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Abstract

In this expository paper, we survey some of the latest developments on using precondi-
tioned conjugate gradient methods for solving Toeplitz systems. One of the main results
is that the complexity of solving a large class of n-by-n Toeplitz systems is reduced to
O(n logn) operations as compared to O(n log2 n) operations required by fast direct Toeplitz
solvers. Di�erent preconditioners proposed for Toeplitz systems are reviewed. Applications
to Toeplitz-related systems arising from partial di�erential equations, queueing networks,
signal and image processing, integral equations, and time series analysis are given.
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1 Introduction

1.1 Background

An n-by-n matrix An is said to be Toeplitz if

An =

2
66666664

a0 a�1 � � � a2�n a1�n
a1 a0 a�1 a2�n
... a1 a0

. . .
...

an�2
. . .

. . . a�1
an�1 an�2 � � � a1 a0

3
77777775
; (1.1)

i.e., An is constant along its diagonals. The name Toeplitz originates from the work of Otto
Toeplitz [180] in the early 1900's on bilinear forms related to Laurent series, see Grenander and
Szeg�o [91] for details. We are interested in solving the Toeplitz system Anx = b.

Toeplitz systems arise in a variety of applications in mathematics and engineering. In signal
processing, solutions of Toeplitz systems are required in order to obtain the �lter coe�cients
in the design of recursive digital �lters, see Chui and A. Chan [61] and Haykin [99, pp. 167{
168]. Time series analysis involves solutions of Toeplitz systems for the unknown parameters
of stationary auto-regressive models, see King et al. [125, pp. 368{379]. By using discrete
time and spatial sampling of the domain and the sinc function sin(�x)=(�x) as basis function
for approximating the initial data, the numerical solutions of inverse heat problems can be
obtained by solving a Toeplitz system, see Gilliam et al. [83]. Other applications involve
solutions of partial di�erential equations, solutions of convolution-type integral equations, Pad�e
approximations, and minimum realization problems in control theory, see Bunch [23] and the
references therein. These applications have motivated both mathematicians and engineers to
develop speci�c algorithms catering to solving Toeplitz systems. We will call these algorithms
Toeplitz solvers.

Most of the early works on Toeplitz solvers were focused on direct methods. A straight-
forward application of the Gaussian elimination method will result in an algorithm of O(n3)
complexity. However, since n-by-n Toeplitz matrices are determined by only (2n � 1) entries
rather than n2 entries, it is expected that the solution of Toeplitz systems can be obtained in
less than O(n3) operations. There are a number of Toeplitz solvers that decrease the complexity
to O(n2) operations, see, for instance, Levinson (1946) [134], Baxter (1961) [8], Trench (1964)
[182], and Zohar (1974) [199]. These algorithms require the invertibility of the (n�1)-by-(n�1)
principal submatrix of An. Around 1980, fast direct Toeplitz solvers of complexity O(n log2 n)
were developed, see, for instance, Brent, Gustavson, and Yun (1980) [20], Bitmead and Anderson
(1980) [16], Morf (1980) [143], de Hoog (1987) [108], and Ammar and Gragg (1988) [4]. These
algorithms require the invertibility of the bn=2c-by-bn=2c principal submatrix of An.

The stability properties of these direct methods for symmetric positive de�nite Toeplitz
systems are discussed in Bunch [23]. It is noted that if An has a singular or ill-conditioned
principal submatrix, then a breakdown or near-breakdown can occur in these algorithms. Such
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breakdowns will cause numerical instabilities in subsequent steps of the algorithms and result in
inaccurately computed solutions. The question of how to avoid breakdowns or near-breakdowns
by skipping over singular submatrices or ill-conditioned submatrices has been studied extensively,
and various such algorithms have been proposed, see [58, 70, 89, 93, 102, 157, 175, 198]. In
particular, T. Chan and Hansen (1992) [58] were the �rst to derive a look-ahead variant of the
Levinson algorithm. The basic idea is to relax the inverse triangular decomposition slightly and
to compute an inverse block factorization of the Toeplitz matrices with a block diagonal matrix
instead of a scalar diagonal matrix. Other look-ahead extensions of fast Toeplitz solvers can be
found in [77, 80, 95].

Recent research on using the preconditioned conjugate gradient method as an iterative
method for solving Toeplitz systems has brought much attention. One of the main important
results of this methodology is that the complexity of solving a large class of Toeplitz systems
can be reduced to O(n log n) operations as compared to the O(n log2 n) operations required
by fast direct Toeplitz solvers, provided that a suitable preconditioner is chosen under certain
conditions on the Toeplitz operator. Besides the reduction of the arithmetic complexity, there
are large classes of important Toeplitz matrices where the fast direct Toeplitz solvers are notori-
ously unstable, e.g., inde�nite and certain non-Hermitian Toeplitz matrices. Therefore, iterative
methods provide alternatives to solving these Toeplitz systems. In this paper, we will survey
results for these iterative Toeplitz solvers and give some insight in how to construct e�ective
preconditioners for them. Applications of these Toeplitz solvers to some practical problems will
also be given.

1.2 Toeplitz Matrices and Circulant Matrices

Let us begin by introducing the notation that will be used throughout the paper. Let C2� be
the set of all 2�-periodic continuous real-valued functions de�ned on [��; �]. For all f 2 C2�,
let

ak =
1

2�

Z �

��
f(�)e�ik�d�; k = 0;�1;�2; � � �

be the Fourier coe�cients of f . For all n � 1, let An be the n-by-n Toeplitz matrix with entries
aj;k = aj�k, 0 � j; k < n. The function f is called the generating function of the sequence of
Toeplitz matrices An, see Grenander and Szeg�o [91]. Since f is a real-valued function, we have

a�k = �ak; k = 0;�1;�2; � � � :

It follows that An are Hermitian matrices. Note that when f is an even function, the matrices
An are real symmetric. We emphasize that in practical applications, the functions f are readily
available. Typical examples of generating functions are the kernels of Wiener-Hopf equations,
see Gohberg and Fel'dman [85, p.82], the functions which give the amplitude characteristics of
recursive digital �lters, see Chui and A. Chan [61], the spectral density functions in stationary
stochastic processes, see Grenander and Szeg�o [91, p.171], and the point-spread functions in
image deblurring, see Jain [116, p.269].
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We will solve the systems Anx = b by conjugate gradient methods. The convergence rate
of the methods depends partly on how clustered the spectra of the sequence of matrices An are,
see Axelsson and Barker [7, p.24]. The clustering of the spectra of a sequence of matrices is
de�ned as follows:

De�nition 1 A sequence of matrices fAng1n=1 is said to have clustered spectra around 1 if for
any given � > 0, there exist positive integers n1 and n2 such that for all n > n1, at most n2
eigenvalues of the matrix An � In have absolute value larger than �.

For Toeplitz matrices, we note that there is a close relationship between the spectrum of An

and its generating function f .

Theorem 1 (Grenander and Szeg�o [91, pp.63{65]) Let f 2 C2�. Then the spectrum
�(An) of An satis�es

�(An) � [fmin; fmax]; 8n � 1; (1.2)

where fmin and fmax are the minimum and maximum values of f , respectively. Moreover, the
eigenvalues �j(An), j = 0; 1; : : : ; n� 1, are equally distributed as f(2�j=n), i.e.,

lim
n!1

1

n

n�1X
j=0

�
g(�j(An))� g(f(

2�j

n
))

�
= 0 (1.3)

for any continuous function g de�ned on [��; �].

The equal distribution of eigenvalues of Toeplitz matrices indicates that the eigenvalues will
not be clustered in general. To illustrate this, consider the 1-dimensional discrete Laplacian
matrix

An = tridiag [�1; 2;�1]:
Its eigenvalues are given by

�j(An) = 4 sin2(
�j

n+ 1
); 1 � j � n:

For n = 32, the eigenvalues of An are depicted in Figure 1.

-
0 1 2 3 4

Figure 1: Spectrum of 1-D discrete Laplacian: A32 = tridiag [�1; 2;�1].
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An n-by-n matrix Cn is said to be circulant if

Cn =

2
66666664

c0 c�1 � � � c2�n c1�n
c1 c0 c�1 c2�n
... c1 c0

. . .
...

cn�2
. . .

. . . c�1
cn�1 cn�2 � � � c1 c0

3
77777775
;

where c�k = cn�k for 1 � k � n� 1. Circulant matrices are diagonalized by the Fourier matrix
Fn, i.e.,

Cn = F �
n�nFn (1.4)

where the entries of Fn are given by

[Fn]j;k =
1p
n
e2�ijk=n; 0 � j; k � n� 1;

and �n is a diagonal matrix holding the eigenvalues of Cn, see for instance Davis [69, p.73].
We note that �n can be obtained in O(n logn) operations by taking the fast Fourier transform
(FFT) of the �rst column of Cn. For the fast Fourier transform algorithm, we refer to Cooley
and Tukey [66]. In fact, the diagonal entries �k of �n are given by

�k =
n�1X
j=0

cje
2�ijk=n; k = 0; : : : ; n� 1: (1.5)

Once �n is obtained, the products Cny and C�1
n y for any vector y can be computed by FFTs

in O(n log n) operations using (1.4).

1.3 The Conjugate Gradient Method for Toeplitz Matrices

The conjugate gradient method is an iterative method for solving Hermitian positive de�nite
matrix systems. The algorithm of the method can be found in Golub and Van Loan [88, pp.
516{527]. In each iteration, it requires two inner products of n-vectors and one multiplication
of the coe�cient matrix with an n-vector. Storage for four temporary n-vectors is needed but
there is no explicit storage required for the coe�cient matrix.

Let f 2 C2�. For simplicity, let us assume for the moment that f is positive, i.e., fmin > 0.
Then by (1.2), An are positive de�nite for all n. Consider applying the conjugate gradient
method to solve these symmetric positive de�nite Toeplitz systems Anx = b. In each iteration,
besides the two inner products required, one matrix-vector multiplication Any is also needed.
That can be computed by FFTs by �rst embedding An into a 2n-by-2n circulant matrix, i.e.,"

An �
� An

# "
y
0

#
=

"
Any
y

#
; (1.6)
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see Strang [172], and then carrying out the multiplication by using the decomposition as in (1.4).
The matrix-vector multiplication thus requires O(2n log(2n)) operations. It follows that the
total number of operations per iteration is of O(n logn) operations. As for the storage required,
besides the four temporary n-vectors, we need an extra 2n-vector for storing the eigenvalues of
the embedded circulant matrix given in (1.6).

The convergence rate of the conjugate gradient method is well studied, see Axelsson and
Barker [7, p.24]. It depends on the condition number of the matrix An and how clustered the
spectrum of An is. If the spectrum is not clustered, as is usually the case for Toeplitz matrices
(cf. Theorem 1), a good estimate of the convergence rate is given in terms of the largest and
smallest eigenvalues of An. Using (1.2), this estimate can be expressed as

keqkAn
ke0kAn

< 2

 p
fmax �

p
fminp

fmax +
p
fmin

!q

;

where eq is the error vector at the qth iteration and jjxjj2An � x�Anx. This indicates that the
rate of convergence is linear. Thus, the method will converge in a constant number of iterations,
and hence the complexity of solving the Toeplitz system is O(n logn). However, we remark that
if fmax=fmin is large, the constant in the operation count will be large and hence the convergence
will be very slow.

One way to speed up the convergence rate of the method is to precondition the Toeplitz
system. Thus, instead of solving Anx = b, we solve the preconditioned system

P�1
n Anx = P�1

n b: (1.7)

The matrix Pn, called the preconditioner, should be chosen according to the following criteria:

� Pn should be constructed within O(n logn) operations.

� Pnv = y should be solved in O(n logn) operations.

� The spectrum of P�1
n An should be clustered.

The �rst two criteria are to keep the operation count per iteration within O(n logn) as that
is the count for the non-preconditioned system. The third criterion comes from the fact that
the more clustered the eigenvalues are, the faster the convergence of the method will be, see for
instance [139, pp. 249-251] and [7, pp. 27-28]. If P�1

n An has a clustered spectrum as de�ned in
De�nition 1, then the conjugate gradient method, when applied to solving the preconditioned
system (1.7), converges superlinearly for large n, see [49]. More precisely, for any given � > 0,
there exists a constant c(�) > 0 such that the error vector eq of the preconditioned conjugate
gradient method at the qth iteration satis�es

jjjeqjjj
jjje0jjj � c(�)�q (1.8)

where
jjjvjjj2 � v�P�1=2

n AnP
�1=2
n v:
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The main aim of this paper is to review di�erent preconditioners developed for Toeplitz
systems that satisfy the three criteria mentioned earlier. We will also study applications to
Toeplitz-related systems arising from partial di�erential equations, queueing networks, signal
and image processing, integral equations, and time series analysis. For simplicity, we will drop
the subscripts on matrices when their dimensions are apparent. The outline of the paper is as
follows. In x2, we survey the use of circulant matrices as preconditioners for Toeplitz matrices.
In x3, other useful and successful non-circulant preconditioners for Toeplitz matrices are also
considered. Applications of preconditioned conjugate gradient methods for Toeplitz-related
systems are discussed in x4. Finally, concluding remarks are given in x5.

2 Circulant Preconditioners for Toeplitz Systems

2.1 Circulant Preconditioners

In 1986, Strang [172] and Olkin [155] independently proposed the use of circulant matrices to
precondition Toeplitz matrices in conjugate gradient iterations. Part of their motivation is to
exploit the fast inversion of circulant matrices. Numerical results in [173, 155] suggest that the
method converges very fast for a wide range of Toeplitz matrices. This has later been proved
theoretically in [49] and in other papers for other circulant preconditioners. In this subsection,
we will give a brief account of these developments.

With circulant matrices as preconditioners, in each iteration, we have to solve a circulant
system. From (1.4), we see that circulant matrices can be diagonalized by discrete Fourier ma-
trices, and hence the inversion of n-by-n circulant systems can be done in O(n log n) operations
by using FFTs of size n. In contrast, by (1.6), we see that the cost of computing Ay, which
is also required in each iteration whether the system is preconditioned or not, is done by using
FFTs of size 2n. Notice that if FFT is used to compute the discrete Fourier transform of a
2n-vector for which the even discrete Fourier transform components are already known, then
the cost is the same as carrying out a length n FFT, see Linzer [136] for details. Thus, the cost
per iteration of the circulant preconditioned conjugate gradient method is roughly 1.25 times
of that required by the method without using preconditioners. We remark that Huckle [113]
has also discussed di�erent ways to reduce the number of FFTs in the iterative scheme, even
when n is not a power of 2. In particular, he has proposed a way to compute Ay such that
the computational cost per iteration of the preconditioned system is nearly the same as that
required by the non-preconditioned system.

We emphasize that the use of circulant matrices as preconditioners for Toeplitz systems
allows the use of FFT throughout the computations; and FFT is highly parallelizable and has
been implemented on multiprocessors e�ciently [2, p.238] and [174]. Since conjugate gradient
methods are easily parallelizable too [12, p.165], the circulant preconditioned conjugate gradient
method is well-adapted for parallel computing.

We remark that circulant approximations to Toeplitz matrices have been considered and
used for some time in signal processing (e.g. [158] and [171, pp.75{86]), time series analysis (e.g.
[21, p.133] and [169]), and image processing (e.g. [13], [123, p.147], and [5, p.136]). However,
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in these applications, the circulant approximations thus obtained were used to replace the given
Toeplitz matrices in subsequent computations. In contrast, circulant approximations are used
here only as preconditioners for Toeplitz systems and the solutions to the Toeplitz systems are
unchanged. In the following, we review some successful circulant preconditioners proposed for
Toeplitz matrices.

2.1.1 Strang's Preconditioner

The �rst circulant preconditioner is proposed by Strang [172] in 1986 and is de�ned to be
the matrix that copies the central diagonals of A and re
ects them around to complete the
circulant requirement. For A given by (1.1), the diagonals sj of the Strang preconditioner
S = [sk�`]0�k;`<n are given by

sj =

8><
>:

aj; 0 < j � bn=2c;
aj�n bn=2c < j < n;
sn+j; 0 < �j < n:

(2.1)

One of the interesting properties of S is that S minimizes

jjC �Ajj1 and jjC �Ajj1
over all Hermitian circulant matrices C, see [27]. The spectra of these circulant preconditioned
matrices have been analyzed by R. Chan and Strang [49].

Theorem 2 (R. Chan and Strang (1989) [49]) Let f be an even positive function in the
Wiener class, i.e., its Fourier coe�cients are absolutely summable,

1X
k=0

jakj <1:

Let A be generated by f . Then the spectra of S�1A are clustered around 1 for large n.

The main idea of their proof is to use an orthogonal transformation to transform S�A into
a Hankel matrix. Then Nehari's Theorem [62, p.120] is used to show that the limiting Hankel
operator is compact. Using the theory of collectively compact sets of operators [6, pp.65{70],
the spectra of the �nite Hankel matrices are then shown to be clustered. However, this proof
cannot be readily generalized to real-valued f , i.e., to Hermitian Toeplitz systems. Thus R.
Chan in [27] developed a purely linear algebra technique to extend the results in Theorem 2.
The approach is to decompose, for a given � > 0, the matrix S � A into a sum of two matrices
L and V , where rank L � c(�) and jjV jj2 � � and then apply Cauchy's interlace theorem [88].

Theorem 3 (R. Chan (1989) [27]) Let f be a positive function in the Wiener class. Then
the spectra of S�1A are clustered around 1 for large n.
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Using standard error analysis of the conjugate gradient method, we can then show that the
convergence rate of the method is superlinear, see (1.8). If extra smoothness conditions are
imposed on the generating function f , we can get more precise estimates on how jjjeqjjj in (1.8)
goes to zero.

Theorem 4 (Trefethen (1990) [181], Ku and Kuo (1993) [130, 131]) Suppose f is
a rational function of the form f = p=q where p and q are polynomials of degrees � and �,
respectively. Then the number of outlying eigenvalues of S�1A is exactly equal to 2maxf�; �g.
Hence, the method converges in at most 1 + 2maxf�; �g steps for large n. If however f(z) =P1

j=0 ajz
j is only analytic in a neighborhood of jzj = 1, then there exist constants c and 0 � r < 1

such that jjjeq+1jjj
jjje0jjj � cqrq

2=4+q=2: (2.2)

The idea of Trefethen's proof is to use rational approximation to bound the singular values
of the Hankel matrix considered in the proof of Theorem 2. It follows from (2.2) that

jjjeq+1jjj
jjjeqjjj � crq ! 0:

For generating functions f with Fourier coe�cients aj decaying at a slower rate, we have the
following two theorems.

Theorem 5 (R. Chan (1989) [27]) Let f be a �-times di�erentiable function with f (�) 2
L1[��; �] where � > 1 (i.e. jajj � ~c=j�+1 for some constant ~c.) Then there exists a constant c
which depends only on f and �, such that for large n,

jjje2qjjj
jjje0jjj �

cq

((q � 1)!)2��2
:

Theorem 5 was proved by using Cauchy's interlace theorem [88]. R. Chan and Yeung later
used Jackson's theorem [60] in approximation theory to prove a stronger result than that in
Theorem 5.

Theorem 6 (R. Chan and Yeung (1992) [55]) Let f be a Lipschitz function of order �,
0 < � � 1, or f has a continuous �th derivative, � � 1. Then there exists a constant c which
depends only on f and �, such that for large n,

jjje2qjjj
jjje0jjj �

qY
k=2

c log2 k

k2�
:

Theorems 2{6 give the rate at which the error goes to zero in terms of the rate of decay
of jaj j. To see if solving Toeplitz systems by preconditioned conjugate gradient methods is
more e�cient than by fast direct Toeplitz solvers, Linzer [137] has performed tests for Toeplitz
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matrices with di�erent condition numbers and coe�cients with di�erent decaying rate. His
results show that the iterative methods have the edge if jaj j decays like O(j�0:5) or faster for
matrices with condition number about 10, and the rate of decay required increases to O(j�2)
when the condition number is about 105.

We also remark that Huckle [114] has recently compared the number of 
oating point oper-
ations for iterative methods with that of direct Toeplitz solvers and superfast Toeplitz solvers.
He derived an upper bound of the number of PCG iterations such that the iterative method will
be better than direct and superfast Toeplitz solvers. His �nding shows that for positive de�nite
Toeplitz systems, PCG methods are competitive for large matrices with small number of PCG
iterations. In the inde�nite or near-singular case, iterative methods may give a higher accuracy.
In the unsymmetric case, only classical O(n2) direct Toeplitz solvers are available and therefore
the iterative methods will have the edge if a good preconditioner can be found, see x2.3.

2.1.2 T. Chan's Preconditioner

For an n-by-n Toeplitz matrix A, T. Chan's circulant preconditioner c(A) is de�ned to be the
minimizer of

jjC �AjjF (2.3)

over all n-by-n circulant matrices C, see T. Chan (1988) [57]. Here k � kF denotes the Frobenius
norm. In [57], the matrix c(A) is called an optimal circulant preconditioner because it minimizes
(2.3). The jth diagonals of c(A) are shown to be equal to

cj =

8<
:

(n� j)aj + jaj�n
n

; 0 � j < n;

cn+j; 0 < �j < n;
(2.4)

which are just the average of the diagonals of A, with the diagonals being extended to length n
by a wrap-around. By using (1.5) and (2.4), we see that the eigenvalues �k(c(A)) of c(A) are
given by

�k(c(A)) =
n�1X

j=�n+1

aj

�
1� jjj

n

�
e2�ijk=n; k = 0; : : : ; n� 1: (2.5)

As for the performance of c(A) as a preconditioner for A, R. Chan [28] proved that under the
Wiener class assumptions in Theorem 3 (i.e., f is a positive function with absolutely summable
Fourier coe�cients), the spectra of c(A)�1A and S�1A are asymptotically the same as n tends to
in�nity, i.e., limn!1 jjc(A)�1A�S�1Ajj2 = 0. Hence, c(A) works as well for Wiener class func-
tions as S does. Using Weierstrass' theorem to approximate 2�-periodic continuous generating
functions by Wiener class functions, we have the following theorem.

Theorem 7 (R. Chan and Yeung (1992) [53]) Let f be a positive function in C2�. Then
the spectra of c(A)�1A are clustered around 1 for large n.
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However, the Weierstrass approach used in proving this theorem does not work for Strang's
preconditioner. From Theorem 6, we see that the class of generating functions where Strang's
preconditioner works is the class of 2�-periodic Lipschitz continuous functions. We will discuss
this discrepancy in x2.2.

When A is not a Toeplitz matrix, the circulant minimizer c(A) of (2.3) can still be obtained
easily by taking the arithmetic average of the entries of A, i.e., its diagonals are given by

c` =
1

n

X
j�k=`(mod n)

aj;k; ` = 0; : : : ; n� 1; (2.6)

see [183]. Therefore, T. Chan's preconditioner is particularly useful in solving non-Toeplitz
systems arising from the numerical solutions of elliptic partial di�erential equations [31] and
Toeplitz least squares problems arising from signal and image processing [42, 43, 44, 59, 97,
152, 153, 159]. Convergence results for T. Chan's preconditioner have been established for these
problems, see x4.

Another interesting spectral property of c(A) is that if A is positive de�nite, then c(A) is
also positive de�nite. In fact, for an arbitrary Hermitian matrix A, we have

�min(A) � �min(c(A)) � �max(c(A)) � �max(A); (2.7)

see Tyrtyshnikov [183] and R. Chan, Jin, and Yeung [38]. We remark that Strang's precon-
ditioner does not satisfy (2.7) even for Toeplitz matrices, see R. Chan and Yeung [54]. In
addition, R. Chan and Wong [51] recently proved that for some Toeplitz matrices A, T. Chan's
preconditioner c(A) minimizes �(C�1A) over all n-by-n non-singular circulant matrices C.

Huckle in 1992 [111] proposed a preconditioner that is an extension of the T. Chan's pre-
conditioner. Let 1 � p � n. Huckle's circulant preconditioner H is de�ned to be the circulant
matrix with eigenvalues

�k(H) =
p�1X

j=�p+1

aj

�
1� jjj

p

�
e2�ijk=n; k = 0; : : : ; n� 1; (2.8)

cf. (2.5). Thus, when p = n, it is the T. Chan preconditioner. Besides Wiener class functions,
Huckle [110] has shown that H also works for generating functions with Fourier coe�cients ak
that satisfy

1X
k=�1

jkjjakj2 <1:

2.1.3 Preconditioners by Embedding

Let the Toeplitz matrix A be embedded into a 2n-by-2n circulant matrix"
A B�

B A

#
(2.9)
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R. Chan's circulant preconditioner R is de�ned as R = A + B, see R. Chan (1989) [27]. We
remark that T. Chan's and Huckle's preconditioners to A are just equal to R. Chan's precondi-
tioner obtained from the Toeplitz matrix with diagonals (1 � jjj=n)aj and maxf0; 1 � jjj=pgaj
respectively; i.e., the diagonals aj of A are damped by the factor (1�jjj=n) and maxf0; 1�jjj=pg
respectively, see (2.5) and (2.8).

Using the embedding (2.9), Ku and Kuo (1991) [128] constructed four di�erent precondi-
tioners Ki, 1 � i � 4, based on di�erent combinations of the matrices A and B. They are

K1 = A+B; K2 = A�B; K3 = A+ JB; K4 = A� JB

where J is the n-by-n anti-identity (reversal) matrix. We note that K2, K3, and K4 are not
circulant matrices.

2.1.4 Preconditioners by Minimization of Norms

Besides using the minimizer of kC �AkF as preconditioners for Toeplitz systems, minimizers of
other approximations have also been proposed and used. For instance, Tyrtyshnikov's circulant
preconditioner T (1992) [183] is de�ned to be the minimizer of

kI � C�1AkF (2.10)

over all non-singular circulant matrices C. In [183], T is called the superoptimal circulant
preconditioner because it minimizes (2.10) instead of (2.3) and is shown to be equal to

T = c(AA�)c(A)�1;

see also [38]. Tyrtyshnikov [183] showed that for a general positive de�nite Toeplitz matrix A, T
is also positive de�nite, cf. (2.7). Tismenetsky [179] and Sayed and Kailath [165] independently
proposed the same preconditioner.

Huckle [112] has considered the minimizer M by minimization of

jjI �C�1=2AC�1=2jjF ;
over all non-singular circulant matrices C. The constructions of T and M require O(n log n)
operations, see R. Chan, Jin, and Yeung [38], Tismenetsky [179], and Huckle [112], respectively.

Finally, we compare the performance of these preconditioners (R, fKig4i=1, T , and M) with
Strang's and T. Chan's preconditioners. It has been proved in R. Chan [27], R. Chan, Jin, and
Yeung [39], Ku and Kuo [128], and Huckle [112] that under the same Wiener class assumptions,
these circulant preconditioned systems have spectra that are asymptotically the same as Strang's
and T. Chan's circulant preconditioned systems. In particular, all these preconditioned systems
converge at the same rate for large n.

In the following, we illustrate the e�ectiveness of circulant preconditioners for Toeplitz sys-
tems by a numerical example. We use the continuous generating function

f(�) = �4 + 1; �� � � � �;
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in the test. Table 1 shows the numbers of iterations required to solve non-preconditioned systems
Ax = b and circulant preconditioned systems C�1Ax = C�1b for di�erent preconditioners. The
right hand side vector b is the vector of all ones. The zero vector is the initial guess. The stopping
criterion is when the residual vector rq at the qth iteration satis�es jjrqjj2=jjr0jj2 < 10�7. All
computations are done by Matlab.

n I S c(A) R K2 H T

16 8 8 8 6 6 8 8
32 20 8 7 5 5 10 16
64 37 6 7 5 5 7 18
128 56 5 6 5 5 7 13
256 67 5 6 5 5 6 10
512 70 5 6 5 5 6 8

Table 1: Number of iterations for Di�erent Preconditioned Systems.

In the table, I denotes that no preconditioner is used and H is Huckle's preconditioner with
p = n=2 (see (2.8)). We see from Table 1 that the number of iterations required for conver-
gence for non-preconditioned systems is much greater than those for circulant preconditioned
systems. Figure 2 depicts the spectra of the non-preconditioned matrix and the circulant pre-
conditioned matrices for di�erent circulant preconditioners. We note that the spectra of the
circulant preconditioned matrices are indeed clustered around 1.

2.2 Circulant Preconditioners from Kernel Functions

A unifying approach of constructing circulant preconditioners is given in R. Chan and Yeung
[54], where it is shown that most of the above mentioned circulant preconditioners can be derived
by using the convolution products of some well-known kernels with the generating function f .
For example, Strang's and T. Chan's circulant preconditioners are constructed by using the
Dirichlet and Fej�er kernels, respectively. To see this, we start by noting that the eigenvalues of
Strang's preconditioner S are given by

�j(S) = (D̂bn
2
c � f)(

2�j

n
); 0 � j < n;

where the convolution of the Dirichlet kernel with f is given by

(D̂bn
2
c � f)(�) �

1

2�

Z �

��
D̂bn

2
c(� � �)f(�)d�

and

D̂k(�) =
sin(k + 1

2)�

sin 1
2�

; k = 1; 2; : : : :
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Figure 2: Spectra of Preconditioned Matrices for n = 64.

The eigenvalues of T. Chan's preconditioner c(A) are given by

�j(c(A)) = (F̂n � f)(2�j
n

); 0 � j < n;

where the Fej�er kernels are given by

F̂k(�) =
1

k

 
sin k

2�

sin 1
2�

!2

; k = 1; 2; � � � :

Similarly, the eigenvalues of R. Chan's preconditioner R and Huckle's preconditioner H are
given by

�j(R) = (D̂n�1 � f)(2�j
n

); 0 � j < n

and

�j(H) = (F̂p � f)(2�j
n

); 0 � j < n;

respectively. The idea can be applied to design other circulant preconditioners C from kernels
Ĉn such as the von Hann kernel, Hamming kernel, and Bernstein kernel that are commonly used
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in function theory [190], signal processing [96], and time series analysis [160]. In [54], several
circulant preconditioners were constructed using this approach.

We remark that the convolution products of these kernels with f are just smooth approxi-
mations of the generating function f itself. R. Chan and Yeung proved that if the convolution
product is a good approximation of f , then the correspondingly constructed circulant matrix
will be a good preconditioner.

Theorem 8 (R. Chan and Yeung (1992) [54]) Let f 2 C2� be positive. Let Ĉn be a kernel
such that Ĉn � f tends to f uniformly on [��; �]. If C is the circulant matrix with eigenvalues
given by

�j(C) = (Ĉn � f)(2�j
n

); 0 � j < n;

then the spectra of C�1A are clustered around 1 for large n.

We have mentioned in x2.1 that Strang's and T. Chan's preconditioners are fundamentally
di�erent, where Strang's preconditioners work for Lipschitz continuous functions (Theorem 6)
and T. Chan's preconditioners work for 2�-periodic continuous functions (Theorem 7). That
can be explained by the associations of Strang's preconditioner with the Dirichlet kernel and
T. Chan's preconditioner with the Fej�er kernel. It is well-known in Fourier analysis that if f
is 2�-periodic continuous (or respectively Lipschitz continuous), then the convolution product
of the Fej�er kernel (or respectively the Dirichlet kernel) with f will converge to f uniformly on
[��; �], see Walker [190, p.79, p.52].

In addition, it is interesting to note that for a piecewise continuous function f , the convolution
product with the Fej�er kernel will no longer converge to f uniformly on [��; �]. Therefore, for
generating functions that are only piecewise continuous, we don't expect the spectra of c(A)�1A
to be clustered around 1.

Theorem 9 (Yeung and R. Chan (1993) [195]) Let f be a non-negative piecewise contin-
uous function on [��; �]. Then for any given � > 0, the number of eigenvalues of c(A)�1A that
lie outside the interval (1 � �; 1 + �) is at least of O(log n) for n su�ciently large. If moreover
f is strictly positive, then the number of outlying eigenvalues is exactly of O(logn).

The theorem is established by noting that A�c(A) is orthogonally similar to a Hankel matrix.
Then Widom's theorem [192], which gives an estimate of the eigenvalues of the Hilbert matrices,
is used to estimate the number of outlying eigenvalues of A�c(A). Numerical examples are given
in [195] to verify that the convergence rate of the method will no longer be superlinear in general.
In fact, the numbers of iterations required for convergence do increase like O(log n). These
results have recently been extended by Tyrtyshnikov [184, 186]. In [184], he has established a
generalized Szeg�o theorem that if f is in L2, then the singular values of An is equally distributed
(in a generalized sense) as jf(x)j (cf. (1.3)). He then used the result to prove that if f is in L2,
then the number of outlying eigenvalues of the preconditioned system grows no more than o(n).
In [186], he further extended the results of circulant preconditioners for products of Toeplitz
matrices.
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2.3 Non-Hermitian Type Toeplitz Systems

In this subsection, we study Toeplitz matrices A generated by complex-valued functions. We
note that such A are complex non-Hermitian matrices. In general the fast direct Toeplitz solvers
are not applicable, and neither is the conjugate gradient method when applied to the system
Ax = b. For such matrices A, one can apply the conjugate gradient method to the normal
equations A�Ax = A�b. Another way of solving non-Hermitian Toeplitz systems is to employ
some CG-like method [78] such as restarted GMRES [164] or TFQMR [76]. To speed up the
CG-like methods, we can choose a matrix C such that the singular values of the preconditioned
matrices C�1A are clustered.

Let us begin with skew-Hermitian type Toeplitz matrices, i.e., Toeplitz matrices of the form

A =

2
66666664

a0 �a1 � � � �an�2 �an�1
a1 a0 �a1 �an�2
... a1 a0

. . .
...

an�2
. . .

. . . �a1
an�1 an�2 � � � a1 a0

3
77777775
;

where a0 is a real number. Obviously, A = a0I +AS , where I is the identity matrix and AS is a
skew-Hermitian Toeplitz matrix. These systems or low rank perturbations of such systems often
appear in solving discretized hyperbolic di�erential equations, see Buckley [22] and Holmgren
and Otto [104, 105].

In [35], R. Chan and Jin used R. Chan's circulant preconditioners R de�ned in x2.1.3 to
precondition these skew-Hermitian Toeplitz matrices. Under the Wiener class assumptions on
the entries of the �rst column of A, they proved that the singular values of R�1A are clustered
around 1.

For Toeplitz matrices A generated by a complex-valued function, R. Chan and Yeung [56]
have proved that if the generating function is 2�-periodic continuous with no zeros on [��; �],
then the spectra of the iteration matrices (c(A)�1A)�(c(A)�1A) are clustered around 1. From
that they showed that if the condition number �(A) of A is of O(n�), � > 0, then the number of
iterations required for convergence is at most O(� log n). Hence the total complexity for solving
non-Hermitian type Toeplitz systems is of O(n log2 n). When � = 0, i.e., A is well-conditioned,
the method converges in O(1) steps and the complexity is reduced to O(n log n).

Numerical results in [56] shows that the requirements on f , namely that f has no zeros and
�(A) = O(n�) are indispensable in order to get the said convergence rate. Moreover, these two
conditions are mutually exclusive. For instance, if f(�) = ei�, then f has no zeros on [��; �] but
A is singular for all n. On the other hand, if f(�) = 4 sin2 �, then A is just the 1-dimensional
discrete Laplacian with �(A) = O(n2).

We remark that Ku and Kuo [130, 131, 132] have also considered solving non-symmetric
Toeplitz matrix systems by the preconditioned conjugate gradient method. In their papers, A
is assumed to be generated by complex-valued rational functions in the Wiener class, which
happens to be a subclass of the class of 2�-periodic continuous functions considered in [56].
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2.4 f!g-Circulant Preconditioners

Circulant matrices belong to the class of f!g-circulant matrices which are de�ned as follows:

De�nition 2 Let ! = ei�0 with �0 2 [��; �]. An n-by-n matrix W is said to be an f!g-circulant
matrix if it has the spectral decomposition

W = 
�F ��F
:

Here 
 = diag [1; !�1=n; : : : ; !�(n�1)=n] and � is a diagonal matrix containing the eigenvalues
of W .

Notice that f!g-circulant matrices are Toeplitz matrices with the �rst entry of each row ob-
tained by multiplying the last entry of the preceding row by !. In particular, f1g-circulant ma-
trices are circulant matrices, while f�1g-circulant matrices are skew-circulant matrices. Huckle
[111] and R. Chan and Jin [35] have used skew-circulant matrices as preconditioners for Toeplitz
matrices and proved that under the Wiener class assumptions, the spectra of these precon-
ditioned matrices are clustered around 1. Performances of general f!g-circulant matrices as
preconditioners for Toeplitz matrices are discussed in R. Chan and Ng [46] and Huckle [113].

2.5 General Remarks on Circulant Preconditioners

In this section, we have discussed many di�erent kinds of circulant preconditioners. We note
from Theorem 8 that most of them can be derived from the convolution approach. Moreover,
the theorem changes the problem of �nding a preconditioner to a problem in approximation
theory. In particular, using results in approximation theory, the theorem can give us a guideline
as to which preconditioner is better for a given generating function. For example, for 2�-periodic
continuous functions that are not in the Wiener class, T. Chan's preconditioner is better than
the Strang preconditioner. Also if we use a positive kernel to construct the preconditioner, then
the preconditioner retains positive de�niteness of the given Toeplitz matrix.

We emphasize that the assumptions on the generating functions f in the theorems in this
section are to simplify the arguments. The main thing required in the proof is not an explicit
form of f but a bound on the rate of decay of the diagonals fajg1j=0, see the de�nition of Wiener
class functions and also the statement of Theorem 5. Thus, for the circulant preconditioning
methods to work, there is no need to know the exact form of f , but just an estimate of the decay
rate of aj . Along this line, we remark further that Zygmund [200, p.183] has shown that if the
diagonals aj are convex, i.e., the second-order di�erences aj+1� 2aj + aj�1 � 0 for all j, then f
is non-negative. Moreover, if one of the second-order di�erences is positive, then f is positive.

3 Non-Circulant Preconditioners for Toeplitz Systems

3.1 Dense Toeplitz Preconditioners

As alternatives to circulant preconditioners, Toeplitz matrices have also been proposed and
analyzed as preconditioners for Toeplitz systems. We recall that Toeplitz matrix-vector products
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can be computed in O(n logn) operations by using FFTs. Thus, Toeplitz matrices themselves
will be good candidates for preconditioners.

In [46], R. Chan and Ng used the Toeplitz matrix ~A generated by 1=f to approximate the
inverse of the Toeplitz matrix A generated by f , i.e., the preconditioned matrix is ~AA. We
remark that the inverse of a Toeplitz matrix is non-Toeplitz in general, but is closely related to
Toeplitz matrices, see Friedlander et al. [81]. It has been proved in [46] that the spectrum of the
preconditioned matrix ~AA is clustered around 1. However, in general it may be di�cult to com-
pute the Fourier coe�cients of 1=f explicitly, and hence ~A cannot be formed e�ciently. R. Chan
and Ng [46] thus have derived families of Toeplitz preconditioners P (s) by using di�erent kernel
functions mentioned in x2.2 and di�erent levels of approximation for the Fourier coe�cients of
1=f . For the �rst level of approximation, s = 1, P (1) is the circulant preconditioner mentioned
in x2.2, depending on which kernel function is used. For integers s > 1, the preconditioner P (s)

thus constructed can be written as a sum of f!g-circulant matrices. More precisely,

P (s) =
s�1X
t=0

W (t);

where W (t) are fe�2�it=sg-circulant matrices.
Using this fact, we showed that given any Toeplitz matrix A and integer s > 1, we can

decompose A as

A =
s�1X
t=0

U (t);

where U (t) are f!g-circulant matrices. For s = 2, the formula just states that any Toeplitz
matrices can be written as the sum of a circulant matrix and a skew-circulant matrix, a fact
�rst discovered by Pustyl'nikov [161]. Using the decomposition, we showed further that if all
U (t) are invertible, then

P (s) =
s�1X
t=0

(U (t))�1:

We recall that in the additive Schwarz method for elliptic problems, a matrix A is �rst decom-
posed into the sum of individual projection matrices,

A =
s�1X
t=0

A(t);

and then the generalized inverses of these matrices are added back together to form a precondi-
tioner P for the original matrix A, i.e.,

P =
s�1X
t=0

A(t)+;

see Dryja and Widlund [72]. In this respect, our construction of the Toeplitz preconditioner
P (s) is very similar to the approach used in the additive Schwarz-type preconditioners.
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As for the convergence rate, R. Chan and Ng [46] proved that these preconditioned matrices
P (s)A have clustered spectra around 1, and numerical results show that under the Wiener class
assumption on the Toeplitz matrices, this method converges faster than those preconditioned
by circulant preconditioners.

Recall that in each iteration of the preconditioned conjugate gradient method, we require
the matrix-vector product P (s)y. Since P (s) is a Toeplitz matrix, the product can be computed
by using FFTs of size 2n in O(2n log(2n)) operations. As circulant matrix-vector multiplication
can be done by using FFTs of size n, the cost per iteration of this method is roughly 4/3 times
of that required by circulant preconditioned systems.

Another way of looking at these Toeplitz preconditioners is by embedding. For a given n-
by-n Toeplitz matrix A, we embed A into a sn-by-sn circulant matrix Csn with its �rst column
given by

[Csn]k;0 =

8><
>:

ak 0 < k < n;
0 n � k � sn� n;
ak�sn sn� n < k < sn:

The Toeplitz preconditioner P (s) is just equal to the leading n-by-n principal submatrix of C�1
sn .

Recently, Hanke and Nagy [98] independently considered this approach of constructing
Toeplitz preconditioners for band-Toeplitz matrices with bandwidth 2� + 1. The given band-
Toeplitz matrix is �rst embedded into an (n+ �)-by-(n+ �) circulant matrix Cn+� by dragging
down the diagonals to �ll the northeast and southwest corners of the expanded matrix. Then
the inverse of Cn+� is partitioned as

C�1
n+� =

"
B(1) B(2)

B(3) B(4)

#

where B(1) is a square matrix of size n. We note that since C�1
n+� is circulant, B(1) is a Toeplitz

matrix. Hanke and Nagy's preconditioned system is de�ned to be B(1)A.
In another development, Linzer [137] proposed using the Schur complement

B = B(1) �B(2)(B(4))�1B(3)

rather than B(1) in the preconditioning of band-Toeplitz matrices. We note that B is not
a Toeplitz matrix in general. However, since a circulant matrix can be diagonalized by the
discrete Fourier transform matrix, it follows that By can be computed by using FFTs of size
(n + �) and by solving the �-by-� Toeplitz system B(4)z = v. Linzer [137] showed that B
performs better than B(1) theoretically and numerically. We remark that Schur's complement
formula was used by Jain [117], Morf [143], and Bitmead and Anderson [16] to develop direct
methods for solving Toeplitz systems in signal processing.

3.2 Optimal Transform Based Preconditioners

From (1.4), we see that circulant matrices are precisely those matrices that can be diagonalized
by the discrete Fourier transform, a transform which has a fast algorithm for its computations.
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However, there are other transforms (for instance, the Hartley transform and the sine and cosine
transforms) with fast algorithms too, see [188]. It is therefore natural to consider using these
fast transforms to construct new classes of preconditioners for solving Toeplitz systems.

Recall that the optimal circulant preconditioners c(A), which are the minimizers of jjC�AjjF
over all circulant matrices C, are good preconditioners for Toeplitz systems, see x2.1.2. One may
therefore consider preconditioners that are minimizers of jjQ�AjjF over a set of matrices Q that
can be diagonalized by a fast discrete transform matrix 	. According to the terminology used
in T. Chan [57] for optimal circulant preconditioners (where the preconditioner is based on the
fast Fourier transform), we call these minimizers the optimal transform based preconditioners.

As the Frobenius norm is a unitary-invariant norm, the minimum of jjQ�AjjF over all Q of
the form Q = 	�	�, � a diagonal matrix, is attained at 	�	�. Here � is a diagonal matrix
with diagonal entries

�j;j = [	�A	]j;j; j = 1; : : : ; n: (3.1)

For Toeplitz matrices, (3.1) can be computed directly for optimal transform based precondition-
ers. However, computing � using (3.1) is costly even when the matrix-vector product 	y can be
done e�ciently. We emphasize that to construct T. Chan's minimizers economically, we exploit
the fact that the class of circulant matrices has a very nice basis, namely the shift operator (i.e.
the circulant matrix with [0; : : : ; 0; 1] as its �rst row) and its powers. Given another transform
matrix 	, in order to construct its minimizer e�ciently, we need to �nd matrices having special
algebraic structures to characterize all matrices that can be diagonalized by 	. This is the
crucial step in �nding a fast algorithm for obtaining the minimizers.

In the following, optimal sine transform based and optimal Hartley transform based precon-
ditioners for symmetric Toeplitz matrices A are considered. The constructions of such precon-
ditioners require O(n) operations for Toeplitz matrices, the same count as that for the optimal
circulant preconditioner c(A). Similar to T. Chan's circulant preconditioner, these optimal
transform based preconditioners are also de�ned for arbitrary matrices. In general, the con-
struction of such optimal approximations for any given n-by-n matrix is of O(n2) operations,
see R. Chan, Ng, and Wong [48].

3.2.1 Optimal Sine Transform Based Preconditioner

The (j; k) entry of the n-by-n discrete sine transform matrix 	(s) is given by

s
2

n+ 1
sin(

�jk

n+ 1
); 1 � j; k � n: (3.2)

For any n-vector v, the matrix-vector product 	(s)v can be done in O(n logn) operations by the
fast sine transforms, see for instance Yip and Rao [196]. We de�ne the optimal sine transform
based preconditioner s(A) to be the minimizer of jjQ�AjjF over the set of matrices Q that can
be diagonalized by 	(s).
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Let S be the vector space over IR containing all n-by-n matrices that can be diagonalized by
the discrete sine transform matrix 	(s), i.e.

S =
n
	(s)�	(s) j � is a diagonal matrix

o
:

Boman and Koltracht [19], Bini and Di Benedetto [15], and Huckle [114] independently proved
that a matrix belongs to S if and only if the matrix can be expressed as a special sum of a
Toeplitz matrix and a Hankel matrix. The idea of their proof is to exhibit a basis for S with
each element in the basis being a sparse matrix. The following theorem gives the basis that
Boman and Koltracht have derived.

Theorem 10 (Boman and Koltracht (1995) [19]) Let Zi, i = 1; : : : ; n, be n-by-n matrices
with the (h; k) entry given by

Zi(h; k) =

8>>><
>>>:

1 if jh� kj = i� 1,
�1 if h+ k = i� 2,
�1 if h+ k = 2n� i+ 3,
0 otherwise.

Then fZigni=1 is a basis for S.

Thus, the vector space S can be identi�ed as follows.

Theorem 11 (Boman and Koltracht (1995) [19], Bini and Di Benedetto (1990) [15],
and Huckle (1994) [114]) Any matrix Q in S can be written as Q = X � Y , where X is
a symmetric Toeplitz matrix with �rst column x = [x1; x2; : : : ; xn]

T , and Y is a Hankel matrix
with �rst column [0; 0; xn; : : : ; x3]

T and last column [x3; : : : ; xn; 0; 0]
T .

Similar to the case of circulant matrices (cf. (1.5)), there is a relationship between the �rst
column of matrices Q in S and their eigenvalues. For any Q in S, its eigenvalues can be obtained
by multiplying the �rst column of Q by 	(s), which can be done in O(n log n) operations by
fast sine transforms. Hence, any matrix in S is determined by its �rst column. The following
theorem gives the explicit formula for the entries of the �rst column of s(A).
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Theorem 12 (R. Chan, Ng, and Wong [48]) Let A be an n-by-n symmetric Toeplitz matrix.
Let [s1; s2; : : : ; sn]

T be the �rst column of s(A). Then

sk =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

a0 �
�
n� 2

n+ 1

�
a2; k = 1;

a1 �
�
n� 3

n+ 1

�
a3; k = 2;

�
n� k + 3

n+ 1

�
ak�1 �

�
n� k � 1

n+ 1

�
ak+1; k = 3; 4; : : : ; n� 2;

�
4

n+ 1

�
an�2 k = n� 1;

�
3

n+ 1

�
an�1 k = n:

We see that the cost of constructing the minimizer s(A) is O(n) operations.

3.2.2 Optimal Hartley Transform Based Preconditioner

The (j; k) entry of the n-by-n discrete Hartley transform matrix 	(h) is given by

1p
n
cos(

2�jk

n
) +

1p
n
sin(

2�jk

n
); 0 � j; k � n� 1:

The discrete Hartley transform of any n-vector can be computed in O(n log n) real operations.
Bini and Favati [14] �rst characterized the class of matrices that can be diagonalized by the
discrete Hartley transform, and showed that the class is the set of matrices that can be expressed
as a special sum of a circulant matrix and a Hankel matrix.

Theorem 13 (Bini and Favati (1993) [14]) Any matrix Q that can be diagonalized by 	(h)

can be expressed as
Q =W +XY; (3.3)

where W is a circulant matrix, Y is a skew-circulant matrix with the �rst entry of its �rst
column being zero and

X =

2
66666664

1 0 � � � 0 0
0 . .

.
. .
.

1
... . .

.
. .
.

. .
.

0

0 . .
.

. .
.

. .
. ...

0 1 0 � � � 0

3
77777775
:
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Using Theorem 13, Bini and Favati [14] then determined the minimizer h(A) of kQ � AkF
over all matrices that can be diagonalized by 	(h). As before the cost of constructing h(A)
is O(n) operations and its eigenvalues can be computed in O(n logn) operations by using fast
Hartley transforms.

Theorem 14 (Bini and Favati (1993) [14]) Let A be a symmetric Toeplitz matrix. Let w
and y be the �rst columns of W and Y of h(A) as de�ned in (3.3). Then we have

wk =
(n� k)ak + kan�k

n
; k = 0; 1; : : : ; n� 1

and

yk =

8<
:

0; k = 0;
ak � an�k

n
; k = 1; 2; : : : ; n� 1:

We note that the optimal circulant preconditioner c(A) is just equal to the circulant part of
h(A). As for how good the optimal sine transform based and Hartley transform based precondi-
tioners are as preconditioners for Toeplitz systems, R. Chan, Ng, and Wong [48], Bini and Favati
[14], Bini and Di Benedetto [15], and Jin [119] proved that they both have the same convergence
properties as the optimal circulant preconditioners. More precisely, if a given Toeplitz matrix
A is generated by a 2�-periodic positive continuous function, then both the spectra of s(A)�1A
and h(A)�1A are clustered around 1. However, numerical results given in R. Chan, Ng, and
Wong [48], Bini and Favati [14], and Jin [119] show that the convergence performance of these
new transform based preconditioners are better in terms of the number of iterations than that
of the optimal circulant preconditioner.

In addition, Boman and Koltracht [19] have constructed bases for the vector spaces of ma-
trices that can be diagonalized by some common fast transform matrices in engineering. These
transform matrices include di�erent cosine transform matrices and another sine transform matrix
de�ned in [188]. Thus, one can construct optimal transform based preconditioners correspond-
ing to these transform matrices. Boman and Koltracht [19] and R. Chan, Ching, and Wong [33]
have studied optimal cosine transform based preconditioners. The cost of construction is the
same as those of s(A) and h(A).

3.3 Band-Toeplitz Preconditioners

In this subsection, we consider Toeplitz matrices A generated by non-negative 2�-periodic real-
valued functions. We �rst recall that a function f is said to have a �th order zero at �0 if f(�0) = 0
and � is the smallest positive integer such that f (�)(�0) 6= 0 and f (�+1)(�) is continuous in a
neighborhood of �0. With the knowledge of the order of f at its minimum, we can give a better
estimate of the spectrum of A than that in (1.2).

Theorem 15 (R. Chan (1991) [29]) Suppose that f(�)� fmin has a unique zero of order 2�
at � = �0. Then for all n > 0, we have

�min(A) � d1fmin + d2n
�2� ;
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and

�(A) � d3n
2�

d4 + fminn2�
;

where fdig4i=1 are some constants independent of n.

Thus when fmin = 0, the condition number of A is not uniformly bounded and the Toeplitz
matrix A is ill-conditioned. Tyrtyshnikov has proved theoretically [185] that Strang's and T.
Chan's preconditioners will fail in this case. In fact, he showed that the numbers of outlying
eigenvalues of S�1A and c(A)�1A are of O(n�=(�+�)) and O(n�=(�+1)), respectively. Here, � is
the degree of smoothness of the function f , and � is the order of f at the zeros. These results
were numerically veri�ed in Tyrtyshnikov and Strela [187].

Instead of �nding other possible circulant preconditioners, R. Chan [29] resorted to using
band-Toeplitz matrices as preconditioners. The motivation behind using band-Toeplitz matrices
is to approximate the generating function f by trigonometric polynomials of �xed degree rather
than by convolution products of f with some kernels. The advantage here is that trigonometric
polynomials can be chosen to match the zeros of f , so that the preconditioned method still
works when f has zeros.

Theorem 16 (R. Chan (1991) [29] and R. Chan and Ng (1993) [45]) Let f be a non-
negative piecewise continuous real-valued function de�ned on [��; �]. Suppose that f(�)� fmin

has a unique zero of order 2� at � = �0. Let B be the Toeplitz matrix generated by the function

b�(�) = [2� 2 cos(� � �0)]
� + fmin: (3.4)

Then �(B�1A) is uniformly bounded for all n > 0.

We note that B is a band matrix with bandwidth 2� + 1 and its diagonals can be obtained
by using Pascal's triangle. The band system By = z can be solved by using any band matrix
solver, see Golub and Van Loan [88], or Wright [193] for a parallel one. The cost of factorizing B
is about 1

2�
2n operations, and then each subsequent solve requires an extra (2�+1)n operations.

Hence, the total number of operations per iteration is of O(n logn) as � is independent of n.
When fmin = 0, the band preconditioner has improved the condition number from �(A) =

O(n2�) to �(B�1A) = O(1). Since the number of iterations required to attain a given tolerance
� is bounded by

1

2

q
�(B�1A) log(

2

�
) + 1;

see for instance [7, p.26], the overall work required to attain the given tolerance is reduced
from O(n�+1 logn) to O(n logn) operations. As for the storage, we just need an n-by-(2� + 1)
matrix to hold the factors of the preconditioner B. Thus, the overall storage requirement in the
conjugate gradient method is about (8 + �)n. Finally, we remark that similar results hold when
there are multiple points on [��; �] where f takes on its minimum value, see R. Chan [29].

The main drawback of using these band-Toeplitz matrices as preconditioners is that when
f is positive, these preconditioned systems converge much slower than those preconditioned
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by circulant preconditioners. Therefore, R. Chan and Tang [50] designed other kinds of band-
Toeplitz preconditioners such that their preconditioned systems converge at the same rate as
the circulant preconditioned systems even when f is positive. Their idea is to increase the
band-width of the band-Toeplitz preconditioner to get extra degrees of freedom, which enable
them not only to match the zeros in f , but also to minimize the relative error jj(f � g)=f jj1
in approximating f by trigonometric polynomials g. The minimizer, which is a trigonometric
polynomial, is found by a version of the Remez algorithm proposed by Tang [177].

Theorem 17 (R. Chan and Tang (1994) [50]) Let f be the generating function of A and
g` be the minimizer of jj(f � g)=f jj1 over all trigonometric polynomials of degree `. If

jjf � g`
f

jj1 = � < 1;

then the Toeplitz matrix B` generated by g` is positive de�nite and

�(B�1
` A) � 1 + �

1� �
; n = 1; 2; 3; : : : :

The parameter � is given explicitly in the Remez algorithm. It gives an a priori bound on the
number of iterations required for convergence.

The main idea behind Theorems 16 and 17 is to approximate the given non-negative gener-
ating function f by trigonometric polynomials that match the zeros of f . Clearly, any function
g that matches the zeros of f and gives rise to Toeplitz matrices that are easily invertible can
be considered too. This idea is exploited in Di Benedetto [9], Di Benedetto, Fiorentino, and
Serra [11], and Serra [168]. In [11], f is �rst approximated by b� as in (3.4), then the quotient
f=b� is further approximated by a trigonometric polynomial or rational function to enhance the
convergence rate. In [168], jf j is used to generate a Toeplitz preconditioner for the Toeplitz
matrices generated by non-de�nite functions f .

From the above discussion, we see that if fmin = 0, then the circulant preconditioners fail
because they cannot match the zeros of the given f , while the band-Toeplitz preconditioners give
only linear convergence because the preconditioned matrices do not have clustered spectra. In
R. Chan and Ching [32], they considered using products of circulant matrices and band-Toeplitz
matrices as preconditioners for Toeplitz systems generated by non-negative functions. The
band-Toeplitz part of these circulant-Toeplitz preconditioners is to match the zeros of the given
function, and the circulant part is to speed up the convergence rate of the algorithm. Instead of
using powers of 2� 2 cos � as in (3.4) to generate the band-Toeplitz part of the preconditioner,
they considered using powers of 1� ei� instead. This results in preconditioners that can handle
complex-valued generating functions with zeros of arbitrary orders. We remark that Freund and
Huckle [79] also considered using the band Toeplitz and circulant preconditioning techniques
via displacement-based formula to solve these Toeplitz systems without the knowledge of the
underlying generating function.

Another approach to handle ill-conditioned Toeplitz matrices A is developed in Concus
and Saylor [67]. The Trench algorithm [182] is performed on A. When breakdowns or near-
breakdowns occur, the matrix is perturbed so that the algorithm can proceed to produce an
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approximate inverse B. The resulting preconditioned system is BA, and they showed that it
has a clustered spectrum.

One application of band-Toeplitz preconditioners is in the solving of Toeplitz-plus-band
systems (A + D)x = b. Here A is an n-by-n Hermitian Toeplitz matrix and D is an n-by-n
Hermitian band matrix with band-width independent of n. These systems appear in solving
Fredholm integro-di�erential equations of the form

Dfx(�)g+
Z �

�
a(� � �)x(�)d� = b(�);

where x(�) is the unknown function to be found, a(�) is a convolution kernel and D is a di�er-
ential operator. After discretization, the integral will lead to a Toeplitz matrix and D a band
matrix, see Delves and Mohamed [71, p.343]. Toeplitz-plus-band matrices also appear in signal
processing literature and have been referred to as peripheral innovation matrices, see Carayannis
et al. [24].

Unlike Toeplitz systems, there exist no fast direct solvers for solving Toeplitz-plus-band
systems. It is mainly because the displacement rank of the matrix A + D can take any value
between 0 and n. Hence, fast Toeplitz solvers that are based on small displacement rank of
the matrices cannot be applied. Conjugate gradient methods with circulant preconditioners do
not work for Toeplitz-plus-band systems either. In fact, Strang's circulant preconditioner is not
even de�ned for non-Toeplitz matrices. T. Chan's circulant preconditioner, while de�ned for
A + D, does not work well when the eigenvalues of D are not clustered, see [45]. Also, the
matrix c(A) +D cannot be used as a preconditioner for it cannot be inverted easily. In [45], R.
Chan and Ng proposed using the matrix B + D to precondition A + D where B is the band-
Toeplitz preconditioner given in Theorem 16. Both theoretical and numerical results show that
the convergence performance of the preconditioner is better in the number of iterations than
those of non-preconditioned systems and circulant preconditioned systems. Clearly, instead of
B, the band-Toeplitz preconditioners in Theorem 17 could be used.

4 Applications to Toeplitz-Related Systems

In this section, we discuss applications of optimal transform based preconditioners to Toeplitz-
related systems arising from partial di�erential equations, queueing problems, signal and image
processing, integral equations, and time series analysis. Part of the motivation of using optimal
transform based preconditioners is to exploit their fast inversion via their transform matrices.
In most of the applications, we will simply use the optimal circulant-type preconditioners. We
therefore start by extending the results for point optimal circulant preconditioners in x2.1.2 to
block circulant preconditioners.
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4.1 Block Circulant Preconditioners

Let us consider a general system Ax = b, where A is an mn-by-mn matrix partitioned as

A =

2
66664

A1;1 A1;2 � � � A1;m

A2;1 A2;2 � � � A2;m
...

...
. . .

...
Am;1 Am;2 � � � Am;m

3
77775 : (4.1)

Here the blocks Ai;j are square matrices of order n. Given such a matrix A, one obvious choice is
to use the mn-by-mn point-circulant matrix c(A), de�ned by (2.6), as a circulant approximation
to A. However, this in general will spoil the block structure of A.

T. Chan and Olkin [59] and Holmgren and Otto [105], in solving noise reduction problems and
hyperbolic di�erential equations, independently proposed using circulant-block (CB) matrices
(cf. Davis [69, p.181]) to approximate A. Since c(�) is well-de�ned for any square matrix, it is
natural to de�ne the circulant-block approximation to A as:

c1(A) =

2
66664

c(A1;1) c(A1;2) � � � c(A1;m)
c(A2;1) c(A2;2) � � � c(A2;m)

...
...

. . .
...

c(Am;1) c(Am;2) � � � c(Am;m)

3
77775 : (4.2)

Some of the spectral properties of c(A) can be extended to c1(A) (cf. (2.7)).

Theorem 18 (R. Chan and Jin (1992) [36]) Given any mn-by-mn Hermitian matrix A
partitioned as in (4.1), we have

�min(A) � �min(c1(A)) � �max(c1(A)) � �max(A):

In particular, if A is positive de�nite, then c1(A) is also positive de�nite. Moreover, the operator
c1(�) is a linear projection operator with operator norm jjc1jj2 = jjc1jjF = 1.

It is interesting to note that the matrix c1(A) is just the minimizer of kA � CkF over all
matrices C that arem-by-m block matrices with n-by-n circulant blocks. It can also be viewed as
the approximation of A along one speci�c direction. It is natural to consider the preconditioner
that results from approximation along the other direction. In this case, the preconditioners
are block-circulant (BC) matrices (cf. Davis [69, pp. 176{177]). Both circulant-block and
block-circulant preconditioners are called level-1 preconditioners in T. Chan and Olkin [59].

Clearly one can do approximations in both directions and get a preconditioner c2(A), which is
based on circulant approximations within each block and also on each block level. The resulting
preconditioners are block-circulant-circulant-block (BCCB) matrices (cf. Davis [69, p.184]) and
are called level-2 preconditioners in [59]. BCCB preconditioners for block-Toeplitz-Toeplitz-
block (BTTB) matrices (cf. Chan and Olkin [59]) and low rank perturbations thereof have been
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investigated by Holmgren and Otto [104], Ku and Kuo [129], Tyrtyshnikov [184] and R. Chan
and Jin [36].

BTTBmatrices occur in many applications. Let us consider the cost of constructing circulant-
block and BCCB preconditioners for them. Let

A =

2
66664

A0 A1 � � � Am�1

A1 A0 Am�2
...

. . .
...

Am�1 Am�2 � � � A0

3
77775 ; (4.3)

where the blocks Ak are themselves symmetric Toeplitz matrices of order n. By (4.2), the
blocks of c1(A) are just c(Ak). From (1.4) and (3.1), we see that c(Ak) = F ��(FAkF

�)F ,
where �(FAkF

�) is the diagonal matrix whose diagonal equals that of FAkF
�. Since Ak are

Toeplitz matrices, each �(FAkF
�) can be computed in O(n log n) operations. Therefore, we

need O(mn logn) operations to form

� = (I 
 F )c1(A)(I 
 F �) =

2
66664

�(FA0F
�) �(FA1F

�) � � � �(FAm�1F
�)

�(FA1F
�) �(FA0F

�) �(FAm�2F
�)

...
. . .

...
�(FAm�1F

�) �(FAm�2F
�) � � � �(FA0F

�)

3
77775 : (4.4)

Here 
 is the Kronecker tensor product and I is the m-by-m identity matrix.
To solve c1(A)y = d, we permute the diagonals in (4.4) to form a block diagonal matrix

~A = P ��P =

2
66664

~A1;1 0 � � � 0

0 ~A2;2 0
...

. . .
...

0 0 � � � ~An;n

3
77775 (4.5)

where
[ ~Ak;k]ij = [�(FAi;jF

�)]kk = [�(FAji�jjF
�)]kk; 1 � i; j � m; 1 � k � n:

Notice that the diagonal blocks ~Ak;k are still symmetric Toeplitz matrices of order m. We note
that the linear equations with ~Ak;k have to be solved in every iteration step. Therefore, it is
convenient to use O(m log2m) operations algorithm (cf. [4]) to compute a Gohberg-Semencul
formula [87]. Thus, the matrix-vector product ~A�1k;kv for any vector v, can be computed in
O(m logm) operations. Hence the system c1(A)y = d can be solved in O(mn(logm + logn))
operations.

For the BCCB preconditioner c2(A), we have to take the level-1 approximation of ~A in (4.5).
That will add another O(nm logm) operations to the construction cost. However, the cost of
solving c2(A)y = d is reduced from O(nm log2m+mn(logm+log n)) to O(mn log(mn)) as the
preconditioner c2(A) can be completely diagonalized by FFTs.
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Next we consider the cost of the matrix-vector multiplication Av. We recall that the matrix-
vector multiplication Akw for any n-vector w can be computed by FFTs of size 2n by �rst
embedding Ak into a 2n-by-2n circulant matrix, see (1.6). For the matrix-vector product Av,
we use the same trick. We �rst embed A into a (block-wise) 2m-by-2m block circulant matrix,
where each block itself is a 2n-by-2n circulant matrix. Then we extend v to a 4mn-vector by
putting zeros in the appropriate places. We note that Av can be obtained in O(mn log(mn))
operations.

Thus, we conclude that for level-1 circulant preconditioners c1(A), the initialization cost is
O(mn logn) and the cost per iteration is O(nm log2m+mn logn). For level-2 preconditioners
c2(A), both costs are O(mn log(mn)). Hence, it is cheaper to use level-2 preconditioners. As for
the convergence rate, we have the following theorem for c2(A) when A is generated by a positive
Wiener class function. (See also Ku and Kuo [129] for matrices generated by rational functions
instead.)

Theorem 19 (Tyrtyshnikov [184]) Let A be given by (4.3) with the entries of the block Aj

denoted by a
(j)
pq = a

(j)
p�q, for 0 � p; q < n; 0 � j < m. If a

(j)
k are Fourier coe�cients of a positive

function in the Wiener class, i.e.,
1X
j=0

1X
k=0

ja(j)k j <1

and
1X

j=�1

1X
k=�1

a
(j)
k e�ijxe�iky > 0; 8x; y 2 [��; �];

then the spectrum of c2(A)
�1A is clustered around 1 for large n and m.

As a consequence, when the conjugate gradient method is applied to solving the system
c2(A)

�1Ax = c2(A)
�1b, we expect superlinear convergence as in the point case. We recall that

the algorithm requires O(mn log(mn)) operations both in the initialization step and also in each
iteration. Thus, the total complexity of the algorithm is bounded above by O(mn log(mn)).

Besides extending results in the point-circulant case to the block-circulant case, one can also
extend the results for other types of preconditioners as discussed in x3 to the block case. Works
in this direction can be found in Di Benedetto [10] where sine transform type preconditioners
are extended, in Serra [167] where Theorem 16 is extended, in Jin [120] where Theorem 17 is ex-
tended, in Hemmingsson [100] where Toeplitz-block (TB) and BTTB matrices as preconditioners
are considered, and �nally in Tyrtyshnikov [183, 184, 185, 186] where results on superoptimal
circulant preconditioners and product preconditioners are generalized to the block case.

4.2 Applications to Partial Di�erential Equations

In this subsection, we consider using preconditioned conjugate gradient methods with optimal
transform based preconditioners to solve di�erent types of partial di�erential equations.
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4.2.1 Elliptic Problems

Consider the elliptic problem

� (a(x; y)ux)x � (b(x; y)uy)y = g(x; y) (4.6)

on the unit square [0; 1] � [0; 1] with Dirichlet boundary conditions. After discretization with a
mesh-size of 1=(n+1), such a problem reduces to the solution of an n2-by-n2 linear system of the
form Ax = b. With a standard 5-point stencil and lexicographical ordering, the discretization
matrix A is a block tridiagonal matrix, where the diagonal blocks are tridiagonal matrices and
the o�-diagonal blocks are diagonal matrices. The linear system is often solved by iterative
methods such as the preconditioned conjugate gradient method.

R. Chan and T. Chan [31] proposed two choices of circulant preconditioners for these dis-
cretization matrices A. The �rst one is CP = c(A) + �n�2I, where c(�) is de�ned by (2.6). The
diagonals of this point-circulant preconditioner is thus obtained as the simple averages of the
coe�cients a(x; y) and b(x; y) over the whole grid. The second choice is a BCCB preconditioner
which preserves the block structure of A and is de�ned as CB = c2(A) + �n�2I, where c2(A)
is the level-2 preconditioner of A as de�ned in x4.1. Thus, the diagonals are obtained as the
simple averages of the coe�cients along the lines of the grid. The constant �n�2 added to the
main diagonal is to minimize the condition number of the resulting preconditioned systems, an
approach similar in idea to that used in modi�ed incomplete LU factorizations, see [73].

We note that the product C�1
B y can be computed by using 2n FFTs of size n and the solution

of n intermediate circulant tridiagonal systems, each requiring O(n) complexity, whereas C�1
P y

requires two FFTs of size n2. Similar circulant preconditioners can be de�ned for more general
elliptic operators with more complicated di�erence stencils and also in higher dimensions.

Theorem 20 (R. Chan and T. Chan (1992) [31]) Assume that in (4.6),

0 < cmin � a(x; y); b(x; y) � cmax

for some constants cmin and cmax. Then we have

�(C�1
B A) � O(n) and �(C�1

P A) � O(n log n):

We remark that for second-order elliptic problems, the condition number �(A) of A is O(n2).
It follows from the above theorem that the condition number of the system is reduced from O(n2)
to O(n) by circulant preconditioning. Works in this direction can be found in Huckle [115] where
skew circulant preconditioner are used for these discretization matrices. Finally, we note that
the application of the circulant preconditioners requires O(n2 log n) 
ops per iteration, which is
slightly more expensive than the O(n2) 
ops for the incomplete LU-type preconditioners studied
in [7, 73, 94]. However, FFTs can be computed in O(log n) parallel steps with O(n2) processors,
whereas the incomplete LU preconditioners require at least O(n) steps regardless of how many
processors are available. The computation (based on averaging of the coe�cients of the elliptic
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operator) of these circulant preconditioners is also highly parallelizable across a wide variety of
architectures.

One can view the circulant preconditioners as approximations to the original given equation,
but with the given boundary conditions being replaced by periodic ones. It is thus natural to
consider using other fast transform based preconditioners to precondition elliptic problems. The
discrete sine transform matrix 	(s) with its entries de�ned by (3.2) diagonalizes all symmetric
tridiagonal Toeplitz matrices, in particular the 1-dimensional discrete Laplacian with Dirichlet
boundary conditions: tridiag [�1; 2;�1]. Therefore, one expects that the optimal sine transform
based preconditioners discussed in x3.2.1 will give better approximations to elliptic problems
with Dirichlet boundary conditions.

In [52], R. Chan andWong proposed using these optimal sine transform based preconditioners
for matrices A that come from the discretization of second-order elliptic operators. For simplicity,
we let (�+�)��1(��+�) be the block Cholesky factorization of A with lower block triangular
matrix � and diagonal block matrix �. For such factorizations, the preconditioner is de�ned to
be the matrix

P = (�̂ + �)��1(�̂� +�)

with block diagonal matrix � and lower block triangular matrix �̂. Here the diagonal blocks of
� and the subdiagonal blocks of �̂ are respectively the optimal sine transform approximations
to the diagonal blocks of � and the subdiagonal blocks of �. R. Chan and Wong showed that for
2-dimensional domains, the construction cost of P and the cost for each iteration of the precon-
ditioned conjugate gradient algorithm are of O(n2 log n). They also showed that for rectangular
domains, P can be obtained from A by taking the optimal sine transform approximations of each
sub-block of A. Thus, the construction of P is similar to the level-1 circulant preconditioners
for rectangular domains, except that the construction process can now be extend to irregular
regions as well.

For rectangular regions, the condition number of the preconditioned system P�1A is proved
to be of O(1). In contrast, the system preconditioned by the MILU, MINV, and optimal cir-
culant preconditioners are of O(n). We remark that a similar construction of optimal circulant
approximations on L-shaped domains has recently been considered by Lirkov and Margenov
[138].

In the following, we compare the performance of preconditioned conjugate gradient methods
with the optimal circulant preconditioners, optimal sine transform based preconditioners, MILU,
and MINV types preconditioners. The equation we used is

@

@x
[(1 + "ex+y)

@u

@x
] +

@

@y
[(1 +

"

2
sin(2�(x+ y)))

@u

@y
] = g(x; y): (4.7)

The parameter " controls the variation of the coe�cient functions. We remark that for this
equation, there are other alternative competitive methods, such as multigrid methods.

The initial guess and the right hand side are chosen to be random vectors and are the same
for all methods. The iteration stops when the residual vector rq at the qth iteration satis�es
jjrqjj2=jjr0jj2 < 10�6. All computations are done with double precision on a VAX 6420.
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We remark again that the costs per iteration of sine transform based or circulant precondi-
tioners are O(log n) times more than those required by MINV or MILU type preconditioners.
However, most of the computations involving fast transform based preconditioners can be done
in parallel. Thus, it is di�cult to just compare either the time or 
op counts. For simplic-
ity, we here just compare the iteration numbers. Tables 2{3 show the numbers of iterations
required for convergence for the equation (4.7) on the unit square and the L-shaped domain
[0; 1]2 n [1=2; 1] � [0; 1=2], respectively, see [31, 52]. In the tables, the notation I means that
no preconditioner is used and the parameter h is the mesh-size. These results show that the
optimal sine transform based preconditioner requires less number of iterations than that of the
optimal circulant, MILU, and MINV preconditioners for small ", i.e., when the variation of the
coe�cients is small.

" = 0:01 " = 1:0

1=h I CB P MILU MINV I CB P MILU MINV

4 12 9 3 7 4 15 10 5 6 3
8 25 12 3 9 5 29 13 7 9 4
16 47 15 3 13 7 54 18 9 14 6
32 90 20 3 20 11 107 25 11 20 10
64 186 25 3 28 16 209 35 12 28 15
128 363 33 3 41 24 419 50 13 41 22

Table 2: Number of Iterations for the Unit Square.

" = 0:01 " = 1:0

1=h I P MILU MINV I P MILU MINV

8 22 3 9 4 24 7 9 4
16 40 3 12 6 45 9 13 6
32 80 4 17 9 86 10 18 8
64 155 4 25 14 169 12 26 12
128 311 4 36 21 338 14 37 19

Table 3: Number of Iterations for the L-Shaped Domain.
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4.2.2 Domain Decomposition

Let 
 � IR2 be a bounded domain with a piecewise smooth boundary @
. Given f 2 L2(
), we
are interested in �nding the weak solution u 2 H1(
) of the following Neumann problem:

a(u; v) =

Z


fvdx; 8v 2 H1(
);

where

a(u; v) =

Z



0
@ 2X
i;j=1

aij(x)
@u

@xi

@v

@xj
+ c(x)uv

1
A dx;

and aij(x); c(x) 2 L1(
). We assume that the bilinear form a(u; v) is symmetric and there exist
positive constants �1; �2 such that

�1kvk2H1(
) � a(u; v) � �2kvk2H1(
):

Suppose that 
 is a disjoint union of two subdomains 
1 and 
2, and that a fast solver is
available on each subdomain. Domain decomposition methods for elliptic problems de�ned on
union of subdomains have been studied in many papers, see for instance [72, 191]. The idea of
substructuring is to reduce the problem in 
 to one on the interface @
1 \ @
2. Let H

1=2(@
k)
be the Sobolev space of order one half on the boundary @
k, k = 1; 2, with weighted norm:

jjvjjH1=2(@
k)
�
Z
@
k

Z
@
k

jv(x(s); y(s)) � v(x(r); y(r))j2
jj(x(s); y(s)) � (x(r); y(r))jj2 dsdr +

1

dk

Z
@
k

jv(x(s); y(s))j2ds (4.8)

where k � k is the Euclidean distance in IR2. In [126, 127], Kiss and Moln�arka proposed using
circulant matrices as preconditioners for these elliptic problems. Their idea is to approximate
the Euclidean norm jj � jj in (4.8) by

js� rjk � minfjs� rj; length(@
k)� js� rjg:
It turns out that the matrix representation C of the resulting approximated bilinear form is
circulant and for the Neumann problem it is a good approximation.

Theorem 21 (Kiss and Moln�arka (1991,1992) [127, 126]) For the Neumann problem, the
original bilinear form and the approximated one are spectrally equivalent, and hence �(C�1A) =
O(1).

We remark that Dirichlet and mixed boundary problems have also been considered in [126, 127].

4.2.3 Hyperbolic and Parabolic Problems

The idea of circulant preconditioners has also been applied to systems arising from implicit
time-marching methods for �rst-order hyperbolic equations of the form

@u

@t
+ a(x; y)

@u

@x
+ b(x; y)

@u

@y
= g(x; y);
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see Holmgren and Otto [103, 104, 105, 106, 107] and Otto [156]. For such problems, the dis-
cretization matrix A is non-symmetric and often highly non-diagonally dominant, and hence
many classical preconditioning techniques are not e�ective (and sometimes not well-de�ned).
For these problems, the circulant preconditioners are often the only ones that work.

In [104], comparisons of circulant and BCCB preconditioners with incomplete LU (ILU) and
block ILU are done. Some of the circulant-type preconditioners are obtained by changing the
boundary conditions from Dirichlet type to periodic ones. It is found that if �, the ratio between
the time-step and the spatial mesh size, is large, then ILU-type preconditioners fail to converge,
while the rate of convergence for circulant-type preconditioners remains constant independent
of the mesh size. In [105], a framework of CB and BCCB preconditioners is developed, and an
analysis of the convergence rate for a BCCB preconditioner is performed for problems that have
both periodic and Dirichlet boundary conditions.

Analysis of a circulant-block preconditioner for problems with only Dirichlet boundary con-
ditions is done in [156], which also includes a Fourier analysis of ILU, MILU, and block-MILU
preconditioned systems. The analysis indicates that the condition number of the MILU precondi-
tioned system remains O(�), whereas the convergence rate of the circulant-block preconditioned
systems remains independent of � and mesh size h. The convergence analysis was later extended
to include a time-independent equation with a weak arti�cial viscosity, see [106]. Applications
of circulant-type preconditioners to the computation of 
ow in a driven cavity governed by
the Navier-Stokes equations can be found in [107]. Implementations of the method on shared
memory vector computers and distributed memory computers are studied in [103].

Table 4 below, taken from [104, Table 8], shows the e�ectiveness of using BCCB matrices as
preconditioners for �rst-order hyperbolic systems when � is large.

1=h None MILU Block MILU BCCB

8 48 18 198 17
16 223 32 >500 20
32 334 51 >500 19
64 423 69 >500 20
128 473 89 >500 20
256 >500 135 >500 21
512 >500 >500 >500 19

Table 4: Number of CGS Iterations When � = 100.

In [100], Hemmingsson has considered using Toeplitz-block and BTTB preconditioners for
the same �rst-order hyperbolic PDE. The Toeplitz blocks are obtained by minimization as is
done in (2.3), except that the minimization is now taken over a restricted set of Toeplitz matrices.
The convergence rate of the resulting preconditioned methods is also favorable and thoroughly
analyzed in [101].

Circulant preconditioners for second-order hyperbolic equations have been considered by Jin
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and R. Chan [121]. In [121], the equation

utt = (a(x; y)ux)x + (b(x; y)uy)y + g(x; y)

is considered. The coe�cient matrix, obtained from an implicit time-marching scheme, has
condition number of O(�2) + O(h�2). With circulant-type preconditioners, Jin and R. Chan
[121] proved that the condition number is reduced to O(�) + O(h�1). The same idea of proof
can also be applied to parabolic equations of the form

ut = (a(x; y)ux)x + (b(x; y)uy)y + g(x; y);

see [118]. In [107], Holmgren and Otto investigated circulant-type solvers for mixed hyperbolic-
parabolic equations. The second-order terms were considered small or used as arti�cial viscosity,
such as for the discretized Euler equations in computational 
uid dynamics.

4.3 Applications to Queueing Problems

4.3.1 Over
ow Queueing Networks

Consider a 2-queue Markovian network with over
ow permitted only from queue 1 to queue
2 when queue 1 is full, see [124]. We are interested in �nding the steady-state probability
distribution vector of the network. Let �i, �i, ni, and si be the input rate, output rate of a
single server, bu�er size and number of servers for queue i, respectively. If the tra�c density,
de�ned as �i=(si�i) is close to 1, i.e.,

�i
si�i

= 1 +O(n��i ); (4.9)

for some � > 0, then the queueing problem resembles a second-order elliptic equation on a
rectangle with an oblique boundary condition on one side (the side with over
ow) and Neumann
boundary conditions on the others, see [26].

The SOR method is one of the standard methods for solving this problem, see [124]. However,
in [26], the preconditioned conjugate gradient method has also been considered, with the precon-
ditioner being constructed by changing the oblique boundary condition to Neumann boundary
condition. This preconditioner will be referred to as \Neumann" preconditioner below. The con-
vergence rate of the preconditioned conjugate gradient method with Neumann preconditioner
is much better than the SOR method, ranging from 10 times faster for small ni to about 100
times faster for ni = 128. However, inversion of Neumann preconditioners is expensive when
the number of servers si > 1, see [26].

Since the 1-dimensional discrete Laplacian with Neumann boundary conditions can be diago-
nalized by the cosine transform matrix, one is naturally lead to consider optimal cosine transform
based preconditioners mentioned in x3.2 for such queueing systems. By using FFTs, each inver-
sion of the preconditioner requires O(n1n2 log(n1n2)) operations independent of si. Thus, the
cost per iteration is comparable to the O(n1n2) operations required by the SOR method.
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Numerical results in R. Chan, Ching, and Wong [33] show that the optimal cosine transform
based preconditioner performs even better than the Neumann preconditioner. Table 5 gives
the number of iterations required for convergence when the tolerance is 10�6. In the test, the
parameters �i, i = 1; 2, are set to 1 and �i are computed according to (4.9) with � = 1. For the
SOR method, the optimal relaxation factor, obtained numerically to 4 signi�cant digits, is used.
The results show that the new method is about 10 to 200 times faster than the SOR method.

s1 = s2 = 1 s1 = s2 = 5

n1 = n2 Cosine Neumann SOR Cosine Neumann SOR

8 6 7 210 7 7 70
16 8 9 512 10 9 196
32 9 11 > 1000 10 12 533
64 10 14 > 1000 12 14 > 1000
128 10 14 > 1000 13 16 > 1000

Table 5: Number of Iterations for Di�erent Preconditioners.

4.3.2 Queueing Networks with Batch Arrivals

Queueing systems with batch arrivals occur in many applications, such as the telecommuni-
cation networks [154] and the loading dock models [166]. Again we are interested in �nding
the stationary distribution vector of the network. It will be the normalized null-vector of the
generator matrix of the problem.

For this problem, the generator matrix can be written as a sum of a Toeplitz matrix and
a rank s matrix, where s is the number of servers. Since the generator matrix is singular, the
Toeplitz matrix will have a generating function f that has zeros. In R. Chan and Ching [32], they
have considered using circulant-Toeplitz preconditioners discussed in x3.3 to precondition such
systems. The singularity of the generator matrix is canceled by the band-Toeplitz part of the
preconditioner, and the circulant part of the preconditioner is used to speed up the convergence
of the algorithm. They proved superlinear convergence of the method when s is independent of
n, the size of the queue. Numerical results in [32] veri�ed the fast convergence for small s, and
show moreover that the convergence is still linear when s = n.

4.4 Applications to Signal and Image Restoration

Image restoration refers to the removal or reduction of degradations (or blur) in an image using
a priori knowledge about the degradation phenomena. Applications of image restoration can be
found in remote sensing, where details about the photographed terrain are needed to be resolved;
in medical imaging where the diagnosis is based on the clarity of the x-ray radiographs taken;
and in space exploration where images transmitted back to earth by spacecrafts are analyzed.
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In ground-based imaging, astronomers seek to remove the degradation of astronomical images
caused by the atmospheric turbulence, which are in part due to the mixing of the warm and
cold air layers. When the quality of the images is degraded by blurring and noise, important
information remains hidden and cannot be directly interpreted without numerical processing.
Our presentation of the image restoration problem here will be brief, and we refer the interested
readers to Andrews and Hunt [5] and Jain [116] for more detail discussions.

We begin with a mathematical model of the image restoration problem. The image of an
object can be modeled as

g(�; �) =

Z 1

�1

Z 1

�1
a(�; �;�; �)h(�; �)d�d� + �(�; �); (4.10)

where g(�; �) is the recorded (or degraded) image, h(�; �) is the original image, the vector �(�; �)
represents an additive noise. The function a(�; �;�; �) is called the point spread function (PSF)
and represents the degradation of the image. In digital implementation, (4.10) is discretized to
obtain the discrete scalar model

g(i; j) =
nX

k=1

nX
`=1

a(i; j; k; `)h(k; `) + �(i; j):

In matrix-vector notation, we obtain the linear algebraic form of the image restoration problem,

g = Ah+ n; (4.11)

where g, h, and n are n2-vectors and A is an n2-by-n2 matrix. This is the square image
formulation. Often the discretization is chosen so that g is a longer vector than h. In this case,
A is a rectangular m2-by-n2 matrix with m > n. The image restoration problem can be stated
as follows. Given the observed image g, the matrix A which represents the degradation, and
possibly, the statistics of the noise vector n, compute an approximation to the original signal h.

Writing the PSF as a(�; �;�; �) provides the most general description of the imaging system.
This representation allows the PSF to vary with position in both the image and object planes. In
this case the PSF is said to be spatially variant, and the matrix A in (4.11) will have no special
structure. Thus, computing a solution to (4.11) can be very expensive. In many practical
applications, though, the PSF is spatially invariant, i.e., it acts uniformly across the image and
object planes. In particular, it can be written as

a(�; �;�; �) = a(� � �; � � �);

and the matrix A it generates is a block-Toeplitz-Toeplitz-block (BTTB) matrix.
Because of the ill-conditioning of A, naively solving Ah = g will lead to extreme instability

with respect to perturbations in g, see [5]. Thus, one cannot consider the noise vector n in-
signi�cant in solving the problem. The method of regularization can be used to achieve stability
for these problems [1, 17, 162]. In the classical Tikhonov regularization [92], stability is attained
by introducing a stabilizing operator D (called a regularization operator), which restricts the
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set of admissible solutions. Since this causes the regularized solution to be biased, a scalar �,
called a regularization parameter, is introduced to control the degree of bias. More speci�cally,
the regularized solution is computed as

min







"
g
0

#
�
"

A
�D

#
h(�)







2

: (4.12)

The term kDhk22 is added in order to smooth the solution h. Choosing D as a kth order
di�erence operator matrix forces the solution to have a small kth order derivative. Notice that
if D is a Toeplitz matrix, then (4.12) reduces to a block-Toeplitz least squares problem.

Thus in general, let us consider the least squares problem

min
x
kb�Axk2; (4.13)

where A is a rectangular Toeplitz or block-Toeplitz matrix. Besides image restoration prob-
lems, Toeplitz least squares problems also arise in other important areas, such as the denoising
problems, see T. Chan and Olkin [59]. Considerable e�ort has been devoted to developing fast
algorithms for them and most works have been focused on direct methods, such as the fast QR
factorization algorithms of Bojanczyk, Brent, and de Hoog [18], Chun and Kailath [63], Cybenko
[68], and Sweet [176]. Here we will consider using the preconditioned conjugate gradient method.

Although the classical conjugate gradient algorithm applies only to square Hermitian positive
de�nite systems, one can still use it to �nd the solution to (4.13) by applying it to the normal
equations in factored form,

A�(b�Ax) = 0:

The method can be applied without explicitly forming the normal equations matrix A�A, see
Bj�orck [17]. As in the square case, we can precondition the equation to speed up the convergence.
Given a non-singular matrix C, one can use the conjugate gradient method to solve

minkb�AC�1yk2;

and then set x = C�1y. The cost per iteration of the preconditioned conjugate gradient method
is dominated by matrix vector multiplies with A and A�, and by linear system solves with C
as coe�cient matrix. If A is an m-by-n Toeplitz matrix, then matrix vector multiplies with A
and A� can be accomplished in O(m log n) operations using FFTs. As discussed in x1.3, the
preconditioner matrix C should be chosen such that the singular values of AC�1 are clustered
around 1, and the linear system with coe�cient matrix C can be easily solved. In the following
subsections, we survey some of the possible preconditioners.

4.4.1 Block-Based Preconditioners

We start with the 1-dimensional Toeplitz least squares problems. For the purpose of constructing
the preconditioner, we extend the Toeplitz structure of the matrix A in (4.13) by padding zeros to
the bottom left-hand side. In doing so, we may assume without loss of generality thatm = kn for
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some positive integer k. This padding is only for convenience in constructing the preconditioner
and does not alter the original least squares problem. In the material to follow, we consider the
case where k is a constant independent of n. More precisely, we consider kn-by-n matrices A of
the form

A =

2
66664
A1

A2
...
Ak

3
77775 ;

where each square block Aj is a Toeplitz matrix. Notice that if A itself is a rectangular Toeplitz
matrix, then each block Aj is necessarily Toeplitz. Also the matrix in (4.12) is of this form if
the regularization operator D is a Toeplitz matrix.

Following [144, 42], for each block Aj , the optimal circulant approximation c(Aj) is con-
structed. Then the block-based preconditioner is de�ned to be the square circulant matrix C
such that

C�C =
kX

j=1

c(Aj)
�c(Aj):

Notice that each c(Aj) is an n-by-n circulant matrix. Hence, they can all be diagonalized by the
n-by-n discrete Fourier matrix F , i.e., c(Aj) = F ��jF where �j is diagonal. Thus, the spectrum
of c(Aj), j = 1; � � � k, can be computed in O(n log n) operations by using FFT and we have

C�C = F �
kX

j=1

(��j�j)F:

Clearly C�C is a circulant matrix and its spectrum can be computed in O(kn logn) opera-
tions. The preconditioner is then given by

C = F �(
kX

j=1

��j�j)
1

2F:

Recall that the matrix vector multiplies with A and A� can be done in O(m log n) operations
by FFT, the cost per iteration in the preconditioned conjugate gradient method is therefore of
O(m log n). The convergence rate of the method depends on the distribution of the singular
values of the matrix AC�1, which are the same as the square roots of the eigenvalues of the
matrix (C�C)�1(A�A).

Theorem 22 (R. Chan, Nagy, and Plemmons (1994) [42]) Suppose the generating func-
tions of the blocks Aj are 2�-periodic continuous functions and if one of these functions has no
zeros, then the spectrum of (C�C)�1(A�A) is clustered around 1, for su�ciently large n.

Thus, if the condition number �(A) of A is of O(n�), then for su�ciently large n, the
number of iterations required for convergence is at most O(� logn) when � > 0. Since the
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number of operations per iteration in the conjugate gradient method is of O(m logn), the total
complexity of the algorithm is therefore of O(�m log2 n). In the case when � = 0, i.e., A is
well-conditioned, the method converges in O(1) steps. Hence, the complexity is reduced to just
O(m log n) operations.

Next we consider the 2-dimensional Toeplitz least squares problems. Let A be a kmn-by-mn
matrix of the form

A =

2
66664
A(1)

A(2)

...

A(k)

3
77775 ; (4.14)

where each block A(i), i = 1; � � � ; k, is a Toeplitz-block matrix. More precisely, A(i) can be
partitioned as

A(i) =

2
666664

A
(i)
1;1 A

(i)
1;2 � � � A

(i)
1;m

A
(i)
2;1 A

(i)
2;2 � � � A

(i)
2;m

...
...

. . .
...

A
(i)
m;1 A

(i)
m;2 � � � A

(i)
m;m

3
777775 ; i = 1; � � � ; k;

where each A
(i)
�;� , 1 � �; � � m, is an n-by-n Toeplitz matrix.

In [43], R. Chan, Nagy, and Plemmons considered preconditioners based on the level-1 and
level-2 circulant approximations proposed by T. Chan and Olkin [59]. For j = 1; 2, they construct
the level-j approximation cj(A

(i)) to each A(i), see x4.1. Then the preconditioner Pj is de�ned
by

P �
j Pj =

kX
i=1

cj(A
(i))�cj(A

(i)):

It can be shown that P1 = (I 
Fn)
� ~P (I
Fn), where ~P is a block upper triangular matrix with

diagonal blocks. Thus, P1 is block upper triangular with circulant blocks, and hence computing
P�1
1 y involves application of FFTs of size n together with backward solves involving ~P . The

computation of P�1
1 y is parallelizable and involves O(nm2+mn logn) operations. For the level-

2 preconditioner, we have P2 = (Fm 
 Fn)
��(Fm 
 Fn) where � is a diagonal matrix. Hence,

P�1
2 y can be computed in O(mn log(mn)) operations by using FFTs in both directions.
Convergence analysis has been given when all the blocks A(i) in the matrix A are BTTB,

i.e.,

A(i) =

2
6666666664

A
(i)
0 A

(i)
�1 � � � A

(i)
2�m A

(i)
1�m

A
(i)
1 A

(i)
0

. . . A
(i)
2�m

...
. . .

. . .
. . .

...

A
(i)
m�2

. . .
. . . A

(i)
�1

A
(i)
m�1 A

(i)
m�2 � � � A

(i)
1 A

(i)
0

3
7777777775
; i = 1; � � � ; k;
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where each A
(i)
� , j�j < m, is a Toeplitz matrix with entries

[A(i)
� ]
;� = a

(i)
�;
��; 0 � 
; � < n:

Notice that the generating function of A(i) is given by

f (i)(x; y) =
1X

�=�1

1X
�=�1

a(i)�;�e
�i�xe�i�y; 8x; y 2 [��; �]:

Theorem 23 (R. Chan, Nagy, and Plemmons (1993) [43]) Let A be given as in (4.14)
with the entries of each A(i) satisfying

1X
�=�1

1X
�=�1

ja(i)�;� j � Ki <1; i = 1; � � � ; k:

If one of the f (i)(x; y) is a positive function, then for any given � > 0, there exist positive integers
n1 and n2 such that for all m > n1 and n > n2, at most O(m) +O(n) eigenvalues of the matrix

(P �
j Pj)

�1(A�A)� I; j = 1; 2;

have absolute values larger than �.

Numerical experiments in [43] show the e�ectiveness of the preconditioners proposed for
block Toeplitz least squares problems and actual image restoration problems. We remark that
by using the new clustering result in Theorem 19 for BCCB preconditioners, we can conclude
further that the preconditioned matrix (P �

2 P2)
�1(A�A) will have a clustered spectrum around

1.

4.4.2 Displacement-Based Preconditioners

We �rst brie
y review relevant de�nitions and results on displacement structure representation
of Toeplitz matrices. We introduce the n-by-n lower shift matrix Z, whose entries are zero
everywhere except for 1's on the �rst subdiagonal. The displacement operator r is de�ned by

rA = A� ZAZ�;

where rA is called the displacement of A, see Chun and Kailath [63]. Let L(w) denote the
n-by-n lower triangular Toeplitz matrix with the vector w as its �rst column. Using these
de�nitions, we have the following lemma.

Theorem 24 (Chun, Kailath, and Lev-Ari (1987) [64]) An arbitrary n-by-n matrix A
can be written in the form

A =
�X

i=1

L(ui)L(vi)
�;

where � = rank(rA) and ui and vi are n-vectors.
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The sum given in the theorem above is called the displacement representation of the given
matrix A, and the scalar � is called the displacement rank of A. Square Toeplitz matrices and
Toeplitz-related matrices have small displacement rank [64]. For example, if A is an n-by-n
Hermitian Toeplitz matrix, then

A = L(x+)L(x+)
� � L(x�)L(x�)

�;

where

x� = [
1

2
(a0 � 1); a1; � � � ; an�1]T :

If A is an m-by-n (m � n) Toeplitz matrix, then A�A is in general not a Toeplitz matrix.
However, A�A does have a small displacement rank � � 4, and a displacement representation in
the form

A�A = ~A+ L(y1)L(y1)
� � L(y2)L(y2)

�; (4.15)

where ~A is a Hermitian Toeplitz matrix and

y1 = [0; a�1; � � � ; a1�n]T and y2 = [0; am�1; � � � ; am�n+1]
T :

When the matrix A is an n-by-n Hermitian Toeplitz matrix, R. Chan, Nagy, and Plemmons
[44] and Freund and Huckle [79] de�ned the displacement preconditioner to be

C = c(L(x+))c(L(x+))
� � c(L(x�))c(L(x�))

�: (4.16)

Clearly, C is a Hermitian circulant matrix. R. Chan, Nagy, and Plemmons [44] proved that C so
de�ned in (4.16) is equal to the optimal circulant approximation of A, i.e., C = c(A). In Freund
and Huckle [79], displacement based preconditioners for general matrices of low displacement
ranks are also considered.

For general rectangular Toeplitz matrices, one can de�ne, according to (4.15), the precondi-
tioner

c( ~A) + c(L(y1))c(L(y1))
� � c(L(y2))c(L(y2))

�:

However, R. Chan, Nagy, and Plemmons [44] proved that the last term L(y2)L(y2)
� in (4.15)

is not signi�cant as far as the conjugate gradient method is concerned. Thus, they de�ne the
displacement preconditioner C as

C = c( ~A) + c(L(y1))c(L(y1))
�:

Under the Wiener class assumptions on the generating function of A, clustering results have
been established for C, see [44].
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4.4.3 Strang's Generalized Preconditioner

Recall that T. Chan's circulant preconditioner is de�ned for general square matrices, not neces-
sarily of Toeplitz form, see (2.6). Most circulant preconditioners including Strang's do not enjoy
this property. As a result, T. Chan's preconditioners have been used extensively in solving
non-Toeplitz systems in least squares problems.

Recently, R. Chan, Ng, and Plemmons [47] proposed a method to generalize the construction
of Strang's circulant preconditioner to arbitrary n-by-n matrices A, and to employ this new cir-
culant approximation in deconvolution applications in signal and image processing. For a general
n-by-n non-Toeplitz matrix A = [aj;k], we de�ne its generalized Strang circulant preconditioner
S to be

[S]j;bn
2
c = aj;bn

2
c; 0 � j � n� 1;

i.e., the bn2 cth column of S is given by the bn2 cth column of A. Note that if A is Toeplitz, then
this de�nition coincides with that in (2.1).

This idea of constructing circulant preconditioners is similar to the forward-backward pro-
jection method used in [65] for image reconstruction. In [65], they tried to estimate the PSF
involving a given, but not necessarily Toeplitz, matrix A by forward projecting and backpro-
jecting a one-pixel point source located at the center of the �eld-of-view. In matrix terms, the
approximate PSF is just equal to the

�
n
2

�
th column of A. The circulant matrix thus obtained was

used in [65] as a preconditioner in the steepest descent method to speed up the convergence rate.
The convergence rate of the preconditioned conjugate gradient method with generalized Strang
preconditioner has been analyzed in [47], where again, under the Wiener class assumptions, the
preconditioned matrix will have a clustered spectrum.

4.4.4 Inverse Filter Preconditioners

Let us consider the convolution of a 1-dimensional discrete signal x of length n with a convolution
vector a of the form

a = [a�m+1; a�m+2; � � � ; a0; � � � ; am�2; am�1]T :
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The resulting vector b is of length 2m+ n� 2, and the convolution operation can be expressed
in matrix notation as b = Ax, where A is a column circulant matrix of the form

A =

2
6666666666666666666666664

a�m+1 0

a�m+2 a�m+1
...

...
...

. . . 0

a0
... a�m+1

... a0
...

am�2
...

. . .
...

am�1
... a0

0 am�1
...

...
. . .

...
0 am�1

3
7777777777777777777777775

: (4.17)

In deconvolution problems, the aim is to compute x given the matrix A and the vector b. The
�rst column of A is usually the discrete point spread function of the blurring operator and is
usually obtained empirically by blurring a point source image. In many applications of interest
m� n, see [116].

In signal and image processing, one common technique used to compute an approximate
solution to the deconvolution problem is the inverse �lter method. There the rectangular Toeplitz
matrix A is embedded into an n-by-n circulant matrix C, and the solution to the circulant system
is used as an approximation to the solution of the Toeplitz system. This approach is attractive
since n-by-n circulant systems can be solved in O(n logn) operations by FFTs. However, the
computed solution will not be very accurate.

Nagy, Plemmons, and Torgersen [145, 146] employed the inverse �lter technique to construct
a new preconditioner for Toeplitz least squares deconvolution problems. Their preconditioner
M is based on the partition of the inverse of the circulant extension C. Thus writing

C�1 = F ��F =

"
M�

~M�

#
;

their preconditioner is de�ned to be M , and they showed that M�M is a good approximate
inverse of A�A.

For 2-dimensional deconvolution problems, one is still concerned with solving a least squares
problem as in (4.13). But the matrix A will be a block column circulant matrix with column
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circulant blocks, i.e.,

A =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

A(�`+1) 0

A(�`+2) A(�`+1) ...
...

...
. . . 0

A(0) ... A(�`+1)

... A(0) ...

A(`�2)
...

. . .
...

A(`�1) ... A(0)

0 A(`�1) ...
...

. . .
...

0 A(`�1)

1
CCCCCCCCCCCCCCCCCCCCCCCCA

(4.18)

with each subblock A(j) being a (2m+n� 2)-by-n matrix of the form given by (4.17). We note
that A�A will be an n-block-by-n-block block Toeplitz matrix with n-by-n Toeplitz blocks. The
construction of inverse �lter preconditioners M for the 2-dimensional case proceeds as in the
1-dimensional case. The matrix A is extended to a block circulant matrix with circulant blocks.
In [145, 146], Nagy, Plemmons, and Torgersen proved that the preconditioned matrices can also
be written as a sum of the identity matrix and a matrix with rank dependent on m and `.

4.4.5 Numerical Example

Restoration of real images by using the preconditioned conjugate gradient algorithm with the
preconditioners mentioned above has been carried out in [43, 44, 47, 145, 146]. Here we report
the results found in [47]. We use the preconditioned conjugate gradient algorithm with the
generalized Strang circulant preconditioner to remove the blurring in a 2-dimensional image
arising from atmospheric turbulence. The problem consists of a 256-by-256 image of an ocean
reconnaissance satellite observed by a simulated ground-based imaging system together with a
256-by-256 image of a guide star observed under similar circumstances (see Figure 3.) The data
are provided by the Phillips Air Force Laboratory at Kirkland AFB, NM [25]. The imaging
system estimates the atmospheric distortions using the natural guide star image. A wavefront
sensor measures the optical distortions, which can then be digitized into a blurred image of the
guide star pixel. To form the discrete point spread function a, the rows of the blurred pixel
image are stacked into a column vector. Then the point spread function matrix A is given in
block form as in (4.18) with the stacked vector as its �rst column. We note that A satis�es the
Wiener class assumptions, since the guide star for the atmospheric imaging problem yields a
Gaussian point spread function [146].

In Figures 4 and 5, we present restorations without and with using the generalized Strang
preconditioner described in x4.4.3. The regularization parameter � in both cases is set to :018
as suggested in [145]. From the �gures, we observe that when no preconditioner is used, an
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Figure 3: Observed Image (left) and Guide Star Image (right).

Figure 4: Restored Images without Preconditioning: 10 (left) and 50 Iterations (right).

Figure 5: Restored Image with Preconditioning: 2 (left) and 10 Iterations (right).
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acceptable restoration is achieved after 50 iterations. Essentially, the same restoration is achieved
in 10 iterations when preconditioning is used. Finally, we remark that roughly 0:61�108 
oating
point operations (done by Matlab) per iteration are used for the circulant based deconvolution,
while the count for no preconditioning is 0:50 � 108.

4.5 Applications to Integral Equations

4.5.1 Inverse Heat Problem in IRm

The inverse heat problem in IRm is the problem of recovering the initial data �(y) for all y 2 IRm

in

u(x; t) =
1p
4�t

Z
IRm

exp

 
�(x� y)2

4t

!
�(y)dy;

when for some t > 0, u(x; t) is given for all x 2 IRm. Using discrete time and spatial sampling
of the domain and sinc expansion for approximating the initial data, the problem is reduced to
solving a linear system with block Toeplitz coe�cient matrices:

(A
A
 � � � 
A)� = u; (4.19)

where A is a Toeplitz matrix, see Gilliam, Martin, and Lund [83]. The generating function of
the Toeplitz matrix A is

f(�) = exp

 
� �2

4�2

!
; � 2 [��; �];

which is positive and in the Wiener class. In [30], the system (4.19) is preconditioned by
C 
C 
 � � � 
C with di�erent circulant preconditioners C discussed in x2.1. Numerical results
in [30] show that for solving block Toeplitz systems of order 65536, the time required by using
the circulant preconditioned conjugate gradient method is half the time required by the direct
Toeplitz solver available in the IMSL package.

4.5.2 Wiener-Hopf Equations

Half-line Wiener-Hopf integral equations

y(t) +

Z 1

0
a(t� s)y(s)ds = g(t); 0 � t <1; (4.20)

in which a(t) 2 L1(IR) and g(t) 2 L2[0;1) are given functions, arise in a variety of practical
applications in mathematics and engineering, such as linear prediction problems for stationary
stochastic processes [90, pp.145{146], di�usion problems and scattering problems [90, pp.186{
189].

One way of solving (4.20) is by the projection method [85], where the solution y(t) of (4.20)
is approximated by the solution y� (t) of the �nite-section equation

y� (t) +

Z �

0
a(t� s)y� (s)ds = g(t); 0 � t � �: (4.21)
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It is shown in [85, Theorem 3.1] that

lim
�!1

jjy� � yjjLp[0;�) = 0; 1 � p <1:

The �nite-section equation (4.21) can be solved numerically by either direct or iterative methods.
For a �xed � , the �nite-section operator A� de�ned by

(A�x)(t) =

8<
:
Z �

0
a(t� s)x(s)ds; 0 � t � �;

0; t > �:
(4.22)

is a compact operator. Therefore, the spectrum of the Wiener-Hopf operator I+A� (where I is
the identity operator) is clustered around 1, and hence solving (4.21) by iterative methods such
as the conjugate gradient method is less expensive than direct methods.

However, as � tends to 1, the spectrum of this �nite-section operator A� becomes dense
in the spectrum of the half-line operator de�ned by (4.20), and hence the convergence rate
of the conjugate gradient method deteriorates, see the numerical results in [86] for instance.
A standard way of speeding up the convergence rate of the conjugate gradient method is to
apply a preconditioner. Thus, instead of solving (4.21), one solves a preconditioned operator
equation. We remark that there is a close relation between Wiener-Hopf integral equations
and semi-in�nite Toeplitz operators, see Gohberg and Fel'dman [85, p.5]. The methodology of
preconditioning \discrete" Toeplitz systems can be modi�ed and applied to the \continuous"
Wiener-Hopf equations.

In [86], Gohberg, Hanke, and Koltracht proposed using circulant integral operators to pre-
condition (4.21). Circulant integral operators are operators of the form

(C�x)(t) =
Z �

0
c� (t� s)x(s)ds; 0 � t � �; (4.23)

where c� is a � -periodic conjugate symmetric function in L1[��; � ], i.e.,
c� (t+ �) = c� (t) and c� (�t) = c� (t); 8t 2 [��; � ]:

We remark that C� is a compact, self-adjoint operator on L2[��; � ]. The preconditioned equation
is given by

(I + C� )�1(I +A� )y� (t) = (I + C� )�1g(t); 0 � t � �: (4.24)

It has been shown in [86] that for large � , the spectra of the circulant preconditioned operators
(I + C� )�1(I +A� ) are clustered around 1.

Theorem 25 (Gohberg, Hanke, and Koltracht (1994) [86]) If

lim
�!1

jja� c� jjL1[��=2;�=2] = 0; (4.25)

then for any given � > 0, there exist a positive integer � and a number �� > 0 such that for all
� > ��, I +A� are positive de�nite, and the spectra of (I + C� )�1=2(I +A� )(I + C� )�1=2 have
at most � eigenvalues outside the interval (1� �; 1 + �).
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Thus under the assumption (4.25), the preconditioned conjugate gradient method converges
superlinearly for large � . In addition, Gohberg, Hanke, and Koltracht [86] proposed \wrap-
round" and \optimal" circulant integral operators for Wiener-Hopf equations.

1) \Wrap-round" Circulant Integral Operator S�
Given the operator A� as in (4.22), it is de�ned as

(S�x)(t) =
8<
:
Z �

0
s� (t� s)x(s)ds; 0 � t � �;

0; t > �:
(4.26)

Here the function s� is a � -periodic function de�ned by

s� (t) = a(t); ��=2 � t � �=2:

2) \Optimal" Circulant Integral Operator F�

Given the operator A� , it is de�ned as

(F�x)(t) =

8<
:
Z �

0
f� (t� s)x(s)ds; 0 � t � �;

0; t > �:

Here f� (t) is a � -periodic function de�ned by

f� (t) =

�
� � t

�

�
a(t) +

�
t

�

�
a(t� �); 0 � t � �:

Gohberg et al. [86] showed that F� minimizes the Hilbert-Schmidt norm

jjjA� � C� jjj2 �
Z �

0

Z �

0
ja(t� s)� c� (t� s)j2 dsdt;

over all circulant integral operators C� .
We note that the above choices of S� and F� are continuous analogs of Strang's and T. Chan's

circulant preconditioners, respectively. In x2.2, a uni�ed approach of constructing circulant
matrix preconditioners for �nite Toeplitz matrices is derived from the viewpoint of convolution
products. Using the same viewpoint, R. Chan, Jin, and Ng [37] have derived an easy and general
scheme for constructing circulant integral preconditioners for Wiener-Hopf equations. For ease
of presentation, let us denote by q̂ the Fourier transform of any function q. The �rst step is to
relate c� (t) in (4.23) to a sequence of conjugate symmetric functions fC� (t)g� , i.e.,

c� (t) =

8><
>:

C� (t)a(t) + C� (t� �)a(t� �); 0 � t � �;

C� (t+ �)a(t+ �) + C� (t)a(t); �� � t � 0;
(4.27)
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and translate the convergence requirement (4.25) on c� (t) to conditions on fC� (t)g� . Basically,
C� (t) should be such that the convolution product Ĉ� � â converge uniformly to â on IR.

As examples, the \wrap-round" circulant integral operator S� can be constructed by setting
C� in (4.27) to be the function

S� (t) =

(
1; jtj � �=2;
0; jtj > �=2:

The operator F� can be also be derived by setting C� in (4.27) to be the function

F� (t) =

8<
:

� � jtj
�

; jtj � �;

0; jtj > �:

Moreover, R. Chan, Jin, and Ng proved that for su�ciently large � , if fC�g� is uniformly bounded
on the real line and the convolution product of Ĉ� with â(!) converges to â(!) uniformly on
IR, then the spectra of the circulant preconditioned operators are clustered around 1. They also
showed that fC� (t)g� can be derived easily from the Dirac delta function or from approximate
convolution identities commonly used in Fourier analysis [190].

As in the Toeplitz matrix case, there are other ways of constructing operators as precon-
ditioners for (4.21), see Ng and Lin [150], Ng, Lin, and R. Chan [151] and R. Chan and Lin
[41]. In R. Chan and Lin [40], optimal and super-optimal circulant integral preconditioners are
constructed for general integral equations of the second kind,

y(t) +

Z 1

0
a(t; s)y(s)ds = g(t); 0 � t <1:

Here a(t; s) is not necessarily a convolution kernel.
When (4.21) is discretized with the rectangular quadrature rule, we get an n-by-n matrix

system Ay = g, where A is a Toeplitz matrix. Here n is the number of quadrature points used
in the discretization. We note that if the rectangular quadrature rule is used to discretize (4.24),
then we get a matrix system:

(I + C)�1(I +A)y = (I + C)�1g; (4.28)

where the matrices (I+C) and (I+A) are n-by-n circulant and Toeplitz matrices, respectively.
We see that (4.28) is basically a circulant-preconditioned Toeplitz system, which requires only
O(n log n) operations in each iteration.

One main drawback of using the rectangular rule is that the order of accuracy of the dis-
cretized solution y depends only linearly on the number of quadrature points. Thus, in order to
obtain a reasonably accurate solution for (4.21), a small step-size has to be used and hence the
dimension of the resulting matrix system will be large. In order to obtain high order of accu-
racy, one can use higher order quadrature rules such as the trapezoidal rule or Simpson's rule,
which have second and fourth order of accuracy, respectively. In these cases, the discretization
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matrices of the Wiener-Hopf integral operators are non-Toeplitz matrices. Moreover, the corre-
sponding discretization matrices of the circulant integral operators are in general not circulant,
and therefore their inversion cannot be computed by using FFT. Hence, the cost per iteration
of the preconditioned conjugate gradient method exceeds O(n logn) operations.

Instead of constructing matrix preconditioners for these discretization matrices, we can con-
sider preconditioners from the operator point of view. In [135], Lin, Ng, and R. Chan constructed
preconditioners B� for (4.21) such that the preconditioned operators (I � B� )(I + A� ) have
clustered spectra and that only O(n log n) operations are required in each iteration of the pre-
conditioned conjugate gradient method, even when higher order quadrature rules are employed.
Their idea is to use convolution operators rather than circulant operators to precondition I+A� .
More precisely, given A� , they constructed the convolution operator B� , whose kernel function
b(t) satis�es

b̂(!) =
â(!)

1 + â(!)
: (4.29)

Then they precondition (4.21) as

(I � B� )(I +A� )y� (t) = (I � B� )g(t); 0 � t � �: (4.30)

Theorem 26 (Lin, Ng, and R. Chan [135]) Let a(t) 2 L1(IR) be conjugate symmetric and
â(!) � 0. Then for any given � > 0, there exist a positive integer � and a real number �� > 0
such that for all � > ��, the spectrum of (I �B� )(I +A� ) has at most � eigenvalues outside the
interval (1� �; 1 + �).

According to this theorem, if we apply the conjugate gradient method to solve (4.30), the
convergence rate will be superlinear for large � .

In the following, we test the e�ectiveness of di�erent integral operator preconditioners by
using the kernel function a(t) = (1 + t2)�1=�. In practical applications, the parameter � is the
regularization parameter and is usually a small positive number. In the test, we arbitrarily set
� = 0:01. To discretize (4.29) we partition the interval [��; � ] into 2n equal subintervals of
step-size h, and then compute â(!) and b̂(!) by using the formula

â(!) � h
nX

k=�n

a(kh)e�i!kh;

which can be computed easily by FFTs. The right hand side function g(t) is chosen such that
the corresponding solution for the Wiener-Hopf equation (4.20) is

y(t) =

(
(16 � t)2; 0 � t � 16;
0; t > 16:

(4.31)

We use the same random vector as initial guess for all preconditioners, and the tolerance is set
to 10�6. All computations are done by Matlab. We de�ne the error of the numerical solution:

e �
8<
:h

nX
j=0

j~y(jh) � y(jh)j2
9=
;

1=2

�
�Z �

0
j~y(t)� y(t)j2dt

�1=2

;
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where f~y(jh)gnj=0 is the computed solution and y(t) is the true solution given by (4.31).
Table 6 gives the numbers of mega-
ops used to achieve a given accuracy � (i.e., the error of

the numerical solution e � �) for di�erent quadrature rules and preconditioners. The symbol B
denotes that we are solving (4.30) with the quadrature rule listed. The symbol S denotes that
we are solving (4.24) with the \wrap-round" circulant integral operator S� de�ned in (4.26),
and that S� is discretized by the rectangular rule (so as to make it a circulant matrix) but the
operator A� is still discretized according to the rule listed in the table. The discretization matrix
for A� will be a product of a Toeplitz matrix and a diagonal matrix, where the diagonal matrix
depends on the discretization rule used. The symbol I represents that (4.21) is solved without
using any preconditioner and discretized according to the rule listed. In the table, ** denotes
that the corresponding number exceeds 1000.

Rectangular Trapezoidal Simpson's
Accuracy B S I B S I B S I

100 65.1 61.2 492.5 1.49 1.69 5.50 0.50 5.15 5.76
10�1 ** ** ** 5.62 6.09 51.28 0.84 9.27 9.89
10�2 ** ** ** 16.94 18.35 157.51 1.18 13.44 14.48
10�3 ** ** ** 89.48 98.62 930.19 2.68 27.04 29.21
10�4 ** ** ** 318.02 332.33 ** 5.61 57.49 61.88
10�5 ** ** ** ** ** ** 11.64 109.98 116.66
10�6 ** ** ** ** ** ** 28.18 270.56 285.09

Table 6: Number of Mega-
ops for Di�erent Quadrature Rules and Preconditioners

From the table, we see that without using any preconditioner, the number of 
ops for achiev-
ing the required accuracy is very large. We note that for the trapezoidal rule, the Toeplitz
structure is disturbed only in the two rows corresponding to the boundary. Therefore, the circu-
lant preconditioner works well for the trapezoidal case. However, it does not work well if A� is
discretized using Simpson's rule. The performance of our proposed preconditioner for Simpson's
rule is the best one in terms of the accuracy and the computational work. The accuracy of the
computed solution depends only on the quadrature rule used in discretizing A� . However, the
convergence rate of the preconditioned systems and the cost per iteration of the PCG method
depend on how we discretize the preconditioning operators. Therefore, it is advantageous to
use a higher order quadrature rule to discretize the operator equation because of the accuracy
concern. But to speed up the convergence rate of the method and to minimize the cost per
iteration, one needs to use our proposed preconditioner rather than circulant ones.
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4.6 Applications to Time Series Analysis

4.6.1 Finite Impulse Response Filters

Least squares estimations have been used extensively in a wide variety of scienti�c applications,
such as equalization [84, p.139], system identi�cation [140, 141, 142], adaptive signal processing
[3, 170, 99], active noise control [59], and speech processing [84, p.343]. In these applications,
we usually need to estimate the transmitted signal from a sequence of received signal samples
or to model an unknown system by using a linear system model.

To present the problem properly, let us introduce some terminology used in signal processing.
Let x(i) be a discrete-time stationary zero-mean complex-valued process (see Fuller [82, pp. 10-
11]). A �nite impulse response (FIR) linear �lter of order n is of the form

~d(i) =
nX

k=1

bkx(i� k + 1);

where ~d(i) is the �lter output based on the data fx(k)gi�n+1
k=i and fbkgnk=1 are the impulse

responses of the �lter. The di�erence between the desired response d(i) of the process and the
�lter output ~d(i) is called the estimation error of order n. Since we are interested in estimating
the desired response based on the input measurements, the impulse responses fbkgnk=1 should
be chosen to make the estimation error as small as possible.

For the case of known statistics, i.e., the autocovariances of the stationary process are known,
the optimal least mean squares predictor coe�cients fbkgnk=1 are given by the solution of the
linear system of equations

Ab = d; (4.32)

see Giordano and Hsu [84, pp.41{43]. Here A is an n-by-n Hermitian Toeplitz matrix and its
entries fajgn�1j=0 are the autocovariances of a discrete-time stationary process and are given by

ak = E [x(j)x(j � k)];

where E is the expectation operator.
The matrix A is called the covariance matrix of the stationary process, and the Toeplitz

system (4.32) is commonly called the Yule-Walker equations, see Yule [197].
For a discrete-time stationary process, if the autocovariances of the process are absolutely

summable, i.e.,
P1

k=�1 jakj <1, then the function f(�) with ak as Fourier coe�cients is called
the spectral density function of the stationary process, see [21, p.118]. The covariance matrix A
is then a Toeplitz matrix generated by f(�). As examples, we consider the following stationary
processes:

1. First order auto-regressive process AR(1) [160, p.238]: The process is given by

x(t) = �x(t� 1) + v(t);
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where fv(t)g is a white noise process with variance �2. The autocovariances of the process
are given by

ak =
�2�jkj

1� �2
; k = 0;�1;�2; � � � ;

where j�j < 1. The corresponding spectral density function f(�) is given by

f(�) =
�2

2�(1 � 2� cos � + �2)
: (4.33)

The covariance matrix is a scalar multiple of the Kac-Murdock Szeg�o matrix, see Kac et
al. [122].

2. First order moving-average process MA(1) [21, p.123]: The process is given by

x(t) = v(t) + �v(t� 1);

where j�j < 1 and fv(t)g is a white noise process with variance �2. The autocovariances
of the process are given by

ak =

8><
>:

�2(1 + �2); k = 0;
�2�; k = 1;
0; otherwise:

We see that the covariance matrix is a tridiagonal Toeplitz matrix with

f(�) =
�2

2�
(1 + 2� cos � + �2):

If one assumes that the spectral density function of the stationary process exists and is
positive (that can be guaranteed by the causality of the process [21, p.85]), then the Yule-Walker
equations (4.32) can be solved in O(n log n) operations by using the preconditioned conjugate
gradient method with circulant preconditioners discussed in x2.1, see [149]. We remark that
all the above results are derived deterministically. In the least squares estimation algorithms,
we always deal with data samples from random processes and the convergence rate should be
considered in a probabilistic way.

4.6.2 Least Squares Filters

We note that in practical cases, no prior knowledge is usually available on the autocovariances of
the process. If m data samples have been taken, then all the information we have is contained in
the �nite number of data points fx(t)gmt=1. In this case, one can still formulate a well-de�ned least
squares prediction problem by estimating the autocovariances from the data samples fx(t)gmt=1

with various types of windowing methods; such as the correlation, covariance, pre-windowed, and
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post-windowed methods, see for instance Giordano and Hsu [84, pp.65-66]. The least squares
estimators can then be found by solving for the n-vector b in

min jjd�Abjj2: (4.34)

Here A is an m-by-n Toeplitz matrix with full column rank n, obtained by applying various
types of windowing methods on the data samples fx(t)gmt=1. The solution b of (4.34) can be
obtained by solving the normal equation (A�A)b = A�d:We note that if the correlation method
is employed, the normal matrix A�A is Toeplitz. The other three windowing methods lead to
non-Toeplitz normal matrices A�A of the form

A�A = ~A� L�L� U�U; (4.35)

where ~A is an n-by-n Toeplitz matrix, L and U are lower triangular and upper triangular Toeplitz
matrices, respectively (cf. (4.15)).

To prove convergence, the following practical signal processing assumptions of the random
process were made in [149, 148].

� The process is stationary with constant mean �.

� The spectral density function of the process is positive and in the Wiener class.

� There exist positive constants �1 and �2 such that

Var

0
@ 1

m

m�kX
j=1

x(j)

1
A � �1

m
; k = 0; 1; 2; : : : ;m� 1

and

Var

0
@ 1

m

m�kX
j=1

[x(j) � �][x(j + k)� �]

1
A � �2

m
; k = 0; 1; 2; : : : ;m� 1:

We note that the positiveness of the spectral density function can be guaranteed by the causality
of the process [21, p.85], whereas the absolute summability of the autocovariances can be assured
by the invertibility of the process [21, p.86]. With these assumptions, we proved that the spectra
of the preconditioned matrices c( ~A)�1(A�A) are clustered around 1 with probability 1, provided
that a su�ciently large number of data samples are taken.

Theorem 27 (Ng and R. Chan (1994) [149]) Let the discrete-time process satisfy the above
assumptions. Then for any given � > 0 and 0 < � < 1, there exist positive integers �1 and �2
such that for n > �1, the probability that at most �2 eigenvalues of the matrix I � c( ~A)�1(A�A)
have absolute value greater than � is greater than 1� �, provided that m = O(n3+�) with � > 0.

Hence, when we apply the conjugate gradient method to the preconditioned system, the method
converges superlinearly with probability 1. Since the data matrix A is an m-by-n rectangu-
lar Toeplitz matrix, the normal equations and the circulant preconditioner can be formed in
O(m log n) operations. Once they are formed, the cost per iteration of the preconditioned con-
jugate gradient method is O(n log n) operations. Therefore, the total work of obtaining the
predictor coe�cients to a given accuracy is of O((m+ n) logn).
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4.6.3 Linear-Phase Least Squares Filters

Besides FIR linear �lters, FIR linear-phase �lters are also commonly used in signal processing.
Such �lters are especially important for applications where frequency dispersion due to non-
linear phase is harmful, such as in speech processing. In this case, the impulse responses can be
found by solving the Toeplitz-plus-Hankel least squares problem

minkd� (A+H)bk2;

where A+H is a rectangular Toeplitz-plus-Hankel matrix, see [140, 141, 142, 194, 109, 147]. By
exploiting the structure of the normal equations matrices, it can be written as

(A+H)�(A+H) = ~A+ ~H � V1 � V2 � V3 � V4;

where ~A is a Toeplitz matrix, ~H is a Hankel matrix, and fVig4i=1 are non-Toeplitz and non-Hankel
matrices. In [147], c( ~A) is used as a preconditioner for the problem. Under the same assumptions
as in Theorem 27, it has been shown that the spectra of the matrices ~H and fVig4i=1 are all
clustered around 0. Hence, the spectrum of the preconditioned matrix c( ~A)�1(A+H)�(A+H)
will also be clustered around 1 with probability 1.

Ku and Kuo [133] have also proposed a preconditioner for Toeplitz-plus-Hankel systems.
Their approach is basically to take circulant approximations of the Toeplitz matrix and the
Hankel matrix separately and then combine them together to form a preconditioner. The mo-
tivation behind Ng's preconditioner is that the Toeplitz matrix ~A is the sample autocorrelation
matrix, which intuitively should be a good estimation to the autocorrelation matrix of the
discrete-time stationary process, provided that a su�ciently large number of data samples are
taken. Moreover, under practical signal processing assumptions, the spectrum of the Hankel ma-
trix ~H is clustered around zero. Hence, it su�ces to approximate the Toeplitz part by circulant
preconditioners.

4.6.4 Recursive Least Squares Filters

So far we have discussed only block-processing type least squares estimations, i.e., data samples
are collected over a �nite time interval and the resulting linear system is solved. Recently,
Plemmons [159] and Ng and Plemmons [152, 153] proposed to use circulant preconditioners
for the recursive least squares (RLS) estimations, which are used extensively in many signal
processing and control applications. They considered the RLS computations where the data
matrices are assumed to have a Toeplitz (displacement) structure. Their new algorithm computes
least squares estimators recursively by using sliding data windows involving multiple (rank k)
updating and downdating computations for superior tracking capabilities. When A(t) is an
m-by-n rectangular data matrix (m is the length of the sliding window) with full column rank,
then the least squares estimator b(t) at step t can be obtained by solving the normal equations

A(t)�A(t)b(t) = A(t)�d(t):
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We note that although A(t)�A(t) is generally not Toeplitz, it can still be written in the form

A(t)�A(t) = ~A(t)� L(t)�L(t)� U(t)�U(t);

where ~A(t) is Toeplitz, and L(t) and U(t) are lower triangular and upper triangular Toeplitz
matrices, (cf. (4.15) and (4.35)). In [152, 153], Ng and Plemmons employed the preconditioned
conjugate gradient method with circulant preconditioners to solve such systems at each step. In
the case of point-processing (k = 1), the method requiresO(n logn) operations per adaptive �lter
input, where n is the number of least squares estimators. In the case of block-processing (k �
n), the method requires only O(log n) operations per adaptive �lter input. These FFT-based
iterative RLS algorithms, with reasonable complexity for computing least squares estimators
recursively, may also avoid some of the instability problems associated with direct fast RLS
methods.

In the following, we test the convergence performance of the FFT-based sliding window RLS
algorithm and compare it with fast transversal �lter algorithms [99, pp.586{600] and standard
recursive least squares [99, p.485]. We remark that they are O(n) and O(n2) algorithms, respec-
tively. An exponential weighting factor 
 is generally used in these two algorithms. The inverse
of 1� 
 is approximately a \measure" of the memory of the algorithm. Therefore, the length of
the sliding window m used in the FFT-based sliding window RLS algorithm is related to 
 by
m � 1=(1 � 
).
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Unknown System

FIR System fbk(t)gnk=1
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6
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6
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d(t)

~d(t)

Figure 6: Adaptive FIR System Identi�cation Model

Figure 6 is a block diagram for the implementation of the FFT-based RLS algorithm in an
adaptive FIR system identi�cation model. The input signal x(t) drives the unknown system to
produce the output sequence d(t). We model the unknown system as an FIR �lter. As input
stochastic process, we used the �rst order autoregressive AR(1) process given by

x(t) + �x(t� 1) = v(t);
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where � = �0:9999 and fv(t)g is a white noise process with variance �2 = 1. We note that
the spectral density function of the process is positive and in the Wiener class, see (4.33). The
reference (unknown) system is an n-th order linear phase FIR �lter with uncorrelated Gaussian
white noise added. The FIR's impulse responses fb̂kgnk=1 of the unknown system used are

b̂k = 1:1� j2k � n� 1j
n� 1

; k = 1; 2; � � � n:

In the numerical tests, the stopping criterion for the preconditioned conjugate gradient method
is when the `2 norm of the residual vector is less than 10�7. All the computations are done by
Matlab.

Figures 7{9 show the prior average least squares error and the `2 norm of the weight-error
vector for di�erent algorithms when di�erent levels of variances of Gaussian white noise are
added to the reference system. The size n of the �lters used is 32. We see from the �gures that
the fast transversal �lter algorithm does not converge. However, both the standard recursive
least squares and the FFT-based sliding window algorithms converge very fast.
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Figure 7: Fast Transversal Filter Algorithm with 
 = 0:9922.
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Figure 8: Standard Recursive Least Squares Algorithm with 
 = 0:9922.
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Figure 9: FFT-based Sliding Window RLS Algorithm with m = 128.
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5 Concluding Remarks

In 1986, Strang addressed the question of whether iterative methods can compete with direct
methods for solving symmetric positive de�nite Toeplitz systems. The answer has turned out to
be an unquali�ed yes. The conjugate gradient method coupled with a suitable preconditioner
can solve a large class of n-by-n Toeplitz systems in O(n log n) operations, as compared to the
O(n log2 n) operations required by fast direct Toeplitz solvers. This paper summarizes some of
the developments of this iterative method in the past few years. Applications of the method
to partial di�erential equations, queueing networks, integral equations, image restoration, and
time series analysis are also given. The results show that the method in some instances works
better than traditional methods used speci�cally for these problems.

Possible directions of future works are to apply the method to other areas where solutions of
Toeplitz or Toeplitz-related systems are sought, such as in control theory and image processing.
For instance, the restoration of images in nonlinear space-invariant systems involves the solutions
of Toeplitz-like systems, see [178]; and the total variation method for restoring noisy, blurred
images involves operators which are the sum of second-order elliptic operators and Toeplitz
operators [163, 189]. Also in the numerical solution of the biharmonic equation by conformal
mapping, we have to solve Toeplitz-plus-Hankel systems [34].

Other directions consist of a thorough comparison of di�erent preconditioners proposed and
more importantly with fast direct Toeplitz solvers (cf. [112, 136]); and the use of other iterative
methods, such as multigrid methods, for Toeplitz systems, see [74, 75].

Acknowledgments: We are deeply grateful to Professors Tony Chan and Robert Plemmons
for their help in the preparation of this paper. Also we would like to thank the referees for their
valuable comments, which made the paper more updated and presentable.
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