact Newton methods (see
e.g [16] for more details). In these methods a sequence of stopping criteria are
used to abort the inner iterative solver for the update step early. The logical
termination quantity here is the relative magnitude of the residual of the normal
equations |sk| (not to be confused with the residual of the least squares system
r). A common choice is to terminate the inner CG iteration when

|sk|
|∇c(xj)| < ηj ,

where the sequence ηj ∈ (0, 1) is called a forcing sequence. There is a large body
of research on how to select such a forcing sequence. We have however found the
rule of thumb to select the constant ηj = 0.1 to provide a resonable trade off
between convergence and number of CG iterations.

6 Preconditioning

The success of the conjugate gradient algorithm depends largely on the condi-
tioning of the matrix A. Whenever the condition number κ(A) is large conver-
gence will be slow. In the case of least squares, A = JT J and thus κ(A) = κ(J)2,
so we will almost inevitably face a large condition number1. In these cases one

1 Note that even if we avoid forming A = JT J explicitly, A is still implicitly the
system matrix and hence it is the condition number κ(A) we need to worry about.

Conjugate Gradient Bundle Adjustment 119

can apply preconditioning, which in the case of the conjugate gradient method
means pre-multiplying from left and right with a matrix E to form

ET AEx̂ = ET b,

where E is a non-singular matrix. The idea is to select E so that Â = ET AE has
a smaller condition number than A. Finally, x can be computed from x̂ with x =
Ex̂. Often E is chosen so that EET approximates A−1 in some sense. Explicitly
forming Â is expensive and usually avoided by inserting M = EET in the right
places in the conjugate gradient method obtaining the preconditioned conjugate
gradient method. Two useful preconditioners can be obtained by writing A =
L + LT − D, where D and L are the diagonal and lower triangular parts of
A. Setting M = D−1 is known as Jacobi preconditioning and M = L−T DL−1

yields Gauss-Seidel preconditioning.

6.1 Block QR Preconditioning

The Jacobi and Gauss-Seidel preconditioners alone do not make use of the special
structure of the bundle adjustment Jacobian. Assume for a moment that we
have the QR factorization of J , J = QR and set E = R−1. This yields the
preconditioned normal equations

R−T JT JR−1δx̂ = −R−T JT r,

which by inserting J = QR reduce to

δx̂ = −R−T JT r

and δx̂ is found in a single iteration step (δx is then be obtained by δx = R−1δx̂).
Applying R−1 is done very quickly through back-substitution. The problem here
is of course that computing J = QR is exactly the sort of expensive operation
we are seeking to avoid. However, we can do something which is similar in spirit.
Consider again the partitioning J = [JC , JP]. Using this, we can do a block wise
QR factorization in the following way:

JC = QCRC , JP = QP RP .

Due to the special block structure of JC and JP respectively we have

RC = R(JC) =

⎡

⎢⎢⎢⎣

R(Ã1)
R(Ã2)

. . .
R(Ãn)

⎤

⎥⎥⎥⎦

and

RP = R(JP) =

⎡

⎢⎢⎢⎣

R(B1)
R(B2)

. . .
R(Bn)

⎤

⎥⎥⎥⎦ ,

120 M. Byröd and K. Åström

where

Ãk =

⎡

⎢⎢⎢⎣

Ak1

Ak2

...
Akn

⎤

⎥⎥⎥⎦

and

Bk =

⎡

⎢⎢⎢⎣

B1k

B2k

...
Amk

⎤

⎥⎥⎥⎦

and where
Aij = ∂Cirij , Bij = ∂Uj rij .

In other words, we can perform QR factorization independently on the block
columns of JC and JP , making this operation very efficient (linear in the number
of variables) and easy to parallelize. The preconditioner we propose to use thus
becomes

E =
[
R(JC)−1

R(JP)−1

]
.

Similar preconditioners were used by Golub et al in [17] in the context of satellite
positioning. One can easily see that the QR preconditioner is in fact analytically
equivalent to block-Jacobi preconditioning. Two important advantages are how-
ever that (i) we do not need to form JT J (as is the case with block-Jacobi)
and (ii) that QR factorization of a matrix A is generally considered numerically
superior to forming AT A followed by Cholesky factorization.

6.2 Property A

A further important aspect of the bundle adjustment Jacobian is that the pre-
conditioned system matrix ĴT Ĵ has “property A” as defined by Young in [9].

Definition 1. The matrix A has “property A” iff it can be written

A =
[
D1 F
FT D2

]
, (13)

where D1 and D2 are diagonal.

The benefit is that for any matrix posessing “property A”, the work that has to
be carried out in the conjugate gradient method can roughly be cut in half as
showed by Reid in [18]. This property can easily be seen to hold for ĴT Ĵ :

ĴT Ĵ =
[

R(JC)
R(JP)

]−T [
JT

C JC JT
C JP

JT
P JC JT

P JP

] [
R(JC)

R(JP)

]−1

=
[

QT
CQC QT

CQP

QT
P QC QT

P QP

]
,

Conjugate Gradient Bundle Adjustment 121

where QT
CQC and QT

P QP are both identity matrices and QT
P QC = (QT

CQP)T .

Partition the variables into camera and point variables and set sk =
[

sk
C

sk
P

]
.

Applying Reid’s results to our problem yields the following: By initializing so
that δxC = 0 and δxP = −JT

P r, we will have s2m
C = s2m+1

P = 0. We can make
use of this fact in the following way (where for clarity, we have dropped the
subscript j from the outer iteration):

Inner CG loop using ”Property A”(J, r)
η = 0.1
δx0

C = 0, δx0
P = −JT

P r, r̂0 = −r − Jδx0, p0 = s0 = JT r̂0,

γ0 = s0T
s0, q0 = Jp0, k = 0

while ‖sk‖ > η‖s0‖

αk = γk

qkT qk

δxk+1 = δxk + αkpk
{

sk+1
C = −αkJT

C qk, sk+1
P = 0 k odd

sk+1
P = −αkJT

P qk, sk+1
C = 0 k even

γk+1 = sk+1T
sk+1

βk = γk+1

γk

pk+1 = sk+1 + βkpk
{

qk+1 = βkqk + JCsk+1
C k odd

qk+1 = βkqk + JP sk+1
P k even

One further interesting aspect of matrices with ”Property A” is that one can
show that for these matrices, block-Jacobi preconditioning is always superior to
Gauss-Seidel and SSOR preconditioners [14] (pages 286-287).

7 Experiments

For evaluation we compare three different algorithms on synthetic and real data.
Standard bundle adjustment was performed using the Levenberg-Marquardt al-
gorithm and sparse Cholesky factorization of the Schur complement to solve
the normal equations. Cholesky factorization was performed using the Cholmod
library with reverse Cuthill-McKee ordering. We henceforth denote this algo-
rithm DBA for direct bundle adjustment. Secondly, we study a straight forward
adaptation of the conjugate gradient algorithm to bundle adjustment by using
JT J as the system matrix and the block diagonal of JT J as a preconditioner.
We simply refer to this algorithm as CG. Finally, we denote the conjugate gra-
dient method taylored to bundle adjustment as proposed in this paper CGBA
for conjugate gradient bundle adjustment.

In all cases we apply adaptive damping to the normal equations as suggested
in [10]. In the case of CGBA, we never form JT J and we instead apply damping
by using the damped Jacobian

122 M. Byröd and K. Åström

Jλ =
[

J
λI

]
,

which can be factorized in the same manner as J for preconditioning.
For clarity, we focus on calibrated cameras only in this work. Including ad-

ditional parameters such as focal length and distortion parameters presents no
problem and fits into the same general framework without modification.

7.1 Synthetic Data: When Is the CG Algorithm a Good Choice?

A common statement is that standard bundle adjustment is good for small to
medium size problems and that Conjugate Gradients should probably be the way
to go for large and sparse problems. This is not quite true as we will show with
a couple of synthetic experiments. In some cases CG based bundle adjustment
can actually be a better choice for quite small problems. On the other hand it
might suffer from hopelessly slow convergence on some large very sparse setups.
Theoretically, the linear CG algorithm converges in a number of iterations propor-
tional to roughly the square root of the condition number and a large condition
number hence yields slow convergence. Empirically, this happens in particular for
sparsely connected structures where unknowns in the camera-structure graph are
far apart. Intuitively such setups are much less ”stiff” and can undergo relatively
large deformations with only little effect on the reprojection errors.

To capture this intuition we have simulated two qualitatively very different
scenarios. In the first setup, points are randomly located inside a sphere of ra-
dius one centered at the origin. Cameras are positioned uniformly around the
sphere at around two length units from the origin pointing roughly towards the
origin. There are 10 times as many points as cameras and each camera sees
100 randomly selected points. Due to this, each camera shares features with a
large percentage of the other cameras. In the second experiments, points are
arranged along a circular wall with cameras on the inside of the wall pointing
outwards. There are four points for each camera and due to the configuration
of the cameras, each camera only shares features with a small number of other
cameras. For each scenario we have generated a series of configurations with
increasingly many cameras and points. One example from each problem type
can be seen in Figure 1. For each problem instance we ran both standard bun-
dle adjustment with Cholesky factorization and the Conjugate Gradient based
bundle adjustment procedure proposed in this paper until complete convergence
and recorded the total time. Both solvers produced the same final error up to
machine precision. Since the focus of this experiment was on iterative versus
direct solvers, we omitted the comparision CG method. The results of this ex-
periment are perhaps somewhat surprising. For the sphere problem, CGBA is
orders of magnitude faster for all but the smallest problems, where the time is
roughly equal. In fact, the empirical time complexity is almost linear for CGBA
whereas DBA displays the familiar cubic growth. For the circular wall scenario
the situation is reversed. While CGBA here turns out to be painfully slow for the
larger examples, DBA seems perfectly suited to the problem and requires not
much more than linear time in the number of cameras. Note here that the Schur

Conjugate Gradient Bundle Adjustment 123

2

0

2 2

0

2
2

1

0

1

10

5

0

5

10

5

0

5

100 200 300 400
0

10

20

30

40

50

60

Number of Cameras

T
im

e
to

 C
on

ve
rg

en
ce

 (
s)

Iterative
Direct

50 100 150 200 250 300

0

20

40

60

80

100

120

Number of Cameras

T
im

e
to

 C
on

ve
rg

en
ce

 (
s)

Iterative
Direct

Fig. 1. Top-left: An instance of the sphere problem with 50 cameras and 500 3D points.
Top-right: Points arranged along a circular wall, with 64 cameras viewing the wall from
the inside. Bottom-left: Time to convergence vs. number of cameras for the sphere
problem. This configuration is ideally suited to CG based bundle adjustment which
displays approximately linear complexity. Bottom-right: Time vs. problem size for the
circular wall. The CG based solver takes very long to converge, whereas the direct
solver shows an almost linear increase in complexity, far from the theoretical O(N3)
worst case behaviour.

complement in the sphere setup is almost completely dense whereas in the wall
case it is extremely sparse. The radically different results on these data sets can
probably understood like this. Since the CG algorithm in essence is a first order
method ”with acceleration”, information has to flow from variable to variable.
In the sphere case, the distance between cameras in the camera graph is very
small with lots of connections in the whole graph. This means that information
gets propagated very quickly. In the wall problem though, cameras on opposite
sides of the circular configuration are very far apart in the camera graph which
yields a large number of CG iterations. For the direct approach ”stiffness” of the
graph does not matter much. Instead fill-in during Cholesky factorization is the
dominant issue. In the wall problem, the Schur complement will have a narrow
banded structure and is thus possible to factorize with minimal fill-in.

8 Community Photo Collections

In addition to the synthetic experiments, we have compared the algorithms on
four real world data sets based on images of four different locations downloaded
from the internet: The St. Peters church in Rome, Trafalgar square in London,

124 M. Byröd and K. Åström

the old town of Dubrovnik and the San Marco square in Venice. The unoptimized
models were produced using the systems described in [19,20,1].

The models produced by these systems initially contained a relatively large
number of outliers, 3D points with extremely short baselines and very distant
cameras with a small field of view. Each of these elements can have a very large
impact on the convergence of bundle adjustment (both for iterative and direct
solvers). To ensure an informative comparison, such sources of large residuals and
ill conditioning were removed from the models. This meant that approximately
10% of the cameras, 3D points and reprojections were removed from the models.

In addition, we used the available calibration information to calibrate all cam-
eras before bundle adjustment. In general this gave good results but for a very
small subset of cameras (< 0.1%) the calibration information was clearly incor-
rect and these cameras were removed as well from the models.

For each data set we ran bundle adjustment for 50 iterations and measured
the total time and final RMS reprojection error in pixels. All experiments were
done on a standard PC equipped with 32GB of RAM to be able to process large
data sets. For the CG based solvers, we used a constant η = 0.1 forcing sequence
and set the maxium number of linear iterations to 100. The results can be found
in Table 1. Basically, we observed the same general pattern for all four data sets.
Due to the light weight nature of the CG algorithms, these showed very fast
convergence (measured in seconds) in the beginning. At a certain point close to
the optimum however, convergence slowed down drastically and in none of the
cases did either of the CG methods run to complete convergence. This is likely
to correspond to the bound by the condition number of the Jacobian (which we
were not able to compute due to the sizes of these problems). In other words,
the CG algorithms have problems with the eigenmodes corresponding to the
smallest singular values of the Jacobian. This situation makes it hard to give a
fair comparison between direct BA and BA based on an iterative linear solver.
The choice has to depend on the application and desired accuracy. In all cases,

Table 1. Performance statistics for the different algorithms on the four community
photo data sets

Data set m n nr Algorithm Total Time Final Error (Pixels)

St. Peter 263 129502 423432
DBA 113s 2.18148

CGBA 441s 2.23135
CG 629s 2.23073

Trafalgar Square 2897 298457 1330801
DBA 68m 1.726962

CGBA 18m 1.73639
CG 38m 1.75926

Dubrovnik 4564 1307827 8988557
DBA 307m 1.015706

CGBA 130m 1.015808
CG 236m 1.015812

Venice 13666 3977377 28078869
DBA N/A N/A

CGBA 230m 1.05777
CG N/A N/A

Conjugate Gradient Bundle Adjustment 125

0 50 100 150 200 250

0

50

100

150

200

250

Fig. 2. Sparsity plots for the reverse Cuthill-McKee reordered Schur complements.
Top-left: St. Peter, top-right: Trafalgar, bottom-left: Dubrovnik, bottom-right: Venice.

CGBA was about two times faster than CG as expected and in general produced
slightly more accurate results.

For the Venice data set, we were not able to compute the Cholesky factoriza-
tion of the Schur complement since we ran out of memory. Similarly, there was
not enough memory in the case of CG to store both J and JT J . While Cholesky
factorization in this case is not likely to be feasible even with considerably more
memory, a more clever implementation would probably not require both J and
JT J and could possibly allow CG to run on this instance as well. However, as can
be seen from the other three examples, the relative performance of CG and CGBA
is pretty constant so this missing piece of information should not be too serious.

As observed in the previous section, problem structure largely determines the
convergence rate of the CG based solvers. In Figure 2, sparsity plots for the
Schur complement in each of the four data sets is shown. To reveal the structure
of the problem we applied reverse Cuthill-McKee reordering (this reordering was
also applied before Cholesky factorization in DBA), which aims at minimizing
the bandwidth of the matrix. As can be seen, this succeeds quite well in the
case of St. Peter and Trafalgar. In particular in the Trafalgar case, two almost
independent sets are discovered. As discussed in the previous section, this is

126 M. Byröd and K. Åström

a disadvantage for the iterative solvers since information does not propagate as
easily in these cases. In the case of Dubrovnik and in particular Venice, the graph
is highly connected, which is beneficial for the CG solvers, but problematic for
direct factorization.

9 Conclusions

In its current state, conjugate gradient based bundle adjustment (on most prob-
lems) is not in a state where it can compete with standard bundle adjustment
when it comes to absolute accuracy. However, when good accuracy is enough,
these solvers can provide a powerful alternative and sometimes the only alter-
native when the problem size makes Cholesky factorization infeasible. A typical
application would be intermediate bundle adjustment during large scale incre-
mental SfM reconstructions. We have presented a new conjugate gradient based
bundle adjustment algorithm (CGBA) which by making use of ”Property A”
of the preconditioned system and by avoiding JT J is about twice as fast as
”naive” bundle adjustment with conjugate gradients and more precise. An inter-
esting path for future work would be to try and combine the largely orthogonal
strengths of the direct versus iterative approaches. One such idea would be to
solve a simplified (skeletal) system using a direct solver and use that as a pre-
conditioner for the complete system.

References

1. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a
day. In: Proc. 12th Int. Conf. on Computer Vision, Kyoto, Japan (2009)

2. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo col-
lections. Int. Journal of Computer Vision 80, 189–210 (2008)

3. Mordohai, A.F.: Towards urban 3d reconstruction from video (2006)
4. Cornelis, N., Leibe, B., Cornelis, K., Gool, L.V.: 3d urban scene modeling integrat-

ing recognition and reconstruction. Int. Journal of Computer Vision 78, 121–141
(2008)

5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004)

6. Triggs, W., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment: A
modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999.
LNCS, vol. 1883, p. 298. Springer, Heidelberg (2000)

7. Lourakis, M.I.A., Argyros, A.A.: Sba: A software package for generic sparse bundle
adjustment. ACM Trans. Math. Softw. 36, 1–30 (2009)

8. Byröd, M., Åström, K.: Bundle adjustment using conjugate gradients with multi-
scale preconditioning. In: Proc. British Machine Vision Conference, London, United
Kingdom (2009)

9. Young, D.M.: Iterative solution of large linear systems. Academic Press, New York
(1971)

10. Nielsen, H.B.: Damping parameter in marquardt’s method. Technical Report IMM-
REP-1999-05, Technical University of Denmark (1999)

Conjugate Gradient Bundle Adjustment 127

11. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. Journal of Research of the National Bureau of Standards 49, 409–436 (1952)

12. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

13. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. The
Computer Journal 7, 149–154 (1964)

14. Björck, Å.: Numerical methods for least squares problems. SIAM, Philadelphia
(1996)

15. Paige, C.C., Saunders, M.A.: Lsqr: An algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

16. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer, Berlin (2006)
17. Golub, G.H., Manneback, P., Toint, P.L.: A comparison between some direct and

iterative methods for certian large scale godetic least squares problems. SIAM J.
Sci. Stat. Comput. 7, 799–816 (1986)

18. Reid, J.K.: The use of conjugate gradients for systems of linear equations possessing
“property a”. SIAM Journal on Numerical Analysis 9, 325–332 (1972)

19. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo col-
lections. International Journal of Computer Vision 80, 189–210 (2007)

20. Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from mo-
tion. In: Proc. Conf. Computer Vision and Pattern Recognition, Anchorage, USA
(2008)

	Conjugate Gradient Bundle Adjustment
	Introduction
	Problem Formulation
	The Linear and Non-linear Conjugate Gradient Algorithms
	Conjugate Gradients for Least Squares
	Inexact Gauss-Newton Methods
	Preconditioning
	Block QR Preconditioning
	Property A

	Experiments
	Synthetic Data: When Is the CG Algorithm a Good Choice?

	Community Photo Collections
	Conclusions
	References

